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1 Introduction

Anomalies in extended supergravities and their relation to UV divergences have been stud-
ied since the discovery of these theories [1-5]. It has been known for a long time [6] that
chiral anomalies associated with topological Atiyah-Singer index theorem are absent for
N > 5. Conformal anomalies associated with the Euler number, > a, and the Weyl
anomaly, ) . cs, were studied in [7-12]. A recent surprise was a discovery in [13] that
in the harmonic gauge for gauge fields the Weyl conformal anomalies, ) cs, vanish for
N > 5. A possible supersymmetric explanation of the absence of chiral and Weyl anomalies
in N' > 5 was proposed in [14]. In N = 4 supergravity the chiral anomaly is present [6].
More recently it was discovered in [15] that there are anomalous 4-point amplitudes in
N = 4 supergravity that are supersymmetric but violate helicity/chirality conservation.
Supergravity amplitudes are constructed as the product of gauge theory amplitudes using
the double-copy method [16-18]. The anomalous amplitudes first arise as (UV finite and
nonlocal) contributions at the 1-loop level. From their associated superamplitudes, two
independent candidate local 4-loop counterterms were constructed in addition to the con-
ventional counterterm that contains the MHV 4-graviton amplitude and its SUSY partners.

The N = 4 theory is finite at 3-loop order, [19], but the 4-loop calculations in [20]
revealed that the N' = 4 theory contains the predicted UV divergent structures. The

superamplitude in double copy form is'

_ C
My = ?4575143{/9:64\(1\4(O__JFJr +600TTFT — 3071 (1.1)
where s = s19, t = S93, u = s13 and
1 K\6 1
= —) —(264(3 -1 1.2
Ca (47r)8<2> 288 204G — 1) (1.2)

The three terms O~ T, etc. in the second factor indicate gluon helicity amplitudes in
the N' = 0 Yang-Mills factor of the double copy. The first term preserves helicity , while
OTT++ and O~ violate helicity conservation. This is permitted since the N’ = 0 gauge
theory is non-supersymmetric. Yet the product superamplitude in (1.1) is supersymmetric
because AR,y contains the well known factor 68 (Qia), with i = 1,...4 and « the
chiral spinor index. The superamplitude includes the helicity non-conserving processes
(WtTh=~htT¢), (htThTT¢g) and their conjugates (plus their SUSY partners) in addition
to the conventional process (h=~h~~hTThTT).

Four-loop computations in N' = 5 supergravity were reported in [22]. The divergent
diagrams can be expressed as the sum of the N/ = 4 superamplitude of (1.1) plus an
additional term proportional to it with equal and opposite coefficient. Thus

4—loop __ 4—loop 4—loop __
My =5 aiv = Mg aiv T AMgy =0, (1.3)

so all three terms in (1.1) cancel in N/ = 5. The additional contribution in N = 5 su-

pergravity, AM%{JOOP, is due to the presence of the fermion in the double-copy (N =

Here and below we use the normalization of the external states in the 4-point amplitude in agreement
with [21], where all dependence on &, for example in the Einstein action, is given by 1x*R.



4)ypr X (N = 1)y computations versus (N = 4)yy X (N = 0)yp. The cancellation of
helicity /chirality violating terms in the UV divergences of N’ =5 might be due to absence
of anomalous amplitudes in A/ = 1 SYM theory, however, the reason why the 4-graviton
helicity preserving amplitude is also finite remains a puzzle.

The situation described above suggests that it is important to study the issue of he-
licity /chirality violating amplitudes in N' > 5 supergravity. Our goal is to find and an-
alyze anomalous amplitudes in A/ > 5 analogous to those found in N' = 4 supergravity
in [15]. This requires knowledge of the linearized chiral superfields in these theories. They
have been already used in [14] for the supersymmetric analysis of the chiral and conformal
anomalies, but here we systematically present the properties of these superfields, prove that
they are chiral and that there are no other chiral superfields besides those that we identify.

The main conclusions of our work are that there are chiral superfields and chirality/ he-
licity violating supersymmetric invariants for all A-extended supergravities that we classify
in a simple systematic pattern.? This means that there are candidate chirality violating am-
plitudes. However, in N = 5, 6, 8 supergravities, closer study shows that these potentially
anomalous superamplitudes have vanishing coefficients. This provides further evidence that
the chiral anomaly present for A = 4 and absent for N' =5, 6, 8 plays a significant role.

2 Review of anomalous superamplitudes in N' = 4 supergravity

We present further information on the results of [15] for N' = 4 supergravity because it
sets the pattern for the extension to N/ > 5 in later sections of this paper. The on-shell
fields of the theory are (with Weyl spinor indices and i = 1,2, 3,4)

{N = 4} = {Ca/j’y(57 waﬂ'yia Maﬁija Xf)n (Z)} +c.c.. (2'1)

These fields are components of two linearized on-shell chiral superfields é@ﬁyé(yvg) and
W(y,0) = ¢(y,0). Here we present a schematic simplified version of these superfields, their
complete form can be found in appendix C.

. 1 o

Coaps:0) = Copsg() + 07 Oz + -+ @«9?9? 000) 0060503055067, (2.2)
. 1 .

W (y,0) = d(y) + 09X, + - + Jegefegegcawsw“. (2.3)

The conjugate fields to those in (2.1) are components of anti-chiral superfields.

We assign a U(1), quantum number to each superfield, which is equal to the helicity
of its lowest component and under which 5 — ¢®/202 (so that 6% carries helicity 1/2).
This U(1);, acts on the physical states of the theory. Anomalous amplitudes thus violate
helicity conservation.?
The standard linearized 4-point supersymmetric L-loop invariants, which preserve he-

licity, are of the following form [21, 23]

Maiy = r2EY / d*z d%0 a®0 oW W2 (2.4)

2 An analogous classification for SUSY gauge theories is also given in appendix B.
3Later we will define a U(1). quantum number related to the U(1)r subgroup of the duality group.



where 92(L=3) is a symbolic expression representing various contractions of spacetime
derivatives acting on individual superfields. We are interested in supersymmetric invariants
for possible anomalous 1-loop 4-particle processes and thus look for d®@ integrals that are
quartic in the superfields. There are two invariants. Omne is non-local, the other one is
local. In momentum space with P =), py,

54 P B . . . .
w0 = D [0 01, 00 (o, D050 (3, 010 01 W (91,0) . (25)

M3 = 54(P)/d89 W (p1, 0)W (p2, 0)W (p3, 0)W (p4, 6) . (2.6)

Since d®@ carries U(1)p,-charge —4, and C charge 2, we see that M) and M(? carry net he-
licity —2 and —4, respectively. There is a % term in the integrand of M) that corresponds
to the process® (htTh="h~~¢) that violates helicity conservation, while M@ contains
the process (h™~h™ " ¢¢). Of course, there are other helicity violating processes related by
SUSY to those above. In both cases the anomalous effective action is given by M + M.

The corresponding super-amplitudes were computed in [15] by the 1-loop double-copy
method for (N = 4)yy x (N = 0)ya model with the results (see the notation in ap-
pendix A) and in particular (A.12)

MO (1934 = 1 (32)(24)[21]

1—loop (47‘(‘)2 (31><14> <21> 58(Q)54(P) ) (2'7)

for the case of (2.5), and for the case of (2.6)

My (1.2.8.4) = 4;)258(@54(13) . (2.8)

Both expressions above have dimension zero and correspond to s-independent 1-loop am-
plitudes.

We now observe that if we multiply by x®stu we arrive at local expressions which are
supersymmetric and still dimensionless. They are therefore candidates for 4-loop diver-
gences, in addition to the helicity preserving invariant in (2.4) for L = 4. The helicity
violating candidate for 4-loop divergences can be obtained from the chiral invariants

6 o .

