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1 Introduction

Vortices are codimension-two solitons and are most famous for their existence in type II

superconductors in the presence of an external magnetic field, where they carry quantized

fluxes through the superconducting material. The effective theory for the latter effect is

the Ginzburg-Landau theory or — from the point of view of the soliton — equivalently

the Abelian Higgs model. The type II vortices are described by two partial differential

equations (PDEs) — one for the scalar field (order parameter) and one for the gauge field

— as well as a parameter β = mh/mγ > 1, which is the ratio of the scalar mass to the

photon mass. Critically coupled vortices, also called BPS vortices, have β = 1 and their

two PDEs can be reduced to a single PDE which is known as the Taubes equation [1]

−∇2u = 1− e2u − (delta functions),

where u = log |φ| is the logarithm of the modulus of the order parameter. Although the

existence and uniqueness have been proven for the Taubes equation [1], no analytic solutions

are known on the flat plane, R2. On the hyperbolic plane, H2, however, Witten found exact

vortex solutions [2]1 by adjusting the constant negative curvature of the hyperbolic plane

so as to effectively cancel the constant (vacuum expectation value of the scalar field) in

the Taubes equation. This way both the hyperbolic plane and the vortex scalar field are

described by Liouville’s equation. Only a few other analytic vortex solutions are known

1Witten considered instanton solutions by splitting R
4 into H

2 × S2 and constructed a nontrivial flux

on the hyperbolic plane.
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(see e.g. ref. [3]) and one property they have in common — to the best of our knowledge

— is that they exist on manifolds of constant Gaussian curvature.

Other vortex equations of similar type to Taubes equation are the Jackiw-Pi equa-

tion [4, 5] and the Popov equation [6]; both of which possess exact analytic solutions

and again on manifolds of constant Gaussian curvature. The Jackiw-Pi equation comes

about naturally in some non-relativistic Chern-Simons theories [4, 5, 7], whereas the Popov

equation describes vortices on a 2-sphere that are realized as Yang-Mills instantons on a

manifold S2 ×H
2 (the vortices here are situated on the 2-sphere, whereas in Witten’s so-

lution they are situated on the hyperbolic plane). In a recent paper, Manton considered

extending the vortex equations to nine different types — five of which can possess vortices

— and thereby found two new ones [8]; one of them was dubbed the Bradlow equation

and the other remained an unnamed equation. The unnamed equation is, however, not

really new as it was found by Ambjørn and Olesen in refs. [9, 10]2 and it describes W -

condensation giving rise to a periodic vortex lattice in the electroweak theory. We will thus

call the equation the Ambjørn-Olesen-Manton equation. The fact that it resembles the

normal vortex equation but with opposite sign of the last term can be interpreted as the

effect of anti-screening of the W -boson as opposed to the normal screening effect in Abelian

theories [9, 10]. In the flat plane, R2, the Ambjørn-Olesen-Manton equation does not have

a single vortex solution, but instead a lattice of vortices. This can also be seen from the

fact that the equation does not possess a (constant) vacuum state, i.e. a value of the field

where the Laplacian vanishes. The equation does however have fixed points which are

described by analytic solutions presented in ref. [8]. Finally, the Ambjørn-Olesen-Manton

equation has also been suggested recently to play a role in a non-Abelian vector bootstrap

mechanism generating a primordial magnetic field [11].

The other new vortex equation — the Bradlow equation — is remarkably simple as

it simply equates the magnetic flux with a constant. The vortex field is thus energetically

absent, but its zeros still specify the positions of the vortices inside this constant magnetic

field. The name of the Bradlow equation was coined in ref. [8] due to the similarity of the

equation with the Bradlow bound [12], which however was formulated for the Taubes equa-

tion and limits the number of vortices that can exist on a compact manifold. Although ap-

plications for the Bradlow equation may not seem immediate, we would like to consider this

as an approximation to a physical system. Bose-Einstein condensates with constant mag-

netic fields exist experimentally [13] and vortices — global vortices (i.e. ungauged vortices)

— are created in such a way that the magnetic field is constant even around the vortices,

and so perhaps the Bradlow equation can be used as a rough description in this case.

