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1 Introduction

Sasaki-Einstein manifolds play an important role in AdS/CFT. These odd-dimensional

manifolds, with the property that the cones over them are Calabi-Yau, appear naturally in

the engineering of supersymmetric gauge theories by branes in string/M-theory. Their first

appearance in holography was in the context of AdS5/CFT4. Placing N D3-branes at the

tip of a Calabi-Yau cone C(Y5), and backreacting the branes, leads to an AdS5×Y5 vacuum

of Type IIB supergravity with a 4d N = 1 field theory dual. Following the first example of

the conifold singularity C(T 1,1) [1], a vast number of new dualities were discovered by the

explicit construction of an infinite family of Sasaki-Einstein metrics [2], and the subsequent

identification of their field theory duals as quiver gauge theories [3, 4].

Similar developments have followed in the case of AdS4/CFT3. Placing N M2-branes

at the tip of a hyperkähler cone C(Y7), where Y7 is a tri -Sasaki-Einstein manifold now, and

backreacting the branes leads to an AdS4 × Y7 vacuum of M-theory with a 3d N = 3 field

theory dual. Following the first explicit example by ABJM [5], a large number of dual pairs

have been identified, with Y7 given by the base of certain hyperkähler cones and the field

theories corresponding to 3d N = 3 Chern-Simons (CS) quiver gauge theories [6–11].
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Figure 1. Affine ADE quivers. From top to bottom and left to right Ân, D̂n, Ê6, Ê7, Ê8.

Computing the volume of these manifolds is of great interest as the AdS/CFT dic-

tionary relates Vol(Y ) to important nonperturbative quantities in field theory. For in-

stance, in the case of D3-branes the a-anomaly coefficient of the 4d field theory is given

by a = π3N2

4 Vol(Y5) . In the case of M2-branes the free energy on the round three-sphere FS3 is

given by [7, 12]

FS3 = N3/2

√
2π6

27 Vol(Y7)
. (1.1)

The independent evaluation of both sides of this relation has been crucial in providing

convincing evidence for the proposed duality pairs. The l.h.s. can be computed purely in

field theory by supersymmetric localization [13] and has been carried out for a large number

of CS quiver gauge theories [7–16]. The r.h.s. , however, has been mostly computed for

toric Y7,1 and a detailed test of the duality for non-toric cases is lacking.2 The main reason

for this is that although supersymmetric localization techniques are available on the field

theory side for generic quivers, less tools are available on the geometry side for non-toric Y7.

The aim of this paper is to remedy this situation. Specifically, we provide a formula for

computing the volumes of tri-Sasaki Einstein manifolds Y4d−1 arising from nonabelian hy-

perkähler quotients of the form C(Y4d−1) = Hd+
∑m
a=1 n

2
a///U(n1)×· · ·×U(nm) . The deriva-

tion is based on the method of equivariant localization, making use of the U(1)R ⊂ SU(2)R
symmetry of the spaces. The localization method was developed in [19, 20] and applied to

toric hyperkähler quotients, corresponding to the Abelian case, na = 1, by Yee in [21].

Having derived a general formula, our main application is to 3d N = 3 CS matter

quiver theories, whose field content is in one-to-one correspondence with extended ADE

Dynkin diagrams — see figure 1. These theories [22] provide an ideal setting for applying

the volume formula derived using localization. First, the corresponding tri-Sasaki Einstein

manifolds can be constructed by hyperkähler quotients and, while the Â series is toric, the

D̂ and Ê series are non-toric. Second, as shown in [22] for this class of field theories one may

apply the saddle point approximation developed in [7] to evaluate the free energy at large

1A manifold Y is toric tri-Sasaki Einstein if the cone C(Y ) is a toric hyperkähler manifold. A hyperkähler

manifold of quaternionic dimension d is toric if it admits the action of U(1)d which is holomorphic with

respect to all three complex structures. For a review of mathematical aspects of tri-Sasaki Einstein geometry,

see [17] and references therein.
2See [14, 18] for two non-toric examples, namely V5,2 and Q1,1,1.
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N . For the Â series, both the evaluation of the free energy as well as the direct computation

of the corresponding toric volume was carried out in [8], with perfect agreement. For the D̂

and Ê series, the free energy was computed by the authors in [16]. In this paper we focus

on the geometric side of the D̂ series, identifying the precise tri-Sasaki Einstein manifolds

and computing their volumes, finding perfect agreement with field theory. This is the first

test of an infinite number of non-toric AdS4/CFT3 dualities. Few non-toric examples have

been studied in the AdS5/CFT4 context; it is our hope that the formulas presented here

will also be valuable in that context.

The paper is organized as follows. In the next section, we set up the localization

procedure for computing the volumes of hyperkähler quotients involving U(N) or SU(N)

groups. Then, in section 3 we specialize to SU(2)s ×U(1)r and provide a simple example.

Finally, in section 4 we study the moduli space of 3d N = 3 CS D̂-quiver theories, identify

the dual tri-Sasaki Einstein manifolds and compute their volumes. The volumes in the

case of Ê-quivers can also be computed by the techniques presented here, but we do not

explicitly perform the corresponding integrals.

2 Localization setup

In this section, we give a brief overview of the technical tools necessary for the computation

of the volumes of hyperkähler cones. The method was developed in [19, 20] and is based on

two basic features of the object we wish to compute. The first feature is the existence of a

fermionic nilpotent symmetry of the symplectic volume integral, which allows one to localize

the integral by adding an appropriate exact term. The second feature is that since these

manifolds arise from hyperkähler quotients of flat space, one may formulate the calculation

in terms of the embedding flat space, where the calculations become simpler. We follow

the exposition of Yee [21] (which we urge the reader to refer for more details), where this

approach was applied to toric hyperkähler quotients, and extend it to non-toric quotients.

Given a bosonic manifold X, and its tangent bundle TX with canonical coordinates

{xµ, V µ}, one defines the supermanifold T [ψ]X obtained by replacing the bosonic coor-

dinates {V µ} with fermionic ones {ψµ}. Integrals of differential forms on X can then

be written as integrals of functions f(x, ψ) over T [ψ]X. For instance, the volume of a

symplectic manifold X with symplectic 2-form ω = 1
2ωµνψ

µψν can be written as

Vol(X) =

∫
T [ψ]X

eω ; (2.1)

the Grassmann integration simply picks the correct power of ω to give the volume form

on X. One may view this expression as a supersymmetric partition function; defining a

‘supersymmetry charge’ Q = ψµ ∂
∂xµ (which is the de Rham differential, d), we see that the

‘action’ S = ω is supersymmetric, as Qω = 0 (usually written as dω = 0). Näıvely, one may

want to use this nilpotent fermionic symmetry, Q2 = 0, to localize the integral. However,

because Q always contains a ψµ, there is no Q-exact term one can add to the action

which contains a purely bosonic term, required by the usual localization arguments. One
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way around this is to use a global symmetry of ω to deform Q→ Qε. Given a symmetry-

generating vector field V = V µ ∂
∂xµ and defining the ‘contraction’ by V as iV = V µ ∂

∂ψµ , there

is a function H such that QH = iV ω, which can be named Hamiltonian, moment map, etc.

depending on the context. This function H can be used to deform the action to Sε = ω−εH,

which is now invariant under Qε = ψµ ∂
∂xµ + εV µ(x) ∂

∂ψµ . Moreover, Q2
ε = εLV with the Lie

derivative LV = {iV , Q}, which implies that Qε is nilpotent in the subspace of V -invariant

functions on T [ψ]X. This deformation now allows the addition of bosonic terms (with an

ε-dependence) and localization can be performed. The next step is to combine this with

the fact that the Kähler spaces of interest are obtained from a Kähler quotient of flat space.