M+ M) = ’% / d'wd®0[C, 4. WO 0P WO 00 W] + hec., (2.9)
6

M+ PG = = / dz d® W + hec. | (2.10)

where 9% indicates the distribution of spacetime derivatives that produces stu in Fourier
space. It is quite remarkable that the 4-loop calculations of [20] correspond exactly to these
structures with coefficient given in (1.1)!

“We associate C 4.5 to AT and Cagys to h™ .
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Chiral U(1). symmetry and its anomaly. In N = 4 supergravity we define the
anomalous chiral U(1). symmetry as follows: it acts on chiral and anti-chiral linearized
superfields as well as on the field components and on #’s as follows.

W(ya 01) — eQiGW(ya 91) ) W(ga 0_2) — e_QiGW(ga 0_2)7
0; — e2%; | 0 — e~ 29", (2.11)

Here y®% = 3% 4 %édiﬁf‘, see (A.4). The symmetry acting on the superfield, for example
Wi(y,0;) — e2i'“W(y, 0;), means the following. We require that ¢(y) — e%¢(y), 6; — eéa@-
, X (y) — e%axfl(y), etc. so that every term in (2.3) transforms as the first one when
both # and higher components from spin 1/2 to spin 2, being functions of y, transform
accordingly. For example, the last term %9?9? egegcaﬁvgsijkf satisfies this rule since Cn g5
is neutral under U(1). symmetry and the required factor e?® originates from 4 powers of
¢ in front of Cyg+s in the superfield.

The particular form of the U(1) symmetry in (2.11) corresponds to the action of a
U(1). normal subgroup of the isotropy group H in the % = W coset space of
N = 4 pure supergravity. It will be generalized for all N’ > 5 models below.

The 4-graviton L-loop UV divergence in (2.4) is invariant under the chiral transfor-
mations (2.11). The other two UV divergences, in (2.9) and in (2.10), are not invariant

under (2.11), for example
Sy (M +M)§) = dai(M — M) (2.12)

Helicity conservation and its U(1)s anomaly. The chiral U(1), anomaly described
above has a geometric origin associated with the isometry group G and in particular with
a U(1) normal subgroup of its isotropy subgroup H. On the other hand the 1-loop anoma-
lous 4-point amplitudes as well as the ‘extra’ 4-loop UV divergences also break helicity
conservation. The relation between these two types of anomalies is simple. We define
here another U(1);, transformations of the superfields and its components such that the
corresponding chiral weight is a helicity of its first component, namely in N’ = 4 case we
define U(1), as follows

C_'dﬁ',-y(;(y, 0@) - eZlede;y(; (ya 0%) ) Caﬂyé(g7 él) — 67211)0&576 (g7 9’1)7
0; — e2i0; i — e zibgi . (2.13)

The difference with (2.11) reflects the fact that the scalars have vanishing helicity, but
transform under the G isometry group and its U(1). subgroup, whereas the graviton is
neutral in G and its U(1). subgroup, but has a non-vanishing helicity +2. Vectors partici-
pate in both U(1)’s as well as spinors, although spinors helicity and chirality are different.

Thus, under chirality U(1). in (2.11) and under helicity U(1) in (2.13) the supersym-
metry invariants transform as follows. This first one, Mgy, is invariant under both U(1)’s.
The second and the third one are both not invariant and we find that

Su(). (M + H)glii’@) = —0y(), M+ ﬂ)ﬁﬁi’@). (2.14)



N | Duality group G | isotropy H Mscatar Spin-0 | Spin-1/2 | Spin-1
4 | SU(1,1) ® SO(6) U(4) S | 1+1 4 6
5 SU(1,5) u(5) oy | 545 | 1+10 10
6 SO*(12) U(6) Goieste | 15+15| 6+20 | 1+15
8 Er) SU(8) S 70 56 28

Table 1. Scalar manifolds of A" > 4 pure (no matter) supergravities. We denote the scalar, spinor
and vector field contents in each supergravity. In some entries the H-representation is reducible.
Note that the 10 is the three-index antisymmetric representation of SU(5) and the 15 is the two-
index antisymmetric representation of SU(6). In addition to the fields listed in the table, each
supergravity contains a graviton and N gravitini.

3 Pure extended supergravities

In extended N > 4 pure (no matter) supergravities scalars are coordinates of a coset space
%. Equations of motion and Bianchi identities transform under the isometry group G,
acting as dualities on the vectors as shown in [24]. The isotropy group H is its maximal
compact subgroup. Pure N < 4 supergravities have no scalars.

3.1 Universal structure of on-shell linearized chiral superfields in N/ > 0 su-
pergravity

Linearized superfields contain the asymptotic physical states of the theory. States of helicity
h are described by symmetric rank |2h| spinors. For every A/ > 0 there is a chiral superfield
C’d 5 5(y,0), whose lowest component in the 6 expansion is the Weyl tensor Ca B4 ;(y) and
describes a graviton of helicity +2. For each N -extended supergravity (7 > N > 1), there
is a second chiral superfield, @i B4 M;%, )’(278, W, Wa, Wag, Wagy, respectively.” Needless
to say, the conjugates of these superfields are anti-chiral. All of these superfields are
singlets of the SU(N') global symmetry group. Derivations of their properties and details
of their 6 expansions can be found in appendix C, where it is also shown that there are no
other chiral linearized superfields. The analogous but simpler structure of N'=4,3,2,1,0

super-Yang-Mills theories is illustrated in appendix B.

3.2 U(1) chirality /helicity in linearized superfields

The two global symmetries U(1). and U(1);, discussed in section 2 for linearized N' = 4
supergravity are also present for other values of N. Charges of the U(1). symmetry are
those of the U(1) factor in the R-symmetry group U(N) = SU(N) x U(1). For both
symmetries 67, has charge 1/2, and 9_2 has charge —1/2, so that supersymmetry generators
change the charges of component fields by 1/2. Furthermore the U(1), and U(1). act as
phase transformations, and thus complex conjugate fields should have opposite charges.

5The numerical subscripts 8,7,6, ... indicate the directions in space that are dropped in the descent

from 8 to 7 to 6, etc. See appendix C.



N Chiral Anti-chiral Helicity h, U(1). weight ¢
N =38 C’d//j’»‘yé(ya 0) Caﬁ'yﬁ(ga é) 12, —
N =7 Cidﬁ."yz;(y’ 0) Caﬁ'yts(gv ?) :l:27 0
dji/g,y(ya 0) 7!%4578(@7 ) :l:%a i%

N Cagrs (v, 0) Caprs(3:0) +2, 0
M7 (y, 0) Mag7s(y,0) +1, +3

N5 Capsé(y 0) Cans(9,9) +2, 0
)2278 (yv 9) Xab678 (gv 9) i%a ig

N Capss(¥:9)  Cap(3,0) +2, 0

W(yv 9) = ¢5678(y5 0) W(ﬂ? 9) = ¢5678(§7 9) Oa 12

N -3 C’aﬁyd(ya 0) o COj,B’Y(S(ﬂa é) B :l:27 0
Wa (y7 6) = Xa123(y7 9) Wd(gv 0) = 2(15423(g7 0) :Féa j:%

N =2 é@gﬁ&(ya 0) o Ca_ﬁ%(gle) ) +2, 0
Waﬁ(y> 9) = Maﬁl?(ya 9) Wd/j’(ya 9) = Mé;(’ga 9) Fl, =1

C..:(y,0 Copys(7,0 +2, 0

N1 a8 (Y, 0) € fM@_l) N 20
Waﬁ’y(yv 9) = waﬂ’yl(ya 0) Waﬂy(y, 9) = waﬁ,y(ya 0) :F§v :l:§

N=0 C’aﬁ'ﬁé(x) Capys(x) +2, 0

Table 2. Chiral and anti-chiral on-shell multiplets for A" = 8 to 0. The last column provides the
helicity of the multiplet, where upper and lower sign corresponds to the chiral and anti-chiral one,
respectively. The chiral U(1). weights are also given, which satisfy the simple relation |h — ¢| = 2.
For N' = 8 the c-weights are not defined. Dimension is equal to the absolute value of helicity,
A = |h|, for all entries in this table.

