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ABSTRACT: We describe in more detail our approach to the conformal bootstrap which
uses the Mellin representation of C'FTy four point functions and expands them in terms
of crossing symmetric combinations of AdS;.1 Witten exchange functions. We consider
arbitrary external scalar operators and set up the conditions for consistency with the
operator product expansion. Namely, we demand cancellation of spurious powers (of the
cross ratios, in position space) which translate into spurious poles in Mellin space. We
discuss two contexts in which we can immediately apply this method by imposing the
simplest set of constraint equations. The first is the epsilon expansion. We mostly focus on
the Wilson-Fisher fixed point as studied in an epsilon expansion about d = 4. We reproduce
Feynman diagram results for operator dimensions to O(e®) rather straightforwardly. This
approach also yields new analytic predictions for OPE coefficients to the same order which
fit nicely with recent numerical estimates for the Ising model (at ¢ = 1). We will also
mention some leading order results for scalar theories near three and six dimensions. The
second context is a large spin expansion, in any dimension, where we are able to reproduce
and go a bit beyond some of the results recently obtained using the (double) light cone
expansion. We also have a preliminary discussion about numerical implementation of the
above bootstrap scheme in the absence of a small parameter.
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1 Introduction

Quantum Field Theory (QFT) is one of the most robust frameworks we have in theoretical
physics. Its versatility is attested by the fact that it plays a central role in many contexts
in high energy physics, condensed matter physics and statistical physics. Thanks to the
work of Wilson and others [1-8], QFT was understood beyond a perturbative Feynman
diagram expansion. The central role in this modern understanding is played by scale
invariant fixed points of the Renormalisation Group (RG) flow. When combined with
d dimensional Poincare invariance, these fixed points are believed to have an enhanced
SO(d, 2) conformal invariance [9]. The resulting CFTs while being dynamically nontrivial
are also strongly constrained by the conformal symmetry.

The conformal bootstrap is the philosophy that these constraints are strong enough
to largely determine the dynamical content of the CFT viz. the spectrum of operator
dimensions of primaries and their three point functions. The presence of a convergent
OPE then implies that all other correlators can be fixed in terms of this data [10-12].
The conventional approach to the bootstrap, which proved to be very successful in d =
2 [13], employs the associativity of the four point function, as we describe below. Recently,
making use of the progress in finding efficient expressions for conformal blocks [14, 15],
this approach was revived for d > 2 [16] where associativity constraints, often together
with positivity on the squares of OPE coefficients, were implemented numerically through
linear programming and semi-definite programming, together with judicious truncation of
the operator spectrum [17-31]. This has led to remarkably precise bounds on low-lying
operator dimensions in a number of nontrivial CF'Ts. This includes, famously, the 3d Ising



model [32-34] which is in the same universality class as the critical point of the liquid-vapour
transition of water. There are also very strong indications of such theories living at special
points (“kinks”) in the numerically allowed regions of parameter space. This suggests
that these theories are special in some way and perhaps amenable to analytic treatment.
These numerical methods have also been extended to supersymmetric theories [35-37].
Furthermore, there are also certain analytic results available at large spin [38-48, 83, 84].
However, the existing approaches do not appear to be well suited for extracting analytic
results in general. Also limited progress has been made in the case where external operators
carry spin, see e.g. [49-55].

Recently, using the conformal invariance of the three point function, the leading order
(in €) anomalous dimensions of certain operators in d = (4 — €) dimensions were calculated
for the Wilson-Fisher fixed point [56]. This approach was further generalized to extract
leading order anomalous dimensions for other theories in [57-60]. Results have also been
obtained at leading order (both for the e-expansion as well as 1/N expansion) for anomalous
dimensions of almost conserved higher spin currents [61-63]. These results crucially rely
on the use of the equations of motion or a higher spin symmetry, that is present when
the coupling constant goes to zero. It is not immediately obvious how to systematize
these approaches to subleading orders. In [64], a dispersion relation based method of
Polyakov [12] (which had built in crossing symmetry) was re-visited and it was found that
this approach could be extended to get the subleading order anomalous dimension for the
¢ operator.! In spite of this encouraging result (though it took more than 40 years to
reach here!), it was again not clear how to extend this dispersion relation based approach
to operators with spin or to make it a starting point for a systematic algorithm. A major
stumbling block was the reliance on momentum space where the underlying conformal
symmetry is not fully manifest.

In this paper, we will describe in more detail a novel approach to the conformal boot-
strap that was recently outlined in [65]. This approach is calculationally effective and at
the same time conceptually quite suggestive. It combines two important ingredients. The
first goes back to an alternative approach to the above dispersion based one, also attempted
by Polyakov in his original bootstrap paper [12]. He outlined a general way in which de-
manding consistency of the operator product expansion with crossing symmetry gave rise
to constraints on operator dimensions and OPE coefficients. This was then implemented in
position space which made the symmetries more manifest compared to momentum space.
The idea behind this approach was to expand the C'F'T; four point function not in terms of
the conventional conformal blocks but rather in terms of a new set of building blocks with
built-in crossing symmetry from the beginning. We will see, in our modern incarnation,
that these new building blocks can be chosen to be essentially tree level Witten exchange
diagrams in AdSg;,1. This is very suggestive of a reorganisation of the CFT in terms of a
dual AdS description though this will not be the main thrust of the present work.

The second ingredient we introduce is to implement the above bootstrapping procedure
in Mellin space rather than position space as used in [12]. The position space approach

Tt was also shown how the leading order anomalous dimension at 0(62) for large spin operators could
be extracted using large spin bootstrap arguments based on [83, 84].



made the equations in [12] quite cumbersome and not explicit, especially for exchanges
involving spin. We are familiar with this from the complicated form that Witten diagrams
take in position space. The technology of the Mellin representation has been developed
quite a bit in recent years starting from the work of Mack [66-73]. As has been amply
stressed in these works, Mellin space is very natural for a CFT and plays a role analo-
gous to momentum space in usual QFTs. This enables one to exploit properties such as
meromorphy and more generally, features of scattering amplitudes (to which Mellin space
amplitudes naturally transition to, in an appropriate flat space limit). This, we will see,
brings us big calculational gains. We will be able to reproduce many of the analytic results
available in the literature for the conformal bootstrap in a fairly straightforward manner.
In addition, we will be able to derive new results which we subject to various cross checks.
We also give some preliminary evidence that this approach might also be workable into a
useful computational scheme, complementary to existing ones.

In the rest of this section we give a broad sketch of the new philosophy that we adopt
and state some of the new results obtained with this approach. We first describe the ideas
in position space and only later translate them into Mellin space.

1.1 The philosophy outlined

Consider a four point function (of four identical scalars, for definiteness - we will consider
the general case in section2). In essence, we expand this amplitude in a new basis of
building blocks as follows

Afu,v) = (O()O2)0(B)04)) = 3 cay (Wgﬁ;(u, 0) + W, 0) + W, v)). (1.1)
Al

Here (u, v) are the usual conformally invariant cross ratios, whose dependence captures the
nontrivial dynamical information of the four point function (we have suppressed a trivial
additional dependence on positions which is predetermined). In the second line we sum
over the entire physical spectrum of primary operators generically characterised by the
operator dimensions (A) together with the spin (¢) quantum numbers. The building block
Wés )ﬁ can, for the moment, be viewed as the Witten exchange function in AdSgz41 — it
will be defined more precisely later. This is diagrammatically represented in figure 1. It
involves the four identical scalars with an exchange in the s—channel of a field of spin £ and
corresponding to a dimension A. Similarly, for the ¢ and u-channels. The to-be determined
coefficients ca ¢ will turn out to be proportional to the (square) of the three point OPE
coeflicients Copo, , = Ca -

The idea behind this expansion, which we will contrast below to the usual conformal
block expansion, is that we are expanding in a basis which

1. Is conformally invariant, as Witten exchange diagrams are;

2. Is consistent with factorisation, in that the individual blocks factorise on the physical
operators with the right residues corresponding to three point functions;

3. Is crossing symmetric by construction since we are summing over all three channels.



Figure 1. Witten Diagrams in AdSy41 for identical scalars with exchange of a field corresponding
to an operator of dimension A and spin £.

The Witten exchange diagrams satisfy the second criterion since they arise from a local
field theory in AdS. This will be much more explicitly seen in the Mellin representation.
The last criterion ensures that we don’t need to check channel duality since that is built in.
But what is not obvious now is that expanding the resulting amplitude in any one channel,
say the s-channel, is consistent with the operator product expansion. In other words, if
we expand A(u,v) in powers of u, it is not guaranteed that all the powers that appear are
those of the physical primary operators together with their descendants.

In fact, generically, such an expansion will have spurious power law dependence. For
instance, with identical external scalars (of dimension Ay), we will see that there are pieces
which go like u®¢ and u¢ In (u). The u®¢ would indicate the presence of an operator with
dimension 2A4, which generically does not exist in the theory.? These are often called
“double-trace operator” (“O?”) contributions in the AdS/CFT literature since these are
there interpreted as contributions from two particle states whose energy is almost the same
(in a large N limit) as the two external (single) particle states.> We will then obtain
constraints on operator dimensions as well as the coefficients cay (and thus the OPE
coefficients) from requiring that such spurious powers vanish. Note that these are strong
constraints implying an infinite number of relations since there is a full function (of v)
multiplying these powers. Though we will not make use of them in this work, there are
additional spurious powers (and logs) of the form u®¢*™ and u”4*"In (u). These can
viewed as contributions from descendants as well as other double-trace primaries (what
would have been “09?"O” in a weakly coupled theory). One would obtain additional
constraints from requiring their vanishing but we will not explore the consequences of this
in this paper (see [87]).

We should stress that the Witten exchange diagrams are being employed as a conve-
nient kinematical basis for this expansion, for an arbitrary CFT,;. We are not assuming
(and it does not have to be) that the theory has an AdS;y; gravity dual. We could have

2There could be special operators in interacting superconformal theories — “chiral primaries” — for
which there indeed are physical operators with dimension 2A4. Such cases would have to be treated
specially, perhaps using mixed correlators or by focussing on other spurious powers.

3The logarithmic dependence is a consequence of having identical scalars. If we had generic dimensions

. A1+42 AztAy .
A, for the external operators, the spurious powers would take the form v~ 2~ and u~ 2  corresponding

to the two sets of double trace operators associated with the external states in the s-channel. The logarithm
arises in the coincident limit A; — A,. We also emphasise that the logarithmic dependence has nothing to
do with anomalous dimensions since we are not making any expansion in a small parameter (yet).



alternatively used conformal blocks as a basis of expansion. But as will become clearer in
Mellin space these are not very well behaved at infinity.* In contrast, Witten exchange
diagrams will be polynomially bounded and thus a better basis for expansion. We note
that since each Witten exchange diagram contains the conformal block contribution of the
exchanged operator and since we are summing over the full primary operator spectrum we
are not undercounting in this basis. In particular, what would have been double trace op-
erators are included separately in the sum — this is different from what we do in AdS/CFT
where we only sum over single trace primaries. In this context note also that contact four
point Witten diagrams make no appearance in our approach. We do not have to include
them since it is known that they are decomposable into the double trace conformal blocks
and thus, in our context, have purely spurious power law contributions.

Another important point to note is that we are implicitly assuming that the sums over
(A, £) in the spurious pole cancellation conditions are convergent or can be analytically
continued. In the examples we have considered in this paper, the spurious poles have
gotten contributions from only a small set of operators and hence we did not have to worry
about convergence. In the usual case with conformal blocks, convergence is demonstrated
in [100]. A preliminary discussion on convergence in Witten diagram expansion can be
found in [65]. It would be good to investigate the issue more generally. As for the physical
contributions, once the spurious pole cancellation has been achieved, the remaining sum is
just the usual sum over the physical conformal blocks which is believed to be convergent
in a finite domain.

Let us contrast this approach to the more “conventional” bootstrap approach to
CFTs [10, 11, 13] where we expand the four point function

A(u,v) = ZCAIGS?e(uW)

YAW
=3 0auGl () = 3 CakGR (u,v) . (1.2)
YAW Al

In this expansion, the function Ga ¢(u, v) represents the conformal block due to a primary
operator of dimension A and spin £. It satisfies the usual quadratic Casimir differential
equation [85]. The corresponding OPE coefficient is given by Ca . We choose to expand
in terms of the conformal block in a particular channel, say, s-channel, as in the first line.
The conformal blocks are

1. Are conformally invariant by construction;

2. Are consistent with factorisation, in that the individual blocks give the factorised
contribution on physical operators with the right residues;

3. Are consistent with the OPE by construction since we are summing over all physical
operators in any given channel.

4Polyakov made a similar observation in terms of the behaviour of these blocks in the spectral parameter
space [12].



The last criterion now ensures compatibility with the operator product expansion in
terms of the powers that appear, but it is now not guaranteed that the resulting ampli-
tude is crossing symmetric. In other words, the equality of the first line with the second
line does not automatically follow. Demanding this associativity of the OPE is the non-
trivial requirement which constrains operator dimensions and the OPE coefficients Ch 4.
Recent progress has come from efficient ways to translate the constraints of associativity
and positivity (which follows from unitarity) into inequalities which can be numerically
implemented.

Coming back to our approach, to convert Polyakov’s scheme into a calculationally
effective tool we mix in our second ingredient which is the Mellin representation of CF'T
amplitudes. The position space amplitude A(u,v) has the Mellin representation

0 ds dt s, t2 2 2
A(u,v) = /ioo 95 57 UV [“(=t)I*(s + t)'*(Agp — 5)M(s, 1) (1.3)
The additional kinematic I" factors in the measure are defined for convenience [66]. M(s,t)
is the (reduced) Mellin amplitude for the original conformal amplitude A(u,v).

Mellin amplitudes are ideally suited to our present purpose since they share many
of the features of momentum space for standard S-matrix amplitudes. In particular, the
contributions of different operators show up as poles with a factorisation of the residues
into lower point amplitudes. Moreover, our building blocks, the Witten exchange diagrams,
are complicated in position space but are analytically easier to deal with in the Mellin
representation. In fact, they can be viewed as the meromorphic piece of the conformal
blocks in Mellin space, which are also known explicitly since the work of Mack. They
therefore have the same poles as the corresponding conformal blocks together with the
same residues thus exhibiting the needed factorisation. In fact, as mentioned above, the
Witten blocks are better behaved in Mellin space compared to conformal blocks: the latter
have exponential dependence on the Mellin variables compared to the former which are
polynomially bounded.

We can now translate the presence of spurious power law (as well as log) dependence
in position space into Mellin space. The u®¢ (and u”¢ Inu) behaviour arise from spurious
poles (and double poles) at s = A, where s is the Mellin variable conjugate to the cross
ratio u. Therefore, we now demand that these residues vanish identically, i.e. as a function
of the other Mellin variable, t. This gives an infinite set of constraints on operator dimen-

sions and OPE coefficients.?

Here another advantage of the Mellin representation makes
its appearance. In analogy with partial wave expansions for momentum space scattering
amplitudes, there is a natural decomposition of the residues into a sum over a basis of
orthogonal polynomials in the t-variable. These polynomials (known as the continuous
Hahn polynomials in the mathematics literature) go over to the generalised Legendre (or
Gegenbauer) polynomials in an appropriate flat space limit. This decomposition makes
the imposition of our infinite set of conditions more tractable analytically. One big sim-

plification is that operators of spin-¢ contribute (in the s-channel) only to the orthogonal

5As mentioned above, there are additional spurious powers which lead to subsidiary spurious poles
(double as well as single) at s = Ay +m (with m =1,2,...).



polynomial of degree £, as one might expect in analogy with flat space scattering. In the t-
channel an infinite number of spins do contribute but this happens in a relatively controlled
way. This makes it natural to impose the vanishing residue conditions independently for
each partial wave £.5 This feature of the Mellin space approach to the conformal boot-
strap makes it very close in spirit to the flat space S-matrix bootstrap (see [74, 75| for one
recently proposed way of connecting the two).

1.2 Results

It turns out to be simplest to implement this schema when there is a small parameter to
expand in. We will focus here on two such examples. The first is the canonical € expansion
in d = (4 — €) dimensions for a single real scalar at the Wilson-Fisher fixed point. The
second is the large spin limit (in any dimension) in scalar theories with a twist gap.

In the former case, we will see that, in the Mellin partial wave decomposition, there are
some significant simplifications when we impose the vanishing constraints. By assuming
the existence of a stress tensor of dimension d and examining the ¢ = (0,2) partial wave
contributions we find that the lowest couple of orders in e get contribution only from the ¢
primary exchange, in addition to the identity operator. This enables us to recover known
results for the anomalous scaling dimensions (A, and Ay, respectively) of both ¢ and 2.
The anomalous dimensions of these operators are known upto O(e%) [76-78].

