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1 Introduction

As one of the first examples of single-field slow-roll inflation, Starobinsky proposed a model

of extended gravity with f(R) = R + αR2 that leads to a scalar field theory with an ex-

ponentially flat potential [1]. By means of a Legendre-Weyl transformation the non-trivial

gravity action can be recast into the form of Einstein-Hilbert gravity with a minimally

coupled scalar field, φ, whose scalar potential takes the form

V =
1

8α

(
1− e−

√
2/3φ

)2
. (1.1)

This model of inflation is, over three decades after its proposal, compatible with the latest

observational constraints [2].

The aim of this work is to study possible generalisations of the underlying f(R) theory

in D > 4 dimensions; it is based on [3]. Recently, there has been further research in this

direction [4], which shares some of the conclusions of the present work, without addressing

the important aspect of moduli stabilisation. Whenever higher-dimensional theories are

compactified, deformation modes of the internal manifold enter the four-dimensional effec-

tive field theory (EFT) as additional scalar fields. Usually those fields must be stabilised in

a suitable way to not cause a variety of problems. We study the interplay between inflation

from f(R) gravity in higher dimensional spacetimes and moduli stabilisation using a simple

toy model.

We show that, without ingredients other than the gravitational action and a cosmolog-

ical constant, the potential is generically unstable along the direction of the volume of the

compact space. Following the original idea of Freund and Rubin [5], we demonstrate that

non-vanishing two-form flux on the compact space can lead to sufficiently stable minima

with a Minkowski or de Sitter space-time in four dimensions. However, we show that there

are no stable inflationary trajectories ending in those minima. While for large values of the
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scalar field φ the potential features a plateau — as in the original Starobinsky model —

this plateau is always unstable in the direction of the volume modulus. Finally, we propose

a solution to this problem using a more general p-form flux background on the compact

space. This allows us to separate moduli stabilisation from the inflationary dynamics.

This work fits well in a line with previous studies of plateau inflation in higher-

dimensional theories. For example, the authors of [6] use a similarly simple toy model

of moduli stabilisation to investigate its interplay with inflationary theories. Moreover,

the past decade has seen substantial progress in string theory implementations of plateau

inflation models, also including the study of moduli stability, cf. [7–13].

The remainder of this paper is organised as follows. In section 2 we first give the ansatz

for the D-dimensional f(R) theory. Second, we give the resulting four-dimensional action

for the two involved scalar fields in the Einstein frame, after compactification on a sphere.

Third, we demonstrate that two-form flux cannot sufficiently stabilise the volume modulus

during inflation. Finally, we solve this problem by introducing p-form flux on the sphere

and discuss the ensuing observational footprint of the model. In section 3 we conclude,

and compile the details regarding the main result, which is the four-dimensional action in

Einstein frame, in appendix A.

2 Starobinsky’s model in D dimensions

The starting point of our discussion is a generalisation of Starobinsky’s model in D space-

time dimensions. Following [3] the D-dimensional action features an Einstein-Hilbert term,

a higher-order curvature term, a cosmological constant, and the kinetic term of a (p− 1)-

form gauge potential. In total, we have

S =
MD−2

2

∫
dDX

√
−g
(
R+ αRn − 2M2Λ− |Fp|2

)
, (2.1)

where

|Fp|2 = gM1N1 · · · gMpNpFM1...MpFN1...Np , (2.2)

and n and Λ are treated as free parameters. Moreover, M denotes the D-dimensional

Planck mass. In the following we are interested in the four-dimensional effective field

theory (EFT) after compactification of D − 4 dimensions on a sphere.1 Fp only has non-

vanishing components in the compact space to satisfy Lorentz invariance in the EFT, so

for D = 4, n = 2, and Λ = 0 (2.1) reduces to the standard Starobinsky action.