For self-conjugate multiplets, the on-shell N' = 4 super-Yang-Mills multiplet (B.1) and
the on-shell NV = 8 supergravity multiplet (C.1), the last two requirements above fix the
weights of all component fields. In particular, the middle (scalar) fields must have weight 0.
The symmetry defined by these charges will be indicated as U(1), since fields have U(1),
charge equal to their helicity.

For each N' < 8 there are two chiral superfields. Neither contains components in
conjugate pairs, so the requirement of opposite charges for conjugate fields is not applicable.
We define the U(1), charge of each component as its helicity and assign the U(1). charge as
its charge under the U(1) normal subgroup of the isotropy group H of the scalar manifold.
The latter acts as a chiral transformation on fermions and by duality on vector fields, while
the graviton is inert. For NV = 8 the isotropy group, SU(8), is simple and does not contain a
normal U(1) subgroup, which is consistent with the argument above that no other charges
than those in U(1), can be defined for this multiplet.

In linearized N -supergravity, we have the following chiral superfields,

Copis(y.0) (N 20), Qn(y,0) (TN 2 1), (3.1)



where @, denotes the second chiral superfield for each N, as listed in table 2. Their U(1).
and U(1); transformation laws are

i liagi A A iNa

U(]')C : 904 — €2 eav Cagry&(y70) - Caﬁyci(yv 9)7 (b/\/—(y7 9) — € 2 (I)N(ya 6)7 (32)
' Libgi A ib A N4

U O =20, Cupis(y,0) = °Cops(y,0), Pa(y,0) = ™2 "Our(y,0),

where a and b are constant parameters. Information on these superfields and their U(1).4
charges is given in table 2. The weights of the superfields are defined as the weights of their
first components. In the 4-point linearized supersymmetric invariants studied in the next
two sections of this paper, the U(1). and U(1);, anomalies for NV < 8 are correlated. Any
given invariant is either anomalous under both symmetries or non-anomalous under both.

4 Chiral superinvariants in N/ > 5 supergravity and anomaly candidates

There are no matter multiplets in N > 5 supergravity, and this simplifies our analysis. In
particular all vertices carry the factor 1/x? and all propagators have the factor k2. Thus

2(L—1)

L-loop structures always contain the even power x , as first proposed in [21].

4.1 N =5

We now list the possible chiral non-invariant 4-point Lagrangian structures for N' = 5
supergravity. We include factors of xk so that Lagrangians have dimension +4 and their
contributions to the action [ d*z £(x) are dimensionless. We focus on candidate anomalous
Lagrangians constructed from the available chiral superfields, Ca,é’% and Y = Y& (Of
course, their conjugates can also be used.)

Since Yg is a fermionic superfield, only even powers can occur by Lorentz invariance.
Thus there are only three possible terms:

L (x) = %3’*2”/d109,32”(>‘<a>2‘5‘(m,9))2 ~ " (XX (2)dCIC () + - - , (4.1)
L2 (z) = KSH2n / 199 92" (3o x5, C7 10 (2,0)) ~ 02(CCHCOC(2)) + -+, (4.2)
£2(z) = KO+2n / 4199 9 (Cy. 5,070 (2,0))2 ~ 0P (CCO'XD'X(2)) + -+ - . (4.3)

For positive n, the notation 92(- - - ) indicates an arrangement of spacetime derivatives
acting on various superfields. As n increases the power of xk needed to form a dimensionless
contribution to the action also increases, and so does the loop order of the candidate
invariant. We use negative n to schematically indicate a non-local expression (such as
1/stu in momentum space) and this decreases the relevant loop order. Since both Y4 and
C 4y carTy only dotted indices, an even number of spacetime derivatives is required by
Lorentz invariance.

Note that £ and L3 have non-vanishing chirality weight, 5 and —5 respectively, and
a non-vanishing helicity weight, —3 and +3 respectively. These potential anomalous am-
plitudes are ruled out because they contain odd powers of x which cannot occur in pure
supergravity.



The invariant Lo has chiral and helicity weight zero, and is therefore non-anomalous.
It contains the allowed MHV process (h=~h~~hTTh™") and its SUSY partners. So Lo
remains a possible candidate for counterterms starting at the 4-loop level. The explicit 4-
loop amplitude computations in [22] show that this divergence is absent. This fact remains
unexplained.

Thus in N' = 5 supergravity all potential U(1) anomalous candidates are eliminated
since they have odd dimension. We will see that this conclusion agrees with analysis of the
double-copy construction.

4.2 N =6

We proceed as above and construct the possible chiral invariant actions that are quartic in
the superfields Ca 346 and M., = M. ;™. There are three candidates, namely
¥ ap ap

L1(z)2" = 5+2n / 4129 9% (M ;M (2,0))? ~ 9" (MMO*CPC)(x) + -+ | (4.4)
Lo(z)?" = 520 / 120%™ (M ;MO0 C. 5. OV (2,0) ~ ™ (CCOPCOC(w))++ -+, (4.5)
L3(z)2" = 10T / 120 0% (Cp 5,070 (2,0))2 ~ 9*"(CCO'MO'M) + -+ - . (4.6)

Unlike the situation in A/ = 5, all the three terms have even mass dimension and are
possible anomalous amplitudes and candidates for UV divergences. Their chirality weights
are 6,0, —6 respectively, and they carry helicity —2,0,+2. Thus Lo is chiral invariant and
non-anomalous as was the case for £5 in A/ = 5.

Since £2" has the same helicity/chirality structure and dimension as the conjugate of
L2 we focus on £3". For n = 0 this is the candidate 4-loop anomalous counterterm

M = [ b dt20 N NPRE 0 = 4 [ dte di2 N NPL T, (0.)

where the equality of the two forms is due to MaBMﬁB = %53M5é]\_45é.

We are interested in the vvhh amplitudes contained in the superspace invariant (4.7).
The first step is to substitute the 6 expansion (C.27) of M™® truncated to the Maxwell and
Weyl terms

M, 5(x,0) = M g(x) + - — é9?959;92azleggijkfmnamaﬁgcwm(x). (4.8)

After performing the 6 integration we find the candidate amplitude
AbJoop — 8 / Q| M3 0,050 C 500407 570
+ My, M 108,5055 O 50012507 507019)
v 6 na ono e 3
-f—Mdﬁ'M'y 0 ’yaﬁscw g 8(a 856075770)] (4.9)

This information may be recast in the language of amplitudes using the on-shell multi-
spinor fields (see [25-27]). Using the amplitude relations of appendix A, we obtain from



the spinor contractions in (4.9) the supersymmetric helicity violating local 4-loop candidate

counterterm:
ALlooP — 1611912(34)4 (5% + 12 + u?)51(P). (4.10)

The corresponding helicity violating non-local 1-loop candidate amplitude is obtained by
dividing by stu:
1otoop _ (822 +0?) o0 iaa
Agonp, = o [12]°(34)°8°(P). (4.11)
To obtain the candidate superamplitude, we use the superwavefunction for any particle

at the position I:

1

I 1. o
Q = v 0L+ gnimsi + gpimng i+ i iEkemne™

1 . 1,
T ke "+ g 0 hemnh (4.12)
We can then define the 4-point superamplitude that has (4.10) as a component. Using (A.9)

and (A.10)

4—loop: 612 2 2 2 [12]2 4
M KOOHQ)(S + 8 ) g8 (P), (4.13)

and one shows that the candidate 4-loop amplitude is permutation invariant. The 1-loop

candidate superamplitude is

52 4+ 12 +u? [12)?
stu (34)2

METIooP = §12(Q) §4(P). (4.14)

We can reproduce the vohh amplitude (4.11) from the candidate superamplitude (4.14)
by applying sixth-order n3 and n4 the derivatives to project out two gravitons. Using

o\ & 9
—_— = P 4..15
(3771) ZHl oy (415
we have on the one hand 6
0
— ) Qr=h"T" 4.1
(3"71> r=hT, (4.16)
and on the other hand
<6>6 (8>6512(Q) _ (340 (4.17)
on3 Ony ' '

We then obtain

1=loop _ /=, —p++p++
Avvhh - <U vTh h >

N/ o\ i
= (=) (=) My
(3773> (3774> !