1 5 109

_ 75 - I 4y, —_9_ = 7 3
Ay =1 2+1086 +116646 +0(e%); Ag=2 €+ e“+0(e). (1.4)

We also find the OPE coefficient Cjyyy2 = C with a new result for the O(e?) piece

2 34
Co=2—-e——e2+0(). 1.5

=2 Ze— =@+ 0 (15)
In fact, if we take the input from Feynman diagram calculations of the O(e3) contribution
to Ag then we can make a new prediction (5.35) for the corresponding O(e®) contribution
to Cp as well. By moving onto the partial wave £ we again find that, in the s-channel, it is
only the leading twist operators of spin £ (of the schematic form J¢ = ¢9‘¢) that contribute
to the first two non-vanishing orders in €. Once again, to this same order in the ¢-channel
it is only the ¢? (and identity) contribution that is needed. This enables one to obtain, in
a fairly easy way, the nontrivial results for the anomalous dimensions of these operators

6

2
Ag:d—2+£+ <1_W—|—1)> %++5§3)63+O(64), (16)

with (5§3) being given in (5.33). The O(e?) term matches with the nontrivial Feynman
diagram computations of [79]. Our approach gives the OPE coefficients too with equal
ease unlike other methods. We thus obtain Cyy e = Cy to O(€?) as given in (5.36), (5.40)

In the discussion section we will mention an alternative procedure for imposing the constraints which
maybe more efficient numerically — by expanding in a power series around a special point t = to and
setting each of the terms to zero. This set of conditions is linearly related to the set of conditions from the
partial waves.



which are both new results. In the case of £ = 2 we can compare with previous results on
the central charge cp which is related to Cy (by (5.42)). Our result

cr 5e2 23363

—1- = _ O(e 1.7
Chron 324 srag 1O (1.7)

agrees with previous calculations to O(€?) [80-82] and gives a new prediction at O(e?).

As we describe in section 5.4.3 these results, after setting ¢ = 1, compare very well
with some of the numerical results obtained for the 3d Ising model.

The second context is of the large spin asymptotics (in a general dimension d, for
Wilson-Fisher like fixed points) we consider the two regimes that have been analysed in
the literature through the (double) lightcone expansion. Our techniques here allow us to
reproduce results in both the large and small twist gap regimes. Thus we reproduce the
results of [83, 84] for the anomalous dimensions of the operators .J¢ in (6.15) and the leading
corrections to the OPE coefficients in (6.17). In an opposite “weakly coupled” regime [43]
we reproduce again the anomalous dimensions of the operators J¢ in (6.23) together with
a new determination of the coefficients in (6.24).

The plan of the paper is as follows. In section 2 we discuss both Witten diagrams and
the usual conformal blocks in Mellin space. We also discuss the spectral function represen-
tation of Witten diagrams that we employ in the rest of the paper. In section 3 we explain
how to implement the bootstrap in Mellin space. In section 4 we turn to the identical
scalar case which sets up the explicit e-expansion calculation in section 5. Section 6 deals
with large spin asymptotics both for strongly coupled theories and weakly coupled theories.
We conclude in section 7 with a preliminary discussion on numerics and future directions.
There are several appendices containing useful identities and intermediate results.

2 Witten diagrams & conformal blocks in Mellin space

In this section we begin the process of migrating to Mellin space by carrying over the fa-
miliar conformal blocks and the associated Witten exchange diagrams from position space.
We will consider the somewhat more general case of arbitrary scalar external operators
and define our amplitudes, setting notation in the process. Let A(z1,x2, x3, 24) denote the
four point function of four scalar operators in a CFT (the scalar O; has dimension A;).

.A(l‘l, T, I3, .%‘4) = <(91 ($1)02($2)03($3)04(5L‘4)>

— 1 $%4 Qag Jj%4 bs
— (x%z)%(AH-AQ)<m§4)%(A3+A4) <2> <2> A(u,v).  (2.1)

Log T3

Here we have pulled out overall factors in the four point function appropriate for an s-
channel decomposition and defined

_%(Al_AZ)a bS:%(A3_A4) (22)

The cross ratios (u,v) are defined in the standard way

ag =

2 .2 2 .2
_ T1oT34 _ T14%23
=55 V= — . (2.3)
L13T24 L1324



The corresponding Mellin amplitude reads as’

+ico
A(u,v) :/ ﬁ ﬂ usvtF<A1 + 4 — S>F<A3 + A — S)
2w 2me 2 2

—100

x D(=t)T'(—as —bs —t)T'(s+t + as)T'(s + t + bs) M (s, 1) (2.4)

+i00
E/ ds dt wv' pgay (s, t)M(s, 1).

ico 2 2mi
Setting A; = A, we recover the previous expression eq. (1.3). Note that we are making
a particular choice here so that even when we consider ¢, u-channel exchange diagrams, we
will still be using the convention (2.4) with the overall factors as in (2.1).
Though we will not be utilising them very much, let us discuss how the conformal
blocks look in Mellin space [66, 86]. Under the transform of eq. (2.4), the conformal blocks

G (u,v) = BY,(s,1). (2.5)

The Mellin space conformal blocks B(AS)E(S, t) take the form [86]

BS}K(S,t) = eiw(th) (eiw(2s+A+ff2h) - 1)9(59)_;1!(8)13&82,%((8%) (26)

P& — )T (pet — )

eiﬁ(h—A) (eiﬁ(2s+A+€—2h) _ ) g R
DS r(Rfs )

P, (s.)

(i3 (25— A+0) (=2mi)T(55* — 5)

P s, t).
D(s+1—h+ 8750 (51E82 — gT(LsfBe ) R

Here Q(As)_h’e(s) is defined, for later use, by the equality between the first and second

lines. The Gamma functions in the numerator of Q(As)_h ,(8) exhibit poles at both 2s =
A—{0+2m (m=0,1,2...), which are physical, as well as at the so-called “shadow” values
2s = 2h — A — £ + 2m. (Here and below we use the conventional notation h = %, with
d the spacetime dimension). Since we would like to project out the contribution of the
shadow poles the prefactor in brackets was introduced in [86] so that it has zeroes precisely
at these unphysical values. This cancellation of poles is made manifest in the third line.
The projection, however, leads to an exponential dependence on s at large values of this
Mellin variable.

The crucial piece of the conformal blocks in Mellin space are the Pglh[(s,t) — the
so-called Mack Polynomials which are of degree ¢ in the Mellin variables (s,t). In addition
to the dependence on A, they also depend on the external scalars through as, bs, but we
suppress this dependence, so as not to clutter notation.® We merely signal this dependence
through the superscript which indicates that we are considering parameters relevant to an

s-channel. The explicit form of these polynomials is given in appendix A.°

"This is related to the conventional Mellin variables [66] 0;; by some shifts: s = (A1 + Ag) — d12;t =
612 + 613 — (A1 4+ Az + Az — Ay). See also [85].

8Both the Mack Polynomials as well as  have a parametric dependence which is naturally in the

1
2

combination (A — h) and this is reflected in their subscript.
90Our normalisation of the Mack Polynomials agrees with that of Mack and differs from that of [70] by
a factor of (A —1)¢(2h — A —1),.



The conformal blocks factorise on the physical poles 2s = A — ¢ + 2m giving residues
which are kinematic polynomials in the variable ¢t determined by the spin ¢ of the interme-
diate state and the level m of the conformal descendants [70].

X (=1)™sinm(A - W)T(h— A —m) Q7 (1)

(s) _
BA,K(S, t) - m!r(A1+A2*2A+£*2m)1'\(A3+A472A+572m) 96 _ A T 7/ —om —+... (27)

m=0

The dots refer to the entire function piece of the block in eq. (2.6). That is the part which
has an exponential behaviour at infinity. The Qfm(t) polynomials are single variable
specialisations of the Mack Polynomials.

4¢ A—1
A _ (s)
Qr,(t) = P = +m,t ). 2.
Z,m( ) (2 — 1)6(2h —A— 1)4 A—ht (8 9 ) > ( 8)
In particular, the case with m = 0 is special and will play an important role in the
following i.e.
4¢ A—/
A (s)
Q = P = — . 2.
cot) (A —=1)(2h — A — 1), A7t <$ 2 ’t) (29)

The Qﬁo(t) turn out to be a family of orthogonal polynomials (continuous Hahn Polynomi-
als) whose properties are given in appendix B. These can be viewed as the generalisations
of the Legendre/Gegenbauer polynomials that accompany the partial wave decomposition
for scattering amplitudes.

Just as for the conformal blocks, we can consider the Mellin version of the contribution
from Witten exchange diagrams under the transform (2.4)

W (u,v) = MY (s,1). (2.10)

Witten exchange diagrams in Mellin space have been investigated in the literature [67-70].
It is known that they have the same poles and residues as the corresponding conformal
blocks. However, they are polynomially bounded for large (s,t), in contrast to the expo-
nential dependence of conformal blocks BS?Z(S, t). They therefore take the form

00 . A
) (5 4) — (=D)™sinm(A — hI'(h - A —m) Qzm ()
MA,Z(S’ t) - m!F(A1+A2—2A+K—2m)r(A3+A4—2A+€—2m) 2s — A+ f—92m + Refl(s’ t)

m=0

(2.11)
where Ry_1(s,t) is a polynomial'® of degree at most (¢ — 1) in (s,t). Note that the first
term is identical to that in (2.7). The second term is an additional polynomial ambiguity
coming from freedom in the choice of three point vertices in the bulk AdS in defining the
exchange diagram. The meromorphic piece is however fixed to be the same as that of the
conformal blocks (2.7). Since our interest is to use an appropriate basis, we will choose the
ambiguity to our convenience. A particularly simple choice of basis would, for instance, be
to only use the meromorphic piece of the conformal block i.e. just the first term in (2.11).

0Even though we will not need the form of R, explicitly, we can fix it by writing the Mellin amplitude
as a meromorphic piece plus a regular piece. The Mellin amplitude (2.23), which is in terms of a spectral
function, hence fixes R, implicitly.
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We can write this sum (for any ¢) in terms of a finite sum of hypergeometric functions. Our
choice will actually involve the additional polynomial piece Ry_1(s,t) as well. In the case
of a scalar exchange, however, such terms don’t enter and the answer for the corresponding
sum in (2.11) is particularly simple [67-69]

_ 1 THA+ 557 1=+, 1- D+ 5,5 -
2s— A T(L+A—h) >? 1+5 -s,1+A—h

(s) 5
MpJp—o(s5:1) 1. (2.12)

In forthcoming work [87] we will employ this direct method to explicitly write down
the Witten exchange function. In the current paper, we use an alternative approach to
writing the exchange diagram in terms of a spectral function representation. While this
introduces some additional terminology, it will have some advantages for implementing our
bootstrap philosophy.

2.1 The spectral function representation

Our starting point will be the spectral representation of the Witten exchange function in
position space (in, say, the s-channel). Following (2.1) we define

2 as 2 bs
(s) 1 T1q Tig (s)
W () = 14 S W (u,v) . 2.13

a8 = e g3, Tera) <24> (m%g) alur) (213)

The spectral representation is then a decomposition in terms of conformal partial waves
(see for e.g. [88], section 6). This follows from a “split” representation of the bulk-to-bulk
propagator in terms of two bulk-to-boundary propagators with a spectral parameter v that
is integrated over. The latter can be expressed in terms of conformal partial waves

100
W (u,v) = / dv 1, (V) FS) (u,v). (2.14)

The conformal partial waves FV(SK)(u, v) are closely related [70, 85] to the conformal blocks
being just linear combinations of a block of fictitious dimension A = h + v and its shadow
with dimension d — A = h — v.

F)(u,0) = <n(u, OGS, (u,v) +n(—v, Z)Ggi)ﬂ(u,v)) : (2.15)

where
27T (—v)(h —v —1),

n(v,l) = Th+v+0) YA1,as VA1L,bs -

(2.16)
We also follow [85] in introducing the notation A\; = (h+v +£)/2, \; = (h — v+ £)/2 and
Yoy =L@+ y)T(x—y). (2.17)

The spectral function M(As)e(y) itself is the dynamical piece that contains information

about the exchanged operator with dimension A. We can further break it as /L(AS)Z(V) =
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oe(v) p(AS)e(V) to exhibit a piece which is group theoretical (the Plancherel measure for the

conformal group, see for e.g. appendix B of [89]))

T+ O)T(h+v— 1) (h—v—1)
W) = 3oy T(V)L(—v)

[(h+¢—1)* =17 (2.18)

and a piece which is dynamical (i.e. pf)e(u)) and thus knows about A. The explicit ex-

pression for pf)e(u) is

s 1
pRr) = 27i((A — )2 —12)

F( A1+Ao—h+l+v )F( A1+A22—h+f—l/ )F( A3+Ay4—h+0+v )F( A3+A4—h+€—l/)

2 2 2 . (2.1
s Th+v+ O0(h—v+0) (2.19)

The interpretation as a spectral function comes from the fact that we can evaluate the
integral along the imaginary axis by closing the contour (when the integral is well behaved
at infinity) on, say, the right half plane and picking up the residues at the simple poles.
These then correspond to the primary operators which are exchanged whose contribution,
along with their conformal descendants, is captured by the conformal block in (2.15). The
contour is chosen to enclose either an operator or its shadow, but not both. The superscript
in p(®) (and 1®)) signifies the channel and is reflected in the dependence on the A; in (2.19).

Let us see which primaries contribute. The spectral function in (2.19) has simple
poles at £ = A — h corresponding to the operator (A, ¢) (and its shadow). But it also
has simple poles at h +v = A1+ As+ £+ 2n and h v = Az + Ay + £ + 2m where
n and m are non-negative integers. In a generic theory there are no operators of this
dimension. These are dubbed as “double-trace” operator contributions in the AdS/CFT
literature. This is because in a weakly coupled (“generalised free field”) theory, like in the
large N limit, these would be the dimensions of double trace operators of the schematic
form ©10°(9%)"Oy (and similarly with O3 and Oy4). It is known [90, 91] that precisely
these double trace primary operators (of spin ¢) do contribute to the Witten diagram (in
the s-channel) and the spectral function merely reproduces this fact. Note that when we
close the v contour on the right half plane only the poles with the plus sign will (typically)
contribute.!!

The full spectral function (with the Plancherel measure) thus takes the form

F( A1+As—h+l+v )F( A1+A22*h+€fu )F( A3+A4;h+l+u )1-\( A3+A4;h+ffu)

6) ()
Hav) = omi(B W2~ T INo)(h T~ Delh — v~ 1)s - (220

We have seen that this has the right behaviour to reproduce the known properties of the
Witten exchange diagram. There is one subtlety though that we should mention in this
form of the spectral function. There are a finite number of extra poles in the v integral from
the denominator factors of (h+v — 1), whose contributions need to be cancelled by adding

"Note that this would imply that there are no poles coming from i, a.¥;,b, in the integrand. For
general as, there may be a finite set of poles on the right but an infinite set of poles on the left. Our choice
of contour is such that the entire infinite chain is on one side of the contour.
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lower order spin terms (¢ < £). These have been explicitly studied in [88]. However, these
additional terms will not contribute to the terms of interest to us which are the residues
at the double trace poles which come purely from the above piece.

In the particular case of identical scalars for d = 4, the above spectral function /L(AS)K(V)
agrees with what was constructed by Polyakov for what he called the ‘unitary’ amplit7ude.
Polyakov, of course, did not come to this from Witten exchange diagrams. He first con-
structed a spectral function for what he called the ‘algebraic amplitude’ which is nothing
other than the conformal block itself. This turns out to have the form

g _ 1
Had() = 2mi((A — )2 — DD (—)(h+ v — 1elh—v— 1) (221)

This algebraic spectral function uglz (v) is designed to reproduce the conformal block on the

Lh.s. if we insert it in the r.h.s. of (2.14) instead of ,ug)é(u). We see that now the v contour
integral over the right half plane only gets contributions from the single pole at v = A —h
after using (2.15), (2.16). Note that ,uilz(u) in (2.21) differs from .U(AS?E(V) given in (2.20)
by the four numerator I'-functions in the latter which were the double trace contributions.
However, ,uﬁlj(u) suffers from the problem that it diverges as one goes to +ioco. As we will
see later, this is related to the poor behaviour of the conformal block in Mellin space, at
infinity along the imaginary axis. To cure this problem, Polyakov prescribes adding certain
additional factors of I'-functions to the numerator. These turn out to be precisely (in his
case, for identical scalars) the double trace ones which appear in the numerator of (2.20)
so that we indeed get the spectral function appropriate to the Witten exchange diagram!

We can now translate this spectral representation to Mellin space. We use the fact
that the partial wave appearing in (2.14) has the Mellin representation [85]

s oo ds  dt s s s
iné)(%”) —/ 97 27 U vtp{Ai}(s,t)Ql(,?z(s)PIié)(s,t) (2.22)

—100
in terms of the Mack Polynomials as well as the fog(s) defined in (2.6) and the standard
Mellin measure pya (s, t) in (2.4).