2.1 Einstein frame and compactification

The action above is written in a D-dimensional Jordan frame. To extract the physical

predictions of the EFT after compactification of D − 4 dimensions, an Einstein frame

description is particularly useful. The strategy to obtain the desired four-dimensional

1We choose a sphere because it is a simple example manifold with positive Euler number and a single

volume modulus.
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action is as follows. First, by introducing an auxiliary scalar field A we can remove the term

proportional to Rn in (2.1). Second, using a conformal transformation of the D-dimensional

metric, we can transform the result to the D-dimensional Einstein frame. Subsequently we

compactify the D−4 internal dimensions on a sphere. Finally, as the result is again given in

a four-dimensional Jordan frame, we perform another conformal transformation to obtain

the four-dimensional Einstein frame action of the EFT. The details of this procedure can

be found in appendix A. Here we merely state the final result,

S =
1

2

∫
d4x
√
−g

{
R− 1

2
(D − 4)(D − 2)∂µlnσ∂µlnσ − D − 1

D − 2
∂µlnA∂µlnA

+ 2σ2−D − σ4−DA
D

2−D

[
(n− 1)α

(
A− 1

nα

) n
n−1

+ 2Λ

]

+ Vflux

}
, (2.3)

where g and R now denote the respective four-dimensional quantities. This action is given

in terms of four-dimensional natural units, i.e., we have set the four-dimensional Planck

mass to unity, Mp = 1. Also, compared to (A.30) in the appendix we have dropped the

hats for convenience. The four-dimensional EFT apparently contains Einstein gravity and

two dynamical scalar fields. Here A is the would-be inflaton field analogous to the one in

Starobinsky’s model and σ is the radial modulus of the compact sphere. The canonically

normalised variables, φ and Σ, can be deduced from (2.3) and are defined by

σ = e

√
2

(D−4)(D−2)
Σ
, A = e

√
D−2
D−1

φ
. (2.4)

The scalar potential V (σ,A) features contributions from the D-dimensional higher-order

curvature term, from the integrated curvature of the compact space, and from compact

space fluxes. It reads

V =
1

2
σ4−DA

D
2−D

[
(n− 1)α

(
A− 1

nα

) n
n−1

+ 2Λ

]
− σ2−D + Vflux , (2.5)

where Vflux is the potential generated by the non-vanishing integral over |Fp|2 on the sphere.

It is generally a function of both A and σ; its form is given below.

If (2.5) is to have a plateau at large values of A, as is typical of four-dimensional

Starobinsky inflation, the dimensionality of space-time must be related to the power of the

Ricci scalar as follows [3, 4],

D = 2n . (2.6)

We stress that the violation of this condition does not exclude the existence of a flat patch

of the potential where inflation can take place. However, in the remainder of the paper

we consider setups that feature an infinite plateau in the A direction, for which (2.6) is

a necessary (but not sufficient) condition. As argued below, the stability of this plateau

places non-trivial constraints on the functional form of Vflux.
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Before we analyse in detail the interplay between the flux stabilisation of the volume

modulus and the existence of a stable and flat inflationary trajectory, let us note that, by

taking the limit D → 4 and n → 2 while setting Vflux = Λ = 0, one recovers the standard

four-dimensional Starobinsky potential

lim
D→4

V

∣∣∣∣∣
n=2
Λ=0

=
1

8α
(1−A)2 , (2.7)

in terms of the non-canonical variable A.

2.2 Volume stabilisation with two-form fluxes

One crucial observation following from the result (2.5) is that, if Vflux = 0, the theory

always has a runaway direction towards σ → 0. To arrange for a (meta-)stable minimum

of the volume modulus, we can turn on fluxes in the compact space which contribute to the

four-dimensional scalar potential. Like in the original Freund-Rubin compactification [5]

(see also [14, 15] for a relation to string theory), we may try to employ two-form field

strengths. In that case the last term of our starting action (2.1) reads

S ⊃ −M
D−2

2

∫
dDX

√
−ggMNgPQFMPFNQ , (2.8)

which, upon dimensional reduction, gives rise to

Vflux =
1

2
f2σ−DA−

D−4
D−2 (2.9)

in the four-dimensional Einstein frame. The integer flux constant f is defined in (A.24).

Thus, the full scalar potential in this case, assuming D = 2n, reads

V (σ,A) =
1

2
σ2(2−n)

[
(n− 1)α

(
1−A−1

nα

) n
n−1

+ 2A−
n

n−1 Λ

]
+

1

2
f2σ−2nA−

n−2
n−1 − σ2(1−n) .