242+ u?

- T[12]2<34>454(P). (4.18)

As expected, permutation invariance of the candidate superamplitude is reduced to the
Bose symmetries 1 <+ 2 and 3 < 4.
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In summary, in N' = 6 supergravity there are anomalous candidate superamplitudes
that describe both potential 4-loop UV divergence and the 1-loop processes. In section 5.2
we will reproduce the 1-loop structure (4.18) using the double-copy method. In section 5.3
we will show, however, that these candidate anomalous superamplitudes are not present in
the effective action of N/ = 6 supergravity.

4.3 N =8

We now discuss possible U(1);, anomalies in linearized N/ = 8 supergravity. As explained in
section 3.2, U(1). weights are not defined in this case, but we should still consider possible
U(1), anomalies. We focus on the 4-point invariant with lowest mass dimension:

/ d199(C.y 5,507 (2,0))2 ~ CCH'CO'C(x) + - . (4.19)

We have written only the 4-graviton coupling on the right side and omitted other terms. It
is now easy to see that this is actually U(1)y invariant: the weight of the chiral measure is
—8 whereas the helicity weight of the superfields in the integrand is +8. Thus, as expected,
there are no chiral /helicity anomalies in N = 8.

5 Double copy SYM and anomaly candidates in N/ > 5 supergravity

5.1 N =5 supergravity and N =4Q N =1 SYM

N = 5 supergravity amplitudes are expressed by the double copy N =4 @ N =1 SYM.
As shown in section 4.1, there is no possible candidate for the anomalous amplitudes in
N = 5 supergravity. Let us consider the possible anomalous amplitudes from the double
copy viewpoint. Since N = 4 pure SYM has no helicity violating amplitudes, we focus on
N =1SYM. In N =1 pure SYM, we have the following 4-point interactions,

L = /d4xd29xaxaxﬁxg, (5.1)
Lo = /d4xd29XaXaF’B,‘YF_’M, (5.2)
L3 = / d'ed®0 F,,FOPF, s F7°. (5.3)

Spacetime derivatives can be added, but only in even numbers. Since the theory has no
dimensional parameter, £; 3, which have odd dimension, cannot appear in the one-loop
effective action. Then, only Lo is the candidate, but this term is a self-conjugate, chiral
invariant, i.e. not U(1) anomalous:

Lo = /d4$d20XaXaFB;YFB;Y ~ FaBFaﬁF;ysp’w + - (5.4)

Therefore N = 1 SYM does not have anomalous 4-point amplitudes in any loop order.
Interestingly, the reason for the absence of anomalous amplitudes in A/ = 1 SYM is almost
the same as that in N' = 5 supergravity. Thus, the absence of anomalous amplitudes in
N = 5 supergravity is confirmed from the double copy viewpoint.
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5.2 N = 6 supergravity and N =4 N =2 SYM

In this section, we consider the N' = 6 supergravity amplitude from the double copy
viewpoint. The N = 6 supergravity amplitudes are given by the double copy N' =4 SYM®
N =2 SYM. It is known that N' = 4 SYM has no helicity violating amplitudes, so we
discuss such amplitudes in N/ = 2 SYM.
We study the candidate helicity violating one-loop invariant
s2 + 2 4 u?
stu
2 42 2
s°+t"+u
~ 54(P)¢(p1)¢(pz)F"‘ﬁ(pz)Fa/a(m)T + (5.5)
It has full permutation symmetry, which will provide a permutation symmetry of the

54(P) / Q0T ()W (pa) W (ps) W ()

double-copy gravitational amplitudes, as in examples shown in [15]. Note the nonlocal
interaction which makes this structure dimensionless.

Our invariant contains the ¢gvv process on the second line of (5.5). To express this
as an on-shell amplitude we need the 6 expansion (conjugate of (B.13))

W= 6+ 09ciinp, + %93953]‘@5, (5.6)
and the on-shell fields
Fap(p) = Aa(p)As(p)o™,
Yalp) = Aa(p)?,

¢ = 9. (5.7)

From the first term in the second line of (5.5), we can read off (pdvTovT) as

52 4+ 2 4+ u?

<34>2%. (5.8)

One finds that this amplitude is one of the components of the superamplitude

2, 42 2
N'=2 anomalous 4 s+t +u
=4 _. 5.9
) @~ (59)
We use the double copy formula (note t = 2ps - p3)
Aﬁ\/zG anomalous x St54(P)Ai\/:4tree % A{L\/ZQ anomalous (510)
The N = 4 tree-level 4-point superamplitude is given by
- *(Q)
N=d4tree
= . 5.11
Ai (12)(23)(34) (41) (5.11)
Combining (5.9) and (5.11), we find
N'=6 anomalous st 5° + t + u? 12 4
0 0*(P
i 12)(23)(34) (A1) stu (@)o7(P)
12 2 2 t2 2
R L] (5.12)

o

(34)2 stu

in full agreement with (4.14). Thus we have found a supersymmetric candidate for a U(1)
anomalous structure in A/ = 6 supergravity via two very different constructions.
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Figure 1. One boson and two fermion diagrams are shown. The letters x, y, u, v indicate spacetime
points in (a) and (b). In (c), ¢, ¢ are fields at the vertices, and the arrow indicates the vanishing
Wick contraction.

5.3 No 1-loop anomalous amplitudes in ' = 2 SYM theory

In this section we examine the basic N' = 2 SYM field theory and show explicitly that
such anomalous amplitudes are forbidden at one loop order. As described in [15], the
construction of loop amplitudes and candidate counterterms in A > 4 supergravity theories
proceeds by the double copy method. This method begins with the observation that the
spectrum of particle states in the N-extended supergravity theory is isomorphic to the
direct product of states in two SYM theories, specifically N =4 ® (N —4) SYM. We are
concerned with anomalous 4-point amplitudes associated with a possible chiral anomaly
of the U(1)g current. Since the N' =4 SYM theory does not contain U(1)g, the lowest
order anomalous supergravity amplitude requires a non-vanishing 1-loop SYM amplitude
on the (N — 4) side with non-conserved U(1)r charge. We now show rather simply that
such amplitudes vanish in A/ =2 SYM theory.

In the previous section we constructed the linearized chiral ' = 2 SYM superinvari-
ant (5.5). The 4th order terms in the § expansion of W (z, #)* describe the 4-point processes
¢2Fa5F B (haith®)?, ¢zpmw5j5ij FB_ The corresponding superamplitude is proportional
to 6(Y(Q) with no further factors of 7. Thus, given any one of the three amplitudes above,
the remaining two are determined by SUSY Ward identities. Therefore we focus on the
simplest amplitude, namely ¢2Fa5F0‘5 , and we consider the corresponding 1-loop Feynman
diagrams.