Kähler quotient. Given a Kähler manifold M with Kähler form ω and a holomorphic

symmetry G, generated by vector fields Vv, v = 1, . . . , dimG, it follows from LVvω = 0 that

there are a set of moment map functions µv satisfying iVvω = Qµv. The Lie derivative LVv
acts on the moment maps as follows

V µ
v

∂µu(x)

∂xµ
= iVv(Qµu) = iVv iVuω = fuv

wµw(x) , (2.2)

where fuv
w are the structure constants of G. The submanifold µ−1

v (0) is V -invariant and

the Kähler quotient M//G is defined as the usual quotient µ−1
v (0)/G. Parameterizing M

by splitting {xµ} into three parts {xi, xv, xn}, such that xi ∈ µ−1(0)/G, xv denote the

symmetry directions, i.e., Vu = V v
u

∂
∂xv , and xn, n = 1, . . . , dimG are coordinates normal to

µ−1
v (0), we can derive the following relations from Qµv = iVvω:

∂iµv = ωvi , ∂uµv = ωvu , ∂nµv = ωvn . (2.3)

Since µv = 0 on µ−1
v (0), its derivative w.r.t. xi, ωvi = 0 on µ−1

v (0). Also, ωvu = 0 as

V µ
v
∂µu(x)
∂xµ = 0 on µ−1

v (0). Thus, Qω = 0 gives ∂vωij = ∂iωvj−∂jωvi = 0 so ωij is V -invariant

on µ−1
v (0) and the Kähler quotient then inherits ωij as its Kähler form. Using (2.1), the

volume of the quotient manifold can be written as

Vol (M//G) =

∫
T [ψ]µ−1

v (0)/G
[dxi][dψi] e

1
2
ωijψ

iψj

=
1

Vol (G)

∫
T [ψ]µ−1

v (0)
[dxv][dxi][dψi] e

1
2
ωijψ

iψj

=
1

Vol (G)

∫
T [ψ]M

[dxn][dxv][dxi][dψi] e
1
2
ωijψ

iψj
dimG∏
v=1

δ (µv(x))

∣∣∣∣∂µv(x)

∂xn

∣∣∣∣
=

1

(2π)dimG Vol (G)

∫
T [ψ]M

[dϕv][dψv][dψn][dxµ][dψi] e
1
2
ωijψ

iψjeι̇ϕ
vµv+ψvωvnψn .

What these steps have achieved is to insert and exponentiate the moment map constraints

to turn an integral over the quotient space M//G into an integral over the embedding

space M . Now, we use ωvi = ωvu = 0 to write ψvωvnψ
n = ψvωvµψ

µ, where µ runs over

all values in M (like xµ). Next, inserting ωin and ωmn terms, which can be absorbed by

shifting ψi → ψi − ω−1
ji ωjnψ

n and ψv → ψv − ω−1
nv ωnmψ

m, to complete the ωµνψ
µψν term,
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leads to the following simple expression:

Vol (M//G) =
1

(2π)dimG Vol (G)

∫
T [ψ]M⊗ϕv

eω+ι̇ϕvµv . (2.4)

One may further make use of the U(1)R symmetry to introduce the ε-deformation

Volε (M//G) =
1

(2π)dimG Vol (G)

∫
T [ψ]M⊗ϕv

eω+ι̇ϕvµv−εH (2.5)

and compute this integral by localization. When M is multiple copies of the complex

plane C with its canonical structures, the ψ-integrals are trivial and simply give 1. With

appropriate H, the x-integrals are Gaussian and only the integrals over ϕ’s remain, which

require some more work to perform. The case of M//G a conical Calabi-Yau six-fold is

of interest for AdS5/CFT4. However, it should be emphasized that the expression above

computes the volume w.r.t. the quotient metric, which is not necessarily (and typically

is not) the Calabi-Yau metric on M//G.3 For this reason, we focus in what follows on

hyperkähler quotients, where the Calabi-Yau condition is automatic.

Hyperkähler quotient. A hyperkähler manifold M with a triplet of Kähler forms ~ω and

a tri-holomorphic isometry group G has triplets of moment maps satisfying iVv~ω = Q~µv.

Most of what follows is a straightforward generalization of the Kähler case so we write down

the most important equations only. The Lie derivative LVv acts on the moment maps as

follows

V µ
v

∂~µu(x)

∂xµ
= iVv(Q~µu) = iVv iVu~ω = fuv

w~µw(x) . (2.6)

The submanifold ~µ−1
v (0) is V -invariant so the hyperkähler quotient M///G is defined [25] as

the usual quotient ~µ−1
v (0)/G . Parameterizing M by {xi, xv, xn}, where the only difference

w.r.t. the Kähler case is that n = 1, . . . , 3 dimG, we can derive from Q~µv = iVv~ω:

∂i~µv = ~ωvi , ∂u~µv = ~ωvu , ∂n~µv = ~ωvn . (2.7)

Again ~ωvi = 0 and ~ωvu = 0 on ~µ−1
v (0). Thus, Q~ω = 0 gives ∂v~ωij = ∂i~ωvj − ∂j~ωvi = 0 so

~ωij is V -invariant on ~µ−1
v (0) and the hyperkähler quotient then inherits ~ωij as its 3 Kähler

forms. We pick ω3 = ω to define the volume as

Vol (M///G) =

∫
T [ψ]~µ−1

v (0)/G
[dxi][dψi] e

1
2
ωijψ

iψj

=
1

Vol (G)

∫
T [ψ]~µ−1

v (0)
[dxv][dxi][dψi] e

1
2
ωijψ

iψj

=
1

Vol (G)

∫
T [ψ]M

[dxn][dxv][dxi][dψi] e
1
2
ωijψ

iψj
dimG∏
v=1

3∏
a=1

δ (µav(x))

∣∣∣∣∂µav(x)

∂xn

∣∣∣∣
=

1

(2π)3 dimG Vol (G)

∫
T [ψ]M

[d~ϕv][d~χv][dψn][dxµ][dψi] e
1
2
ωijψ

iψjeι̇~ϕ
v ·~µv+~χv ·~ωvnψn .

3One may consider, however, combining this with the principle of volume minimization [23, 24]. This

should amount to performing the localization w.r.t. a U(1)′R symmetry including possible mixings of U(1)R
with flavor symmetries, but we do not study this here.
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Again, these steps have turned an integral over M///G to an integral over M . Now,

using ~ωvi = ~ωvu = 0 and relabelling χv3 = ψv we rewrite χv3ωvnψ
n = ψvωvµψ

µ. Similarly,

χvaω
a
vnψ

n = χvaQµ
a
v, where a = 1, 2 now. Further relabelling ϕv3 → ϕv and ϕva → ρva

and inserting ωin and ωmn pieces, which can be absorbed by shifting ψ’s as before, one

completes the ωµνψ
µψν term to obtain a simplified exponent:

Vol (M///G) =
1

(2π)3 dimG Vol (G)

∫
T [ψ]M⊗ϕv⊗{ρva,χva}

eω+ι̇ϕvµv+ι̇ρvaµ
a
v+χvaQµ

a
v . (2.8)

The ‘action’ S = ω + ι̇ϕvµv + ι̇ρvaµ
a
v + χvaQµ

a
v is invariant under a modified charge Q̃,

acting on the ‘coordinates’ as follows:

Q̃xµ = ψµ

Q̃ψµ = −ι̇ϕvV µ
v (x)

Q̃ϕv = 0

Q̃χua = −ι̇ρua
Q̃ρua = −ι̇fvwuϕvχwa .

(2.9)

The transformation Q̃ρua is fundamentally different from the toric case (where it vanishes),

as a consequence of the action of LVv on the moment maps (2.6). However, it still squares

as Q̃2 = −ι̇ϕvLVv . Now we make use of the U(1)R ⊂ SU(2)R symmetry to introduce

the ε-deformation and compute the integral by localization. This symmetry preserves only

ω3 = ω, such that iRω = QH, and rotates the other two as LR(ω1−ι̇ω2) = 2ι̇(ω1−ι̇ω2)
(
also

LR(µ1
v− ι̇µ2

v) = 2ι̇(µ1
v− ι̇µ2

v) for all v
)
. The deformed action Sε = S−εH is invariant under

the deformed supercharge Q̃ε, which acts differently from Q̃ only on ψµ and ρua, namely:

Q̃εψ
µ = −ι̇ϕvV µ

v (x) + εRµ(x)

Q̃ερ
u
a = −ι̇fvwuϕvχwa + 2εεabχ

u
b ,

(2.10)

and squares as Q̃2
ε = −ι̇ϕvLVv + εLR.

Now we are ready to localize (2.8) by adding the following term:4

− tQ̃ε
(
x̄µQ̃εxµ − χ+vQ̃εχ

−v) = −t
(
ψ̄µψµ + x̄µQ̃2

εxµ + ρ+vρ−v + χ+vQ̃2
εχ
−v). (2.11)

Here, χ± = (χ1± ι̇χ2) such that LRχ− = 2ι̇χ− and the same for ρ±. By taking the t→ +∞
limit, the action Sε does not contribute and the coordinates xµ, ψµ, ρva, χ

v
a can be simply

integrated out, giving∫
T [ψ]M⊗{ρva,χva}

eSε−t
(
ψ̄µψµ+x̄µQ̃2

εxµ+ρ+vρ−v+χ+vQ̃2
εχ
−v
)

= (2t)
dimM

2

(π
t

)dimM
2 1

DetM Q̃2
ε

(π
t

)dimG
(2t)dimG DetG Q̃

2
ε

= (2π)dimG+dimM
2

DetG Q̃
2
ε

DetM Q̃2
ε

.