(2.10)

We may now study whether this potential has a sufficiently stable minimum with vanishing

(four-dimensional) cosmological constant and a stable inflationary trajectory.

A vacuum with the desired properties seems to exist in a limited region of parameter

space for any value of n. For example, with n=3 one finds after solving ∂σV =∂AV =V =0,

σ4
0 =

f4 + f2λ

2
, A0 =

f4 − f2λ

24α
, Λ =

−f4 + f2λ+ 96α

72α(f2 + λ)
, (2.11)

with λ =
√
f4 − 48α. Thus, the existence of a post-inflationary vacuum implies the pa-

rameter constraint f4 > 48α.

Inflation, however, seems challenging to realise. One can check that for any n, the only

potentially viable inflationary trajectory in the potential (2.10) is along the coordinate A [3].

We can evaluate the potential for large values of A as follows,

Vlim = lim
A→∞

V =
1

2
σ2−2n

[
σ2(n− 1)α(nα)

n
1−n − 2

]
. (2.12)
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The result does not depend on A, so the potential develops a plateau as in the original setup

of Starobinsky. However, the plateau is always unstable in the direction of the modulus σ.

In fact, Vlim has a single local extremum at

σ2
c =

2(nα)
n

n−1

α(n− 2)
, (2.13)

which does feature a positive value for the scalar potential on the plateau,

Vplat = Vlim(σc) =
21−n

α
(n− 2)n−2n−n , (2.14)

but a mass for σ that is always negative for n > 2,

∂2
σVlim(σc) = −22−nαn(n− 1)(n− 2)n(nα)

n2

1−n . (2.15)

This leads us to exclude the possibility of Starobinsky inflation in D > 4 dimensions in cases

where the radial modulus of the compact dimensions is stabilised by two-form flux. This

is ultimately due to the fact that, as a result of the dimensional reduction and conformal

transformation, the flux term in (2.10) depends inversely on A. Hence, for large A the

crucial stabilising term is eliminated. In the following, we show how this problem can be

avoided in a more general flux background.

2.3 Volume stabilisation with p-form fluxes

In order to disentangle problem of moduli stabilisation from the potential of the would-be

inflaton field, one can consider the more general case of stabilisation via p-form fluxes with

p > 2. The corresponding term in the original action is then

S ⊃ −M
D−2

2

∫
dDX

√
−ggM1N1 . . . gMpNpFM1...MpFN1...Np . (2.16)

After noticing that the source of difficulties in the two-form case is the A dependence

in (2.9), we consider flux terms that are invariant under the Legendre-Weyl transformation

that recasts the D-dimensional action into the Einstein frame.2 This implies a link between

the rank of the p-form and the dimensionality of space-time,

D = 2p . (2.17)

This degree of flux is only possible if D ≥ 8, since it must be p ∈ N and p ≤ D − 4.

As shown in appendix A, upon dimensional reduction (2.16) gives rise to the following

term in the four-dimensional Einstein-frame action,

Vflux =
1

2
f2σ−2D+4 =

1

2
f2σ4−4n , (2.18)

where the last equality follows from imposing D = 2n. As advertised, this stabilising term

is independent of A. The full scalar potential then reads

V (σ,A) =
1

2
σ2(2−n)

[
(n−1)α

(
1−A−1

nα

) n
n−1

+ 2A−
n

n−1 Λ

]
+

1

2
f2σ4−4n−σ2(1−n). (2.19)

2For details cf. appendix A.
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Again we find a stable Minkowski vacuum for any n, given by

σ0 =

(
f2n

2

) 1
2n−2

, A0 =
f2

f2 − 2nα
, Λ =

n− 1

n

(
f2n

2
− 2n−1αn

) 1
1−n

. (2.20)

As in section 2.2 we may look for the possibility of a plateau at large values of A.