For this we use the A/ = 1 description of the minimal N/ = 2 theory presented in
(6.57)-(6.59) of [28]. This model contains the bosonic fields A;‘L‘, ¢4, ¢4, and the Majorana
fermions® A4, x4, where A4, B,C are indices of the adjoint representation of a compact
gauge group with structure constants fABC. The structure of N' = 2 SUSY is hidden in
this notation, but is realized by the assignment 1 = A4, wfl = x4

The interaction terms of this theory consist of the usual non-abelian gauge interactions
for the adjoint representation plus the Yukawa and quartic terms:

Lint = —V2FABC A (6B Py + 3B PL)AC) + %fABCfADE((EBgZ)C)(a)DQZ)E) ' (5.13)

The P;, and Pr projections of a Majorana field are identified as Weyl spinors, e.g. PLAq = Ao and
PrAa = A¢. Thus )ZPL)\ = Xa>\a.
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An N =1 chiral superfield ¢(x,0) = ¢(x)+60%xa(z) +0%0,F (x) carries the multiplet U(1)r
charge ry, and 0, is assigned 79 = 1. The component charges are then ry, r, = ry — 1,
rp = 74 — 2. In the gauge multiplet, the real quantities A4,, F), are U(l)g inert, and
the gaugino A\, carries ry = 1. The Yukawa interaction in (5.13) is invariant if we choose
re = 2. The entire action is then U(1) g invariant as an N’ = 1 theory. With the assignments
Pt = M, g = x4, this extends to the U(1)g of N' =2 SUSY. This symmetry prohibits
the process ¢2FQ5F°‘B.

All Feynman diagrams with two external ¢ fields and two external gluons vanish be-
cause the additive U(1)g charge is conserved at all interaction vertices. We now confirm
this at 1-loop order. Two fermion diagrams and a representative boson loop diagram are
indicated in figure 1. We indicate Wick contractions along the top line of the first diagram
with gauge indices suppressed.

[t s rion, [ ay(Pid, ). (5.14)

The Wick contraction (A(z)A(y)) ~ é’ﬁ gives the massless fermion propagator in space-
time. But there are adjacent P;, projectors, so we find the structure
1

2

PLaw (l‘ — y)

P =0. (5.15)
It vanishes by elementary chirality. The same argument applies to the case where two x
fields are contracted. The second diagram in the figure is a little more complicated, but it
also vanishes because there are an odd number of v-matrices between the projectors:

Prd,7u @, Pr = 0. (5.16)

It is simpler to analyze bosonic diagrams. Since there are two external ¢-fields, one encoun-
ters the vanishing Wick contraction (¢¢) = 0 along the loop and the amplitude vanishes.
Note that our arguments apply to the process ¢+ ¢ — n-gluons, and the amplitude vanishes
for all gluon helicities.”

5.4 N = 8 supergravity and N =4Q N =4 SYM

We consider the anomalous amplitudes in N' = 8 supergravity from the double copy N =
40N =4 SYM. In N = 4 SYM, we have only one chiral invariant action with four
superfields,

L= / d*z d® (FM-JW)2 ~ FdBFd‘B(?QFaﬁ@QF“B o (5.17)

This is the helicity preserving 4-point interaction, which of course does not give anomalous
amplitudes. In this maximal supersymmetric YM, there are no other helicity violating
superinvariants as in the maximal supergravity case shown in section 4.3. Therefore, we
conclude that N' = 8 supergravity does not have anomalous amplitudes from not only the
superinvariant analysis in section 4.3, but also the double copy viewpoint.

"We thank Lance Dixon for this observation.
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6 Subtleties in anomalies: the €/€ effect

This section is based on discussions of amplitude anomalies with Z. Bern, L. Dixon and
R. Roiban. We begin with a comment that provides the background for this section. The
candidate chirality violating amplitudes studied in this paper would represent an anomaly
of the global U(1), symmetry. In theories with U(1) chiral anomalies, invariance holds at
the classical level but fails at 1-loop order. When dimensional regularization to d = 4 — 2¢
is used, the difficulty arises because one must supply a prescription for the dimensional
continuation of 4° = iy%y!1y243, see for example [29, 30]. The result is that the numerators
of 1-loop Feynman diagrams vanish linearly as ¢ — 0, but the loop integration can produce
a 1/e pole. The net result is a finite anomalous amplitude. If the pole is absent there is no

anomaly at least in the amplitude under study.

The argument in [15] in A/ = 4 supergravity and in sections 4 and 5 for N = 6 is based
on the properties of linearized chirality violating supersymmetry invariants, their associated
superamplitudes and the simple double copy relations that are appropriate in this context.
We note the following concerning the invariants (2.5)—(2.6) in the N' = 4 theory. The first
one is non-local, but the second is local. This means that (2.6) with an extra 1/e factor is
a candidate 1-loop counterterm in the effective action and this fact is reflected in the local
superamplitude (2.8). It is clearly correlated with the order €/e rational terms in 1-loop
N = 0 gauge theory amplitudes. In contrast we note, looking at (4.4)—(4.6), that there is
no local candidate chirality violating 1-loop invariant in AV = 6 supergravity. More to the
point, the chirality violating 1-loop invariant (5.5) in N'= 2 SYM is non-local, and there
is no local dimensionless structure which would contain the 1/e pole. This proves that the
e/e effect is absent in N/ = 2 SYM and motivates the unregulated 1-loop calculations of
section 5.3, which confirm this.

For further justification, we now relate our approach to that of [31], in which 1-loop
supergravity and SYM amplitudes are calculated using unitarity cuts and dimensional
continuation from d = 6 to d = 4 — 2e. Anomalous rational terms may appear due to the
€/e effect. The issue of concern to us is that N' = 4 supergravity coupled to two vector
multiplets can be realized as a double copy in two ways, namely as (N = 4) x (N = 0) and
(N =2) x (N = 2). The first construction clearly gives anomalous amplitudes from the €/e
effect in the (N = 0) factor. In section 3 of [31] it is shown that both constructions yield
identical amplitudes for all d and for all helicity configurations. This appears to indicate a
1-loop anomaly in N' = 2 SYM, which would contradict our result. On the other hand, the
calculations in section 4 of [31] confirm that 1-loop chirality violating amplitudes vanish as
€ — 0. The explanation of this apparent paradox is that the double-copy calculations are
performed in the integrands of unitarity cuts, which contain the O(¢) terms of the N’ = 2
gauge theory. However this zero does not survive the final integration needed to produce
the anomalous amplitudes of A/ = 4 supergravity plus two vector multiplets.
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7 Summary and discussion

This work was motivated by the results of [15] in N' = 4 supergravity. In that paper two
independent linearized supersymmetric chiral invariants that contain U(1). anomalous am-
plitudes were found, and subsequent 4-loop calculations in [20] showed that these structures
are actually present as UV divergences. Therefore we undertook a study of the potential
anomalous chiral invariants in A' = 5, 6,8 supergravity, confining our attention to quartic
invariants that contain 4-point processes. As a preliminary step we classified the linearized
chiral superfields in all supergravities. There is one such superfield in the self-conjugate
N = 8 theory and two for each A in the range 7 > N > 0. The analogous classification
in super-Yang-Mills theories for 4 > N > 0 was also given, since we constructed potential
invariants by the double copy method as well as intrinsically in supergravity.

The U(1). symmetry is the normal U(1) subgroup of the R-symmetry group U(N) for
7 > N > 0. Since the group SU(8) is simple, U(1). does not exist for N' = 8. However,
we define U(1);, which counts the helicity of asymptotic physical and exists for all N.
The charges of the two symmetries U(1),, are correlated, so that any amplitude is either
anomalous or non-anomalous under both. It was shown in [6] that there is an R-symmetry
anomaly in A/ = 4 supergravity, but not for N’ > 5. An R-symmetry anomaly is a failure of
the conservation law for the R-current in 3-point functions in external backgrounds. One
might suspect that this fact is also relevant for the question of anomalous contributions to
the 4-particle S-matrix.

Let us come to the main results. For A' = 5 supergravity there are three quartic chiral
superspace invariants, two of which violate chirality. However the physical dimension of
these two is odd, and they cannot be constructed from the Feynman rules of extended
supergravity because they would violate elementary dimensional analysis. For N' = 6
there are again three chiral invariants, and two violate chirality. These invariants have
even physical dimension, so a more detailed argument is needed to investigate whether
they actually appear. For this purpose we derive the superamplitude that corresponds
to the invariants by two methods, first by working directly from the candidate invariants
and second using their construction via the double copy method from the product N =
4 SYM ®N = 2 SYM. Both methods lead to the same chirality violating superamplitude.
The double copy method works initially at the 1-loop level and yields a non-local structure
which is then promoted to a local form which is a candidate 4-loop UV divergence. We
then present a simple argument based on the A" = 2 SYM Lagrangian, that there are no
anomalous 1-loop amplitudes. Finally we arrive at N/ = 8 supergravity where there is only
one chiral superspace invariant which is in fact helicity conserving.