Then, combining (2.22) with (2.14) we have the spectral representation for the s-
channel Witten exchange diagram in Mellin space to be

100

MLy (s,) = / dv ), (1)) ()P (5,1) (2.23)

—100
2.2 Adding in the t,u channels

Our discussion was for the s-channel contribution Wg )z(“’ v) to (1.1) and the corresponding

ng)z(s, t) in Mellin space. It is not difficult to extend the discussion to the other two chan-
nels. The main point to keep in mind is that our conventions are chosen, for definiteness,
for an s-channel expansion. Thus we pull out the same external factor as in (2.1) when we
are considering the reduced amplitude in the ¢ and u-channels also. This is even though
the natural definition for the Witten diagram in the t-channel would involve an interchange
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of subscripts (2,4) (and similarly (2, 3) for the u-channel) of the s-channel which gives, for
instance, answer (2.13)

2\ at 2\ bt
® o\ 1 T\ (%12 (®) 4

Wade) = G T g T () () v ey
where a; = —3(A;—Ay) and by = $(Ag—Ay). If we recast this in the form (2.1) by pulling
out the same external factor as in that equation, then this corresponds to multiplying
A3-&-A4)v—%(A2+A3)

WX,)Z(U, v) by an extra factor of il . In a similar way, an extra factor of
w2 (B1F89) myltiplies ng%(u, v). Here, both WX”;” (u,v) are obtained from Wg)g(u, v) by
the interchange of labels (2,4) (and (2, 3), respectively).

We can translate this to Mellin space in a straightforward manner. Thus the ¢-channel

partial wave (the analogue of (2.22) reads, with the above prefactor, as

e e

— 2 (Bs3+80) =5 (A2+As) / ds dt . VT (=s)(—a; — by — s)
271 271

x T(as + s+ )0 (b + s + )T <;(A ) - t>1“(;(2h ~A-0) - t) P (s,1).
(2.25)

Here the integrand on the r.h.s. is obtained from the corresponding one of the s-
channel (2.22), with the interchange (s <> t) i.e. of labels (2,4). The superscript ¢ on the
Mack polynomials also indicates this exchange — we have st,tf) (s,t) = PV(:}) (t,5)|as—rar,bs—sbs-
Here ¢’ denotes the spin in the ¢-channel.

But now observe that by shifting variables

1 1
8—)8—§(A3+A4), t—)t+§(A2+A3), (2.26)
we can make the r.h.s. of (2.25) now in the same form as (2.22) i.e.
ds dt  , (t) (t) 1 1
257 WY piay (8, ), ()P, | s — §(A3 + Ay),t+ §(A2 + A3) |, (2.27)

. 1 v—0)—t— LA Lep—py—py—t—1 A
o) ) — D rv =) =t 2<F(2_5FA<§£<_2<2_@ O=t= 3B+ 80) oo

Similarly, in the u-channel, we have

ub OO ) = [ 2ty (s 0000 (s 1P <s 5Bt A4),t>
(2.29)
where
Q%(S L= D (h+v—0) +s+t — (A1 + A))DE(h—v — ) +s+t—1(A1 + Ay)) |

L(bs+s+t)(as+s+t)
(2.30)

and PV(})(S, t) = PV(:?(—S — )| ay—sau,bs—sby - Here ay = —3(A1 — Ag) and b, = $(Ag — Ay).
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This was for the partial waves in the ¢, u-channels. We can now employ the corre-
sponding versions of (2.14) to write the expressions for the corresponding Witten exchange
diagrams in the spectral representation in Mellin space i.e. the counterparts of (2.23).
Combining (2.25) with the analogue of (2.14), we find

My (s,t) = / dv iy (V) ()P ( — 5 Qs+ Ayt S (Ao + A3>) - (231)

—100

And similarly in the u-channel with (2.29)

M) (s, ) = / dv u, (V) (s + 1) P ( — 5B+ A4>,t) . (2.32)

100

Here the spectral weights, MX)E,O/),M(AU)W(V) are given by (2.20) with the exchange of

subscripts (2 «» 4) and (2 <> 3) respectively.

3 The bootstrap strategy implemented

With all this machinery in place, we are now ready to come to the crux of our strategy.
As mentioned in the introduction, we write the four point function as a sum over a set of
crossing symmetric Witten exchange diagrams as in (1.1). In position space this can be
written, using the spectral representation (2.14), as

Alwo) =3 [ v (el ) E )
A,Z —1100
+ 0 (vyus Bty =3Bt gy, y) (3.1)
1
+CA eﬂAe(U)’LN (D1+hq) plu )(u v))

Here the sum over A, ¢ is over the entire physical (primary) operator spectrum of the CFT.
Note that we have, in general, to-be-determined coefficients c(A’ ) which are mutually
related by exchanges of the labels (e.g. (2 <+ 4) or (2 <+ 3)). This ensures that the full
amplitude is crossing symmetric.

Since we are not making an expansion of the amplitude in terms of conformal blocks
in a fixed channel, we are not guaranteed that this expansion will have the right power
law dependences on the positions (or equivalently, cross-ratios) that is consistent with the
OPE. For instance, in the case of identical scalars we see from (4.3) that the spectral func-
tion [LS?E(V) has double poles (at h + v = Ay, where Ay is the dimension of the common
external scalar). When we perform the v integral, this double pole gives rise to u”¢ logu
terms in the sum, as well as u®¢ terms. Both of these dependences would imply the pres-
ence of an operator with dimension 2A4 in the spectrum which is generically not the case.

. . A1+Ag Agz+Ay
More generally, we will have spurious power laws of the form v~ 2 and u— 2 when

we expand (3.1) in the s-channel. There are generically no operators corresponding to
dimensions (Aj + Ag) and (Ag + Ay). Thus we have to demand that these terms identi-
cally vanish after including the contributions from the other channels and on summation
over (A, 0).
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As discussed, it will be easier to implement this in Mellin space. In other words, we
look at the total Mellin space amplitude corresponding to (3.1) which we obtain by putting
together (2.23), (2.31) and (2.32)

Misty= Y <cg;3gM<;;<s, )+ 0, ML, (5, ) + ML s, t>)
A

-y / S av (nggugg@mg(s>p5fg(s,t)
A TE0 (3.2)

1 1
+ C(At),ZM(At?Z(V)Ql(j%(t)PlEfe) (3 - §(A3+A4)’t * 2<A2+A3))

u u u u 1
006+ 0F (5 o+ A0t} ).

The definition of the Mellin transform in (2.4) imply that the spurious powers in
position space mentioned in the previous para arise from spurious poles at s = %(Al + Ay)
and s = %(Ag + Ay4). When the external scalars are identical, these two sets of spurious
poles coalesce to give double as well as single poles at s = Ay. It is important to note that
these are statements about the full Mellin space amplitude and not just the reduced one,
M(s,t). In other words, recalling the notation of (2.4) we need to examine the spurious
poles of pya,}(s,t)M(s,t). In particular, for identical scalars, the I'*(Ag — s) piece of
in (1.3) already has double and single poles at s = Ag. So we will need to look at the
constant as well as terms linear in (s — Ay) of M(s,t) to isolate the poles of interest to us.

In either case, the residues at these spurious poles will be a function of ¢ and we will
obtain an infinite number of constraints on our CFT by setting these identically to zero.
Below, we will individually look at the Mellin amplitudes in each channel, for non-identical
scalars, and isolate the residues. We can then add them all up and find the conditions for
consistency with the OPE. In the following section we will examine the special features
that arise for identical scalars.

3.1 The s-channel

We start with the unitary block in the s-channel (i.e. the Mellin transform of the Witten
exchange diagram) given in eq. (2.23).
MO st = [ a0 ()P (st (3.3)
Aj(sa ) . VMA,E(V) V,z(s) v, (s,t) :

where, as in (2.20), we have the spectral function

F(ArgAz . )\Q)F(ArgAz _ 5\2)F(A3-5A4 _ )\Q)F(% _ 5\2)

(s) _

Mol W) = = A = ) — AT T (=) (h £ 0 = Dalh —v =15 (34)

e (2~ (e — )

r 2 — S I 2— S8
Q) (5) = . 3.5
) = R (e ) &9)

Here we have introduced, for compactness, the notation [85]:

N=((h+v—0/2, da=(h—v—1))2 (3.6)

We are to carry out the v integral by closing the contour on the right half plane.
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The “physical pole” in the spectral function is the one at v = (A — h).!2 In this case
the factors of I'(3(A1 + Ay) — s) and T'(3(As + Ay) — s) in the denominator of Ql(/sg(s)
cancel out with the corresponding factors in pya,}(s,t) of eq. (2.4).13 The residue at this
physical pole in v has factors of I'-functions from the numerator of (3.5) which give rise to
the physical pole in the s-variable (as well as for the shadow) i.e.

2s=A—(+2n; 2s=2h—-A)—{4+2n; (n=0,1,2...). (3.7)

When we do the s integral (again closing the contour appropriately) of the Mellin ampli-

(A=0/24n dependence but does

tude, this gives rise to the physical contribution with a
not pick up the shadow.

However, there are other poles in v which give rise to the spurious poles in s that
we described earlier. For instance, when we consider the poles from the numerator of the

spectral function (3.4)
h—f0+v =A1+Ay+2n (3.8)

the residue will get a contribution from the numerator of (3.5) oc I'(3(A1 + Ag) +n —s).M
The denominator of (3.5) then cancels with the Mellin measure but the above piece gives
spurious poles at s = %(Al + Ag) +n. By a similar argument there are spurious poles also
at s = 3(Ag + Ay) +n. Instead, if we had taken the poles from the numerator of (3.5) i.e.

h—0+tv=2s—2n (3.9)

then the residue contribution from the numerator of (3.4) would be again oc T'(3(A1 +
Ag) +n —s). Thus the residues of the Mellin amplitude evaluated on these second set
of poles gives a factor of two to the previous contribution.'® We have already discussed
(see around (2.20) and footnote 10) the absence of any role from all the other poles of the
spectral function.

Thus we will focus on the residue contribution on the poles in (3.9) (for n = 0) that
correspond to spurious poles at s = % ie. for h — €+ v = A1+ As. The two variable
Mack Polynomial simplifies in this case, when we further put 2s = A; + As. We use the
general relation (2.9) to obtain

(s) _
LIV YICR) sy

AL+ Ao+ £—1)p(2h— Ay — Ay — £ —1), QD H (1),

(3.10)

12We are assuming A — h > 0. If not, we have to deform the contour so that we include this pole but not
that of the shadow operator which would now lie on the right half plane [66].

13For the scalar, this can be explicitly seen in the denominator I' factors in (2.11) which cancel against
p{a,}(s,t) at the physical pole in s.

*As well as a shadow piece I'(h — £ — 1 (A1 + Az) —n — s) which will always be understood to be present
but which we will ignore since we will choose to close the Mellin contour so as to exclude this set of poles.

""The poles at s = $(A1 + Az) +n with (n > 0) actually come with a multiplicity. But since we will be
focussing on the n = 0 case in this paper, we will not worry about this factor.
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As a result the nett residue of the Mellin amplitude at the unphysical pole is

M®) (s, t)

S:;(Alﬁ-ﬁg)
= Z VAUAL 4+ Ag 4+ £—1)p(2h — Ay — Ay — £ — 1) T(h— £ — Ay — Ay)

. (s) (3.11)
QWZMA 5(28 —h+0) QAH-AQ-M( )+ -
D(3(A1 4+ Ag) = s)L(5(A5 + Ad) = 8) |s—1(a,4ay)
= Z (As (5 A1+A2+£(t) 4o
AL
Here we have defined
(s) 1 gF(%(A3+A4+A1+A2)—h+€)
qpp = —4 5 5 (3.12)
, (A1 + A9+ 0 —h)2—(A—h)
and the --- denotes contribution from the physical pole A as well as the other spurious

pole at s = (A3 + Ay) which gets an identical contribution to above with (1,2) replaced
by (3,4). The case of identical scalars will be discussed separately in the next section.
In the next subsections we look at the t,u-channels and similar pole contributions

3(A1+82) hehaviour in the amplitude. Demanding that these

that lead to anomalous u?2
cancel against the above s-channel contribution will give us constraints. Note that the
cancellation conditions involve a whole function of ¢. To facilitate the comparison, we
have expanded the functional dependence on ¢ in terms of the orthogonal polynomials

QA1+A2+Z( t). We will expand the amplitudes in the other channels in terms of the same

A1+A2+z(t) to

polynomials and use the orthogonality to set the nett coefficients of each @
zero.' We also note another important utility of this particular orthogonal decomposition
— a spin £ Witten diagram contributes only to the orthogonal polynomial labelled by the
same £. This property makes this decomposition the analogue of the usual partial wave
decompositions for flat space scattering amplitudes. The contributions from a specific
spin is, however, a special feature of the s-channel decomposition and will not hold in the

t-channel (see (3.16)).

3.2 The t-channel

The unitary block in the ¢-channel is given by (2.31)

MY, (s,t) = / dv 1, ()9, (1) EY) (s —5(Ba+ Mgt + 5 (A, +A3)) . (3.13)

where
T A1+Ay AT A1+Ay o) T Az+Ay o) T Az+Ay by
W () = (T2 = MT(T= = M7 = M) = b (3.14)
’ 2i((A = h)?2 = )T () T(—v)(h+v —1)e(h—v — 1),

16 At the other spurious pole s = %(Ag + Ay4), it will be natural to expand in the set of orthogonal

polynomials QA3+A4+Z (t).
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and

T —t—3(A2+ A3))T(Aa — t — 5(Ag + Ay))
D(—=t)['(—as — bs — 1) '
Here Ao, \g are as defined before in (3.6).
We want to look at the contribution to the amplitude from terms which go like

w2(81782) I the t-channel this can be attributed entirely to the I'(1(A1 4+ Ag) — )
factor in the Mellin measure pya,}(s,t) of (2.4) — there are no compensating denominator

(3.15)

factors like in the s-channel. Hence we can directly evaluate MX)Z/(S = 2(A1 + Ag),t) to
get the residue at this pole. We will then expand the resulting function of ¢ in terms of the
orthogonal polynomials of the previous subsection

MX,)Z/( (Al + AQ Z qA E\Z’ A1+A2+Z(t) (316)

Here the ¢ have an extra subscript, compared to the ¢(*), reflecting the fact that an
operator of fixed spin ¢ in the t-channel can give rise to contributions to all QEASJFAQM.

A1+Ag+L

This is unlike the s—channel where the contribution to a given Q comes from a

single spin £.17
To extract the coefficients qg)e‘ » we use the orthogonality relations (see appendix B)

1 i00 T T
— dt T'| = t|I| = +bs+t
omi i <2+as+ ) <2+ s + >

(3.17)
< T(-0T(~a b = OQEF OQF () = e 3 e

where the normalisation factor (%) is given in (B.4). Using this orthonormality condition,

we obtain
Ay + A\t [ odt 1
qz?é\é’ = Ky <122> /27‘r F(AQ —i—t) (2(A1 + Ag 4+ Az — A4) +t>
1
x T'(—t)T(—as — bs — t) X@,( 2(A1—|—A2),t> naTAe )
Ay + A\ H Ay + A+ Az — A
_ < 1+ 2> /dyFA2+t) < LTt B 4+t> (3.18)
271 2
XF<>\2—t—AQ;A3)F<)\2—t—AQ—;A3>MX)@(V>
y PV(;?/<A1 + Ay g Az — A4,t AV +A3>QA1+A2+€( ).

We alert the reader that the ¢ dependence is explicit in the above while ¢ enters in Aa, Ag.
Below we will see how to simplify this expression for the case of identical scalars.

1" To put the notation in the different channels on the same footing, it is sometimes convenient to define the
partial sum coefficients cuqx’)( =>, cM/qX)m,. This is the notation that was employed for compactness
in [65].
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3.3 The u-channel

Similarly, for the u—channel, the Mellin amplitude for the unitary block is given by (2.32)

MK (s,t) = / A, ()9 (s + P <s—(A1+A4) > (3.19)
where
L oy = DEE2 - M)D(Bg2e — M)I(F25e - (S50 — K)o
AL 21i((A = h)?2 = )T () I(—v)(h+v —1)e(h—v — 1),
and
(A t— 1A+ AT t—iAa+A
Q0 (s +1) = Qatsti= (bt A)la¥oti—p(dtAa) (3.21)

I(bs+s+t)(as+s+1t)

As in the t-channel, the behaviour u2 3(A1+82) can be attributed entirely to the F( (A1+
Ay) — s) factor in the Mellin measure. We thus can expand in terms of the same set of
orthogonal polynomials we had in the s-channel

M‘&( (A1+A2 ) ZM,QAM?“() (3.22)

where, using orthonormality, we can write for the coefficients,

w A+ A\ [ dt (AL A Ar+ Ay
q(A7)£|£,:w<2> /27”,1“<2+as+t (=5 b+ )T(-1)

1 . 1
F((Al - AQ - AS + A4) - t) M(A,%/ (8 = §(A1 —+ AQ) )QA1+A2+Z( )

A+ A 1
_ 1+ 2 P oT (E(A) — Ae— A+ Ay —1
211 2
Ay — A Ay — A
X P()\Q it 2‘*) </\2 i+ 24)”(&,@)
Ay Ar+Ag+
e S U}
(3.23)
As in the t-channel, note that the Ao, A2 depend on .
3.4 The bootstrap constraints
Putting together the results from the previous three subsections, we demand
¢ ¢
S (Lot + Qb+ Dnisn)| =0 G2)
AJL s=—13=2
Or equivalently
t A1+Aox+4
Z <CAS que + C(A)é’qA o T (AU)Z/qA ewf))Q () =0 (3.25)

A
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which implies from the orthogonality of the polynomials QAHA?M( t), that

3 (CM M+Z cM,qu +cgﬁ)g,q(§)w,)> —0. (3.26)

A

Here the individual ga ¢ are given in (3.12), (3.18), (3.23). We can also write parallel
expressions for the cancellation of the spurious poles at s = %. We note that while
the s-channel expression is very explicit, the ¢,u-channel expressions are given as integrals.
We will simplify these expressions bringing them into useful form, in the case of identical
scalars, in appendix D and E.