Indeed one finds in the A→∞ limit

V =
1

2
f2σ4−4n − σ2−2n +

(n− 1)(nα)
1

1−n

2n
σ4−2n +O(A−1) . (2.21)

In this regime the volume modulus actually develops a local minimum at σc, defined by

f2 = σ2n−2
c

(
1 +

2− n
2n

(nα)
1

1−nσ2
c

)
, (2.22)

which implies that the height of the plateau at large A is given by

Vplat =
1

4
σ2−2n

c

(
−2 + (nα)

1
1−nσ2

c

)
. (2.23)

This situation is different from the one with two-from fluxes in section 2.2. The plateau

is actually stable in a certain parameter regime, since the mass of σ can be positive and

large compared to the inflationary energy scale. In particular, one finds for the mass of the

canonically normalised modulus at σc,

m2
Σ = σ2−2n

c

(
2n− 2

n− 2
− (nα)

1
1−nσ2

c

)
. (2.24)

Requiring the inflationary dynamics to be described by a single-field system, i.e., imposing

that σ can be integrated out consistently, leads to the following two constraints on the

parameters of the model,

m2
Σ > 0 ,

m2
Σ

Vplat
� 1 . (2.25)

The latter constraint comes from the requirement that the dynamics of σ are negligible

during the inflationary epoch. These constraints imply a tuning of the parameters such that

2 < σ2
c (nα)

1
1−n <

2n− 12/5

n− 2
. (2.26)

With n > 3, as has to be the case in our setup, one finds 2n−12/5
n−2 < 4. Moreover, note

that (2.20), (2.22), and (2.26) imply that in the desired parameter regime σ0 ≈ σc. This

means that the back-reaction of the inflationary energy density on the expectation value

of the volume modulus is negligible.
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Validity of the four-dimensional EFT. In order to evaluate the validity of the four-

dimensional EFT one must compare the energy scales in the problem to the Kaluza-Klein

(KK) scale of the compactification. Let us expand

σ2
c (nα)

1
1−n ≡ 2 + δ , (2.27)

where δ � 1. One can then show that

Vplat =
1

4
σ2−2n

c δ and m2
Σ = σ2−2n

c

2

n− 2
+O(δ) . (2.28)

For the four-dimensional description to be valid both energy scales must be below the KK

scale, Vplat � m2
Σ �M2

KK, which is given by

MKK '
1

σ
. (2.29)

Since one can tune δ � 1 it automatically follows that the Hubble parameter during

inflation is parametrically smaller than the square of the KK scale. The situation of mΣ is

more subtle since for D = 2n ≥ 8 one finds

m2
Σ

M2
KK

' 2

n− 2
. 1 . (2.30)

We therefore conclude that the mass of the volume mode is below, but very close to

the KK scale. We note that by tuning the dimensionality of space-time the ratio can

be made smaller but that a hierarchical separation is hard to achieve. This renders the

moduli stabilisation physics discussed above vulnerable to corrections coming from higher-

dimensional physics.

Inflationary footprint. If (2.26) is fulfilled we can describe inflation in terms of a

single-field Lagrangian with the scalar potential V (A) ≈ V (σ0, A) to very high accuracy.

We can then determine the observational footprint of the model as follows. The inflationary

potential in terms of the canonical variable φ, defined in (2.4), reads

Vinf = C1 + C2e
− n

n−1
κφ + C3

(
1− e−κφ

) n
n−1

, (2.31)

where κ ≡
√

2n−2
2n−1 and the Ci can be read off from (2.19) after setting σ = σ0. Notice that

the value of κ plays a pivotal role in the determination of the observables for this class of

potentials. For interesting cases one finds

κ|D=8 =

√
6

7
, κ|D=10 =

2
√

2

3
. (2.32)

As mentioned above, the single-field regime of this setup can be reached whenever the

conditions (2.26) are imposed. The closer the parameter choice is to saturating the lower

bound on the left-hand side of (2.26), the more robust the mass hierarchy between volume

modulus and the inflaton becomes. Furthermore, the correct normalisation of the scalar

perturbations requires that at horizon exit V ∼ 10−10 in Planck units. Hence the closer the

– 7 –
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Figure 1. Inflationary potential in terms of the canonically normalised fields Σ and φ. We have

chosen D = 10, leading to n = p = 5, as well as f = 100 and α = 312.496. With these values one

finds Λ = 1 in four-dimensional Planck units. The blue line indicates a possible slow-roll trajectory

starting on the plateau. Notice the different scales on the φ and Σ axes, indicating the large mass

difference.

parameter choice is to saturating the lower bound, the smaller the radius of the compact

space σ0, and consequently the smaller the required values of the parameters f and α. For

illustration, figure 1 depicts one correctly normalised example with a large mass hierarchy.