In summary there are anomalous amplitudes in ' = 4 supergravity. There are candi-
date anomalous chiral superspace invariants in A’ = 5, 6 supergravity, but their contribu-
tions actually vanish when the structure of the theories is examined. In A/ = 8 there are
no anomalous candidates. This strengthens one’s confidence that the presence or absence
of the R-symmetry anomaly is significant.
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A Conventions

We use complex conjugation that does not change the order of fermions, and that acts on

the fermion components as
W) =, (W) =9~ (A.1)
A real fermion bilinear is rewritten as follows
XU = X"a +xa¥, XY = X (1) ac® + Xa (V) Y0 (A-2)
where (7")aa = (0*)aa and (y#)%% = (51)*%, as given in [28] in (2.2).
We write the algebra of covariant derivatives for A-extended supersymmetry as

Dngd + Ddié = 5;00(,-1 s 8010'4 = —2(7”)0@8“ . (A3)

This leads to 9,60 = 89,0/ or Oaapd**¢’ = 80,¢0"¢'. Complex conjugation also raises
or lowers the index i, and (D?)* = Dg.
We often use the chiral basis where

. N _ o . o  _.
yOcOé = g + §0Z09?, Did = —W s DZ/X = W — Qw‘aad, (A4)
1
or the anti-chiral one
. N _ o 1 . o
g = 2% — 59”‘0?, D,y = Y + 502-0‘8(1@, Dy, = 200 (A.5)

The momenta of particle I are written in terms of two-component commuting spinors
as [18, 32
Proc = —2(V")aaPin = 2A 10 16 - (A.6)

Particle helicities are expressed in terms of these spinors as e.g.

M5(0) = XaP)A3(p)v™ . Capra(p) = Aa(P)As(P) Ay (P)As(P)R T (A7)
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The contraction of these spinors for p;y and py is then indicated as
(IJ) = —(JI) = Ay, [LJ]=—[JI] = ({IJ))" = A1aX - (A.8)
They satisfy the relations

(LD =2p;-pr=s1s, > INJK]=0, (A.9)
J

for lightlike momenta and sy = (pr+p J)2. With these one shows that for 4-point functions

122 _ (3] _ [14* _ [23 _ [24]° _ [34)?

(34)2 (247 (32)7 (142 (13)2  (12)*°

(A.10)

We use the shortcuts s = s19 = s34, t = S93 = S14 and u = s13 = Sa94.
When using super-wave functions, the supersymmetry generators @, are represented as

QL= Aranf, (A.11)
I

with anticommuting vectors 773. The [ d?N9 is then effectively replaced by the ¢ function

N 2 ‘ N 2 A N o
N@Q) =TI 0@ =TT T D  Mani =TI 7)mimi - (A12)
i=la=1 1T

i=1a=1 i=11>J
B Linearized chiral superfields in SYM

B.1 Universal structure of on-shell linearized chiral superfields in SYM

As discussed in section 3, N' > 0 supergravity has a universal structure. Here we show that
N >0 SYM also has the same structure, that is, singlet fields under SU(N) are the lowest
component of (anti-)chiral superfields, and the 6N component of any chiral superfields is
the lowest component of another anti-chiral superfield.

B2 N =4YM
We begin with the field content of N” = 4 SYM. The on-shell degrees of freedom are given by

{N =4 SYM} = {Fup, Mais $ijs A F - (B.1)

In our notation, lower flavor indices correspond to the 4 of SU(4) and upper flavor indices
correspond to the 4. Note that there is a duality constraint given by

1 .. %
bij = §5ijkl¢kla P = ¢;; . (B.2)

In a suitable basis, we can define the Bianchi identities for the fields in the multiplet, which
define also themselves superfields

Dbk = 261 Ay (B.3)
Di gk = 6} Fugp. (B.4)
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These can be inverted to obtain
1
Aai = gDa¢ji7
1 .
Fog = ZD;)\BZ-. (B.5)
Note that we can derive further identities:

= v
Dgidjr = €ijreNg,

Dsiraj = Oaadijs
DaiFug = Oa(aMp)is (B.6)

where we have used {D!, Ds;} = 5;80@ to derive the second and third equations.
With Bianchi identities, we can show that F,3 is an anti-chiral superfield as follows:

DI'D4D} i = 204D Fop, (B.7)

where we have used (B.3), (B.4) and ¢ with more indices is the antisymmetric product
of § symbols, e.g. (5% = (5@(55}. For m # 4,4, k, ¢, the left hand side vanishes because
D?D%ngﬁjk = D%DQ(D;”quk) = 0 due to (B.3). Choosing further for any m a couple
[ij] = [k{] of different indices, we find

DY Fup = 0. (B.8)
On the chiral basis (A.4), we can expand the chiral superfield F), 5 In N =4YM as

_ o < 1 N y
Flp(y,0) = Fipy) + 080a(a Ny, + 50207 0060507

p) 217t
1 9040,307 kjily . 9 1 601059706 tkjig . 9 B

TS

g~

To derive this expansion, we have used the identities (B.3)—(B.4) and (B.6).

B.3 N < 4 chiral superfields from N = 4 SYM

We derive N < 4 superfields from the truncation of N = 4 SYM. First let us start with A/ =

3 SYM, which is obtained by setting #;4 = 0. As is the case of N’ = 7 supergravity, which

will be discussed in section C.3, this truncation does not reduce the degrees of freedom in

the N' = 4 theory. One can confirm it by performing the truncation of the superfield (B.9).
Next, we consider N' = 2 SYM by setting 054 = 0, which gives

e 3J 1 @ ji
Fop(y,0) = Fp(y) +6; aa(éz)‘é) + 50 0 Oaa0gp034, (B.10)

where 4,7 = 1,2. The last component ¢34 = ¢ is a singlet scalar field. On-shell degrees of
freedom in A/ = 2 SYM are summarized as

{N =2 SYM} = {F.s,\o, ¢} + cc.. (B.11)
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N Chiral Anti-chiral Helicity
N =4 Faﬁ'(yv 9) Faﬁ(gv é) +1
Xi(y’ 9) XO[4(37> 9) :l:%
F.:(y,0 Fo5(7,0 +1
N =2 aﬁ(yagi ) 77,3(1/ )77
Wa = )\al (y7 9) Wd = 5‘(11(@7 é) $%
N =0 Fypla) Fo5(z) +1

Table 3. Properties of linearized chiral/anti-chiral superfields in N-extended supersymmetric
Yang-Mills theory. Dimension A is related to the absolute value of helicity A = |h| + 1, for all
entries in this table.

Note also that from N =4 SYM we obtain
$12 = ¢* = ¢, (B.12)

From (B.3), one can immediately find that the scalar superfield ¢(x,#,0) is an anti-chiral
superfield. Its component expansion in the anti-chiral basis (A.5) is

_ U
W(5,0) = ¢(5,0) = &(y) — 0" i X}, + 525,00 F ;. (B.13)
We impose the condition 6534 = 0 to obtain N' =1 SYM. The curvature superfield is

F5(w,6) = Fyy(a) + 620,07

» (B.14)

B)’
where we have omitted the index i = 1 of A}. (B.4) shows that A\s(z,6,0) is an anti-chiral

superfield, whose component expression is

Wa(g, é) = Xd(g, 9) = 5\0'[($) — 0_5Fd6. (B.15)

We summarize the (anti-)chiral superfields of A” > 0 SYM in table 3.