In this paper, we consider the Bradlow equation and construct analytic solutions in

closed form for a two-parameter family of metrics with non-constant Gaussian curvature;

these are the first analytic solutions on manifolds with a non-constant curvature. The

solutions are rather simple due to the fact that the Bradlow equation is also rather simple

and they consist of the vortex positions, an overall normalization factor and a nontrivial

function whose solution is given in terms of a hypergeometric function. We also tie together

2We thank P. Olesen for pointing this out.
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C0 C name analytic solutions on

−1 −1 Taubes H
2

0 1 Jackiw-Pi R
2, T 2

1 1 Popov S2

−1 0 Bradlow H
2

−1 1 Ambjørn-Olesen-Manton H
2

Table 1. Vortex equation constants C0 and C for five different theories.

a physical aspect of the system, namely matching the magnetic flux with the vortex number.

In the case of the Taubes equation, this is automatic, but for the Bradlow equation, a

restriction on the domain (area) is necessary for the double integral of the equation to hold.

The paper is organized as follows. In section 2 we introduce the Bradlow equation in

perspective to the other possibilities of the same type of equation. In section 3 we introduce

a toy model giving rise to the Bradlow equation and discuss the boundary conditions. Then

in section 4 we first solve the Bradlow equation on a flat disc and then present the main

result of the paper, namely the solutions on curved manifolds with non-constant curvature.

Section 5 concludes with a discussion and outlook. Finally, in the appendix, we contemplate

the uniqueness in the cases of the modified vortex equations, useful also for the Bradlow

equation.

2 The Bradlow equation

We start by introducing the class of vortex equations to which the Bradlow equation belongs

and from which it was discovered. They are given by [8],

− 1

Ω0
∇2u = −C0 + Ce2u − 2π

Ω0

N
∑

i=1

δ(2)(z − zi), (2.1)

where the constants C0 and C are given in table 1, {zi}, i = 1, . . . , N , are vortex positions,

and N is the total number of vortices. The manifold on which the vortices and the above

equations are defined is denoted by M0 and has the metric factor Ω0(z, z̄), where the metric

is defined by

ds2 = dt2 − Ω0

[

(dx1)2 + (dx2)2
]

= dt2 − Ω0dzdz̄, (2.2)

the complex coordinate is defined as z = x1 + ix2, Ω−1
0 ∇2 is the covariant Laplacian on

M0 and ∇2 = ∂2
x1 + ∂2

x2 = 4∂z̄∂z. As explained in ref. [8], an overall factor of {C0, C} can

be scaled away in eq. (2.1) by rescaling the metric factor Ω0 while C can independently be

scaled by a shift in u and thus nine distinct equations are given by C0, C taking a value

in {−1, 0, 1}. Of the nine possibilities, four do not allow for a vortex with zeroes and a

positive magnetic flux.
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We will now review the Bradlow integral relation for the generic case [8] by integrating

eq. (2.1) to

2πN = −C0A+ C

∫

M0

d2x Ω0e
2u, (2.3)

where N is the vortex number and A is the area of M0. The left-hand side of eq. (2.3) is

the topological number, which we will take to be finite here; therefore two situations arise:

if the area A is infinite, this puts a constraint on the field u to reach the vacuum

u → u∞ =
1

2
log

C0

C
, (2.4)

at a specific rate (as does the equation of motion of course); this equation is not valid for

the Ambjørn-Olesen-Manton equation, but it is for all the other equations. In the cases

where either C0 or C vanishes, the above vacuum expectation value should be taken as the

limit of the latter constant being sent to zero.

If, on the other hand, the area A is finite (M0 is compact), then three cases arise:

• C0 = −1: this is the normal Bradlow bound for the Taubes case: we get

N ≤ A

2π
, N =

A

2π
, N ≥ A

2π
, (2.5)

for the Taubes, the Bradlow and the Ambjørn-Olesen-Manton equation, respectively,

as C is −1, 0, 1, respectively.

• C0 = 0: in this case, the equation directly relates the vortex number and the integral

of the scalar field (squared)

N =
1

2π

∫

M0

d2x Ω0e
2u. (2.6)

Note: in this case, C cannot vanish and since we take the vortex number to be

positive, C = 1 is the only possibility: i.e. the Jackiw-Pi equation.

• C0 = 1: in this case the area cannot be too large and C = 1 is required to get a

positive vorticity; we can write an upper bound for the area

A <

∫

M0

d2x Ω0e
2u. (2.7)

This upper bound for the area is valid for the Popov equation.

In the remainder of the paper we will concentrate on the Bradlow equation

−∇2u = Ω0 − 2π
N
∑

i=1

δ(2)(z − zi), (2.8)

for which the topological vortex number, N , is related to the area of the manifold or

integration domain as

N =
A

2π
. (2.9)

In the next section we will illustrate a toy model and set up the boundary conditions.
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3 Toy model and boundary conditions

It will prove instructive to define a prototype theory giving rise to the Bradlow equation.