In what concerns CMB observables, even in D > 4 dimensions, one recovers values

similar to the well-known ones for Starobinsky-type potentials, namely

ns ≈ 1− 2

Ne
, r ≈ 9

κ2N2
e

, (2.33)

where Ne denotes the number of e-folds of expansion. Therefore, while these models lie

at the centre of the Planck 1−σ region [2], they are essentially indistinguishable among

themselves and also from the four-dimensional Starobinsky model with κ =
√

2/3.

3 Discussion

In this paper we have explored the relation between an R+αRn gravitational theory with

a cosmological constant in a D-dimensional space-time and the occurrence of inflation in

four dimensions. This work constitutes an obvious extension of the Starobinsky model

of inflation.

Using the example of a sphere with a single volume modulus, we have found that

the stabilisation and dynamics of the extra-dimensional manifold is closely connected to

inflation and that disentangling the two requires judicious choices of the model parameters.

This situation is analogous to well known results in string inflation, where the interplay

between inflation and moduli stabilisation has been extensively studied over the last decade.

– 8 –
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The stand-out feature of the original four-dimensional Starobinsky proposal, apart

from the fact that after 30 years it is nowhere near being excluded by CMB data, is the

existence of an infinite plateau at large field values. In our D-dimensional case, demanding

the scalar potential in the Einstein frame to have a similar plateau constrains the form of

the initial gravitational action to f(R) = R + αRD/2. Requiring stability of the compact

space during inflation further constrains the form of the action, determining the extra

degrees of freedom that can be present in the UV limit. More concretely, it excludes

stabilisation of the compact space with a two-form field strength, as in Freund-Rubin

compactifications. Instead, one may stabilise the volume via p-forms, where the rank p is

related to the dimensionality of space-time, p = D/2. This last constraint combined with

four-dimensional Lorentz invariance forces us to consider spaces of even dimensionality

with D ≥ 8. Once all these conditions can be met, it is possible to tune the microscopic

parameters — such as the amount of flux, the D-dimensional cosmological constant, and

the strength of the Rn term — to generate viable models of single-field inflation, compatible

with the latest observational constraints, that exit into a viable post-inflationary minimum.
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A Derivation of the four-dimensional Einstein frame action

Here we perform the series of transformations that take the action from the D-dimensional

f(R) frame of (2.1) to its four-dimensional Einstein frame form, cf. (2.3). As usual, the

Einstein frame is defined as the frame in which the gravitational action takes the Einstein-

Hilbert form, the Jordan frame is the one in which the Ricci scalar appears multiplied by

a function of a scalar field and the f(R) frame is the one in which the gravitational part

of the action is expressed as a (non-linear) function of the Ricci scalar. In this paper, in a

slight abuse of nomenclature, we refer to the Jordan and f(R) frames indiscriminately.

Let us first focus on the pure gravity part of the action in order to write it in the

Einstein-Hilbert form in D dimensions. We decompose (2.1) into S = Sgrav +Smatt, where

Sgrav =
MD−2

2

∫
dDX

√
−g
(
R+ αRn − 2M2Λ

)
, (A.1)

and

Smatt =
MD−2

2

∫
dDX

√
−g
(
−gM1N1 . . . gMpNpFM1...MpFN1...Np

)
. (A.2)

The D-dimensional cosmological constant Λ is dimensionless and the field strength p-forms

have mass dimension one.

Let us introduce an auxiliary field χ with mass dimension 2, and write the action as [16]

S =
MD−2

2

∫
dDX

√
−g
[
f(χ) +

∂f(χ)

∂χ
(R− χ)

]
. (A.3)
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Note that, at this level, χ is a genuine auxiliary field because its action has no time deriva-

tives. The equation of motion for χ following from this action is

∂2f(χ)

∂χ2
(R− χ) = 0 ⇒ R = χ , (A.4)

where we used that ∂2f(χ)
∂χ2 = n(n − 1)αχn−2 6= 0. This implies that the action (A.3) is

trivially equivalent to (A.1). After defining the dimensionless field A via

A ≡ ∂f(χ)