Finally, we show the proof of the following universality: In N° > 4 SYM, the oN
component of any chiral superfields is the lowest component of other anti-chiral superfield.
In any N-SYM, there exists (at least) one anti-chiral superfield Fi,g. Here we start with
the case N'=4 SYM. Using (B.3), (B.4), (B.6), one can show the following equations:

DyaFap = Oatarpye; (B.16)
Dy3DeaFop = Oa(a0ss Pre, (B.17)
DDy Des Fap = ertjidaadgs Ny, (B.18)
D;sDj3 D3 DeaFap = ekejiOa(app Fis (B.19)
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In N =4 SYM, the #* component is proportional to DiSDjﬁDk,BDMFamG:Ov which corre-
sponds to 6kgji8d(a85 3 r 5 This shows the universal structure in the N’ = 4 case.

Next, let us (formally) consider NV = 3 case, which is given by the truncation of N' =4
SYM. The r.h.s. of (B.19) always vanishes in A/ = 3 since there are only three indices.
This means

Di(SDj"kaﬁ'DEdFaﬁ = €kgj4ad(aaﬁ'ﬁ)Di55\% = 0, (B.QO)

where we have used (B.18). Thus, we have shown that Di 5)23 = 0, or equivalently, )Z% is
chiral superfield. Note also that the Lh.s. of (B.18) corresponds to the 62 component of
the anti-chiral superfield F,g in N' = 3 SYM. Then, the universality holds in the N' = 3
SYM case. One can continue this procedure to A/ = 1 case in the same way. This proves
the universal structure.

One can find and prove the same universal structure in supergravity as in the SYM case.

C Linearized chiral superfields in supergravity

C.1 N = 8 supergravity

The on-shell degrees of freedom are given by
R _
{N:8} = {Caﬁ'yﬁa Qpaﬁ’yz} Maﬁij> Xaijks ¢zyk€’ Xg ) M;Zga tbdgw Cdﬁ’yg}' (Cl)
The scalar fields satisfy

. g 1 ..
(dijhe)* = ¢ = aa”kem"pqumnm. (C.2)

There are a number of Bianchi identities on the superfields that start with these fields
as lowest components [23, 33]:

Dégbjkém = 45E‘ank€m}v
Dixpjke = 38(; Magra,
Do Mgy = 200k

Déwﬁwéj = 520045"/67 (03)
and its complex conjugates, e.g.

= j j k¢l

Did(ﬁ]kém = 4(51[de m} (C4)

These identities can be understood from the helicities and SU(N') content of the the-
ory, written in (C.1). From the representation point of view other terms with different
SU(N) and helicity representations could appear in the right-hand side of the equations
in (C.3). However, there exists no on-shell degrees of freedom for these representations.
The physics determines the structure of these equations. The exact equations actually
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define the superfields that appear in the right-hand side. They can be obtained from the
inverses of (C.3):

1
Xaijk = 5Dg¢€ijka

1
Mogij = éDkXﬁkija
1.
Yapryi = §DéMﬂw’z‘,
1 .
Caﬁfy(s = gDwaﬁwéi- (05)

Using the algebra {Dy D4} = Oaa, We can then also prove
DiaXpijke = Oapijie »
DiaMpyji = 9a(8X~)ijk »
Diatsys; = Oa(sMys)i »
Dio’zC,B'yée = 30'4(51%56)@' . (CG)
C.2 Chiral superfield in N/ = 8 supergravity

The above relations allow us to prove that C a6 is a chiral superfield, satisfying
Diéédﬁ',yg =0. (C.7)
Indeed, the Bianchi identity (C.3) can be iterated to
D4, D DY DiGmnpq = 410,33,4Caprs - (C.8)

If we act on this with a covariant derivative D! with r # 4, j, k, £, m, n, p, ¢, the first of (C.3)
implies that 5%Z;QD§C’C¥575 = 0. For any r we can find 4 different indices [ijk{] = [mnpq]
such that this proves the vanishing of D{C,ss. The complex conjugate implies that C a6
is chiral.

Using the same name for a superfield and its first component, we can then
use (C.3), (C.6) to identify the components of that chiral superfield. We obtain

A ~ ap T L ags i L pans _kji
CdzB"YS(y7 0) :Cocﬁ’y(s(y) + 07, 3@4(@%&5) + 50 Haa(aaﬁﬁMJ + i e'ezaa(daﬁﬁa’}“-/xlgj

27 58 31717 )
b0 020100000030:30356" T 2 0202003055013y e
+ 6T129? 0? 0;929;egaadaﬁ 303055 Mecpg Ziktmnpg
+ %9?9?9292953 0520,° 8@8636%8551/%1@H3qeijkemnpq
+ 50?9?92020%1 922953054aadﬁmawa&gcnm%mlgijkzmnpq7 ©9)

where the symmetrization of indices in the first line concerns only the dotted indices.
Since the (mass) dimension of 6 is %, the structure of the superfield is consistent with the
dimensions of the fields as in table 4.
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Field Cagv(s 2[104/37 Maﬂ Xa @

1 0

Dimension 2

[\C[9V]
D=

Table 4. (Mass) dimensions of the fields. We do not indicate the SU(N) labels since this table is
valid for different N

C.3 N < 8 chiral superfields from N = 8

In the following section, we will mainly focus on chiral superfields in N' = 5, 6. It is known
that N' = 5,6 supergravity is derived by truncation of A" = 8 supergravity. The structure
of N' = 8 supergravity would be extremely useful. In particular, we can easily find chiral
superfields in N' = 5,6 supergravity from AN/ = 8. But the procedure is more generally
applicable for all N < 8.

The truncation procedure consists in putting some components of 6% to zero in (C.9)
and its complex conjugate.® A first trivial example is when we try to truncate to N’ = 7.
Then we would just put 83 = 0 in (C.9). The last term would not appear anymore, however
the field Cypg4s still appears in the anti-chiral superfield. Another example is that in the
second term 1;?/3# 5 does not appear anymore. However, it also appears in the complex
conjugate. Equivalently, we can see this that the complex conjugate field 1y, xykss is still
present in the one but last term. This shows in this formalism that A" = 7 is not different
from N = 8.

We now consider the truncation to N' = 6. We put 03 = 6% = 0. Now e.g. @Z_J?B;Y 5) does
not enter in the second term, but neither does 1y, x,x58 in the one but last term, since for
that the set [ijk¢mnp] in the Levi-Civita symbol should contain 7, which is then contracted
with the vanishing 6%. Considering in this way the full superfield, and restricting now the
SU(N) indices 4, ... to {1,...,6}, the chiral superfield is

_ fel T 1015 Vel 1045’7 Skji
C’dﬂ';ﬂ;(y, 0) = CdB,.W;(y) + 05 30[(&1%7./5) + =650" a(daﬁBM%) + g@i Hj Qk,aa(daﬁ,g&y,yxs)

2"
1 o )
709‘95929230@8%871865¢Kk]z + ﬁ0?9]@929297671aadaﬁﬁ'a’yﬁ'ag(;)(enm%?”kgmn

41

1 |
@93efegegegiegaadaﬁﬁaw065M6<785Wm” . (C.10)

+

+

For investigations of A" = 6 we may delete the [78] indices. E.g. the spin 1 field M = Mc7s
is a singlet of SU(6). The scalar field ¢*/* has 15 complex components, which can be written
in terms of

1

1 ) -~
bij = ZgijkéanSk[mn = Pij78 or ¢k = 55”kem”¢mn, (C.11)

and we could have used this in the fifth term in (C.10).
The superfield (C.10) is obviously still chiral since in the chiral basis (A.4) the chirality
for N’ = 8 means that the superfield does not depend on the 6 and thus a fortiori not on

8The similar truncation is also done for superwave functions in ref. [34].
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those ' with i € {1,...,6}. This shows that the components of the multiplet are