4 The case of identical scalars

Thus far we have considered the case of generic external scalar operators for our four point
function and set up the bootstrap constraints to illustrate the generality of the method.
In our simplest set of applications we will confine ourselves to the particular instance of
identical external scalar operators. There are a couple of features that we have to keep
in mind when we specialise. The first is that there will be a contribution of the identity
operator (with A = ¢ = 0) in all channels. This ‘disconnected’ piece can be explicitly taken
into account and we will find it convenient to separate it out. The second is that when we

take all the A; to the common value Ay, the two separate spurious poles at s = M

A3+A4

and s = coalesce into a double and single pole at s = Ay. It is the double pole that

gives rise to the behaviour u”¢ Inu in position space. In this section, we discuss these two
features in turn and the resulting bootstrap constraints.

4.1 Double and single poles

Let us first consider what happens to the general bootstrap conditions of the previous
section when we take A; — Ay. The definition of the Mellin amplitude becomes as in (1.3)

A(u,v) = /ZOO ds di wv'pa, (s, t)M(s, ) (4.1)

o2mi 2mi

where pgay(s,t) = pa,(s,t) = T*(—t)I%(s +¢)[?(Ay — 5). The Mellin amplitude M(s, t)
in the spectral representation of the previous section now reads as

7

ZCAZ/ dl/,uAg (Qiz(s)PV(:?(s,t)

—100

ZcAg< () (s,t) +Mé)g(s t) +MX)K(5 t)) (4.2)

+ QP s = Aot + 8g) + QL (s + DP (s — Ag.1)).

Here the common spectral function

P2(2A¢fg+€+u)rz(2A¢*g+f*’/)
pa(v) = 2mi((A — h)2 —2) L (W)L (=v)(h+v —1)(h —v —1),’

(4.3)

- 21 —



and

| T(Et (et )

FQ(A(z) — S) ’

(4.4)

while Q%(t) and Ql(/ué) (s +t) are obtained from (4.4) by the replacements s — t + A, and
s — Ay — s — t respectively. The Mack Polynomials are as before with the specialisation
of parameters A; — Ag.

We now need to look at the individual contributions to the spurious double and single
poles of pa,(s,t)M(s,t) at s = Ay from each of the terms on the r.h.s. of (4.2). We do
this channel by channel.

4.1.1 s-channel

Consider the s channel first. Since we now need the double as well as single poles, we have
to expand (3.11) to one higher order in s. We only need to consider the coefficients qf)e(s)

of the orthogonal polynomials @, 0"’+E(t) in the s—channel

A (Ay + 5+ £ — h)?

(s)

_ _ 4.
) = T 2 S A 25 £ A 2R)T(2s + L= B) (45)
and expand these to linear order about s = A¢.18

s 2.s 1,s
ahy(s) = a7+ (s = Ag)ay + . (4.6)

B AT (204 + £ — h)
(f—A+2A¢)(€+A+2A¢—2h)
22T 2A, +0—h+1
+(S—A¢) ( ¢+ + )
(0= A+204)2(0 + A +2A, — 2h)?

The first term q(Az’j ) in the above expression gives the contribution to the residue at the

double pole (and thus the log term in position space) while the second term q(A’ %) is the
contribution to the residue at the single pole (and thus the power law term).

4.1.2 t-channel

As we saw, the t—channel analysis is less straightforward, since an infinite number of spins
(¢') can contribute to a single ¢ term. Redoing the steps that led to expression (3.18), for
identical scalars but without setting s to a particular value leads to the general expression

q(A)g‘g/ =K /di/ I‘2 (s+t) Ay —t — A¢)F(5\2 —t— A¢>)

% 18 ()P (s = Dot + D) Q5 (1)

(4.7)

0One may worry whether one needs to consider contributions from the derivatives of the orthogonal
polynomials themselves when QAH'AQH( t) and Qﬁg*’A‘lH (t) approach the common limit QZA“’H( t). How-
ever, it is easy to convince oneself that such additional contributions are proportional to the ones at the
double pole. This is true channel by channel. When one imposes the vanishing constraints at the double
pole, combining all channels, then these pieces are also automatically set to zero and hence we will not
consider them.
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The expression has integrals over ¢ and v. In appendix D we show how to evaluate the t

integral for general ¢ and ¢'. We write qg)g in the form,

2, 1,
0850(5) = aS0y + (5 = Dg)gi fl + O((s — Ag)?). (4.8)

The expression (D.10) gives the coefficients qglz)g, after performing the t-integral. In this
paper, we will mainly employ the case with ¢ = 0 in which case the expressions are simpler

and we have

@2.4) _/ VH(At)o( V)LAT(N)2°((Ag)e)? i 2A¢+€— 1) I(q+ Mg+ X)
qA L0=0 HZ<A¢)(2A¢ + /7 — 1 o II"(q 2%k + N+ )\) y
(4.9)
and
271 ((3)0)? T T -
1t ¢ ¢
q(A,é\)Z’:() = /dVM(A),O(V)aT [F&g(;)(T —}-ZK — 1)€F<2 - A¢, + )\>F<2 - A¢) + >\>
" i: (—0)q T+€—1)qF(q+§+/\—A¢)F(q_+g+7\—A¢,)
= (3 d g+ 7+A+A—2A4) o,
(4.10)

Here A = (h+v)/2 and A = (h — v)/2.

Although the v integral in both (4.9) and (4.10) makes them look complicated, they
turn out to be relatively simple in practice. The v integral can be evaluated using the
residue theorem at the poles. Though there are an infinite number of these poles, in all the
cases that we consider, only a small finite number of poles actually contribute. The others
are subleading (in the perturbative parameter such as ¢). For example, in the ¢* theory
all poles except two are subleading in e. This is explained in more detail later and in an
ancillary Mathematica notebook provided with this submission.

4.1.3 wu-channel

The u—channel need not be handled all separately. Hence we will not write down the ex-
pressions for the u—channel anymore. To see this more clearly, note from (2.31) and (2.32),
that for identical scalars,

MY (s,8) = MYy (s,—s — 1) (4.11)

In terms of the @ polynomials, this condition translates into the form (near s = Ay),
2A +e 2A +e

In the appendix B it is shown using the properties of the ), polynomials, that,

QI (—ay — 1) = Q7 (). (4.13)
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2A¢+Z( )

Given the orthogonality property of the @ this translates into the fact that,

g8 (5) = d\4u (). (4.14)

Hence we need not calculate the coefficients q&u)ﬂ 12/(8) separately. We simply multiply the

answer for the t-channel by a factor of two.

4.2 Identity operator contribution

There is always a contribution of the identity operator in all the three channels when the
external operators are identical. This disconnected contribution takes a simple form and
hence this piece can be separated out and explicitly written out. In position space, this
contribution (sum of all the three channels) takes the form

An=o=o0(u,v) =1+ (:j) + ue (4.15)

The Mellin space representation of the individual channels can be written down as simple
pole contributions which give the above power laws on closing the Mellin contour integral.

s 1 1
M(Aio,ezo(& t) PA (8 t)
d) )
(t) 1 1
M —o(S, )
a8l = = A Ay (416)
(u) 1 1
M=o p=o(5:t) = pa,(s,t) (—s —t+ Ag))t”

We see from (4.16) that pa,(s,t)Ma=o=0(s,t) has at most a single pole at s = Ay.
Moreover, these can only arise from the ¢t and u channel contributions. We can expand in
the orthogonal basis of the QQA‘#H( t)

t 2A +£ Q)
Mé):(]’é’ Z Q ¢ A 0 EM/ (3) 5 (417)

with

(t) kp(s) ™! dt Q2A¢+€( 2
9aZ0,0(8) = @A(z,—s)/%i (s —Ag)(t+ Ay)
Cre(3) (s = Ay) 2A¢+€(
F(A¢ — S+ 1)2

(4.18)

8) -

The second line makes clear that this contributes to the single pole, like the second terms
of (4.6) and (4.8). Thus we have

q(Altz)e\o ke(Ag)~ Qmﬁe( Ag) (4.19)

(Lu)

AZ0,0[0 8 explained above.

with an identical contribution to ¢
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4.3 The bootstrap constraints

We are now ready to put together the expressions of the last couple of sections together to
write down more explicitly the bootstrap constraints in this case of identical scalars. The
constraint from the vanishing of the residue of the double pole is

2, 2t
Z (CA7£q(A,;) +2 Z CA,f’q(Axl)g/) =0 (420)
A#£0 V4

where the factor of two comes from the equality of the ¢ and uw channels. Note this is true
individually for each ¢ =0,1,2.... Here q(AZ’;) and qg’?
term in) (4.6) and (4.9).

The constraint from the residue single pole gets a contribution from the identity op-

are given respectively by (the first

erator as well, as we saw in the previous subsection.

1, 1, 1t
2q(A:2),€\0 + Z <CA,€‘J(A,Z) +2 Z CA,Z"J(A,@E@/) =0 (4.21)
AZ0 %

with qu’j),qg:;‘)ﬁ,, q(Al’:t%mo given respectively by (the second term in) (4.6), (4.10), (4.19).
With the above normalisation of the identity operator contribution, the coefficients ca g
are related to the square of the OPE coefficients Ca ; by a normalisation factor — ca ¢ =
CaMa . The factor Na 4 is worked out in appendix C.

o T'(A - 1) (52) 0— A+ A1+ Ay
AL (U +A -1 —h+ A2 +A—1) 2
XF<A+A1+A2—2h+£>F(z—A+A3+A4)

2 2

<A+A3+A4—2h+£>
x I 5 .

(4.22)

This will be important in what follows to extract out the physical OPE coefficients from

our equations.

5 The € expansion

One of the physically very important nontrivial fixed points of the renormalisation group
is the Wilson-Fisher fixed point in three dimensions, which governs the critical behaviour
of the 3d Ising model (and the broader universality class that governs the liquid-vapour
transition e.g. in water). We have little analytic control on this fixed point, as yet, directly
in three dimensions other than in a large N limit of the O(N) version. The € expansion in
d = 4—e€ dimensions is a way of arriving at a reasonable estimate of physical quantities (op-
erator dimensions - which translate to critical exponents - and OPE coefficients) through a
series expansion in €, though eventually setting € to one. This is not a convergent expansion
but the idea is that the first few terms might give rise to a reasonable approximation.
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The reason to believe so is because the Wilson-Fisher fixed point is perturbative in e.
Thus to leading order in €, the beta function for the coupling g in

g = /ddx [(3¢)2 n 9M6¢4] (5.1)

2 4]

has a zero at g = ¢g* = %”26 + O(€?). Thus the € expansion is essentially a perturbative
expansion in the coupling and can be done order by order through evaluation of Feynman
diagrams. To go to even a couple of nontrivial orders in €, one thus needs to go to two,
three loops etc. This rapidly becomes tedious and also subtle because of divergences and
their regularisation. We will mention below some of the existing Feynman diagram results
while comparing with results from our approach.

Our approach via the conformal bootstrap, as described till now, is independent of
the specific form of the Lagrangian and will not need to know the perturbative location
of the zero of the beta function. We will proceed using only the following assumptions as
our input:

e There is a conserved stress tensor with A = d = 2h and ¢ = 2.

e There is only one fundamental scalar, ¢ of dimension Ay = % + O(e).

e A Z, symmetry (¢ <> —¢) is present.

We will also make some mild assumptions about the leading behaviour of OPE coefficients
which are obvious from a perturbative point of view. We focus on the 4-point function
(ppp@) of four fundamental scalars where we can apply the considerations of the previous
section. We will first look at the £ = 0 and ¢ = 2 exchanges in the s-channel which con-
tribute to only the corresponding partial waves QZA¢+Z(t)\ ¢=0.2. However, the contribution
to these two partial waves from the crossed (¢,u)-channels are typically from all spins.
What will enable us to solve the bootstrap equation to low orders in € is that all non-
trivial operators start contributing to qg’;abo‘ o only from O(e?). In fact, to both O(e?)
and O(€?), only the lowest scalar ¢? contributes. In the s-channel too, only the lowest
dimension operators with £ = 0,2 contribute to O(e?) and O(e?) respectively. Thus we can
systematically solve the equations in terms of a finite number of unknowns to these orders.
We describe this iterative procedure of solving the constraint equations below. We then go
on to apply a similar strategy to the spin £ exchange.

5.1 Scalar dimensions and OPE coefficients

Our first goal will be to determine the dimensions Ay and Ag of the scalar operators ¢ and
¢? respectively, together with the OPE coefficient Cy = Cype2- We will do so using the £ = 0
and ¢ = 2 constraint equations. The latter will involve the conserved stress tensor 7' (whose
dimension is protected to be d = 2h as well as the OPE coefficient Cy = Ca—g—2 = Cyor-
We will assume there is a series expansion in € for each of these unknown quantities above,
expanding about the free field value in d = 4. In other words, we will take

Ap=1+061e+ 0P+ 60+ 0(eh) 5 Ao =2+0e+ 0 +0(e) (5.2)
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and

Co=CL +CVe+ P+ e+ O(eY;
Co =0 + e+ P + P + O(eh). (5.3)

Our strategy will be as follows. We begin with the £ = 2 channel. We will see that our
bootstrap constraint to leading order in e will allow us to determine 6(;1) and Céo), Cél).
This will be taken as input into the ¢ = 0 equation. The leading order equations here will
turn out to determine 5(()1) and C’éo), C(()l). We can then return to the ¢ = 2 equation and go

further to O(e?). This will determine 5(;2) and 052). Finally, we return to the O(e?) terms

for £ = 0 and O(e3) for £ = 2 and obtain 5(()2), 52)3) as well as 082), C’é?’).

A. Bootstrap constraints for £ = 2 (first pass): we start with the s-channel expres-

sion (4.6). For the stress tensor contribution with A = 2h and ¢ = 2 we have,

c (2,5) _ ¢ (1+2R)2(1 4 2R)T(2 — b+ 2A,)
2h200=aht=2 = T2 U0 T ALY (L + Ag)T3(1+ T2k — DI2(1 — h+ Ag)T2(1+ Ay)

(5.4)
and the derivative,
s 14 2h)[2(1 + Ay) — RT2(1 +2R)[(2 — h + 2A
e 20 )y = 0 )2(1 + Ag) — AJT( )T %) (5.5)

2T3(1+ h)LD(2h — DI2(2 — h+ Ag)T2(2 + Ay)

The ca ¢ are related to the OPE coefficients Ca ¢ through the normalization given in (4.22).
Expanding this in a power series expansion in € to leading order, we have

. 45
Con2d8 oy =~ C5 (1 +255))e + O(), (5.6)
and
(L,9) 4505”3 (0) (1) (0) 5(1) 2
en 208 e = — o+ (268 + 15687 + 307065 ) €+ O(). (5.7)

Here vg is the Euler gamma constant.