∂χ
= 1 + nαχn−1 , (A.5)

we can express the action in (A.3) as

S =
MD−2

2

∫
dDX

√
−g (AR− Z(A)) , (A.6)

where

Z(A) ≡ χ(A)A− f(χ(A)) = (n− 1)αχn(A) = (n− 1)α

(
A− 1

nα

) n
n−1

. (A.7)

It is useful to write all dimensionful parameters in terms of the D-dimensional Planck mass

M , so we rescale

α→M2−2nα , Z(A)→M2Z(A) . (A.8)

From this point onwards α (like Λ) is dimensionless. So far, the total action is thus

S =
MD−2

2

∫
dDX

√
−g
(
AR−M2Z(A)− 2M2Λ− gM1N1 . . . gMnNnFM1...MnFN1...Nn

)
.

(A.9)

In order to transform this to the D-dimensional Einstein frame, we perform a conformal

transformation and write the action in terms of the metric g̃ defined by

gMN = Ω−2g̃MN , gMN = Ω2g̃MN ,
√
−g(D) = Ω−D

√
−g̃(D) . (A.10)

One can show that under a Weyl rescaling R transforms as [17]

R = Ω2
[
R̃+ 2(D−1)g̃MN∇̃M∇̃N lnΩ− (D−1)(D−2)g̃MN (∂M lnΩ)(∂N lnΩ)

]
, (A.11)

where quantities with a tilde are understood with respect to g̃MN . In order for g̃ to be the

D-dimensional Einstein frame metric it must be

Ω = A
1

D−2 . (A.12)

Then the action in the D-dimensional Einstein frame reads

S =
MD−2

2

∫
dDX

√
−g̃
[
R̃+ 2

D − 1

D − 2
g̃MN∇̃M∇̃N lnA−M2A

D
2−DZ(A)

− D − 1

D − 2
g̃MN∂M lnA∂N lnA− 2M2A

D
2−D Λ

−A
2p−D
D−2 g̃M1N1 . . . g̃Mp...NpFM1...MpFN1...Np

]
. (A.13)

In what follows we ignore the total derivative ∇̃2 lnA.
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Space-time in our framework is described by a D-dimensional manifold MD equipped

with the metric g̃MN . This D-dimensional manifold can be factorised into a four-

dimensional manifold M4 and a (D − 4)-dimensional manifold MD−4,

MD =M4 ×MD−4 , (A.14)

such that the metric gMN can be written in a block-diagonal form,

ds2 = g̃MNdXMdXN = gµνdxµdxν + σ2gmndymdyn, (A.15)

with M,N = {0, . . . , D − 1}; µ, ν = {0, . . . , 3}, and m,n = {4, . . . , D − 1}. With this

notation we choose the metric gmn to have unit volume such that the physical volume of

the compact space is determined by the dimensionless scalar field σ. Moreover, we choose

the compact space to be a sphere. In what follows, we assume that σ = σ(x) and A = A(x),

i.e., the scalars have constant profiles in the compact space. We further assume, in line with

Freund-Rubin stabilisation, that the p-form fluxes are non-vanishing in the compact space

but vanishing in the external dimensions, thereby preserving four-dimensional Lorentz

invariance. This translates into

L ⊃ −M
D−2

2
A

2p−D
D−2 g̃M1N1 . . . g̃Mp...NpFM1...MpFN1...Np

= −M
D−2

2
A

2p−D
D−2 σ−2pgm1n1 . . . gmp...npFm1...mpFn1...np .

(A.16)

Given the block-diagonal form in (A.15) one may factorise the determinant,√
−g̃(D) = σD−4√−g(4)

√
g(D−4), (A.17)

where g(4) and g(D−4) are the determinants of gµν and gmn, respectively. Then the D-

dimensional Ricci scalar decomposes as follows,

R̃(D) = R(4)+
R(D−4)

σ2
−2(D−4)gµν

∇µ∇νσ
σ

−
[
(D−4)2−(D−4)

]
gµν

∂µσ∂νσ

σ2
, (A.18)

where R(4) is the curvature of the four-dimensional metric gµν , R(D−4) is the curvature of

the (D − 4)-dimensional metric gmn and ∇µ is the four-dimensional covariant derivative

with respect to gµν . Under this decomposition the D-dimensional Einstein-Hilbert action

becomes

S =
MD−2

2

∫
d4xdD−4y

√
−g(4)

√
g(D−4)σ

D−4

{
R(4) +

R(D−4)

σ2

− 2(D − 4)gµν
∇µ∇νσ

σ
−
[
(D − 4)2 − (D − 4)

]
gµν

∂µσ∂νσ

σ2

}
. (A.19)

One can, at this point, perform the integral over the (D − 4)-dimensional internal space.