{N—G} —{ afyds ¢a,8'yz, Maﬁij7 ng, ¢ij7 Xém Maﬁ'} +c.c., (C.12)

where we indicated explicitly the complex conjugates of the fields in (C.10).
We can truncate the theory to N'= 5 by taking 0675 = 0 and consider the truncated

superfield
Caps®:0) = Capss(y) + 07 On(atpyss) + 29?@ Oa(a Dy M5,
+ 3729?038978 (@953094 X6)em€ hstm 4,‘9?95979 8040'485587&85@7”5”“’”
eaeﬂmgﬁe Daa 0303 055X ™, (C.13)
where X
Om = Om6 = Pme678 Xa = Xa678 » Xaij = 3‘€l]kgmxa tm (C.14)

in terms of the fields that we had for ' =6 or N/ = 8. The set of fields is thus in this case

{N = 5} - {Caﬁ'y(% waﬁ'yz; afijs Xou ¢ ) Xoc} + c.c. <C15)

Let us continue the truncation to N'= 4. The superfield is now

S _ e 7. apB i apB kjil
Coais 0, 0)=Clapss () +67 a5+ Looo! Da(adsgM} + L 020%070,(40,130 X5y

971 7] §) g1 v BB
+ 4'0595979 Do 055073055027 (C.16)
where in terms of N =5 and N = 8 fields
Xai = Xais = 31, EijreX’" ¢ = ¢5 = Pse7s - (C.17)

The N = 4 fields are

{N 4} - {CQBW(s? ¢a,8'yz: afijs Xa) ¢} + c.c. (018)

For N = 3 the superfield is

_ A o - B jik
Cdb"%(ya 0) - Co}nyS( )+9 8a(d¢5,y5 (9 070 o 8 M"y5)k

977}
+ ‘egefma (a9330v4X5)€ S (C.19)
where
M;]ﬁ = Mg.  Xa=Xaa= ;‘ EikXe . (C.20)
The N = 3 fields are
{N =3} = {Capysr Yapri» Mig, Xa} +coc. (C.21)
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The N = 2 superfield is

~ ~ reY T [ B Y
Cdﬂ'ﬁ(;(y,e) = CO‘[BM;(y) + 6; 80((@1/)5#5) + 59,; 9]- aa(daﬁﬁ'ej Mﬁ(;) , (0.22)

where

M= M. (C.23)
The N = 2 fields are

{N =2} = {Caﬁ,yg, YaByis Mag} + c.c.. (C.24)
The N = 1 superfield is

Coass¥0) = Coss(y) + 0°0a(a ) (C.25)
in terms of the field content

{N = 1} = {Caﬁfy(;; waﬁ'y} +c.c.. (C26)

For N' = 0 there is just the field C aﬁﬁé(x) and its complex conjugate. We do not know
how to continue for ' < 0, and therefore we stop here.

C.4 Chiral superfields &y for 7 > N > 1

The highest component of a chiral superfield is the lowest component of an anti-chiral
multiplet. See e.g. the chiral multiplets in A/ = 1, which have components {Z, Ppy, F'}.
The field F transforms only with Pre and defines therefore an anti-chiral multiplet with
components (F, , DPry, 0Z).

We will prove below that we can say the same for the chiral superfields starting with
Ca 346 mentioned above for N’ = 8,...,0. This highest component is always a singlet under
SU(N) and defines an anti-chiral multiplet. The complex conjugate of the latter is then
again a chiral superfield. This leads to the list of (anti)chiral superfields in table 2.

For N = 8 the statement is simple. The statement of anti-chirality of Cngs is just the
complex conjugate of the statement of chirality of C a6

For N'=7,6,5, 4 the anti-chirality of the fields ¢o8,8, Mag7s, Xa678 and ¢se7s is proven
immediately from (C.3). E.g. for N/ = 7, the anti-chirality means that the superfield van-
ishes under D, fori = 1,...,7. For these values of i and j = 8 in the last equation of (C.3),
the result is immediate. The other 3 equations of (C.3) imply the same result for N' = 6, 5, 4.

For N' = 3 we prove the chirality of y,123 from the first line of (C.6). Indeed, in the
right-hand side comes then ¢;103 with ¢ = 1,2, 3, and this thus vanishes. In the same way,
the next two lines of (C.6) prove the chirality of Mgz for N = 2, and of 1,41 for N' = 1.

We can give explicit components of these superfields by using the complex conjugates
of (C.6). This gives

_ _ » 1 g 1 .
M;%(@h 9) = Mg; + giaaa(o'cxg)g + 59?0?8ad6ﬁ6¢ﬂ - ﬁegefezaadaﬁﬁ'gwkemnX’yfmn

1 . 1 -
—magefegegsw“m”am%Mwamn - a@gefegegeg;swmnamaﬁ n5m

1 y
—@9?‘9?92‘929%955”anaaaaggcyana- (C.27)
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For N =5, in terms of ¢, the conditions (C.3), (C.4) are

1
D(Z;vgbj = ggﬂkemXakaa
Dia¢? = 65x8™°. (C.28)

With the chiral bases, we can expand )2378 as

1 . 1 .
X8y, 0) = XT® + 00 00a 0’ + 50207 0aaxs™ + 5000707 TH ™ Do i M

2t 3127
1 . 1 g
+59;¥9§9g925w“m%%5m + gegefegegeynewkfmaadcmgn. (C.29)

In N =4 we have

a1 1 a 17 1 [e ]
W(y,0) = ¢(y) — 07" xe + ﬁei Hkafaﬁg T 4 gei HfHZwawg I
1 iy
+Iefefegegcawsw’ff . (C.30)
In N = 3, we have
: 1 i 1 y

Wal(y,0) = xal(y) + 07 M 5(y) + 5959;5 s (y) + 59?9}9,25 *Cupys(y).  (C.31)

In N =2,

y 1 g

Wap(y,0) = Mag(y) + 0] e 1bapyi(y) + 593 02" Coprs(y). (C.32)

In N =1,
Wa,@’y(ya 0) = waﬁ’y(y) + 05004,375(1/)‘ (033)

C.5 Completeness of the list of chiral superfields

It is important to explain the reason why our list of linearized chiral superfields in table 2
is complete. We are trying to detect all possible U(1) anomalous 4-point amplitudes, we
construct them using chiral linearized superfields. If our list would be incomplete, we would
not be able to provide a complete list of candidates into anomalous amplitudes.
A straightforward argument about completeness is the following. One can look at all
N > 0 pure supergravities which have known actions and known local supersymmetry
rules. In general, for all component fields ®(x) the supersymmetry transformation of the
action has the form
5s®(x) = 2V’ (2) + @90;4(). (C.34)

Here we have suppressed the possible indices of the field ® and a dependence on them in
¥ and O. In extended supergravities with A/ > 4 both ¥ and © terms are present. This
means that at the non-linear level for all component fields of the theory ¥ = 0 and © # 0,
there no chiral superfields. Starting with A/ = 3 there is a non-vanishing superspace torsion
which breaks the integrability of the chirality constraint,

D! ®(x,0,0) = 0. (C.35)
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This condition is inconsistent with the algebra of covariant derivatives

{D, DL}y®(2,0.0) = Ty Dya®(,0.0) + - - - . (C.36)

«

The chiral superfield must also be an anti-chiral one, and therefore constant. The torsion
superfield Tjéjk = €0sX**(2,0,0) has a spin 1/2 field Y*¥*(x) as its first component.

However, once we are interested in the linearized superfields, the r.h.s. of (C.36) can be
neglected, being at least quadratic in component fields. This means in terms of linearized
supersymmetry transformations that one of the entries in the r.h.s. of (C.34) vanishes and
we find linearized chiral superfields whose first component is ®(x) if

(eid(az))hn —0, (C.37)
and anti-chiral superfields whose first component has

(\If;(x))hn ~0. (C.38)
The list of all available linearized chiral superfields shown in table 2 has been established by

a direct inspection of linearized supersymmetry transformations in A/ > 0 supergravities.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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