4This useful trick is thanks to Kazuo Hosomichi.
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This leads to

Volε (M///G) =
(2π)dimG+dimM

2

(2π)3 dimG Vol (G)

∫
{ϕv}

DetG Q̃
2
ε

DetM Q̃2
ε

. (2.12)

Here DetG Q̃
2
ε is simply the determinant of the (dimG)-dimensional matrix

(2εδw
u − fvwuϕv). DetM Q̃2

ε depends explicitly on the manifold in consideration so we

will tackle this in the next section.

For G = SU(2), fuvw = 2εuvw and we can explicitly write the numerator in the above

formula as

Volε (M///SU(2)) =
(2π)3+dimM

2

(2π)9 Vol (SU(2))

∫
~ϕ

8ε
(
ε2 + ~ϕ2

)
DetM Q̃2

ε

. (2.13)

This differs from the U(1) case by the presence of ϕ’s in the numerator [21]:

Volε (M///U(1)) =
(2π)1+dimM

2

(2π)3 Vol (U(1))

∫
φ

2ε

DetM Q̃2
ε

. (2.14)

We will distinguish the U(1) variable by denoting it with φ compared to SU(2) variables

~ϕ from now on.

3 Volumes of non-toric tri-Sasaki Einstein manifolds

In this section, we consider the case of G a product of multiple SU(2)’s and U(1)’s. At

zero level the quotients will be the cones:

C
(
Y

(s,r)
4d−1

)
≡ Hd+3s+r///SU(2)s ×U(1)r . (3.1)

As discussed in detail in section 4, these are the relevant quotients for D̂-quiver CS theories.

We begin by setting up some notation. A quaternion q can be written as

q =

(
u v

−v̄ ū

)
(3.2)

in terms of two complex variables u and v. The flat metric is ds2 = 1
2 tr(dqdq̄) = dudū +

dvdv̄. The three Kähler forms are given by ~ω · ~σ = 1
2dq ∧ dq̄:

ω3 = − ι̇
2

(du ∧ dū+ dv ∧ dv̄) ; (ω1 − ι̇ω2) = ι̇(du ∧ dv) . (3.3)

Considering first G = SU(2) × U(1)r, we realize the SU(2) action on the quaternions q’s

by pairing them up, i.e., we have qαa with α = 1, 2 and a = 1, . . . , 1
2 (d+ 3 + r). The

quaternionic transformations are most simply given as:

δuαa = uβa

ι̇(~ζ · ~σ)αβ + ι̇
r∑
j=1

Qjaξjδ
α
β


δvαa = −vβa

ι̇(~ζ · ~σ)αβ + ι̇

r∑
j=1

Qjaξjδ
α
β

 .
(3.4)
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The vector fields corresponding to these symmetries are as follows:

V r =
∂

∂ξr
= ι̇
∑
a

Qra
(
ua · ∂ua − ūa · ∂̄ua − va · ∂va + v̄a · ∂̄va

)
V3 =

∂

∂ζ3
= ι̇
∑
a

(
u1
a∂u1a − u

2
a∂u2a − ū

1
a∂̄u1a + ū2

a∂̄u2a − (u→ v)
)

V1 =
∂

∂ζ1
= ι̇
∑
a

(
u2
a∂u1a + u1

a∂u2a − ū
2
a∂̄u1a − ū

1
a∂̄u2a − (u→ v)

)
V2 =

∂

∂ζ2
= −

∑
a

(
u2
a∂u1a − u

1
a∂u2a + ū2

a∂̄u1a − ū
1
a∂̄u2a − (u→ v)

)
.

(3.5)

Here ‘·’ means sum over α.

Under the SU(2)R R-symmetry, each q transforms by left action:

q → e−
ι̇
2
~ε·~σq , (3.6)

such that the U(1)R ⊂ SU(2)R symmetry is generated by the vector field

R = ι̇
∑
a

(
ua · ∂ua − ūa · ∂̄ua + va · ∂va − v̄a · ∂̄va

)
. (3.7)

This implies iRω
3 = QH with H = 1

2r
2 = 1

2

∑
α,a

(
|uαa |2 + |vαa |2

)
. It follows that

Detqαa Q̃
2
ε =

ι̇ε− r∑
j=1

Qjaφ
j

2

− ~ϕ2

ι̇ε+

r∑
j=1

Qjaφ
j

2

− ~ϕ2


=

ε2 +

|~ϕ|+ r∑
j=1

Qjaφ
j

2ε2 +

|~ϕ| − r∑
j=1

Qjaφ
j

2 (3.8)

For bifundamental quaternions w.r.t. G = U(2)s×U(2)s+1, the transformations become

(~τ = {I, ~σ}):

δuαaβ = uγaβ

[
ι̇(~ζs · ~τ)αγ

]
−
[
ι̇(~ζs+1 · ~τ)γβ

]
uαaγ

δvαaβ = −vγaβ
[
ι̇(~ζs · ~τ)αγ

]
+
[
ι̇(~ζs+1 · ~τ)γβ

]
vαaγ .

(3.9)

This leads to the following determinant (as per our convention, ϕ0 ≡ φ):

Detqαaβ Q̃
2
ε=
(
ε2+

(
|~ϕs|+|~ϕs+1|−(φs−φs+1)

)2)(
ε2+

(
|~ϕs|+|~ϕs+1|+(φs−φs+1)

)2)
×
(
ε2+

(
|~ϕs|−|~ϕs+1|−(φs−φs+1)

)2)(
ε2+

(
|~ϕs|−|~ϕs+1|+(φs−φs+1)

)2)
. (3.10)

For ‘bifundamentals’ carrying more U(1) charges, the (φs−φs+1) factor is simply replaced

by a sum of all such charges
∑

iQ
i
aφ

i.
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Thus, the (regularized) volumes of the hyperkähler cones (3.1) read:

Volε

(
C
(
Y

(s,r)
4d−1

))
=

(8ε)s(2ε)r(2π)3s+r+2(d+3s+r)

(2π)9s(2π)3r Vol(SU(2)s ×U(1)r)

∫
~ϕ⊗φ

∏s
i=1

(
ε2 + ~ϕ2

i

)
DetM Q̃2

ε

=
22d+3s+rπ2dεs+r

Vol(SU(2)s ×U(1)r)

∫ ∞
−∞

s∏
i=1

d3ϕi

r∏
j=1

dφj

∏s
i=1

(
ε2 + ~ϕ2

i

)∏
q∈M Detq Q̃2

ε

. (3.11)

To extract the volume of the tri-Sasaki Einstein base Y from the ε-regulated volume of the

cone, recall that the conical metric is of the form ds2
4d = dr2 + r2ds2

4d−1 and the εH = ε
2r

2

term in Sε serves as a regulator e−
ε
2
r2 for the volume integral, giving the relation

Volε

(
C
(
Y

(s,r)
4d−1

))
=

22d−1Γ(2d)

ε2d
Vol

(
Y

(s,r)
4d−1

)
. (3.12)

Now, rescaling all {ϕ, φ} → {ϕ, φ}/ε in (3.11) to get rid of the factor ε3s+r and comparing

the result with (3.12) we obtain

Vol
(
Y

(s,r)
4d−1

)
Vol(S4d−1)

=
23s+r

Vol(SU(2)s ×U(1)r)

∫ s∏
i=1

d3ϕi

r∏
j=1

dφj

∏s
i=1

(
1 + ~ϕ2

i

)∏
q∈M (Detq Q̃2

ε)|ε→1

, (3.13)

where Vol(S4d−1) = 2π2d

Γ(2d) . This is the main result obtained via the localization procedure.

In section 4 we use this formula to compute the volume of tri-Sasaki Einstein manifolds

relevant to 3d CS matter theories.

General quotients. For a hyperkähler quotient of the form Hd+dimG///G, the volume

of the tri-Sasaki Einstein base is given by

Vol (Y4d−1)

Vol(S4d−1)
=

1

Vol (G)

∫ ∞
−∞

dimG∏
i=1

dϕi
∣∣2δwu − fvwuϕv∣∣
(DetM Q̃2

ε)|ε→1

. (3.14)

This integral over dimG ϕ’s can be reduced to rankG ϕ’s in the ‘Cartan-Weyl basis’, which

introduces a Vandermonde determinant. For G a product of U(N)’s and (bi)fundamental

quaternions we can write

Vol (Y4d−1)

Vol(S4d−1)
=

∫ ∞
−∞

∏
U(N)∈G

[
1

N !

N∏
i=1

dλi

2π

] ∏
U(N)∈G

2N
N∏

i<j=1

(λi − λj)2
(
4 + (λi − λj)2

)
∏
i↔j

i∈U(M),j∈U(N)

(1 + (λi − λj)2)
.