We will argue later that all other contributions in the s-channel from spin £ > 0 fields
will start at higher order (precisely O(e?)) in e. As mentioned above, and as will also be
justified later, all contributions to qgl’;)M:Z' o, start at O(€?). Thus, to the order we are

considering, we only need to keep the identity operator contribution qgié (=2)0/=0 given

in (4.19). Expanding this in € we have,

(1,t) 15 B 47 4+ 60vg 5(1)

2qA=0,z=2|0 Y 4 ¢

e+ 0(e?). (5.8)
We are now ready to impose the bootstrap constraints (4.20), (4.21) to O(e) keeping

in mind that the above are the only non-zero contributions to this order. Thus we demand

that (5.8) cancel with (5.7) and that (5.6) cancels on its own. this immediately implies

1 1 11
s == o = = d oV =—=. 5.9
) 2 an 2 36 (5.9)

—97 —



B. Bootstrap constraints for £ = 0 (first pass): we now examine the various contri-

butions to the bootstrap conditions for ¢ = 0. We first expand qgﬂ:o in (4.6), upto O(€2),

ca00dat—o == C085 (1 +85)5 (55”(1 + 58 (cg D4 0 (—vp + 0§))
+ 0" (1+2080) o8 + 200" (1+ 20" (1 5(2>> % (5.10)
and
caoodagizo = O + (€ + CO(—ym + 61) ) e+ (032) + G (e + 8")
+ & (4% - 27wl + 26007 ) + 27E050)5(2)> €. (5.11)
2 ¢

In the t-channel we now get contributions both from the identity operator as well as
the ¢? operator to leading order in e. The former contribution is

2085 oo = —2+ 201+ ym)e = (B2 + 75) + 41+ 7)) ) €. (5.12)
while the latter’s double pole contribution is given from (4.9), after making an expansion
in €

2t 0 D)2 €
CAo»Oq(AO%:ow:o - Cé ) (1 + 5(() )> 5
Lo WY (20 W\ 4 O ( _ (2 4 45
12 (14087 (268 (14 007) + 6P (= 1+ 25")? + 44
— 2 (14 600) 46 (14850) ) ) + 0, (5.13)

while the single pole contribution (4.10), is given by,

(0) (1)y2 2
1, Cy/(1+6 €
CA()’OQ(AO?KZOM’:O =--0 ( B 0 ) + 0(63) . (514)

Setting the constant and O(e) terms of (5.11), (5.12) and (5.14) as well as O(e) term
of (5.10) and (5.13) to zero, we get,

eV =2,  c=-  amd  §&=-3. (5.15)

C. Bootstrap constraints for ¢ = 2 (second pass): we can now feed this information
back to the £ = 2 constraints going now to O(e?). We have in the t-channel, the contribution
from the ¢? operator to be

2 3
e} D€ € 1 2 2)
ca0lnt ae-0 = 193 T 363 (=1+15C8) o — 3095 + 18055 — 36005 ) + O(e*), (5.16)
and
y 72 76 (23454CK) ) — 1089 + 64857 — 120657 )
N L : +O(h. (5.17)
=2lt'= 96 10368
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As will be argued later, there are no other contributions to the ¢-channel, in fact, even
till O(€®). Thus we combine O(e?) terms of (5.6) and (5.16) and set them to zero. We also
do the same for the O(€?) terms of (5.7), (5.8) and (5.17). This gives us

1 2 37
5P = — d S 1
o T M G T (5.18)
D. Bootstrap constraints for £ = 0 (second pass): we go back to the expres-

sions (5.10) and (5.13) for the double pole contributions and go to O(e?). And then
similarly with (5.11), (5.12) and (5.14). These relations give,

(2) 34 (2) 19
=—— =_—. .19
Cy T and 9 T (5.19)
E. Bootstrap constraints for £ = 2 (third pass): the above results can now be used

to get the O(e®) pieces of (5.6) and (5.16) and the corresponding terms of (5.7), (5.8)

and (5.17). On setting the constraints to zero we obtain,'?
109 5 451
5P = — d ol = =22 5.20
© T 11664 27 52488 (5.20)

5.2 Higher spin anomalous dimensions and OPE coefficients

Now we use the results obtained above to determine the anomalous dimensions and OPE
coefficients of higher spin operators J¢, schematically of the form ¢d‘¢ with spin £ > 2.
Note that only even spins £ are allowed, because of Z5 invariance. We expect the expansion
around d = 4 for the dimension A, to take the form

Ar=d—24+L0+~v=2+1+ (Sél)é + 552)62 + 5;3)63 + O(eh) (5.21)
and for the OPE coefficient
Cooye = Cr=CO + Vet P+ 0P+ 0(eh). (5.22)

We proceed in a similar manner to before. In the s-channel we can write the contribu-
tions, from J¢ with dimension A, and spin ¢, to the bootstrap constraints by using (4.6)
to O(e)

(DY 12
(1+20) (146, )21+ 2¢)

(2,8) 27140!@) €+ O(é?) (5.23)

Aetlage = T5(1 + £)
and
Ls) a0 (1420)1(20)!
caan =27 )W
274((20)) ((1+20) (Y = €)= G060 (31 + 20)Hy — 2(1 + 20) oy — 1))
+ € @y
+O0(e?) . (5.24)

19This can be computed in an O(N) theory (with N identical scalars). It matches with the large N
result, given in [82, 92]. This calculation is detailed in [93].
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This contribution cancels against the identity contribution in the crossed channel

o) 20 2 420l — Hy - Hyp)

A=0,0['=0 ()3 +e€ g +O(é%). (5.25)

The cancellation of the single pole contributions (constant term as well as O(e)) in (5.24)
and (5.25) as well as that of the O(e) term of (5.23) by itself (since there is no double pole
contribution from the crossed channels) gives us

2 (01)*(2H; — Hy)
20)!

oM =—1, V= and OV =— (5.26)
Once again, all other operators give higher order in e contributions and hence could be
neglected.

Moreover, even when we go to O(e?), we need to only additionally include the scalar
#? in the crossed channel. Thus what we need are (4.9) and (4.10) for general £. We will

not explicitly show here the O(e?) expressions for qgl(;tz o since they are cumbersome.

=0’
We refer the reader to appendix E. The bootstrap conditions to O(e?) after combining with

the corresponding cumbersome piece from (5.23) read as

(25) | o (2.t) B 5@ _ (1 6 €2 o7
et s semilen] =0 = 0= (1) B o

The corresponding constraint from the single pole then determines the OPE coefficient.

1, 1,t 1,t
[Cm,zqg g QCAO,OQ(A()%M’:O + 2q(A:2),£|0} 2 0

@ _ r2(0)
= OO = e 2+ 1)

+4(L+ 0 Hp (=3 + €+ 02 —540(1 + ) Hap) + (1 +£)( —2(—6+ €+ (%) Hy

(12 +2160(1 + £)2H?

+540(1 + 0)HE, + 27¢(1 + €) (2H§§> . 3Hé2)) )) ) . (5.28)

Here HY = S r_1(1/k?) is the generalized harmonic number of power 2. One can
proceed to O(e3) and obtain 5é3) since we know Ay to O(e) and Cy to O(€?). Once again
we just give the results.

2, 2.
CAf’eq(A;l? + 2CA0’Oq(Ao}|5/:0] €3 =0

(3)  3730% — 3840 — 324 + 10943(¢ + 2) — 4320(¢ + 1)H,
¢ 5832(2(¢ 4 1)2

(5.29)

Furthermore we can also obtain C’é?’) for any £ by looking at the single pole equation to

this order in €. In our present approach, a closed form expression is difficult to find; we
can explicitly solve for various values of ¢. However, using a different approach in [87] one
can find a closed form expression for any ¢ which is given below.
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5.3 Justification for truncating operator sums

In our analysis we considered only a few operators in the s and ¢- channels, whereas we had
a sum over an infinite number of operators in both channels. We could get away with that
because all other operators in both channels start contributing to our constraint equations,
from a higher order in the € expansion. To be precise, for nonzero £ in the s channel,
operators with dimensions greater than J¢ contribute from O(e*) order. For £ = 0, their
contribution begins from O(e3), due to which we were only able to determine the anomalous
dimension of ¢? up to O(e?). This is demonstrated in appendix F. Also in crossed channels
the residues of poles (of the v integral) in qX?Z\ » for all A and ¢/ > 0 undergo mutual
cancellations, such that their nett contributions also start from O(e*). For ¢ = 0 only ¢?
contributes at O(e?) as well as O(e3), for both of which only two residues (again in v) are
sufficient and the rest cancel one another. These cancellations are discussed in more detail
in appendix F.

These justify our being able to solve the bootstrap constraints reliably to the order
in € that we have done above. At the same time they also show that going beyond these
low orders in € is difficult using only these constraint equations since we would need to
introduce an infinite number of other operators (both in the s and ¢-channels). Thus we
are unable, as of now, to compute the O(e®) anomalous dimension of ¢? since many higher
dimensional scalars will contribute to O(e) of qgl:;io and qg;):o\O' Similarly, to determine
the order O(e*) anomalous dimension of J*, we will have to enumerate and resum all the
infinite number of poles of the spectral function.

However, lest this sound dispiriting, we should hasten to remind the reader that we
have looked at the very simplest constraint (of four identical scalars) and that too for
the simplest spurious poles (at s = Ay). As mentioned above, there are spurious poles
(including primaries) at s = Ay + m. We expect there to be powerful constraints from
these additional poles as well as correlators, which can give a more systematic way to
perform an e expansion (or indeed for any other small parameter) systematically. We hope
to report on some of these aspects in [87]. It is not clear physically why only one operator
does not suffice beyond O(€?), and right now it is only a technical observation. Whether
it is possible to go beyond O(€?) in a similar way, through a clever choice of combination
of equations or some modification of the scheme, is currently under investigation.

5.4 A summary and comparison of results

We first pull together the term wise results obtained above and summarize, highlighting
the new results obtained for the OPE coefficients, and then compare with some existing

calculations.

5.4.1 Anomalous dimensions
We find for the basic scalar field

1 109 .
A¢:1—5+—62+£3

4
51 108 116646 +0(e%). (5.30)
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The dimension of ¢? is given by,

2 19
=2— e+ ¢ %). 31
Ag 36+1626 + O(€’) (5.31)
This agrees with known results to this order [4-8].

For general spin ¢ we obtain

Ag:d—2—|—€+<1— o

¢ 3) 3 s
— 32
6(6—1—1)) + 46,7+ 0(€") , (5.32)

where (5§3) is given by,?"

53 37302 — 3840 — 324 + 10903 (¢ + 2) — 4324(¢ + 1) H,
e 5832(2(¢ 4 1)2 '

(5.33)

This matches precisely with the results of [79]. What is noteworthy is the relative ease
of obtaining these results compared to the formidable Feynman integrals over a growing

number of diagrams that need to be carried out.

5.4.2 OPE coefficients

While we have not yet been able to go beyond Feynman diagram computations for anoma-
lous dimensions (though we hope to eventually!), the results for OPE coefficients are es-
sentially all new. Feynman diagram calculations for three point functions are much harder
than for two point functions. But in our approach, the two appear more or less on the
same footing and the bootstrap constraints enable us to solve for both simultaneously.
The simplest OPE coefficient Cyg442 = Cp is given by,
34

2
CO =2 — §6 — 562 + 083)63 . (534)

The order €2 piece is new. We note that if we take as external input the order ¢* anomalous

dimension of ¢? i.e. 5(()3) = % — %(73), computed using Feynman diagrams [76], we can

use the equations of section 5.1 to obtain the prediction

B _ 611 23(¢(3)
0 7 4374 54

(5.35)

For the higher spin OPE coefficients C; it is best to write the expressions in terms of
the free theory or alternatively, mean field theory values. Thus

2(6(0+1)"1+2(02+¢—3)H;, — (¢ —2)(¢ + 3)H.
G _ PO D)7 AT+ IH - (-2 25)+c,(f’)e3. (5.36)
Cjree 540(¢ + 1)

Here, in our conventions

2
— 2%h —
ciee _ 204D ;) L((+2h-3) (537)
0T (h — 1)°T (2h + 2¢ — 3)

20Tt can be checked that this function vanishes for £ =2 !
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The c§3) can be computed individually for specific £. The first few are given by,

= 20 o = 30T () _ 3065024719
2717496 47 699840 6 7 72613648800

(3 _ 45230019647 (3) _ 16447155548067179 5.35)
8 7 834534005760 107 985712467504710400 :

This process can be automated to calculate cf’) for any arbitrary ¢. Both the O(¢?) as well

as O(e3) terms are new results (except for £ = 2 which was known to O(¢?)). The O(e?)
values are found to obey a closed form expression in £ given by,

3 1
¢ 583202(4+1)3

+0(24 + £(241 + 1090(€ 4 2))) + 216£(¢ + 1) Hog] + (€ 4 1)|[324 — £(—384 + £(373

(324 +12(59 — 220)¢ — 4326(0 + 1) HZ + 2(¢ + 1) H[~162

o+ 1004(¢+ 2)))] Hog + 5400+ 1) (=8 + 300+ D)HP =20 = 2)(¢+ 3)H ) |)
(5.39)

It will be shown in [87] how this general expression can be obtained.
Interestingly, the OPE coefficients are even simpler when compared to the mean field
OPE coefficients.

Ce :1+ 62 (€(1+€) (Hgg—Hg_l)—l)

CMET 902(1 + £)2
€3

+ 486¢2(1 + £)3 [

+ (1 + 0)Hy (2202 + 40 — 27 + 360(1 + £)Hap) + (1 + £)( (27 + 320 — 22¢%) Hoy

+ 1801+ 0) (3HY,) — 2H))| + O(). (5.40)

27 4 (59 — 220)¢ — 364(1 + £)*H}

Here Cé‘/f FT are the OPE coefficients in a theory where we have only disconnected (or
identity operator) contributions but the dimension of the external scalar is given as Ay, as
in the interacting theory (5.30). They are given by

CMFT _ AT2 (0 + Ag)T (£ +2A, — 1)
¢ T2 (Ag)T (204244 — 1)

(5.41)

5.4.3 Comparisons with numerics in the 3d Ising model

The OPE coefficient C'y involving the stress tensor has a special status. It is related to the
so-called central charge ¢ by the formula

al2A§>
= 42
= G120, (5.42)
Using our expressions (5.36), (5.38), for £ = 2, we have
er 52 23363 4
=1—— - . 4
Ciree 521 sas Ol (5.43)
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1 — (cp/edre)

4-d

Figure 2. Plot of fT against €, showing its variation in 2 < d < 4. The dots indicate numerical
bootstrap results [94]. The dashed red line indicates the analytic result with only the O(e?) term.
The smooth green line is the one including the O(e3) and gives a more closer match.

This matches with the O(e?) term obtained previously [80-82] but the O(e?) order is new.
We can put € = 1 here and obtain

[ r ] = 0.9579. (5.44)
1

Cfree
€=

This can be compared with precision values for the 3d Ising model obtained by nu-
merical bootstrap [32, 33], ¢1/Ctree|numerics = 0.946534(11). We see that adding the O(€®)
terms gives a better estimate than what one gets from only the O(e?) term (which gives
~ 0.98 for the same ratio). In fact, we can compare our analytical expression (5.43) with
numerical results in 2 < d < 4 dimensions. This is shown in figure 2.

While controlled numerical results are not yet available for the higher spin OPE coef-
ficients, there are some estimates with not very clear error bars for the spin four coefficient
which we can compare our answers to. Thus putting e = 1 in (5.36), (5.38), for £ = 4, our
value for Cy = 0.00489. From [95], using our normalization,?! we get C; = 0.00476 which
is in good agreement.

With increasing spin we need to keep higher orders of ¢ in order to get a better
estimate with e = 1. A rough estimate can be made for what order of ¢ we need to keep
with increasing spin, by looking at the free theory OPE coefficients. Since we know Cfre

in any dimension, we can compare Cﬁ”ee in an € expansion with ¢ = 1, with Cfree The

4—e
table below indicates the minimum power of €, expansion up to which, the Cfree _. gives

more than 99 % agreement with CIres.

powerofe |34 |5|6| 7| 7| 8
l 21416811012 | 14

From the above table we can get an idea of the order in e required to get a reasonable
estimate for the Ising model. For example, for the spin 10 OPE coefficient, barring any
numerical coincidence, we may need to know till O(¢”) before getting a good match between

2n [95] the normalization is such that Cfr*® = 2272¢,
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€ expansion and future numerical estimates. For larger spin the OPE coefficients actually
get close to the mean field theory OPE coefficients Cé\/l FT A comparison of OPE coefficients
for the first few spins obtained from e-expansion against those obtained from numerics, is
given in appendix H.
Coming back to anomalous dimensions to compare with numerics, we have for the
higher spin currents, e.g. for { =4
7e2 6991€’ .

Apy=6— et
== 0= et o0 T 583200

Without the O(e?) term the value is ~ 5.013. With the O(€®) term we are in better
agreement with numerical bootstrap [32, 33, 95| which gives Ay ~ 5.0227.

' 5.02495. (5.45)

Q

Another cross-check we can perform is by expanding the O(e?) anomalous dimension
in (5.33) at large ¢. this gives

5®) _ os® _ 11— 1875 — 18log(0)
1" 24302

(5.46)

Note the appearance of log £ at O(e®). This behaviour matches exactly with the prediction
of [43] and the precise coefficient agrees with what we will find in the next section.

5.5 e-expansion in other dimensions

The method introduced above can be used for theories in other dimensions too. Here we
will consider two: i) ¢ theory in 6 — ¢ dimensions; and ii) ¢% theory in 3 + ¢ dimensions.
Once again we will assume no prior knowledge of the Lagrangian. Our starting assumptions
are same as for the ¢* theory, except that for ¢3 in 6 — e dimension, we will not assume
any Zo invariance.

5.5.1 ¢3 in 6 — € dimensions — a non-unitary example

Let us start with qgljézo. The fundamental field has the free theory dimension %. So,

in the interacting theory let us write the dimension as,
1
Ap=2+06e+0(). (5.47)

In this theory the exchange operator can be ¢ itself. With ¢ as the exchange operator, we
have using the general expression (4.6),

. 1+ 35
¢

Here C'(()O) is the zeroth order of the OPE coeffcient for the exchange Cysy = C(go) + C(gl)e +
O(€2).