Let us define the following static energy

E =

∫

M0

d2x Ω0

{

1

2e2Ω2
0

F 2
12 +Ω−1

0 |Daφ|2 +Ω−1
0 |φ|2F12 +

1

2
e2v4

}

=

∫

M0

d2x Ω0

{

1

2e2
(

Ω−1
0 F12 + e2v2

)2
+Ω−1

0 |D1φ+ iD2φ|2 − iΩ−1
0 ǫab∂a(φ̄Dbφ)

}

− v2
∫

M0

d2x F12, (3.1)

where F12 = ∂1A2 − ∂2A1 = B is the magnetic field in the plane, Da = ∂a + iAa, is the

(gauge) covariant derivative, Aa is the Abelian (U(1)) gauge field, the indices a, b run over

1, 2; φ is a complex scalar field and e > 0, v > 0 are constants, respectively, gauge coupling

constant and vacuum energy (cosmological constant).

Let us emphasize that this theory is just a toy model and we take the Bradlow equation

as the defining equation. Therefore any other theory giving rise to the Bradlow equation

can be considered equally valid.

Working with the above stated theory, we can read off the Bogomol’nyi equations as

D1φ+ iD2φ ≡ 2Dz̄φ = 0, (3.2)

− 1

Ω0
F12 = m2, (3.3)

where we have defined m ≡ ev > 0. In addition to the above equations, if we impose that

Daφ → 0 at the boundary of M0 such that the total derivative in the energy vanishes, then

the total energy is

E = v2m2A = e2v4A, (3.4)

where A is the total area of M0: if M0 is compact, then the total energy is finite, if not

then it is infinite.

Let us start by solving the first BPS equation, i.e. eq. (3.2),

Dz̄φ = ∂z̄φ+ iAz̄φ =
(

− ∂z̄ log s+ iAz̄

)

s−1φ0, ⇒ Az̄ = −i∂z̄ log s, (3.5)

where we have defined

φ(z, z̄) ≡ s−1(z, z̄)φ0(z), (3.6)

where s(z, z̄) is everywhere regular and φ0(z) is holomorphic and contains all zeros of the

field φ. Calculating now the field strength, we get

F12 = 2iFz̄z = −2∂z̄∂z log |s|2 = 2∂z̄∂z log |φ|2 − 2π
N
∑

i=1

δ(2)(z − zi), (3.7)

which by insertion into the other BPS equation (3.3) yields the Bradlow equation

− 1

Ω0
∇2u = 1− 2π

Ω0

N
∑

i=1

δ(2)(z − zi), (3.8)
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where ∇2 = 4∂z̄∂z, we have defined u ≡ 1
2 log |φ|2, and rescaled the mass squared, m2, into

the conformal factor of the metric, Ω0 → Ω0/m
2.

Let us consider carefully what assumptions go into the statement that the vortex num-

ber is proportional to the area of M0, see eq. (2.9). Inserting eq. (3.6) into eq. (3.8), we get

1

2Ω0
∇2 log |s|2 = 1, (3.9)

where s(z, z̄) is everywhere regular. If we now integrate the above equation over M0, we get

A =
1

2

∫

M0

d2x ∇2 log |s|2 = i

∫

M0

dz ∧ dz̄ ∂z̄∂z log |s|2 = −i

∮

∂M0

dz log |s|2

= −i

∮

∂M0

dz log |z|2k = 2πk, (3.10)

where we have used Green’s theorem and in the second line we have assumed the boundary

condition

lim
z→z∂M0

|s|2 = |z|2k, (3.11)

where z∂M0
is the coordinate lying on the boundary of M0. Hence we see that the area of

the manifold M0 is related to the winding of the gauge field Aa.

Let us first discuss the case of M0 being noncompact; in particular take M0 = R
2. We

will assume that the vortex under study is topological, which means that

lim
|z|→∞

|φ| = const > 0, (3.12)

and hence we get that |s−1φ0| ∼ |z|N−k forces N = k.3 We will then consider the contri-

bution to the energy (3.1) from the total derivative term. In this case (M0 = R
2) we need

to impose the condition that Daφ goes to zero at the boundary of M0 so that the total

derivative term in the energy (3.1) vanishes. Since Dz̄φ = 0 everywhere, this means that

we need to impose the condition

0 = lim
|z|→∞

Dzφ =
(

−∂z log |s|2 + ∂z log φ0

)

s−1φ0 ∼
(

−k

z
+

N

z

)

s−1φ0. (3.13)