(3.15)

We note that the factor Vol (G) has cancelled. When the quaternions are charged under

more than two U(1)’s (as in SU(M) × SU(N) × U(1)r), we need a change of basis to

something similar to what we have for SU(2) × U(1)r in (3.8). This can be achieved by

constraining the sum of eigenvalues of U(N) to vanish, reducing the number of variables to

(N − 1), and adding a φ-variable for each U(1) with the appropriate charge. The constant
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factors follow the same pattern as that for U(N). Taking this into account, for a generic

charge matrix Q one obtains

Vol (Y4d−1)

Vol(S4d−1)
=

∫ ∞
−∞

∏
SU(N)∈G

[
1

(N − 1)!

N−1∏
i=1

dϕi

π

]∫ ∏
U(1)∈G

dφ

π

×

∏
SU(N)∈G

N∏
i<j=1

(ϕi − ϕj)2
(
4 + (ϕi − ϕj)2

)
∏

qa∈ i↔j
i∈SU(M), j∈SU(N)

(1 + (ϕi − ϕj −
∑

kQ
k
aφ

k)2)
, (3.16)

where ϕN = −
∑N−1

i=1 ϕi. This formula is applicable for generic quivers.

3.1 An example: ALE instantons

As a simple example we consider four-dimensional ALE instantons. These are hyperkähler

quotients of the form H1+dimG///G with G a product of unitary groups determined by

an extended ADE Dynkin diagram [26]. In the unresolved case, these spaces are simply

cones over S3/Γ with Γ a finite subgroup of SU(2). The case G = SU(2)k−3 × U(1)k with

k ≥ 4 corresponds to the D̂ series and Γ is the binary dihedral group Dk−2 with order

4(k − 2). This is precisely a quotient of the form (3.1) so we may compute the volume of

the base by the localization formula (3.13). Let us work out the k = 4 case first. Setting

d = 1, s = 1, r = 4, we have5

Vol
(
Y

(1,4)
3

)
=

28π2

π2(2π)4

∫ ∞
0

dϕ(4πϕ2)
(
1 + ϕ2

) ∫ ∞
−∞

4∏
j=1

dφj
∏
±

1

1 +
(
ϕ± φj

)2 =
π2

4
,

thus reproducing the expected volume 1
8 Vol

(
S3
)
.

For generic k ≥ 4 we set d = 1, s = k − 3, r = k in (3.13) and perform the integrals as

in the example above. The computation is rather lengthy and thus we relegate the details

to appendix B.2. The final answer is

Vol
(
Y

(k−3,k)
3

)
=

2π2

4(k − 2)
,

in accordance with the expected value of Vol
(
S3/Dk−2

)
.

It is also possible to consider Ê6,7,8 singularities, corresponding to G = U(3)×U(2)3×
U(1)3, U(4) × U(3)2 × U(2)3 × U(1)2, and U(6) × U(5) × U(4)2 × U(3)2 × U(2)2 × U(1),

respectively. Using (3.15) or (3.16) one obtains the expected volumes, given by Vol(S3)

divided by the order of tetrahedral (24), octahedral (48), and icosahedral (120) subgroups

of SU(2), respectively.

5Here we reduced the three-dimensional SU(2) integral
∫∞
−∞ d3ϕ to the obvious one-dimensional integral∫∞

0
dϕ(4πϕ2). We recognize ϕ2 as the ‘Vandermonde determinant’.
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3.2 Codimension 1 cycles

The volumes of codim-1 cycles are also of interest from the point of view of AdS/CFT

correspondence, as they compute the conformal dimensions of chiral primary baryonic op-

erators in the field theory. As discussed in [21], a codim-1 cycle is defined by a holomorphic

constraint that some u = 0. This means that there are two types of such cycles for D̂-

quivers: uαa = 0 or uαa,β = 0. Let us focus on u1
1 = 0 for concreteness but the computation

does not depend on the explicit values of a, α. In the flat ambient space, this hypersurface

is Poincaré dual to the 2-form

Γ2 = δ(u1
1)δ(ū1

1)ψu
1
1ψ̄ū

1
1 , (3.17)

with QΓ2 = 0 = Q̃εΓ2. This means the regularized volume of the (4d − 2)-dimensional

cone u1
1 = 0 is simply obtained by

〈Γ2〉ε =
1

(2π)3 dimG Vol (G)

∫
T [ψ]M⊗ϕv⊗{ρva,χva}

Γ2 e
ω+ι̇ϕvµv+ι̇ρvaµ

a
v+χvaQµ

a
v−εH . (3.18)

As the regularization is a simple Gaussian factor, this is related to the volume of (4d− 3)-

dimensional hypersurface inside the original cone by

〈Γ2〉ε =
22d−2Γ(2d− 1)

ε2d−1
Vol (Σ4d−3) . (3.19)

Evaluating the previous expression for G = SU(2)s×U(1)r as before, the main difference is

that the eigenvalue corresponding to u1
1 is missing. Multiplying and dividing by it leads to

Vol
(

Σ
(s,r)
4d−3

)
=

23s+r+1π2d−1

Γ(2d− 1) Vol(SU(2)s ×U(1)r)

∫ ∞
−∞

s∏
i=1

d3ϕi

r∏
j=1

dφj

s∏
i=1

(
1 + ~ϕ2

i

)
×

1− ι̇
(
|~ϕ1|+

∑
j Q

j
1φ

j
)∏

q∈M (Detq Q̃2
ε)|ε→1

, (3.20)

where the ι̇Qφ piece of the integrand vanishes because of the anti-symmetry under

φ → −φ. The ϕ1 piece can also be seen to vanish due to a cancellation from poles in the

upper and lower half-planes. A similar numerator appears for the second type of cycle too,

for which we can take, as an example, u1
5,1 = 0. Since the imaginary part of the integrand

does not contribute, we obtain the same result as in the toric case, namely

Vol
(

Σ
(s,r)
4d−3

)
Vol

(
Y

(s,r)
4d−1

) =
2d− 1

π
. (3.21)

4 Chern-Simons D̂-quivers

In this section, we consider the results of section 3 in the context of AdS4 × Y7 vacua of

M-theory and their 3d field theory duals. Specifically, we are interested in CS D̂-quivers,

whose gauge group is U(2N)n−3 ×U(N)4 with n ≥ 4. The main reason we focus on these
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k3

k4k1

k2

k5 k6 · · · kn+1

Figure 2. D̂n quiver diagram. Each node ‘a’ corresponds to a U(naN) gauge group with CS level

ka, where na is the node’s comark and
∑

a naka = 0 is imposed.

theories is that it is a large class of theories for which the free energy has already been

computed by supersymmetric localization [16] and the duals are non-toric.6 We begin by

reviewing the field theories.

4.1 The field theories and their free energies

The field content of the theories is summarized in the quiver of figure 2. Following standard

notation, we denote the fields in each edge of the quiver by A,B. We label the nodes and

edges so that for a node b > a the fields A and B associated to the edge a↔b transform

under U(Na)×U(Nb) as N̄a×Nb and Na×N̄b, respectively. The ranks of the gauge groups

are given by Na = naN , with na the node’s comark and the large N limit corresponds to

sending N →∞ (and CS levels fixed). The labelling of the nodes and their corresponding

CS levels are shown in figure 2.

With these conventions the action is given by

S=SCS+

∫
d4θ

[
2∑
i=1

(
Ai
†eV5Aie

−Vi+B†i e
ViBie

−V5
)

+

4∑
i=3

(
Ai
†eVn+1Aie

−Vi+B†i e
ViBie

−Vn+1

)
+

n∑
i=5

(
Ai
†eVi+1Aie

−Vi +B†i e
ViBie

−Vi+1

)]
+

(∫
d2θW + h.c.

)
, (4.1)

where SCS is the standard supersymmetric CS action (see e.g. [5] and references therein)

and W is a superpotential term, which we will write explicitly below.

The exact free energy FS3 for these theories, which is a rational function of the CS

levels {ka}, was computed at large N in [16] and we review the relevant results now.7 Based

on the explicit solution of the corresponding matrix models for various values of n, it was

conjectured that for arbitrary n ≥ 4, FS3 is determined by the area of a certain polygon Pn
defined by the CS levels, which combined with (1.1) leads to a precise prediction for the

volumes of the corresponding Y7 manifolds, namely (the n-dependence of these manifolds

will be made explicit in the next subsection)

Vol(Y7)

Vol(S7)
=

1

4
Area(Pn) , (4.2)

6The free energy of exceptional quivers was also computed in [16]. The computation of the corresponding

volumes is straightforward (but tedious) with (3.16) and the techniques developed in this section.
7The case of D̂4 was first studied in [22].
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a

a+ 1

1
2
γa,a+1

σ̄a σ̄a+1

y

x

Figure 3. Schematic form of the polygon Pn for the D̂n quiver for a generic value of CS levels.