Now we will look at the t- and u-channel. As before, we observe that only the lowest
dimension scalar gives the leading contribution in the ¢ (u) channel. In this channel we
find from (4.9),

(2,t) _ (2,u) _ 2(0)
CA¢70qA¢,€=0|E’=O = CA¢70qA¢,€=O|Z’=O = 300 + O(G) . (549)
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Now summing up the s, t and u channels, we get

(2.5) (2.t) _ uvy_ o
CA¢,KZOQA¢7@:0 + 20A¢7€:0qA¢,f=0|€’=O 0 =0 = (5¢ = —§ . (550)

This agrees with the results of [96].
We can also look at the single pole contribution of (4.6) and (4.19), which give,

 __ G O( 91 _ 19 1
CAévoqA¢,Z:0 - W + (6 )) QA:M:W/:O = —12. (55 )
(o +3)
From this we get,
1,s 1t 0 2¢e
[CA@OQ(A@%) + 2q((],0|2]LO =0 = ¢ = -3 (5.52)

Note that C(go) ~ O(€) is negative.?? This is a reflection of the fact that ¢ ind = 6 —¢
)2 2
(4m)d/2 _35
negative at the fixed point, if € > 0. Our above result is consistent with this since Cy is

is

is a non-unitary theory. It is well known that the square of the coupling

proportional to the square of the 3-point function (p¢p¢p) ~ A. Note, once again that this
result could be obtained only because all other scalars start contributing from a higher
order in e. In the ¢ channel, we find a similar cancellation, as described above for ¢* theory
in 4 — e dimension, for heavy operators. A more careful and systematic analysis can extract
more information. We leave this for future study.

5.5.2 ¢% in 3 4+ € dimension

Zo invariance is preserved in this theory, and the external operator cannot appear in the
OPE. So let us start with the ¢ = 2 conserved stress tensor expression, in order to get the
dimension of ¢. Again, using (4.6) and (4.19),

512(1 — 26)

CQh,OQéi:Sz)ZQ = Céo) 972 ? e + O(€%)
Lo 102405
C2h,0€léh,g):2 = 7%22 + O(e)
ay 32
Sab =33 (5.53)

Here as before, (5251) is the first subleading correction in Ay = % + 5((;)6 + O(e?) and Cy =

C’éo) + O(e) is the OPE coefficient Cyy 2. In the ¢, u- channel all operators are found to
contribute from a higher order in €. So we immediately get the expected (free field) answers

1
oy = 5 clV ==, (5.54)

220ur results are in agreement with the recent work [99].
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Now let us use this and look at ¢ = 0. Here we get,

5(1)

2, 0 -
CA¢270q(A:2),£:0 = C(g ) 027[_ € + 0(62)7

17
CA¢2,0q(A¢Z)7@:0 — % + O(E) )
Ly _ 2

q0,0|0 - _ﬁ ) (555)

where we have A2 = 1+(5(()1)6+O(62) and the ope coefficient C 2 = (()0) +0(e). At O(€?)

for q(AQ’S) and O(e) for qg’g), there are an infinite number of scalars that can contribute.
Also in the t channel q(z’g')g, generically begins from O(e?) and q(Al’;l)e, begins from O(e).
Hence we get,

V=1, cV=2. (5.56)

These results are consistent with the known results of ¢% in 3 + ¢ dimensions [97, 98].
It will be interesting to take the analysis beyond these orders, and find the anomalous
dimensions and OPE coefficients systematically. In this paper, we will not pursue this
problem any further.

6 Large spin asymptotics

6.1 Strongly coupled theories

Our formulation in Mellin space can be used to obtain results for large spin operators for
a general scalar CFT in any dimension. As before, we shall consider a correlator with
four identical external scalars (A; = Ay). We could then consider exchange of bilinear
operators of the form O, o ~ pO"0%¢ with large spin (£ > 1) and assume there exists an
operator of minimal twist in the OPE. This is the context studied in [83, 84]. We will
limit our study to operators with n = 0 for reasons mentioned below. We will show that
the Mellin formalism easily reproduces the results [83, 84] for the anomalous dimensions
v¢ and OPE coefficients Cy at leading order, of the large spin operators Oy, = J ¢,

In the s-channel, we will be employing our workhorse (4.6) which we reproduce below

CﬂtA,g@*ZF(QA(ﬁ +0—h)
(l—A+204) 0+ A+2A4 —2h)
Cg‘nA,gﬁpng(?A(b +0—h+1)
(L—A+ 2A¢)2(ﬁ +A+2A4 — 2h)2"

capdy(s) = —

+ (s —Ay) (6.1)

We have included the normalization Ma, from (4.22), which for identical scalars, is

given by,

(AP -h+ AT(L+A 1) o
M ra— (552)r2 (%) I (w) ‘ (6.2)

We will presently take the large ¢ limit of these expressions.
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Now let us go to the t-channel. First, there is the disconnected part of the Mellin
amplitude given in (4.19). The main trick that we will employ for the large spin analysis
is to use an approximate form for the hypergeometric function that QTM is given in terms
of (see appendix G),

(6.3)

—n,kl,kg' 1:| n_kQF(kl — kz)F(ng)F(l@Q

F )
s 2[ s, T (k)T (k3 — ko) T (kg — ko)

when n — co. When applied to the QTH polynomials this is the same as requiring £ > 7, t.
Since one is applying the bootstrap equations for finite values of (7,t) in comparison to ¢,
this is justified. One thus has

200737 T2 (T + OD(—1+ 5 —t +0)

T+Z
= 4
Q () = 2(—t)0(—=1+47+20) (64)
Using the above approximation in (4.19) we get for the disconnected part,
3
2**+€+2A¢ Lp—t
08 o= g +0(1/0). (65)

A=0,£]0 FP(A¢)2

Now let us examine the rest of the ¢t and u channel amplitudes. Here we will need the
assumption that there is a single operator of minimum twist and that all other operators
are separated from it by a (large) twist gap. This typically happens in strongly coupled
CFTs and hence the title of this subsection. We will denote the twist and spin of this
minimum twist operator as 7, and £, respectively. From our analysis it will become
apparent that the operators with higher twists will contribute at subleading order.

We begin with (4.8),

(®) 2, 1t
qA Z|€’( ) = q(A,é‘)Z’ + (S - A(Zﬁ)q(A’g‘)f/ ) (66)

where we have from (4.7)

-1
Sheme(() [ ihar (G- som s,

(6.7)
< i), ()P ( At A¢) Qi ﬂ

T:2A¢

We remind the reader of the notation Ay = %‘” and g = h_’é_él. We will now use
the approximation (6.4) for QTH. Then the only poles for the ¢ integral are given by
t=MX—Agandt= Ay — Ag. The residue of the other pole in ¢ from (6.4) is suppressed
at large £. The power of ¢ in (6.4) requires that we close the contour on right. At these
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poles the Mack polynomial simplifies and we get for general 7, and £,,,
(2,t)
CAm AN, 0]t
= Coa Myt Kit(Ag) ! /dV€2£2€_2€nL+2A¢_1 e T e

()T (S5 D (4 Ag) T (28 — 1§ = g oty T (et )
X

w82 (b4 —1) () <(h oy — ) — y2) T(W)T (Ag+ € — 1)
(6.8)

Here C), = Cy,, is the OPE coefficient of the minimal twist operator. Since there is a

factor ¢—V/2

we must also close the v-contour on the right. The leading power in ¢ will
come from the smallest positive value of the v pole. Thus we pick the denominator pole
at v = A,, — h = 7, + £, — h. The only other possible pole, lying inside the contour, is
from I’ (—1 — % +l—35+ %" + 2A¢) and its residue contributes at subleading order in /.
Thus, to leading order, for large ¢, we get a simple result,

(2,0) 275 H=3lm A28 =T Ly~ (0 4+ TN T (b + Ay + % — B)° T (b + 7o — 1)

N VAT (L — B+ by + Tiy) T (2ntm=1)

(6.9)
This is the double pole contribution. Associated with the single poles is the second term

in (6.6),

. dtdv T\ (T 5
a5 e, = /27m o [2K£<2> F2<2 " t>F(A2 e

T T
< i, el ©PY <2 — Ayt A¢> Qe,ﬁg(t)] .
T:2A¢
(6.10)

For large ¢ this integral can be done in a way similar to above. We simply quote the result,

N q(l’t) _ Cm2€+2A¢*%e££—é—m (log (%) — (gm + %m)) T (20, + ) |
mtm AN, |, WF(A¢_T7m)2F(£m+T7m)2

(6.11)

From (6.5), (6.9) and (6.11), we find qX)mvéwm to be suppressed by an additional factor of
£~ compared to the identity or disconnected piece. Since 7, was assumed to be the
minimal twist, any other operator (contributing to the same ¢) in the ¢ or u channel will
have an even more subleading contribution.

The fact that the identity operator dominates implies that at large £ the theory behaves
asymptotically like a free theory. In other words, the operators O, , at large spin, have
their dimension of the form, A, , = 2A4 + 2n + ¢ + v(n,¢), where v(n,£) must be small
at large £. As mentioned before we will limit ourselves to only the n = 0 operators, and
denote y(n = 0,¢) = ~y,. This is possible because the contributions of operators with n > 0
to both the terms of (6.1) are suppressed with extra factors of y(n,¢). This is because of
the denominators, which are small only for n = 0.
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In (6.1) we insert A = Agy =2A4+ £+, and Cp = Clgo)(l + 0C), where 6C is OPE
coefficient correction due to the minimal twist operator. The single pole term on the r.h.s.
of (6.1) becomes,

_9 04+2A,—3

930+4A, 26@(;) t284—3
C(O) 4
¢ m3/2

+ O(1/£,5C, 7). (6.12)

We have indicated the various subleading terms as ones coming from an explicit % expansion
as well as those proportional to 6C and -, which are also down by powers of %. Now the
leading term in (6.12) must cancel the leading term of the Q¢ component of the ¢ and u
channel. As we saw, this comes from the disconnected part, which is given by (6.5). We
therefore get ,
0 23—24—2%\/7;(%)5*2%
N [ (A4)*

This is, in fact, nothing but the leading large ¢ behaviour of mean field theory OPE
coefficients (5.41).

To find the anomalous dimension ~,, we use the constraint from the double pole term

C! (6.13)

in (6.1) which simplifies at large ¢

(0) 1—¢ —3+0+2A
47 T (2A {—h @
LM T2+ 1) D o

— _ 0)_—3/260-3430+4A, ¢ L
(= A+2A0(+A+an, —2p)  Ce ™ 727 e'”(e

Demanding its cancellation with double pole terms of the ¢ and u channel amplitudes (given
by (6.9)), we get,?3

Yo =—C 7

22 (Ay) T (205, + i) ™
"t ) .

This result agrees with those obtained in [83, 84] by very different techniques.
Finally let us compute the leading correction 6C' to the free field OPE coefficient. For
this we expand the single pole term in (6.1) to its subleading orders.

9= HH2AG L=t 9= 52N oly—L (5C /2 — ypry, + 2og 27, — log(£)e)
2 + 2 '
l(Ay) I (Ag)

(6.16)

Now this must cancel with (6.11). Note that in the above expression the O(1/¢) correction
term has not been considered since it does not involve the minimal twist operator. It
cancels with the subleading O(1/¢) term of the identity operator piece, just like the first
term of (6.16) cancels with the leading term. Both the anomalous dimension v, and q(Aljg
are suppressed by factors of £ from the leading terms, and hence we expect dC' to receive

contribution only from them. In this way we find

207 (ve —10g2 + ¢ (b + 7)) T2 (Ag) T (260, + 7o)

5C =
2 (8p = 75) T2 (ln + 73

(6.17)

This again agrees with the results of [83, 84].

%3Here the OPE coefficients are normalized such that (pdpe) = (x32234)2? (1+ Cru™/?(1 —v)*m +--.).
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6.2 Weakly coupled theories

In this subsection we will carry out a similar large spin analysis but for “weakly coupled”
theories. This will be a somewhat broader notion in that we merely require that the
anomalous dimension of the fundamental scalar as well as that of the higher spin operators
J* be small. Thus we will have a near continuum of higher spin operators, instead of just
one as in the previous section, with minimal twist. To make this more precise we write the
dimension of ¢ to be

d—2 (1)

Ay = — +7  where 7y =gd," + 925(;2) +0(g%). (6.18)

Here g is a small parameter. We keep the precise definition of g ambiguous, so that we
can fix it to be any convenient small parameter available in the theory we have in mind.
In many cases, we can take 7y, to be the small parameter. But in other cases like in the
€ expansion (where 74 o< €2) the expansion parameter is more naturally the anomalous
dimension vy of ¢2. In anycase, we will assume we can expand the dimensions of the higher
spin operators J¢ also in g. Hence we have,

Ap = 20+ 0+5 = d—2+0+ g6 + g22 + 0(g%). (6.19)

This notion of weakly coupled theories includes not only perturbative CFTs (like the
Wilson-Fisher point in d = 4 — € dimension) but also others such as the 3d Ising model
which has a sector of operators with small anomalous dimensions.

Now we have two perturbative parameters at our disposal: 1/¢ and g. We will work in
the regime where /! < ¢g. Thus we will expand in large ¢ first and then expand in small g.
In the s-channel the leading contribution is given as in the previous subsection by taking
the large ¢ limit of the Lh.s. of (6.14)

5

ca, g ) = 2R ey

AVEATSS T (d_2)2 :
2

(6.20)

Coming to the t-channel we now have to take into account the contributions of the
infinite number of operators J¢ whose twists lie very close to the minimal twist. Let us
denote their OPE coefficients as Cy. To get the contribution of each of these, we put
Tm = 204 + ¢ and £, = ¢ in (6.9). This gives,

(2;%) L4030~y g t—2h 2y —2
CAZUZIqAZ/,[M’ = — Celmd_2+zl+2,}/¢+ve“zl2 2 'YZle g Ye! Vo

I‘(é’—l—h—l—W)F(h+€’—2+%+2fy¢)21“(£’+2h—3+w+2fy¢)

\/771“(h+€’—1+w+27¢)1“(w+h)

X

(6.21)

We now have to sum over ¢ and this should cancel against (6.20). Now let us use (6.19)
and expand the above in g. In addition to an overall power law, we get an expansion in
log ¢ from expansing the piece (77 in a power series in g. Thus we find an expansion of
the form,

CA/’Q(AQ:;\)E’ = g2f0(log l) + 93f1 (log ) + --- (6.22)
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In the above expansion, fp(x) is a polynomial of degree p. This means the O(g?) term has
no log ¢ term. The log ¢ dependence enters at O(g%), (logf)? at O(g*) and so on. Using
this to evaluate vy, we get,

ao(g) + a1(g)log £ + as(g)(log €)% + - --

where,?*
2
92h'—3 _5(’1) p 5(,1) _ 25(1) T(h—12T(h—L4 ¢
ap:_chlg2+p < f) (5 ¢> ( Pr(h—g+ )+O(93+p).
7 2yl (h+ 0 —1)
(6.24)

So we have a precise form of a; up to the leading order in g. The order of g was also
predicted in [43]. Any CFT satisfying (6.18) and (6.19) will have large spin anomalous
dimensions given by the above. However there are situations where this formula can be
made more compact. Below we discuss two such special cases.

6.2.1 CFTs close to a free theory

We can apply the above considerations to theories which are perturbatively near the free
theory limit. The ¢* theory in d = 4 — €, or ¢% theory in d = 3 + ¢, etc fall under this
category. From the expression (6.24) we see that 7, already starts from O(g?). The absence

)

of a term of O(g) implies we must have 5@,1 = 2(55)1) for sufficiently large ¢'. Now every «;

has a factor of (5é,1 ) _ 259(1)1))2, so the sum over ¢ in «a; gets contribution from finitely many
¢'. We examine low-lying ¢’s to pinpoint which terms contribute to the above sum over ¢'.
For this we will use the expansion (6.19) in equation (6.1). For £ > 0 we get quite generally,

o (2h + 2 — 3) (5@1) - 25;1)) (20 + 20 — 3)2

— 2
U0t0 = 9T (4 £~ 1T (2h 1 £ — 3) T0@).  (6%)

In this expression, we are only considering only the higher spin operators J¢. There can be
other higher spin operators as well, but taking a cue from perturbation theory, we assume
their OPE coefficients would be Ca 4 ~ O(g?). Thus they would not contribute to leading
order and the s-channel answer to O(g) is simply given by the above expression.

Now it can also be verified that for any operator in the t-channel, we have,

%,mfjﬁf@ =0(g°). (6.26)

This is true for any operator in t-channel with the form A = m 4 O(g) with m being an
integer > d—2+/¢'. The t-channel thus starts from O(g?) for all A and ¢'. For the s-channel
double pole in (6.25) to cancel to O(g) we must have (Sél) = 25;1).