Note that from eq. (3.10), we get that for an infinite area, k is also infinite and therefore,

for the above covariant derivative to vanish at the boundary of M0, we need N = k. Thus,

we again get k = N and hence we come to the conclusion that

2πN = A, (3.14)

for M0 being the flat infinite plane, R2. Note that N is required to be infinite due to

the infinite area. The fact that the gauge field (formally) winds N times and the scalar

field has exactly N zeros (counted with multiplicity, i.e. they may be coincident) is in fact

very natural for vortices. Nevertheless, depending on the underlying theory, this is not

strictly necessary in the case of the Bradlow vortices, whereas in the case of the Taubes

3If N < k, lim|z|→∞ |φ| = 0 and this is called a non-topological vortex.

– 6 –
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equation, the vacuum of the scalar field also forces |s| = |φ0| at the boundary and hence

k = N . Therefore in the case of the Bradlow vortex, one could in principle contemplate

the situation where k 6= N , but that would imply that the covariant derivative of the scalar

field cannot go to zero at the boundary of M0 (for N > k, and the scalar field will diverge

at infinity) or that the vortices are not topological (for N < k). In particular for M0 = R
2

and N > k, that would imply two separate diverging contributions to the energy in the

toy model; one from the magnetic field and one from the total derivative term.

Let us now discuss a compact case, in particular the flat disc, M0 = D
2 with radius R.

If we still demand that Dzφ = 0 for |z| = R, then we get

−∂z log |s|2 + ∂z log φ0(z)
∣

∣

|z|=R
= −∂z log |s|2 + ∂z log |φ0(z)|2

∣

∣

|z|=R
= ∂zu||z|=R = 0,

(3.15)

where in the second equality we have used the holomorphicity of φ0(z) to add log φ0(z)

in the derivative. This condition, however, cannot in general be satisfied by solutions to

the Bradlow equation. Nevertheless, in the case of compact M0, the boundary term in

the energy (3.1) does not give a diverging contribution due to the finite size of M0 and

thus finite circumference. Therefore one boundary condition we can choose to impose on

the disc is u(R) = 0. However, other boundary conditions may be equally reasonable,

depending on the desired behavior of the solution on the boundary ∂M0.

In view of the above discussion, we will restrict the rest of the paper to cases where

M0 is a compact manifold.

4 Bradlow vortex solutions

4.1 Bradlow vortices on a flat disc

In this section, we will gain some intuition by studying the Bradlow equation on the flat

disc. On a disc with vanishing curvature (Ω0 = 1) and radius R, the Bradlow vortex is the

solution to the Bradlow equation (2.8) and it has the analytic solution with axial symmetry

u = −r2

4
+ u0 +

N

2
log r2, (4.1)

where r = |z| is the radial coordinate, u0 is a constant and N is the vortex number. Let

us impose the boundary condition that u(R) = 0, yielding

u =
R2 − r2

4
+

N

2
log

r2

R2
, (4.2)

where we have adjusted u0 to make u match its boundary conditions.

Allowing for the vortices to have generic positions, the most general solution is

u = −|z|2
4

+ u0 +
1

2

N
∑

i=1

log |z − zi|2 + g(z) + g(z), (4.3)

which reduces to eq. (4.1) when all zi = 0 and g are set to zero. Imposing the boundary

condition u(R) = 0 is however highly nontrivial in the this general case. The constant

– 7 –
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u0 can still be fixed to R2/4 so that u(R) = 0 except for the contribution due to the

logarithms. Naively to cancel the contribution coming from the logarithms, one would

guess that subtracting

1

2

N
∑

i=1

log |Reiθ − zi|2 =
1

2

N
∑

i=1

log

∣

∣

∣

∣

Rz

|z| − zi

∣

∣

∣

∣

2

, (4.4)

from the solution would make it satisfy the boundary condition u(R) = 0. However, the

above term does not vanish when acted upon by the Laplacian due to the non-holomorphic

1/|z| necessary for giving the phase factor eiθ. As we can see from the general solution (4.3),

we can adjust u0 and g(z) to make the solution satisfy the boundary condition u(R) = 0.

However, a holomorphic function which cancels the contribution due to the logarithms at

|z| = R will also cancel the logarithmic singularity defining the vortex center. Hence we

make the following conjecture.