We remember that ∫
dD−4y

√
g(D−4)R(D−4) = χM6−D = 2M6−D , (A.20)
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for the Euler characteristic of the compact sphere. Moreover, the volume of the compact

space is given by

V = σD−4

∫
dD−4y

√
g(D−4) = M4−DσD−4 , (A.21)

where we used that ∫
dD−4y

√
g(D−4) = M4−D . (A.22)

Using (A.17), (A.20), and (A.21) we can now explicitly perform the integration. For later

convenience we multiply and divide by the vacuum expectation value of the field σD−4
0 . This

step is necessary to find the relation between the D-dimensional Planck mass and the four-

dimensional Planck mass. The action in the four-dimensional Jordan frame then becomes

S =
M2σD−4

0

2

∫
d4x
√
−g(4)

(
σ

σ0

)D−4{
R(4) +M2σ−2 + (D − 4)(D − 5)σ−2gµν∂µσ∂νσ

− D−1

D−2
gµν∂µ lnA∂ν lnA−M2A

D
2−D [Z(A)+2Λ]

−M2σ−2pA
2p−D
D−2 f2

}
. (A.23)

We have used partial integration on the ∇2σ term of in (A.19) and defined the

dimensionless flux constant f via∫
dD−4y

√
g(D−4)g

m1n1 . . . gmpnpFm1...mpFn1...np ≡M2−Df2. (A.24)

A further conformal transformation is necessary to yield the four-dimensional Einstein

frame, so we define the new metric ĝ via

gµν = Ω−2ĝµν , gµν = Ω2ĝµν ,
√
−g(4) = Ω−4

√
−ĝ(4) . (A.25)

R transforms under this conformal transformation as follows,

R = Ω2
(
R̂+ 6ĝµν∇̂µ∇̂ν ln Ω− 6ĝµν∂µ ln Ω∂ν ln Ω

)
. (A.26)

Imposing that ĝ is the four-dimensional Einstein frame metric fixes

Ω =

(
σ

σ0

)D−4
2

, (A.27)

which implies that the action takes the following form,

S =
M2

2
σD−4

0

∫
d4x
√
−ĝ(4)

{
R̂(4) +M2σD−4

0 σ2−D + 3(D − 4)ĝµν∇̂µ∇̂ν lnσ

− 3

2
(D−4)2ĝµν∂µ lnσ∂ν lnσ+(D−4)(D−5)ĝµν∂µ lnσ∂ν lnσ

− D − 1

D − 2
ĝµν∂µ lnA∂ν lnA−M2σ

4−D

σ4−D
0

A
D

2−D [Z(A) + 2Λ]

−M2σ−DA−
D−4
D−2σD−4

0 f2

}
, (A.28)
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The last term in the first line is a total derivative and can be neglected. Defining the

four-dimensional Planck mass in terms of M and V as follows,

M2
p ≡M2σD−4

0 = M2V0 , (A.29)

allows us to write the action in its most useful form,

S =
M2

p

2

∫
d4x
√
−ĝ(4)

{
R̂(4) −

1

2
(D − 4)(D − 2)ĝµν∂µ lnσ∂ν lnσ

− D − 1

D − 2
ĝµν∂µ lnA∂ν lnA+M2

pσ
2−D

−M2
pσ

4−DA
D

2−D

[
(n− 1)α

(
A− 1

nα

) n
n−1

+ 2Λ

]

−M2
pσ

4−2p−DA
2p−D
D−2 f2

}
, (A.30)

where have used (A.7). This is the result given in section 2.1, where we set Mp = 1 and

omit the hats and indices on g and R for clarity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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