However this is not the case when ¢ = 0 in the s-channel. It can be checked that for d

close or equal to either two or four dimensions we can have qg 1—o and qu) o=o|¢ starting

Z4Here the OPE coefficients are normalized such that the large spin mean field theory OPE coefficients
are given by (6.13).
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)

from the same order in g. For this reason, generically (5?:)0 #+ 25(551 in these cases. Then we

see that the sum over ¢ in (6.24) gets contribution only from scalars

2ep (00 () )2 3+
ap = ~Co ¢ 50 (50 — 26 ) I(d—2)+0 ($*7) . (6.27)
As a check we can cansider the the ¢ theory in d = 4 — € and use the above expression
in (6.23) to evaluate the coefficient of (log¢)P terms in the anomalous dimension of the
higher spin operators. The result matches with what one gets from expanding (5.32)
at large /4.

Note that in cases where 6(()1) = 25((;) we will have a,, ~ O(g**?) for which there is no
compact expression like above. However even in cases where such compact expressions are
not possible, for any weakly coupled theory if the assumptions (6.19) hold, then one can
easily repeat the above analysis and systematically evaluate c,.

6.3 Theoriesin4<d<6

Now in weakly coupled theories (in d < 6) there is often a scalar whose dimension starts
with 2. Examples of this can be the fundamental field in ¢ theory in d = 6—¢ or the shadow
operator corresponding to ¢ - ¢ in large N critical theories. Let us call this operator o.

T =2+ 6WMg+0(g?), (6.28)

In such theories it is this o operator that has the minimal twist and decides the leading
large ¢ behavior. It is separated from other operators by a finite twist gap. So we can
directly use the result (6.15) from the strongly coupled section. We can put 7,,, = 7, and
ly, = 5 = 0 to obtain the anomalous dimension,

_ 22 (Ay) T (75) 1\"™
Ve = —CUPQ (A¢ _ %7) 2 (%7) (€> s (6.29)

where Cyy, = U, is the ope coefficient. Expanding this in large £, we get an equivalent
of (6.23) with a different spin dependence,

b ao(g) + a1(g) log ﬁ; as(g)(log )* +-- - (6.30)

Here «;(g) are given by,

(_1)P+1

(587)" (@~ 47" + 0. (6.31)

We should point out that both the results (6.23) and (6.30) are correct, and depending
on the CFT and the dimension one or the other formula will be relevant. Thus in d > 4,
the o operator having the leading twist gives the leading large spin dependence. Note that
ind=4—¢, with e = g, we can choose either of the two equations. It is the scalar ¢
that plays the role of o and has the dimension A = d — 2+ O(e) = 2+ O(€). So both
expressions can reproduce the correct large spin form of (5.32). However, in the second
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expression (6.30), the a;, must be evaluated to subleading orders of g to get the correct
result.?> Note that in this example, with d close to 4, it is still only o = ¢? that contributes
in the t channel, because other operators are suppressed when we expand in g.

7 Discussion

In this paper we have described in detail a new approach to the conformal bootstrap,
formulated in Mellin space, which was outlined in [65]. There are several directions to
investigate in the future. Below we discuss a few of them:

e Numerics: in light of the recent success in constraining conformal field theories using
numerics, it is natural to ask if we could investigate our bootstrap equations numer-
ically. We give a preliminary discussion of a possible numerical approach using the
Mellin space Witten diagram blocks. The first question to ask before we talk about
numerics is whether the basis of expansion of a four-point function is convergent.
Convergence in the case of the usual conformal block expansion is demonstrated
in [100]. In Mellin space the convergence issue of expansion in Witten diagrams is
discussed in [65]. The way we have set up the calculation, for the e-expansion, is
not very well suited for numerics: firstly, there is a residual integral over the spectral
parameter which is left to do and secondly it appears cumbersome to look at the
constraints arising from the additional spurious poles at s = Ay 4+ n with n > 0.
In order to potentially use the already existing powerful numerical algorithms that
build on the original work of [16], we should try to look at our equations around a
specific point in (s,t). As a function of (s,t), the natural choice to expand around,
in our approach is s = Ay +n. Let us then consider expanding around a particular
t = to in powers of (t —tg) (with 9 < 0). This can be viewed as an alternative to
expanding in the continuous Hahn polynomials. The constraints obtained by setting
the coefficients of the various powers of (t—t() to zero are infinite linear combinations
of our previous constraints.?® It can be verified that in this way or organising the
equations, the leading order in ¢ result for the anomalous dimension of ¢? is easily
reproduced (higher spin operators start contributing from the next order itself unlike
for the partial wave approach). For the following we will choose to expand around
t = —Ay. We will focus on the double pole or log term only. The leading order
constraint will be given by the vanishing of the double pole residue

—0, (7.1)

ZCA,g <M§)e(s,t) + MX?Z(s,t) + MX‘}(S,If)) NN
s=0g t=—A,

A

where ca ¢ are the same coefficients of expansion as in (4.2). Below we plot the
individual spin contributions to the Mellin space Witten diagram blocks in figure 3.

25 Another verification is possible for a large N critical model, where the large spin behavior of singlet,
tracless symmetric and antisymmetric higher spin operators [61] can be correctly reproduced. This is
elaborated in [93].

26Tt may well be that for this combination, the sum over A,¢ converges faster and is therefore better
suited for numerics.
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Figure 3. Plot of the sum of all three channels for a scalar
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Figure 4. Plots showing the variation of spin-2,4 and 6 blocks (sum of all three channels) as a
function of the dimension of the exchanged operator dimensions (A). All of these plots are mostly
positive except for near the unitarity bound given by A &~ d —2+¢. The sign flip near the unitarity

bound is given by the inset plots.

This will demonstrate how one may hope to see a bound arising from these numerics.
We will restrict to d = 3 and take as input (purely for illustrative purposes) Ay =

0.518 which is the value for the 3d-Ising model.

As is clear from the spin block plots, close to the unitarity bound (A ~ d — 2 + ¢),
the spin blocks are negative but positive elsewhere. The scalar block on the other
hand is positive only for a small region of A = Ay € (1.034 — 1.733) (see figure 2).
In the rest of the range of Ag, the scalar block is negative. If we assume that
the non-zero spin operators, which contribute most to the constraints, are close to
the unitarity bound (as happens for the 3d Ising model), then their contribution to
the constraint equation will be negative. So the only way to satisfy the constraint
equation would be if the scalar block were to give a positive contribution. This gives
Ay € (1.034 — 1.733) which is indeed the case for the ¢? operator. Note that we
used just one constraint for illustrative purposes to demonstrate that investigating
numerics along these directions ought to be a promising future endeavour. Of course,
one needs to demonstrate, since there is an infinite sum over the spectrum A, #, that
the resulting numerics converge. Our preliminary investigations, of theories living at
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the border of the known allowed regions, using presently available numerical methods,
does suggest that the approach above will lead to convergent numerics.?’” A more
thorough investigation of this issue should be carried out.

o Higher orders in e¢: we have had striking success in using our approach to obtain
results to O(e3) — therefore it is natural to ask how to go to the next order in
the e-expansion. Indeed one would like to know if there is a systematic approach
that allows one to go to any arbitrary order in the expansion, if one so desired.?®
Once we set up the formalism obtaining the O(e?) results was conceptually and
mathematically straightforward (though, perhaps a bit tedious) and needed very few
and rather mild assumptions. The two main inputs were the existence of a conserved
stress tensor and the leading behaviour of OPE coefficients for higher order operators
which we know from the perturbation expansion — for instance Cy442 begins at O(€?)
since it is the square of the OPE coefficient which is assumed to be O(e). We had
pointed out in section 5, that at O(e?), the constraint equations at the spurious pole
(s = Ayp) involved an infinite number of operators. However, it is plausible that,
by appropriately combining the enormous amount of information in the additional
constraints at s = Ay + n, one can give an algorithm to continue to higher orders
in € in a controlled manner. Furthermore, we have only investigated the case of
identical scalars. Thus we may need to combine the information from other spurious
poles with correlators of other scalar operators. At present, our approach yielded
information about operators which were bilinear in the elementary scalar ¢. It is
possible to extend our results to operators with higher powers of ¢ [87], for which
some information is known in the e-expansion [101-103]. At some stage we expect the
non-unitary behaviour in 4 — € to show up for some large dimension operator [104].
Our approach, however, did not crucially rely on unitarity as the non-unitary example
in 6 — e showed and should be able to capture this behaviour in 4 — € dimensions. It
will also be interesting to use our approach to study the theories in higher dimensions
considered in [105-107].

e Other small expansion parameters: we have studied our equations with two small
expansion parameters, namely ¢ and %, and found quite remarkable simplifications.
It will therefore be interesting to investigate our equations when we have other small
expansion parameters. These could be, for example, large dimensions for external
operators, large spacetime dimension d limit, strong or weak coupling limits and of
course, large N. In these cases one might hope to have similar simplifications which
organise the bootstrap conditions so that there is a controlled way of incorporating
the contributions from different families of operators. Recently in [108], a systematic
procedure has been outlined to solve the conventional boostrap equations in the
large spin limit using “twist blocks”. These twist blocks resum the contribution of

2"We thank Slava Rychkov for suggesting this check.

Z8Note that the e-expansion, like any perturbative QFT expansion, is only an asymptotic one and needs to
be Pade-resummed to obtain something useful. The question is whether there is an in-principle systematic
method to obtain the n-th term in this expansion using our Mellin space approach.
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all operators of degenerate twist and different spins and appear to be a useful way
to compute the anomalous dimension of large spin operators with arbitrary twists.
One could attempt a similar procedure to approximate the Mack polynomials in this
limit and set up the analogous equations in Mellin space.

Technical hurdles: in order to use our constraint equations systematically, one bot-
tleneck is the integration over the spectral parameter in the crossed channel and
another is the lack of a compact expression for the Mack polynomials. In the way we
have currently set-up the equations there were coincidences which led to remarkable
(almost) cancellations between various v-poles. This fact enabled us to go to higher
orders in € than what one may have naively expected from [12, 64]. In fact, as we saw
in our calculation, in the crossed channel only the ¢? operator contributed to yield
the nontrivial results at O(e?). In [87] we will show how to get rid of the integration
over the spectral parameter leading to an enormous simplification in the form of the
equations. This should enable a systematic investigation of a plethora of questions,
some of which have been indicated above. It will also be desirable to have a better
understanding of the Mack polynomials to see if more compact representations for
them exist, compared to the present one. One could also perhaps try to see if there
is a geometric way (in AdSg,1) of understanding our consistency conditions.?? This
could lead to a new way of doing quantum field theory for critical phenomena which
uses a different set of diagrams rather than Feynman diagrams to systematize general

perturbative expansions.

Connection with AdS/CFT: our building blocks are Witten diagrams in Mellin space.
This suggests the tantalizing possibility of AdS/CFT playing an important role to
understand the Wilson-Fisher fixed point. Of course, any such dual string theory is
likely to be in the quantum regime. In a companion paper [93], the present method
is extended to O(N) both in the e-expansion as well as in the large-N limit showing
that it works analogously, yielding the first few subleading orders. A systematic study
of our constraints in the large-/NV limit will be an important question to investigate
in the future in order to explicate the connection with a weakly coupled string the-
ory/Vasiliev theory. We do not have further insights to offer at this stage, but clearly
it will be fascinating to unearth a direct connection between string theory and the
3d Ising model.
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A The Mack polynomial

The Mack polynomials Plfse)(s,t) are explicitly known [66, 70, 85], albeit in terms of a
multiple sum

\as >\ - Ag — +t4as)g(s+1t+bs)a(—t)m—al(—as —bs —t)¢—2k—m—
PlESé 54) val Vi be (A2 — 8)e(A2 — 8)k(s as)p(s Ja(—t)m—a(—a )e—2k—m—3

Hir(li) ’
(A.1)
where
£
,_i [Q]KQkiKQEk:m ZkaﬁI‘(Z k—l—h—l)
DN —
(G r fesar e Slr k!0 — 2k)!
<€—2k> (m) <€—2k—m)
X .
m « I3
Here we employ the notation in [85]
h ¢ - h — l h —/ - h—v—V4
Alz%, /\1:%, AQZ% and A2:+. (A.2)

The Yx, a4, V3, 0, are defined in (2.17) with as, bs defined in (2.2) and the l;-s are given by,

h=X—as+l—k—m+a-_, lo=X+as+k+m—-—a+8,
13:5\2+b5+k3+m, l4:5\2—b3+€—k’—m. (A3)

B The continuous Hahn polynomials

In (2.9) we specialised the two variable Mack polynomials defined in appendix A to obtain
polynomials of degree £ in one variable.

4f (®) T
(T+£—1n@h—¢—e—1uﬂ+fw<5—2¢>- (B.1)

Note that we have suppressed the dependence on the parameters ags,bs These poly-

QT+Z( ) —

nomials have a number of remarkable properties which enable us to simplify the
bootstrap conditions.

The first is that the multiple sum that defines the Mack polynomials in (A.1) collapses
into a simple single sum which is, in fact, a familiar 3F5 hypergeometric function.

(3 —a)(F+b)e  [-6m+0-1,5+b+1t
(

T+L _
Qo (1) = T+l—1), ° T—a,T+b

1. (B.2)

Here and in the rest of this appendix, for generality, we replace the s-channel parameters
(as, bs) by arbitrary parameters (a, b).
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The second remarkable fact is that the QKAO polynomials are orthogonal and known
in the mathematics literature as the continuous Hahn polynomials [110]. They obey the
orthonormality condition,

% diT (a + g + t)F(b + % + t)F(—t)r( t—a—b)Q s QLY (t)=re(r/2)d0p ,
T J—ico
(B.3)
where,
—1)4én
Ko(1)2) = (=1)°4%! Ve+r/2,07Ve+7/2,b (B.4)

(T4+l0-12(r+20—-1)(r+0—-1)"

We note another useful property of the QZA’O polynomials (in the special case of
identical scalars) which follows from properties of the hypergeometric function 5F5.
The transformation

—n, k‘l, kQ (kg — kz)n [ —n, kl, /{?4 — /{?2 ]
F. 1| = =R 1] . B.5
’ 2[ k3, k4 } (k3 2lkayks — ks —n+1 (B.5)

Ifwetaken=/0 ki =7+L—1, ko =0b+5+t k3 =35 —aand ky = 5 + b, we see that this
gives an identity for the QTJrz For 1dent1cal scalars, a = 0 and b = 0. Then the external
factor (ks — k2)n/(k3)n becomes (—1)¢ using the reflection identity of T’ functions and we
obtain the relation

Q0 = Q- 5 1) (5.6)

Now let us use this to show that for identical scalars, and for an even spin ¢ exchange in
the s-channel, we have the ¢-channel expansion coefficient in (3.18) equal to that in the
u-channel (3.23). In the ¢-channel, qét)(s) for identical scalars is given by (4.7),

(t) dtdv _
qn W,(T/Q) =ke(7/2)” /MIQ(T/Z + )N —t = Ap)T' (Ao —t — Ay) (B.7)
X ) (V)P (7/2 = D, t+ Ag)QTE1),
while in the u-channel qg)ﬂ »(8) is given by,
W (r/2 2 AV 2 (e )2 As — Ay)D(7/2 Ao — A
e/ =rale /) [ GETOTG2 10y = BT 2 14 0= D)

x i ()P (72 — D )QEE (D).

Now if we use the identity (B.6), the above two expressions become equal under the ex-
change ¢ <+ —% — t. Hence one can conclude in general for identical scalars and even spin
exchange in s-channel, that the ¢-channel is equal to the u-channel.

Finally the more general polynomials QTM( t),

T4 4t _T
O = o, e (s g ) @)

appear at the descendant poles. However, analogues of the above nice properties of QEAO(t)

are not known for the polynomials with m > 0.
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C A key normalisation

We have been expanding the amplitude in terms of Witten diagram blocks as in (1.1) with
to-be determined coefficients ca ¢. These ca ¢ are proportional to the (square of the) OPE
coefficients Ca ; which appear in the conventional conformal block expansion of (1.2). We
need to fix the relative normalisation between the two if we are to be able to compute the
OPE coefficients Ca . We will do so in this appendix.

This is simplest to do in position space. The conformal blocks G a ¢(u, v) are normalised
such that in an (s-channel) expansion around v = 0 and v = 1 we have

A—2

GRy(u,v) »u" T (1 =)l + ... (C.1)
Thus we need to ensure that as (u — 0,v — 1)

A—¢
cA’gWg)g(u, v) =Capu 2 (1—v)f+... (C.2)
’ u—0,0—1
By explicitly evaluating the l.h.s. we will be able to obtain the relative normalisations. We
will actually carry this out for non-identical scalars for generality.