Conjecture 1 The only solution satisfying the Bradlow equation (2.8) on the flat disc, D2,

with a finite radius R < ∞ and the boundary condition u(R) = 0, is the axially symmetric

solution (4.2) where all zi = 0, ∀i.

Of course other boundary conditions than u(R) = 0 may be chosen. An alternative,

is to choose the boundary conditions such that the contribution due to the metric in

the Bradlow equation vanishes at the boundary of the disc, but neglecting the nontrivial

function due to the logarithms. From this point of view, one can choose the positions

of the vortices, but the solution on the boundary does not satisfy any simple boundary

conditions. We can write such a solution as

u =
R2 − |z|2

4
+

1

2

N
∑

i=1

log |z − zi|2. (4.5)

One can come arbitrarily close to the boundary condition u(R) = 0 if the size of the

disc is parametrically larger than the distance from the vortices to the center of the disc,

in particular, R ≫ |zi|, ∀i. In this case, we can fix u0 as follows

u =
R2 − |z|2

4
+

1

2

N
∑

i=1

log
|z − zi|2

R2
. (4.6)

In this case at the boundary, we have

u(|z| = R) =
1

2

N
∑

i=1

log

∣

∣

∣

∣

z

|z| −
zi
R

∣

∣

∣

∣

2

≃ −1

2

N
∑

i=1

[

zi|z|
Rz

+
z̄i|z|
Rz̄

+O
( |zi|2

R2

)]

, (4.7)

and hence for R parametrically bigger than |zi| the discrepancy between the above solution

with the boundary condition u(R) can become arbitrarily small. Nevertheless, for any

finite size disc, the only solution strictly satisfying u(R) = 0 is conjectured to be eq. (4.2),

see Conjecture 1.

– 8 –
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Since the vortex number is related to the area of the disc by the Bradlow equation (2.8),

the radius of the disc is determined as

N = − 1

2π

∫

D2

d2x

(

∇2u− 2π

N
∑

i=1

δ(2)(z − zi)

)

=
1

2π

∫

D2

d2x =
1

2
R2, (4.8)

and so we have

R =
√
2N. (4.9)

For completeness, we evaluate the boundary term in the toy model (3.1) for the solu-

tion (4.6)

− i

∫

D

d2x ǫab∂a(φ̄Dbφ) = 2

∫

D

d2x ∂z̄(e
2u∂zu)

= −i

∮

∂D

dz e
R
2−|z|2

2

N
∏

j=1

|z − zj |2
R2

(

− z̄

4
+

N
∑

i=1

1

2(z − zi)

)

. (4.10)

Notice that the conformal factor of the metric drops out and the result does not depend on

the metric (but only on the shape of the integration domain). For N = 1, the expression

is fairly simple and yields

2π

[(

1 +
|z1|2
R2

)(

−R2

4
+

1

2

)

− |z1|2
2R2

]

= −π|z1|2
2

, (4.11)

where we have used the Bradlow integral relation R =
√
2N in the last equality. One could

interpret this result as the boundary attracting the single vortex and only at the center of

the disc the attraction cancels out (i.e. it becomes isotropic). For general vortex positions,

the contribution (4.10) is in general a complicated function. However, setting zi = 0, we

get the axially symmetric solution (4.2) for which the boundary contribution reduces to

− i

∮

∂D

dz

(

−R2

4z
+

N

2z

)

= 2π

(

−R2

4
+

N

2

)

= 0, (4.12)

where we have used the Bradlow integral relation R =
√
2N . Let us emphasize that

the boundary term depends on the explicit choice of underlying theory and this is just a

concrete example of the toy model studied in section 3.

4.2 Bradlow vortices on M0 with nontrivial metric

In this section we extend the Bradlow vortex solutions to nontrivial manifolds of nonvan-

ishing and non-constant curvature. Let us consider metrics of the form

ds2 = dt2 − Ω0(|z|2)dzdz̄, (4.13)

where the conformal factor, Ω0 depends only on the modulus (squared) of the complex

coordinate |z|2. From the Bradlow equation (2.8) we can see that the solution u has two

contributions; one is the logarithmic terms corresponding to the vortex positions (zeros of

– 9 –
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e2u) and the other is the inverse Laplacian of the conformal factor Ω0. Formally, we can

write the solutions as

u = u0 − F (|z|2) + 1

2

N
∑

i=1

log |z − zi|2 + g(z) + g(z), (4.14)

where the function F is the solution to

∇2F = Ω0. (4.15)