Only the upper right quadrant is shown as it is symmetric along both the x and y axes.

where Pn is the polygon in R2 defined by8

Pn(x, y) =

{
(x, y) ∈ R2

∣∣∣ n∑
a=1

(|y + pax|+ |y − pax|)− 4|y| ≤ 1

}
. (4.3)

Here p is an n-dimensional vector such that at a given node a the CS level is written as

ka = α(a) · p with α(a) the root associated to that node. A typical polygon for generic

values of CS levels is shown in figure 3. Writing Area(Pn) as the sum of the areas of the

triangles defined by the origin and two consecutive vertices of the polygon, the AdS/CFT

prediction (4.2) reads:

Vol(Y7)

Vol(S7)
=

1

2

n∑
a=0

γa,a+1

σ̄a σ̄a+1
, (4.4)

where σ̄a ≡
∑n

b=1 (|pa − pb|+ |pa + pb|)−4 |pa| for a = 1, · · · , n, and σ̄0 = 2(n−2) , σ̄n+1 =

2
∑n

b=1 |pb|. In addition γa,b ≡ |βa ∧ βb|9 with βa = (1, pa) and β0 = (0, 1), βn+1 = (1, 0).

The physical meaning of Pn was clarified in [27] (see also [28]) where an elegant Fermi

gas approach was used to study the matrix model at finite N , showing that Pn corresponds

to the Fermi surface of the system at large N , and confirming the proposal for the free

energy of [16].

The goal for the rest of the paper is to derive (4.2) geometrically, by a direct compu-

tation of Vol(Y7) using the localization method of section 3. In order to do so, we must

first identify the precise manifolds Y7 dual to D̂-quivers, which we do next.

4.2 The moduli spaces

The manifold Y7 dual to a certain CS quiver gauge theory can be found by analyzing the

moduli space of the field theory [5, 6, 29], which is obtained by setting the D-terms and F -

8This compact form of writing the polygon of [16] is due to [27].
9Defining the wedge product (a, b) ∧ (c, d) = (ad− bc).
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terms to zero, and modding out by the appropriate gauge transformations. Thus, we need

to specify the superpotential W appearing in (4.1). We can do this for a generic quiver.

Consider a quiver with nV vertices corresponding to U(naN) gauge groups (we assume all

na are coprime) and nE number of edges. Let us first set N = 1. To determine the super-

potential we follow the approach used in [5] by introducing an auxiliary chiral multiplet Φa

in the adjoint of the gauge group a and superpotential Wa = −naka
2 Φ2

a +
∑

i→aAiΦaBi ;

here the sum is over all edges i incident upon the node a and Φa = ΦA
a TA, with TA the

generators of the corresponding gauge group. To avoid cluttering the expressions we omit

the gauge generators in what follows, but it should be clear where these sit. Since we will

introduce a field Φa for each node in the quiver it is convenient to introduce the notation

Φ ≡ (Φ1, · · · ,ΦnV )T and AB ≡ (A1B1, · · · , AnEBnE )T for nodes and edges, respectively.

The full superpotential then reads W =
∑

aWa = −1
2ΦTKΦ+ΦTI AB, where I is the ori-

ented incidence matrix of the quiver10 and K is a diagonal matrix with entries Kaa = naka.

Since Φ does not have a kinetic term it can be integrated out, leading to the superpotential

W =
1

2
(AB)T ITK−1I AB . (4.5)

We are now in a position to determine the exact geometry of the moduli space for a

general CS quiver. Varying W with respect to A and factoring out a B gives the F -term

equations (AB)T ITK−1I = 0. The D-term equations are obtained by simply replacing

AB → |A|2 − |B|2. Combining A and B̄ into a quaternion q, these three real equations

combine into the hyperkähler moment map equations
∑

j Q
i
j(q
†
j(σα)qj) = 0, with Q a

charge matrix given by

Q = ITK−1I . (4.6)

This fully characterizes the quotient manifold for generic N = 3 quivers.11 We now spe-

cialize this to D̂n quivers and begin with D̂4 for simplicity.

D̂4. Using the incidence matrix for D̂4 the superpotential (4.5) reads

W =
1

2

 4∑
i=1

1

ki
(AiBiAiBi) +

1

2k5

(
4∑
i=1

Bi ·Ai

)(
4∑
j=1

Bj ·Aj

) , (4.7)

where (A · B)2 ≡ (AσAB)(AσAB) and σA = (I, σa). Varying W with respect to Ai gives

the F -term equations:

1

ki
Bi(AiBi) +

1

2k5
Bi(σA)

4∑
j=1

(Bj(σA)Aj) = 0 . (4.8)

10This is defined to be a matrix which has a row for each vertex and column for each edge. The entry

Ive is 1 if the edge e comes into vertex v, −1 if it comes out of it, and 0 otherwise. These signs arise from

the action of the group generators in the terms AΦB ≡ AΦA TAB.
11This is a slight generalization of the expression derived in section 2.5 of [6], where we allow the gauge

groups to have different ranks.
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Factoring out Bi, we have four matrix equations for each i. However, the SU(2) part of

the matrix gives the same equations for each i. In the quaternionic notation, all the U(1)

equations
(
from the σ0 = I matrix in (4.8)

)
can be combined into the single equation

4∑
j=1

Qij(q
†
j(σα)qj) = 0 with Q =


k1 + 2k5 k1 k1 k1

k2 k2 + 2k5 k2 k2

k3 k3 k3 + 2k5 k3

k4 k4 k4 k4 + 2k5

 . (4.9)

Each column (lower index) in this matrix Q represents a quaternion and each row (upper

index) represents the U(1) under which it is charged. This matrix can be obtained directly

from (4.6); here we have multiplied each row ‘i’ by 2kik5 for convenience, which amounts to

an unimportant rescaling of the corresponding vector multiplets. We note that this matrix

has only four rows although the original number of U(1)’s is five. The reason for this is that

an overall diagonal U(1) is decoupled as nothing is charged under it and so this row has

been removed. In addition, imposing the relation k1 + k2 + k3 + k4 + 2k5 = 0 one sees that

rank(Q) = 3 and hence another row must be removed (it does not matter which one) to

obtain the final charge matrix. We have thus shown that the moduli space is given by the

hyperkähler quotient H8///SU(2)×U(1)3 with the action of the group on the quaternions

determined by the matrix in (4.9).

D̂n>4. The extension to D̂n>4 quivers, with gauge group U(2)n−3×U(1)4, is direct. The

superpotential (4.5) can be written as:

W =
1

2

[
4∑
i=1

1

ki
(AiBiAiBi) +

1

2k5
(A1 ·B1 +A2 ·B2 −A5 ·B5)2

+
1

2kn+1
(A3 ·B3 +A4 ·B4 +An ·Bn)2 +

n∑
a=6

1

2ka
(Aa−1 ·Ba−1 −Aa ·Ba)2

]
.

Proceeding as above one concludes that the moduli space is given by the hyperkähler

quotient (at zero level)

C
(
Y

(n−3,n−1)
7

)
= H4n−8///SU(2)n−3 ×U(1)n−1 , (4.10)

with the action of the group on the quaternions given by the charge matrix (for n > 4)

Q =



k1 + 2k5 k1 0 0 −k1 0 0 0

k2 k2 + 2k5 0 0 −k2 0 0 0

0 0 k3 + 2kn+1 k3 0 · · · · · ·0 k3

0 0 k4 k4 + 2kn+1 0 · · · · · ·0 k4

−k6 −k6 0 0 k5 + k6 −k5
. . . 0

0 0
...

... −k7 k6 + k7
. . .k

. . .0

0 0
...0

...0
. . .

. . .k
. . .k+k −kn−1

0 0 kn kn
. . .0

. . .0 −kn+1 kn + kn+1


.

(4.11)

– 15 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
6

As above, the matrix is of rank (n−1) after imposing k1+k2+k3+k4+2(k5+· · ·+kn+1) = 0

and one (any) row should be removed. This matrix can be obtained directly from (4.6);

here we have multiplied each row by the lowest common denominator of all the (nonzero)

entries in that row for convenience.

We note that while the quaternionic dimension of the resulting spaces (4.10) is two,

there is only a single U(1) remaining after the quotient and thus the spaces are non-toric.

To see this, note that before gauging, the action for the D̂n quiver has a U(1)n global

symmetry, acting on each quaternion as U(1)i : (Ai, Bi)→ (eι̇θAi, e
−ι̇θBi) for i = 1, · · · , n.

As shown above, the gauging removes (n−1) of them, leaving a single U(1) in the quotient

manifold. This is also the case for the Ê-quivers, as can be readily checked. For Â-quivers,

in contrast, there is initially a U(1)n symmetry but the quotient removes only (n − 2) of

them, hence the moduli spaces are toric.