Now imposing the boundary condition u(z∂M0
) = 0, i.e. u vanishes at the boundary of M0

is highly nontrivial. If we choose M0 to be a disc with conformal factor Ω0 and radius R,

then we can again use Conjecture 1 to set all zi = 0 and hence the solution satisfying the

boundary condition u(R) = 0 reads

u = F (R2)− F (|z|2) + N

2
log

|z|2
R2

. (4.16)

4.3 Solutions for a class of metrics

Let us now consider a class of metrics of the form

ds2 = dt2 − κ−1(1± |z|2k)ℓdzdz̄, (4.17)

with k ∈ Z>0 a positive definite integer, ℓ ∈ Z is an integer, κ ∈ R>0 is a real positive-

definite constant. For the lower sign, the coordinate z is defined within the unit circle:

|z| < 1 and for the upper sign z ∈ C. ℓ = 0 corresponds to the flat disc D2. Another special

case is ℓ = −2 and k = 1 which is the 2-sphere S2 for the upper sign and the hyperbolic

plane H
2 for the lower sign, both with constant Gaussian curvature. To see this, let us

calculate the Gaussian curvature for this manifold

K0 = − 1

2Ω0
∇2 log Ω0 = ∓ 2κℓk2|z|2k−2

(1± |z|2k)ℓ+2
. (4.18)

As promised, ℓ = −2 renders the denominator constant and k = 1 the numerator constant,

yielding a constant positive (negative) Gaussian curvature of 4κ (−4κ) for the upper (lower)

signs. If k > 1 then the curvature vanishes at the origin but is non-vanishing away from it.

If k = 1 then only the denominator influences the curvature and hence increases (decreases)

the curvature with increasing radii |z| for ℓ > 0 or ℓ < −2 (for ℓ = −1) for both signs,

while the curvature is constant and vanishing for ℓ = 0 and just constant for ℓ = −2.

The analytic solutions to the Bradlow equation in this case are thus given by eq. (4.14)

with the F -function for this class of metrics, i.e.,

F (ℓ,k) =
|z|2
4κ

3F2

[

k−1,−ℓ, k−1; 1 + k−1, 1 + k−1;∓|z|2k
]

, (4.19)

where 3F2 is a hypergeometric function.
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In some cases, we can write F as a (finite) sum of fractions. As a good check, let us

first consider the solution for ℓ = −2 and k = 1 for which we know that the Gaussian

curvature is constant. In that case, we get

F (−2,1) = ± 1

4κ
log(1± |z|2), (4.20)

as one would expect [8] (in the latter reference κ = 1/4). Note that this function does not

have any singularities inducing more vortices as |z| < 1 for the lower sign.

Another sanity check of the solution (4.19) is ℓ = 0 for which it reduces to

F (0,k) =
|z|2
4κ

, (4.21)

which is the solution for the flat disc D
2, see eq. (4.3) (the latter equation corresponds to

κ = 1).

Other families of solutions that can be written as fractions are, for ℓ = 1:

κF (1,k) =
|z|2
4

± |z|2k+2

4(1 + k)2
, (4.22)

and for ℓ = 2:

κF (2,k) =
|z|2
4

± |z|2k+2

2(1 + k)2
+

|z|4k+2

4(1 + 2k)2
, (4.23)

and for generic ℓ ≥ 1:

F (ℓ≥1,k) =
|z|2
4κ

ℓ
∑

p=0

(

ℓ

p

)

(±1)p|z|2pk
(1 + pk)2

. (4.24)

Finally, for ℓ = −1 we can write the solution as

F (−1,k) =
|z|2
4κk2

Φ
[

∓|z|2k, 2, k−1
]

=
|z|2
2κ

∞
∑

p=0

(±1)p|z|2pk
(1 + pk)2

, (4.25)

where Φ is the Hurwitz-Lerch transcendent. The right-most expression is only well defined

for |z| < 1.

4.4 Flux matching

We have found the analytic solution in closed form for the class of metrics (4.17); however,

from a physical point of view, we should still make sure that the number of vortices N

specified with positions by the delta functions in eq. (2.8) match the magnetic flux, i.e. that

2πN =

∫

M0

d2x Ω0 = A, (4.26)

holds, which is simply eq. (2.9). By Green’s theorem the magnetic flux is giving the vortex

number, N , but in order for it to match the area of the manifold, M0, the above equation

needs to be imposed as well. For the upper sign (in the solutions) with ℓ ≥ 0 or for the lower

sign with ℓ < 0 this just restricts the size of the domain where the vortices have support.
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For the upper sign with ℓ < 0 or for the lower sign with ℓ > 0 this relation can restrict the

number of vortices similarly to the Bradlow bound, depending on the values of ℓ and k.