Since the moduli spaces are hyperkähler quotients of the form (3.1), with d = 2, s =

n − 3, r = n − 1, we may apply the localization formula (3.13) to compute their volumes,

which we do next.

4.3 Volumes

We are now in position to compute the volumes of tri-Sasaki Einstein manifolds dual to

D̂-quivers. For clarity of presentation, we sketch the basic steps for D̂4 first and provide

the details for general D̂n>4 in appendix A. Setting d = 2, s = 1, r = 3 in (3.13) we have

Vol
(
Y

(1,3)
7

)
=

32

3

∫ ∞
0

dϕϕ2
(
1 + ϕ2

) ∫ ∞
−∞

d3φ
4∏

±,a=1

1

1 +
(
ϕ± (Qiaφi)

)2 .
To perform the d3φ integral it is convenient to use the Fourier transform identity

1

[1 + (ϕ+ φ)2][1 + (ϕ− φ)2]
=

1

4

∞∫
−∞

dX
e−|X|

2ϕ

(
e−ι̇|X|ϕ

ϕ− ι̇
+
eι̇|X|ϕ

ϕ+ ι̇

)
eι̇φX (4.12)

for each term in
∏4
a=1. Performing the d3φ integrals generates (2π)3δ3(

∑
aQ

i
aXa),

12 which

can be integrated away by writing Xa = kax; it is directly checked from (4.9) that∑
aQ

i
aka = 0. Thus, we obtain

Vol
(
Y

(1,3)
7

)
=
π3

3

∫ ∞
−∞

dx

∫ ∞
0

dϕ
e−

∑
a |kax|

ϕ2(1 + ϕ2)3

4∏
a=1

[
1

2

(
e−ι̇|kax|ϕ(ϕ+ ι̇) + eι̇|kax|ϕ(ϕ− ι̇)

)]
.

(4.13)

We now perform the ϕ integral by residues, converting
∫∞

0 dϕ→ 1
2

∫∞
−∞ dϕ as the integrand

is an even function of ϕ. We note that expanding the product of exponentials in (4.13)

gives a total of sixteen terms and the precise integration contour in the complex plane

needs to be chosen separately for each one. This is because the coefficient of ι̇ϕ|x| in each

12As explained in [8], for non-coprime entries in the charge matrix Q there is an extra numerical factor

dividing the δ-functions. But in that case, Vol (U(1)r) is also not simply (2π)r but needs to be divided by

the same factor, so the result being derived here is valid for generic Q.
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term can be any one of the combinations ±|k1| ± |k2| ± |k3| ± |k4|. Thus, in order to decide

how to close the contour at ∞, we choose a particular ordering of k’s. It is convenient to

go to the basis ka → α(a).p and order the p’s according to p1 ≥ p2 ≥ p3 ≥ p4 ≥ 0 (this is

simply a choice and one should repeat this for all possible orderings). This results in

Vol
(
Y

(1,3)
7

)
=
π4

3

1

2

∫ ∞
−∞
dx e−2(p1+p3)|x|

[
−1

8
e−2(p1−p3)|x|+

1

2
e−2(p2−p3)|x| (1+(p2−p3)|x|)

−1

8

(
e−2(p2−p4)|x| + e−2(p2+p4)|x|

)]
.

Finally, integrating over x gives

Vol
(
Y

(1,3)
7

)
Vol (S7)

= − 1

32p1
+

2p1 + 3p2 − p3

8 (p1 + p2)2 − 1

16(p1 + p2 + p3 − p4)
− 1

16
∑4

b=1 pb

=
1

2

4∑
a=0

γa,a+1

σ̄aσ̄a+1
=

1

4
Area (P4) , (4.14)

where in the second line we used the definitions below (4.4) and the ordering of p’s we

have chosen (one may check that the last line above gives the result of the integral for all

possible orderings). Thus, we have shown that for n = 4 one exactly reproduces the field

theory prediction (4.2).

For generic n ≥ 4 the volume formula reads

Vol
(
Y

(n−3,n−1)
7

)
Vol (S7)

=
42n−5

(π2)n−3(2π)n−1

n−3∏
i=1

∫ ∞
0

dϕi(4πϕ
2
i )
(
1 + ϕ2

i

) n−1∏
j=1

∫ ∞
−∞

dφj

×
2∏

±,a=1

1

1 +
(
ϕ1 ±Qiaφi

)2 4∏
±,a=3

1

1 +
(
ϕ2
n−3 ±Qiaφi

)2
×

n∏
±,a=5

1

(1 + (ϕa−4 ± ϕa−3 ±Qiaφi)2)
.

(4.15)

The integrals can be performed by the same steps as in the D̂4 case. Assuming the ordering

p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 one finds (see appendix A for details):

Vol
(
Y

(n−3,n−1)
7

)
Vol (S7)

=
1

16

n−3∑
a=1

ca∑a−1
b=1 pb + (n− a− 1)pa

+
2
∑n−3

b=1 pb + 3pn−2 − pn−1

8
(∑n−2

b=1 pb

)2

− 1

16

(
1∑n−1

b=1 pb − pn
+

1∑n
b=1 pb

)
=

1

4
Area(Pn) , (4.16)

in perfect agreement with the field theory prediction (4.2)!
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5 Summary and outlook

This paper contains two main results. The first is an explicit integral formula computing the

volumes of tri-Sasaki Einstein manifolds given by nonabelian hyperkähler quotients. This

is a generalization of the formula derived by Yee [21] in the Abelian case. The second result

concerns the study of 3d N = 3 CS matter theories. We identified the precise (non-toric)

tri-Sasaki Einstein manifolds describing the gravity duals of D̂-quivers and computed their

volumes, showing perfect agreement with the field theory prediction of [16]. This greatly

expands the detailed tests of AdS4/CFT3 available for non-toric cases.

One may also consider CS Ê-quivers, whose free energies were computed in [16]. In

this case the corresponding hyperkähler quotients are Ê6 : H24///SU(3)×SU(2)3×U(1)5,

Ê7 : H48///SU(4)× SU(3)2× SU(2)3×U(1)6, and Ê8 : H120///SU(6)× SU(5)× SU(4)2×
SU(3)2×SU(2)2×U(1)7. The volume integrals can be written using (3.16) and the relevant

charge matrices (4.6). Although we have not computed these integrals explicitly one should

be able to do so with the same techniques used here for D̂-quivers. An open question

regarding Ê-quivers is whether they admit a Fermi gas description, along the lines of [30]

for Â-quivers and [27, 28] for D̂-quivers. If so, the integral volume formula may elucidate

the form of the Fermi surface in the large N limit.

The localization approach can also be applied to nonabelian Kähler quotients. This

is the relevant setting for AdS5/CFT4, where few non-toric examples are known. An

important distinction, however, is that the quotient ensures only the Kähler class of the

quotient manifold and not its metric structure. In this case one would have to combine

this approach with the principle of volume minimization, along the lines of [23, 24]. It is

our hope that the formulas presented here will also be valuable in this context.

Finally, one may also consider quivers whose nodes represent SO(N) or USp(2N)

gauge groups. Related to this, it may be interesting to consider the interplay of the volume

formulas with the folding/unfolding procedure of [31].
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A D̂n CS quivers

Here we provide the details leading to the main result for CS D̂n quivers (4.16). For generic

n the volume formula reads:

Vol
(
Y

(n−3,n−1)
7

)
=

(
π4

3

)
42n−5

(π2)n−3(2π)n−1

n−3∏
i=1

∫ ∞
0

dϕi(4πϕ
2
i )
(
1 + ϕ2

i

) n−1∏
j=1

∫ ∞
−∞

dφj

×
2∏

±,a=1

1

1 +
(
ϕ1 ±Qiaφi

)2 4∏
±,a=3

1

1 +
(
ϕ2
n−3 ±Qiaφi

)2
×

n∏
±,a=5

1

(1 + (ϕa−4 ± ϕa−3 ±Qiaφi)2)
. (A.1)

The basic procedure follows the same logic of the D̂4 case. We first exponentiate the

denominators by introducing some
∫
dya’s, perform the φ-integrals to generate δ(

∑
aQ

i
aya)-

functions, and solve the equations
∑

aQ
i
aya = 0 by ya = κax such that

∑
aQ

i
aκa = 0 where

κa = {p1 +p2, p1−p2, pn−1−pn, pn−1 +pn, 2p3, 2p4, . . . , 2pn−2} (up to some signs but since

only |κa| are needed below these are not important). Now, assuming

p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 , (A.2)

all κa ≥ 0 and thus we may replace |κa| → κa. Next, we perform all the ya integrals

obtaining

Vol
(
Y

(n−3,n−1)
7

)
Vol (S7)

=
42n−54n−3

πn−3

1

44

1

32n−4

∫ ∞
−∞

dx e−
∑n
a=1 κa|x|

n−3∏
i=1

∫ ∞
0

dϕi ϕ
2
i

(
1 + ϕ2

i

)
×

2∏
a=1

Dκa(ϕ1, x)

4∏
a=3

Dκa(ϕn−3, x)

n∏
a=5

Dκa(ϕa−4, ϕa−3, x) , (A.3)

where

Dκa(ϕi, x) =
ϕi cos(ϕiκa|x|) + sin(ϕiκa|x|)

ϕi(1 + ϕ2
i )

Dκa(ϕi, ϕj , x) =


ϕiϕj(ϕ

2
i − ϕ2

j )(5 + ϕ2
i + ϕ2

j ) cos(ϕiκa|x|) cos(ϕjκa|x|)
+2(1 + ϕ2

i )(1 + ϕ2
j )(ϕ

2
i − ϕ2

j ) sin(ϕiκa|x|) sin(ϕjκa|x|)
−ϕi(1 + ϕ2

i )(1− ϕ2
i + 5ϕ2

j ) cos(ϕiκa|x|) sin(ϕjκa|x|)
+ϕj(1 + ϕ2

j )(1 + 5ϕ2
i − ϕ2

j ) sin(ϕiκa|x|) cos(ϕjκa|x|)


ϕiϕj(ϕ2

i − ϕ2
j )(1 + ϕ2

i )(1 + ϕ2
j )(1 + (ϕi + ϕj)2)(1 + (ϕi − ϕj)2)

.

(A.4)

By performing the integrals in decreasing order of ϕ’s, starting from ϕn−3, . . . , ϕ1 a pattern

emerges. Here are a few intermediate steps:

In−3 =

∫
dϕn−3 ϕ

2
n−3

(
1 + ϕ2

n−3

) 4∏
a=3

Dκa(ϕn−3, x)Dκn(ϕn−4, ϕn−3, x)=
π

2

4∏
a=3

Dκa(ϕn−4, x)

+
π

4
e2(−pn−2+pn−1)|x|ϕn−4(ϕ2

n−4 − 5) cos(ϕn−4κn|x|) + 2(2ϕ2
n−4 − 1) sin(ϕn−4κn|x|)

ϕn−4(1 + ϕ2
n−4)2(4 + ϕ2

n−4)
.

(A.5)
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Let us define another D to keep the expressions relatively compact:

Dκa(ϕi, x;m) =
ϕi
(
ϕ2
i −m(m + 1) + 1

)
cos(ϕiκa|x|) + m(2ϕ2

i −m + 1) sin(ϕiκn|x|)
ϕi
(
1 + ϕ2

i

) (
(m− 1)2 + ϕ2

i

) (
m2 + ϕ2

i

) .

(A.6)

Thus the relevant expression in (A.5) can be labelled Dκn(ϕn−4, x; 2). Proceeding further

with the integrals we have

In−3>j>1 =

∫
dϕj ϕ

2
j

(
1 + ϕ2

j

)
Dκj+3(ϕj−1, ϕj , x) Ij+1

=
(π

2

)n−2−j
[

4∏
a=3

Dκa(ϕj−1, x)

+
1

2

a=n∑
j+3

e−2((n−a+1)pa−2−
∑n−1
b=a−1 pb)|x|Dκa(ϕj−1, x;n− a+ 2)

]
. (A.7)

The final ϕ1-integral then gives

I1 =

∫
dϕ1 ϕ

2
1

(
1 + ϕ2

1

) 2∏
a=1

Dκa(ϕ1, x) I2

=
(π

2

)n−3
[
c1

8
e−2((n−3)p1−

∑n−1
b=3 pb)|x| +

n−3∑
a=2

ca
8
e−2(

∑a−1
b=2 pb+(n−a−1)pa−

∑n−1
b=3 pb)|x|

+
1

2
e−2(p2−pn−1)|x| (1 + (pn−2 − pn−1)|x|)− 1

8

(
e−2(p2−pn)|x| + e−2(p2+pn)|x|

)]
, (A.8)

where ca = −2
(n−a−1)(n−a−2) . This expression is also valid for D̂4, as can be easily checked.

Finally, performing the integral over x gives

Vol
(
Y

(n−3,n−1)
7

)
Vol (S7)

=
2n−4

πn−3

∫ ∞
−∞

dx e−2(p1+
∑n−1
b=3 pb)|x| I1

=
1

16

n−3∑
a=1

ca∑a−1
b=1 pb + (n− a− 1)pa

+
2
∑n−3

b=1 pb + 3pn−2 − pn−1

8
(∑n−2

b=1 pb

)2

− 1

16

(
1∑n−1

b=1 pb − pn
+

1∑n
b=1 pb

)
. (A.9)

The expression appearing on the right hand side of (A.9) is precisely the area of the

polygon (4.3) (see [16] for details). Indeed, using the definitions below (4.4) and the

ordering (A.2), this becomes

Vol
(
Y

(n−3,n−1)
7

)
Vol (S7)

=
1

2

n∑
a=0

γa,a+1

σ̄aσ̄a+1
=

1

4
Area(Pn) ,

as we wanted to show.
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B Other examples

In this appendix we provide other examples of applications of the formula (3.13).

B.1 A Lindström-Roček space

Consider a Lindström-Roček Space [32] given by the hyperkähler quotient H6///U(2). This

amounts to setting d = 2, s = 1, r = 1 in (3.13) and the volume reads

Vol
(
Y

(1,1)
7

)
=

32π4

6[(π2)(2π)]

∫ ∞
0
dϕ(4πϕ2)

(
1+ϕ2

)∫ ∞
−∞
dφ

1(
1+2

(
ϕ2+φ2

)
+
(
ϕ2−φ2

)2)3

=
32π2

3

∫ ∞
0

dϕϕ2
(
1 + ϕ2

) [3π(21 + 6ϕ2 + ϕ4)

256 (1 + ϕ2)5

]
=
π3

8

∫ ∞
0

dϕ
ϕ2(21 + 6ϕ2 + ϕ4)

(1 + ϕ2)4 =
π4

8
.

One can verify that this is the correct value by explicit construction of the hyperkähler

potential. Following [32], the hyperkähler cone H6///U(2) is described by the following

action (with all FI parameters vanishing)

S =

∫
d8z

[
Φ̄
m
a+

(
eV
)a
b
Φb
m+ + Φm

a−
(
e−V

)a
b
Φ̄
b
m−

]
+

[∫
d6zΦb

m+S
a
bΦm

a− + h.c.

]
. (B.1)

Here, m = 1, 2, 3 and a = 1, 2 is the U(2) index. This gives the following equations of

motion

Φb
m+Φ̄

m
a+

(
eV
)a
b
−
(
e−V

)a
b
Φ̄
b
m−Φm

a− = 0 (B.2)

Φb
m+Φm

a− = 0 . (B.3)

Solving the latter equation by

Φa
+ =

(
Ka

+,
ι̇K1−K

a
+√

Ka
+Ka−

,
ι̇K2−K

a
+√

Ka
+Ka−

)
(B.4)

Φa− =

(
Ka−,

ι̇Ka−K
1
+√

Ka
+Ka−

,
ι̇Ka−K

2
+√

Ka
+Ka−

)T
, (B.5)

where we have chosen a particular gauge, and plugging the solution for eV back in (B.1)

leads to the action

S = Tr

∫
d8z
√

4Φb
m+Φ̄

m
c+Φ̄

c
m−Φm

a−

= 2

∫
d8z
√(

K1
+K̄1+ +K2

+K̄2+ + κ
) (
K1−K̄1

− +K2−K̄2
− + κ

)
, (B.6)

where κ2 = (K1
+K1− + K2

+K2−)(K̄1
+K̄1− + K̄2

+K̄2−). The metric is given by gij̄ = ∂ij̄K
where Kähler potential K is obtained from S =

∫
d8zK. It turns out that

g ≡ det gij̄ = 28. (B.7)
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We use the following coordinate transformation to spherical polar coordinates

K1
+ = r cosχ cos

θ1

2
e
ι̇
2

(−ϕ1+2ψ1)

K1− = r cosχ sin
θ1

2
e
ι̇
2

(−ϕ1−2ψ1)

K2
+ = r sinχ cos

θ2

2
e
ι̇
2

(−ϕ2+2ψ2)

K2− = r sinχ sin
θ2

2
e
ι̇
2

(−ϕ2−2ψ2) .