Let us calculate the area for the metrics (4.17) in the case of an axially symmetric

domain (for simplicity)

A(ℓ,k) =
2π

κ

∫ R

0
dr r(1± r2k)ℓ =

πR2

κ
2F1

[

k−1,−ℓ; 1 + k−1;∓R2k
]

, (4.27)

where 2F1 is the Gaussian hypergeometric function. As a consistency check, we can set

ℓ = 0 and verify that

A(0,k) =
πR2

κ
, (4.28)

as it should for a flat disc, D2. We can again simplify the hypergeometric function in cases

of positive ℓ; in particular for ℓ = 1:

A(1,k) =
πR2

κ

(

1± R2k

1 + k

)

, (4.29)

and for ℓ = 2:

A(2,k) =
πR2

κ

(

1± 2R2k

1 + k
+

R4k

1 + 2k

)

, (4.30)

and for generic ℓ ≥ 1:

A(ℓ,k) =
πR2

κ

ℓ
∑

p=0

(

ℓ

p

)

(±1)pR2pk

1 + pk
. (4.31)

As mentioned above, for the upper sign with ℓ ≥ 0, this area just fixes the radius in terms

of the vortex number by eq. (4.26), but for the lower sign with ℓ > 0 it can limit the number

of vortices possible.

Let us consider the lower sign with the radius R = 1 − ǫ, where ǫ is an infinitesimal

real number. In this case, we can expand the Gaussian hypergeometric function to get

A(ℓ,k) = −π2R2 csc(πℓ)Γ
(

1 + k−1
)

κΓ(−ℓ)Γ (1 + k−1 + ℓ)
(1 + 2ǫ) + ǫℓ

(

−21+ℓkℓπr2

κ(1 + ℓ)
ǫ+O(ǫ2)

)

. (4.32)

We can see that if ℓ < −1 then the second term diverges and thus yields an unlimited area

(as expected). In the case of ℓ = −1, csc(−π) is ill-defined (infinite) and the area is again

infinite. We thus confirmed that for the lower sign with ℓ < 0, the area is unlimited for

R < 1. However, for ℓ ≥ 0, the area renders finite and as a few examples we get for R = 1

A(0,k) <
π

κ
, (4.33)

A(1,k) <
π

κ

Γ(1 + k−1)

Γ(2 + k−1)
, (4.34)

A(2,k) <
2π

κ

Γ(1 + k−1)

Γ(3 + k−1)
, (4.35)

and for general ℓ ≥ 0:

A(ℓ≥0,k) <
ℓ!π

κ

Γ(1 + k−1)

Γ(ℓ+ 1 + k−1)
. (4.36)
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Since the right-hand side is a monotonically increasing function with k, the hardest restric-

tion happens when k = 1 for which we can write

A(ℓ≥0,1) <
ℓ!π

κ

Γ(2)

Γ(2 + ℓ)
=

π

κ(1 + ℓ)
. (4.37)

We can write this as a Bradlow bound

N <
1

2κ(1 + ℓ)
, (4.38)

which requires κ < 1/2 to allow for a single vortex and even smaller for ℓ > 0. The biggest

areas we can get from eq. (4.36) is by sending k → ∞ for which we get

A(ℓ≥0,∞) <
π

κ
, (4.39)

yielding the Bradlow bound

N <
1

2κ
. (4.40)

In case of the upper sign and ℓ < 0, the area is also finite and limits the vortex number.

Let us consider ℓ = −2, for which we get

A(−2,k) =

(

1− 1

k

)

π

κ
Γ

(

1 +
1

k

)

Γ

(

1− 1

k

)

=
k − 1

k2
π2 csc

(π

k

)

. (4.41)

This area is maximal for the two limits: k = 1 and k → ∞: both yielding

A(−2,1) = A(−2,∞) =
π

κ
, (4.42)

where the first is the area of the 2-sphere (κ = 1/4 corresponds to the unit 2-sphere) and

this in turn gives the Bradlow bound

N ≤ 1

2κ
. (4.43)

The most restricting bound is obtained for the smallest area of the function (4.41), which

is for k = 2:

A(−2,2) =
π2

4κ
, (4.44)

and in turn the Bradlow bound

N ≤ π

8κ
. (4.45)

For k = 2 to the limit k → ∞, the area (4.41) grows monotonically with k.