(B.8)

Here, r is the radial coordinate and θi, ϕi, ψi are the usual 3D spherical coordinates so θi ∈
[0, π], ϕi ∈ [0, 2π) and ψi ∈ [0, 2π). The limit of χ ∈ [0, π2 ] is chosen such that the ‘flat’ ac-

tion gives flat metric on R+×S7. The determinant of the Jacobian of this transformation is

Js = r7 cos3 χ sin3 χ sin θ1 sin θ2. (B.9)

In these coordinates the metric is not explicitly conical (there are off-diagonal terms

between dr and spherical coordinates) but grr is a complicated function of spherical

coordinates only and rescaling r → ρ√
grr

one obtains the conical metric dρ2 + ρ2dΩ2
7. The

determinant of this radial transformation is

Jr =
1
√
grr

. (B.10)

Combining all the above determinants, taking square root and (numerically) integrating

over the spherical coordinates gives us the volume of the seven-dimensional base of the

hyperkähler cone:

Vol(Ω7) =

∫
Ω7

√
g Js Jr|ρ→1 =

∫
Ω7

16 cos3 χ sin3 χ sin θ1 sin θ2

g4
rr

=
π4

8
. (B.11)

B.2 Volume of D-orbifolded S3

Here we provide details of the calculation for ALE instantons of section 3.1 for generic

Dk−2. The volume integral reads:

Vol
(
Y

(k−3,k)
3

)
=

23(k−3)+k+1π2

(π2)k−3 × (2π)k

∫ k−3∏
i=1

dϕi
(
4πϕ2

i

) (
1 + ϕ2

i

) k∏
j=1

dφj
∏
±

1

1 + (ϕ1 ± φ4)2

×
∏
±

1

1 + (ϕ1 ± (φ1 + φ4))2

3∏
±,a=2

1

1 + (ϕk−3 ± (φa + φk))
2

×
k−4∏
±,a=1

1

1 + ((ϕa ± ϕa+1)± (φa+3 − φa+4))2 . (B.12)
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Using Fourier transform to exponentiate all the denominators, we obtain

Vol
(
Y

(k−3,k)
3

)
=

25k−14

π2k−5

∫ k−3∏
i=1

dϕi ϕ
2
i

(
1 + ϕ2

i

) k∏
j=1

dφj

4∏
±,a=1

dy±a

k−4∏
±,b=1

dη±b dη̄
±
b

×
(

1

2

)8

e−
∑4
±,a=1 |y

±
a |+ι̇

∑
± (y±1 (ϕ1±φ4)+y±2 (ϕ1±(φ1+φ4))+

∑3
a=2 y

±
a+1(ϕk−3±(φa+φk)))

×
(

1

2

)4(k−4)

e
∑k−4
±,b=1(−|η

±
b |+ι̇η

±
b ((ϕb+ϕb+1)±(φb+3−φb+4))−|η̄±b |+ι̇η̄

±
b ((ϕb−ϕb+1)±(φb+3−φb+4)))

=
2k−6

π2k−5

∫ k−3∏
i=1

dϕi ϕ
2
i

(
1 + ϕ2

i

) k∏
j=1

dφj

4∏
±,a=1

dy±a

k−4∏
±,b=1

dη±b dη̄
±
b

× e−
∑4
±,a=1 |y

±
a |−

∑k−4
±,b=1(|η

±
b |+|η̄

±
b |) eι̇

∑
± (ϕ1(y±1 +y±2 )+ϕk−3(y±3 +y±4 ))

× eι̇
∑3
a=1 φa(y

+
a+1−y

−
a+1)+ι̇φ4(y+1 −y

−
1 +y+2 −y

−
2 )+ι̇φk(y+3 −y

−
3 +y+4 −y

−
4 )

× eι̇ϕ1(η+1 +η−1 +η̄+1 +η̄−1 )+ι̇ϕk−3(η+k−4+η−k−4−η̄
+
k−4−η̄

−
k−4)+ι̇

∑k−4
±,b=2 ϕb(η

±
b−1−η̄

±
b−1+η±b +η̄±b )

× eι̇φ4(η
+
1 −η

−
1 +η̄+1 −η̄

−
1 )−ι̇φk(η+k−4−η

−
k−4+η̄+k−4−η̄

−
k−4)+ι̇

∑k−4
±,b=2 φb+3(∓η±b−1∓η̄

±
b−1±η

±
b ±η̄

±
b ) .

We can perform the three φa, a = 1, 2, 3 integrals to generate three δ-functions, which can

be used to do y−a , a = 2, 3, 4 integrals as follows:

Vol
(
Y

(k−3,k)
3

)
=

2k−6

π2k−5

∫ k−3∏
i=1

dϕi ϕ
2
i

(
1 + ϕ2

i

) k∏
j=4

dφj

4∏
a=1

dy+
a dy

−
1

k−4∏
±,b=1

dη±b dη̄
±
b

× e−
∑
± |y
±
1 |−2

∑4
a=2 |y

+
a |−

∑k−4
±,b=1(|η

±
b |+|η̄

±
b |) eι̇(ϕ1(y+1 +y−1 +2y+2 )+2ϕk−3(y+3 +y+4 ))

× eι̇ϕ1(η+1 +η−1 +η̄+1 +η̄−1 )+ι̇ϕk−3(η+k−4+η−k−4−η̄
+
k−4−η̄

−
k−4)+ι̇

∑k−4
±,b=2 ϕb(η

±
b−1−η̄

±
b−1+η±b +η̄±b )

× (2π)3eι̇φ4(y
+
1 −y

−
1 )eι̇φ4(η

+
1 −η

−
1 +η̄+1 −η̄

−
1 )−ι̇φk(η+k−4−η

−
k−4+η̄+k−4−η̄

−
k−4)

× eι̇
∑k−4
±,b=2 φb+3(∓η±b−1∓η̄

±
b−1±η

±
b ±η̄

±
b ) .

This form now shows that all the remaining φ-integrals can be done similarly to generate

more δ-functions involving η’s and then all the remaining y+ and η±-integrals can be

performed, leaving only the ϕ-integrals.

Vol
(
Y

(k−3,k)
3

)
=

2k−6

π2k−5
(2π)k

∫ k−3∏
i=1

dϕi ϕ
2
i

(
1 + ϕ2

i

) 4∏
a=1

dy+
a

k−4∏
±,b=1

dη±b dη̄
±
b e
−2

∑4
a=1 |y

+
a |

× e2ι̇(ϕ1(y+1 +y+2 )+ϕk−3(y+3 +y+4 ))
k−4∏
b=1

δ
(
η+
b − η

−
b + η̄+

b − η̄
−
b

)
e−

∑k−4
±,b=1(|η

±
b |+|η̄

±
b |)

× eι̇ϕ1(η+1 +η−1 +η̄+1 +η̄−1 )+ι̇ϕk−3(η+k−4+η−k−4−η̄
+
k−4−η̄

−
k−4)+ι̇

∑k−4
±,b=2 ϕb(η

±
b−1−η̄

±
b−1+η±b +η̄±b )

=
22k−6

πk−5

∫ k−3∏
i=1

dϕi
ϕ2
i

(
1 + ϕ2

i

)(
1 + ϕ2

1

)2 (
1 + ϕ2

k−3

)2 k−4∏
±,b=1

dη±b dη̄
+
b

× e−
∑k−4
b=1 (|η+b |+|η

−
b |+|η̄

+
b |+|η

+
b −η

−
b +η̄+b |)
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× e2ι̇ϕ1(η+1 +η̄+1 )+2ι̇ϕk−3(η−k−4−η̄
+
k−4)+2ι̇

∑k−4
b=2 ϕb(η

−
b−1−η̄

+
b−1+η+b +η̄+b )

=
22k−6

πk−5

∫ k−3∏
i=1

dϕi
ϕ2
i

(
1 + ϕ2

i

)(
1 + ϕ2

1

)2 (
1 + ϕ2

k−3

)2
×
k−4∏
b=1

5 + ϕ2
b + ϕ2

b+1

2(1 + ϕ2
b)(1 + ϕ2

b+1)(1 + (ϕb + ϕb+1)2)(1 + (ϕb − ϕb+1)2)

=
2k−2

πk−5

∫ k−3∏
i=1

dϕi
ϕ2
i

(1 + ϕ2
1)2(1 + ϕ2

k−3)

×
k−4∏
b=1

5 + ϕ2
b + ϕ2

b+1

(1 + ϕ2
b+1)(1 + (ϕb + ϕb+1)2)(1 + (ϕb − ϕb+1)2)

.

Finally, performing all the ϕ-integrals one-by-one with the residue algorithm used in the

main text (and appendix A), we get

Vol
(
Y

(k−3,k)
3

)
=

2k−2

πk−5

π

4 (1 + (k − 3))2

k−4∏
a=1

(a+ 2)π

2(a+ 1)

=
π2

2(k − 2)
, (B.13)

as expected.
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