We have thus shown that vortices can exist for any finite κ when ℓ < 0 for the lower

sign and for small enough κ and ℓ ≥ 0, again for the lower sign. For the upper sign, there

is no restriction on the vortex number when ℓ ≥ 0, but for ℓ < 0 the Bradlow bound again

limits the vortex number; again vortices can only exist for small enough κ.
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5 Discussion

In this paper we have constructed a two-parameter family of new analytic solutions to the

newly discovered Bradlow equation for a special kind of vortices. The derivation of the

equation relies on the Bogomol’nyi trick and thus gives a single second order PDE for the

vortices; this implicitly means that they are critically coupled [8]. From the same action giv-

ing rise to said equations, the vortex scalar field does not contribute to the energy; only the

magnetic field and the constant corresponding to the vacuum expectation value of the scalar

field appear. We would like to think of this as a system in which the magnetic field domi-

nates and in the same time contains vortices that are energetically negligible. If such system

— if only approximately — can be realized experimentally, our solutions may find use there.

Bose-Einstein condensates (BECs) with constant magnetic fields can be realized experi-

mentally by trapped ultracold atomic gases, for which these magnetic fields are optically

synthesized although the trapped atoms are neutral [13]; if the magnetic fields are larger

than a critical value, vortices — but global vortices — are created, where the magnetic field

remains constant even in the presence of vortices, which is in good agreement with the Brad-

low equation. Then, the question is whether the vortices contribute negligibly to the total

energy. Although this may not be true for BECs, we hope that it may be described approx-

imately by the Bradlow equation. It is also possible that a potential trapping atoms may be

designed to have minima on a curved two-dimensional surface so that a curved space is re-

alized. Finally, it is perhaps possible that the materials in experiment are genuinely curved;

for this, some metric can easily be constructed (if not already in our class of metrics) and the

Bradlow vortex can probably readily be calculated. Even if the flat metric is the one that

finds use in any experimental setup, then we also provide such solution, for the first time.

In some sense the Bradlow vortex is somewhat similar to the interior of the large-

winding Bolognesi vortex — up to a constant proportional to the vortex potential times the

area [14]. The vortex condensates of these two systems, however, obey different dynamics,

of course.

Finally, for the Taubes equation, a non-Abelian extension is possible which is most

easily achieved by using the moduli matrix technique [15], for which the so-called the

master equation reduces to the Taubes equation for the U(1) case. A natural question is

whether there exists a non-Abelian extension for the case of the Bradlow equation or other

types of equations mentioned in the introduction.
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A Uniqueness

Let us consider uniqueness of the vortex equations (2.1). Let us start by assuming that two

different solutions to the same equation exist, u1,2 and both having exactly the same vortex

positions (same moduli) and both satisfy the same boundary condition (2.4) appropriate for

the specific equation (except for the Ambjørn-Olesen-Manton equation, for which another

boundary condition should be specified). We define

δu ≡ u1 − u2, (A.1)

and subtract their two respective equations of motion which yields

− 1

Ω0
∇2δu = Ce2u2

(

e2δu − 1
)

. (A.2)

This equation is independent of C0 and the delta functions present in eq. (2.1) also canceled

out. Since the delta functions are gone, no logarithmic singularities can be present in the

solution δu and since both u1,2 obey the same boundary condition, δu → 0 asymptotically

or at the boundary of the manifold M0.

A key observation is that since u2 ∈ R is a real-valued field, e2u2 is positive semi-definite

and vanishes only at the vortex centers.

Let us consider a simplified situation where we locate all vortices at the origin of our

manifold M0 (in some coordinates) and to make sure that the vortices are not destroyed,

we impose δu = 0 at the vortex position. Now it is clear that since eq. (A.2) yields a

monotonic behavior for δu; more specifically

sign [CΩ0δu] =

{

+, δu monotonically decreasing

−, δu monotonically increasing
(A.3)

Then it is clear that no monotonically behaving function can satisfy δu = 0 at the boundary

of M0 and simultaneously δu(zi) = 0, ∀i. A more rigorous proof can be carried out along

the lines of Taubes’ proof [1], which was made for the case C0 = C = −1.

In the case of the Bradlow equation (2.8), C = 0 and hence we have that the covariant

Laplacian of the perturbation δu on M0, vanishes

1

Ω0
∇2δu = 0. (A.4)

It is clear that no regular nontrivial solution with δu = 0 at the boundary exists. Therefore,

the Bradlow vortex is unique once the moduli and boundary conditions have been specified

(the boundary conditions completely fixes the part of the homogeneous solution).
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