The Witten diagram in position space has the Mellin representation is obtained from
the general expression (2.4) by plugging in M () (s, t) as the reduced mellin amplitude. The
latter is given in the spectral representation by (2.23). In the integral over the spectral
parameter, we now focus on the contribution from the physical pole at v = A—h. This gives

(s) ds dt

ea Wi, 0) = ear | 55wt o D (=T (=t = ay = BT (s +t +a,)T(s +t + b,)

L(2h — A =1 (3(2h — £ —25s — A)) T(=1+ A)T (3(—€ — 25+ A))
2(A — h)T'(h — AT (=1 +2h + £ — A)T(=h + A)T(=1 + £+ A)

1 1
XF<2(€—A+A1+A2)>F(2(—2h+€+A+A1+A2)>

1 1 s
<« T (2@_ A+ As + A4)> r (2(—2h + 0+ A+ Az + A4)) Pélh,g(s,t) :
(C.3)

In doing the s-integral, we pick the pole at s = %. Actually, there there is another

contribution to the spectral integral from a v pole at v = 2h — £ — s. Evaluating the residue
at this pole, we find an additional s pole at s = % which gives an identical contribution.
Thus we will multiply the above expression by a factor of two.

To proceed we expand v’ in 1 — v. This will give,
W(S)
caeWay(u,v)
2725
TMTA R

« T <;(€—A+A3+A4)> r <;(—2h+€+A+A3 4 A4)> W53 (—1)m (1)

m

1 1
F<2(€—A+A1+A2)>F<2(—2h+€—|—A+A1+A2)>
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X /;7; <:n>r(—t)r(—t ~ay — by)T <A2_£ it as>

X r(Az_g +t+b5) Qro(t, as,bs) . (C.4)

Here we have used the relation
Py <s - #, t) =272(A —1)4(2h — A = 1),QF(1) - (C.5)
The binomial expansion coefficient (—1)™ (7;) = (—l)mr(tli(gfl))m! = (_TBM "+

O(t™1) is a polynomial in t of degree m. Therefore we can rewrite it as a sum over
the orthogonal polynomials Q?,yo(t) for 0 < ¢ < m. Since Qﬁo is normalized such that
Qﬁo(t) = 2% + O(t* 1) we must have (—1)"(}) = %Q%o@) + ---. Using the
orthonormality of the Qéo polynomials as given in appendix B, we can evaluate the con-
tribution to (C.4) which goes as (1 — v)* purely from the m = ¢ term in the binomial
expansion. Doing the t integral gives the contribution

A -0\ (1) 22
2 200 T(A—h+1)

cAjVVE)Z(u, v) = u¥(1 - v)gcA,mg<

« T <;(2h+€+ A+A+ A2)> r @(z A+ A +A2)> (C.6)

1 1
><F<2(€—A+A3+A4)>P<2(—2h+€+A+A3+A4)>—l-"'.

The omitted terms denote higher powers of © and 1 — v.
We can now combine (C.6) and (C.2) to obtain the relation ca ¢ = Ca ¢9a ¢ Where

(A — 1) (42) (AT A+A,
(=2){(+A -1 —h+AT2(0+A-1) 2
« T (A+A1+A2—2h+€> r (f—A+A3+A4> r (A + A+ Ay — 2h+€>

-1
Nay =

2 2 2
(C.7)

D t integrals in the crossed channels

This section will deal with performing the ¢ integrals in (4.7). We will carry out the integrals
for generic £, ¢'. The technique can be generalised to the non-identical scalar cases of (3.18)
and (3.23) but we will not do so here since we only need the identical scalar results. Let
us begin with the QZOFE expression, with a = b = 0, according to (B.2),

1. (D.1)

T T

e 2272400 (T +€—1) 7 |:—€,7’—|—€—1,7’/2+t‘
2002 ’

S T NG Ty

Now the hypergeometric function can be written as a sum as below,

3Fy

T T

LT =L T/2 4 1] _ f: (5 +1),(=0q(T + £ = 1),

. (D.2)
20 2 =0 a'(3),”
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With this let us evaluate the ¢-channel qg)é as given in (3.18),
(t) —1 dt 2 T _
Apgp(T/2) = Ke(7/2) o T 5+t T(Ay—t— AT Ay —t — Ay)
< 1y (P12 = At + Ag)QTE (D)

0
a T
= ky(1/2)7? Z Z/dyug?e,(y)7A1707Al70 <A¢ — 2)
q=0 m—a

_T 1 2Y(1/2)0)? (—0)q(m + £ - 1),
" (A¢ >é’—2k—m—5 [LTW) (t+6-=1)  ((1/2)¢)* ¢!

2
dt T T
x/I‘<2—i—t—i—a)I‘<2+t+5)I‘()\2—t—A¢+k)

211

X F(j\g —t—A¢—|—k‘) (;—i—t) (D.3)

In the second equality we have used the explicit forms of the Mack Polynomials in (A.1)
and Py(tg (s,t) = PIESK) (t,s). We want to compute the ¢ integral in the last line above. To do
that, we will use the integral representation of the o F; function, which is given by,

1 I'(c)
2wi D(a)T'(0)T(c — a)T'(c — b)

2Fl(aa ba G Z) =

y+ioco
X / dsI'(s)I'(c—a—b+s)'(a—s)I'(b—s)(1 —2)"°, (D.4)
g

—100

where = denotes that we have shifted the contour along the real axis so that all the poles
of the same sign lie on the same side of the contour. We can further use,

(1—z2)"7/2t = i (2:;)7”27” (D.5)
m=0

The idea is to use the above as a generating funtion for the part (% + t)q in the t-integral
above, by picking up the power of 2. So we have,

> [ dt
Z/ F<T+t+a>F<T+t+B>
= 27 2 2
X F()\Q —t—A¢—|—k‘)F()\2 —t— A¢+k)TZ (D.G)
dt T T
xT(Ag —t—Ag+k)D(Ag —t — Ay + k)(1 — 2)"7/>71.
Shifting the variables t — ¢t — s — « and using the mapping,

a= )\2+%+&—A¢+k‘;b = S\Q—i-%—i-Oé—Ad,—i-k;C: 2k+T+Oz+ﬁ—2A¢—|—A2+5\2, (D.7)
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we can write,

/dt. F(;+t+a>F<;+t+6>F()\2—t—A¢+k)F()\2—t—A¢+k)(1—z)T/2t

21
F(k—l—%‘F,B—A(b—F)\Q)F(k‘—F%+OL—A¢+)\2)
T(2k+7+a+8—20s+ X + o)

><F<l<:+;+B—A¢+>\2>F<k+;+a—A¢+>\2>

—(1-2)°

><2F1[k+2+a_A¢+>\2’k+2+OK_A¢+)\2;Z}.

2k +T4+a+B—205+ Ao+ Ao

Collecting the powers of 29, we finally have,

(T o )T (T4t 48 T =t — A+ BT —t— Ay + k) T+t
[t (5eva)rGrons) G+1)

2
e q

Tk+qg+T+a+d—A)D(k+g+T+a+i—Ay)
D(g+7+2k+a+ B+ X+ —24y)

><F<I<;+T+B—A¢+)\Q)F<k+T+B—A¢+>\2>

—a, 1—2k—q—7‘—0z—ﬁ+2A¢—)\2—/\2

F
3 1—k—q—5—0[—)\2—1—A¢,1—k—q—7—a—>\2—|—A¢,

Using this in (D.3) we get,

480 (7/2)

2
o T T
= K,g(T/Q) 1 Z Z/dVN(At?K'(V)’VAhO'Yh,O <A - 2) (Ad} - 2>
q=0 m—a 0 —2k—m—_

oL 28((7/2)0)? (=0)g(T + £ - 1),

[LTW) (r+€=1)e  ((7/2)g)?

T(k+g+T4+atr—A)D(k+qg+T+a+i—Ay)
D(g+742k+a+ B+ X+ A —2A)

XF(]{—FT+5—A¢+)\2>F<k}+T+B—A¢+5\2)

a1—2k—q—r—a—5+2A¢,—)\2—/\2

i1
1—k—q—Q—a—)\g—i-Ad),l—k—q—f—a—)\g—i-Ad)

X 3F2 (DlO)

The above expression also gives qg% o, 1n the u-channel.

Now let us see, how the expression (D.10) reduces to (4.9) and (4.10), when ¢ = 0.
In this case the sum ) goes away. In the summand, we have k = m = a = = 0. Also
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/\1:/\QZAZ(h—I-I/)/QandS\l:>\2:/\:(h—l/)/2.

4 0 2
(t) 219 — ro(r/9) -1 ou® 0, ) L 2°((1/2)0)" (—0)g(T+L—1)q4
QA’E‘Z/:()( /2) f( /2) qz% / d MA7O( )7)\1,07)\1701—[' F(ll) (7_ 4 e o 1)£ ((7'/2)(1)2

T(g+Z+A-Ay)T(g+ T+ A— A¢) < ) <T _>
A r(--A
. D(qg+7+A+X—2A0) g ~Be A g et

—q,0,1—q—T+205 —A— X ]
1*q*%*)\+A¢7 Q***)\‘FA(b

X 3 [ (D.11)
The hypergeometric 3F» simply reduces to 1. Also note that yx, 075, o/I[; T'(l:) is 1. So
we get,

“((r 2 T T <
AN go—ol7/2) = /dVN(At),O(V) W(TQ/Q()((T/??_ 1)ZF<2 — Qg+ >\>F <2 — Byt A)

XZZ: 1)qr(q+g+A—A¢)P(q+§+Z\—A¢)

7/2 D(g+74+X+A—2A)

q=
(D.12)

E g sums in the t channel

In this section, we will demonstrate, how the expression in (4.8) can lead to simple expres-
sions, in an € expansion. Here we will show this for the leading term in (4.9). Let us write
down the full expression, given by,

(25 + 2A¢) (2A¢ +l4q— 1)F(2A¢gh+y)2F(2A¢;h7V)2
Mw Z/ 1/2 A n)2)0gT (0 + Ay)?T(q + Ag)?L(2A4 + £ — 1)L (=)L (v)
NI A+ ¢)T(A+q)

T(g+A+N)
(E.1)

Here \ = hJQF” and A = hg” . The expression can be expanded in e. The v integral can
be carried out by evaluating residues at only the poles v = A —h and v = 2Ay4 — h. As
discussed in section 5.3 and appendix F, the other poles are subleading. The leading term
is given by,

_QZ‘:( 92T (20 + DT(£ + 1 + q)
q

TU¢+1-qT(+1)3T(2+q)

(E.2)

9
x ( — 10 + 160+ (1+20) <457E g 8Ha +18H, = 18Hew + 360 (0 + 1)>> :

where, note that the problematic terms are H, and Hy,,. Using the identity,

N-1

Hyin1—Hp 1= Z
k=0

1
x+k’

(E.3)
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we can pull out the & sum and first perform the ¢ sum over these term. After the ¢ sum,
we can perform the sum over k to get,

22HT(3/2 + 1)
0(1+ €)y/m(0))2
(E.4)

<(1 +20)(18H, — 18Hg+q)> =9

Z": 1)72-T'(20 + 1)T(£ + 1 + q)
- 'F€+1—q) ((+1)°T(2 +q)

The remaining terms can be handled with the usual sum over ¢ to obtain,

L ()27 20+ DI+ 1+ q)
qz '1“£+1—q) (0 +1)3T(2+q)

x < — 10+ 16¢ + (1 + 20) (457 + 13(1 — 18Hoy + 363(£ + 1))) (E5)

(14 20)(20)!

= oy

Adding these two separate contributions, we find that,

,t B ,22 DT+ DI (L +1+q)
q'T £+1 —q)T(L+1)3T(2 + q)

X < — 10+16£+(1+20) (457]; + iq — 18Hoy+18H, — 18H g + 363 (£ + 1))

~ 2799¢720 (2 + 2¢)
LA+ OT(L+1)3

(E.6)

The --- indicate subleading terms in €. One must be careful while handling the above
expression, since with the normalization inside ca ¢ that multiplies this, the whole thing
starts from O(e?).

F Simplifications for the € expansion

Our analysis for the Wilson-Fisher point in d = 4 — € dimensions rested on several simpli-
fications, which occur when we Taylor expand our equations in €. In this appendix we will
address all of them.

F.1 s-channel

Recall that the s-channel has ) 5 cquS)e, which is a sum over all operators of spin £. The
first simplification here is that only the lowest dimension operator of spin ¢ contributes to
the sum to the order we consider. This is the operator with dimension Ay = 2+¢—e+0(€?).
For the ¢* theory, we are considering, there are higher dimension operators with Ao o =
(+2+2m+ e+ O(e2). These operators have the generic form Oy, o ~ ¢(0?)™0%¢. Using
the equation of motion, Oy, ¢ ~ $0?¢I°GI°¢, where among the a + b+ ¢ (= 2m — 2 + ()
derivatives, 2m — 2 derivatives are contracted and ¢ derivatives carry indices. We will show
that these operators are suppressed in an € expansion. We will demonstrate this only for
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the qg’j) term. The q(Al’;) follows a similar logic. Using A, = 1 — €/2 4+ O(€?), we have
from (4.6) for A = Agy, 0,

. (2,5) _CQm,[62(71)2m+6272+4m+32 m(m + 6)(1 4+ 2m + 25) (5m + 1) QFQ(m)F(f)FQ (% +m4+ E)
Atldae = T4 (1 +m + )

+0 () . (F.1)

Here Uy, is the OPE coefficient of this operator. Now these operators do not exist in
the free theory. Since O,, ¢ has four ¢-s it is easy to guess that the 3-point function starts
from (ppOp, ¢) ~ O(€)(~ X*). The ope coefficient Cyy, ¢ goes as square of this quantity and
hence Capp ~ O(€%). Accounting for this, we must have,

Comediar) o= O(e"). (F.2)

There can be other “heavier” operators too, with spin ¢, also contributing to the sum
YA CA,ZQS)Z' However, such operators are composites with a higher number of ¢-s, for
example ¢’aa¢aﬁ¢m¢aﬂ¢aa¢. Now such operators will have the OPE coefficient Ca ¢
which are even further suppressed in €. So the corresponding q(AS?Z will begin from O(€®) or
beyond. Because of this, when we considered only up to the O(e?) term, keeping only the
Jp ~ $0'¢p operator had sufficed.

(2,5)

For completeness, we give the spin 0 contribution, g5’,”, from the Os,, (—¢ operator.

(2,5) . Cgm,o € (—1)2m+1 (6m + 1) 2 F2(2 + 2m)

2
C2m,09 A, 0,0 = STH1 +m) + O(€%). (F.3)

Then, again since Capm o ~ O(€?), we have CQm’OQST)n 00 ™~ O(€?). Thus, for £ = 0 we could
only go to O(€?) order, by keeping just one operator.

F.2 Crossed channels

In the crossed channels, we have > AL CA’qu?gl s> Which is a sum over all operators in the
OPE. However we had considered only the ¢ = 0 scalar operator ¢?. Even for that operator,
we had considered only a certain set of poles and neglected others under the assumption
that the other set of poles would contribute at a higher order in the e—expansion. Here
we will put these assumptions on solid grounds. We will first go through the case when
the exchanged operator is a spin—0 particle (scalar) and then move on to substantiate the
same arguments for the case of spin—¢' exchanged operators. In the subsection below, we
will first demonstrate the case of the scalar exchange (for identical external scalars, which
is the case of interest).

F.2.1 Spin-0 exchange

We begin by explicitly writing down the spin—0 contribution for the ¢ channel (since
the crossed channels give identical contributions for the identical scalar case, we can just
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consider either one of them) in (D.10),

ca 04y o(3 W) 0gIT(— T (¢ + 5)2T(q + 5)20(2s + £ — 1T (—)D(v)

PTA=Ap+ ) TA=Ap+s)TA—Ap+q+s)TA—Ap+q+s)
D(g+2s— 204 + A+ A) ’

Z/d CMP €+q) T(20 + 25)T(25 4 £ + g — 1)T'(22e )2 (220 ov)2

(F.4)

We will show that the leading e—dependence comes from only the ¢? operator and also
considering only two poles in the spectral integral is sufficient. This happens because of
a nontrivial cancellation among residues of poles for every operator. We will demonstrate
this with the log term, which is q(AZ:EEO' The power law term which is q(Al:;\)o will have similar

cancellations. Let us introduce the notation,

27 (—0) (25 + £ — 1) T(q+ 5 — Ay + BT (s — Ay + bfr)r(2Re ity
0qT (L + 5)°T(q+ )’ T'(h 4+ g+ 2(s — Ay))

fulg,s) =

(F.5)

We can write qg)m(s) as,

(2A¢7h71/ )QF( h72A¢+25711)P( h+2(q+s%fQA¢fu)

fy :
CAOC]AMO Z/d = q)) : V2_2(A_h)2

(F.6)
The poles of the above integral, lying on the positive real part of the v- contour,
occur at

ol. v=(A-h)
o II. 1/:(2A¢—h—|—2n1)
o III. v = (h — 2A4 + 25 + 2ny).

Note that for ny > g the poles III become double poles.

1. Lowest dimension scalar: consider the operator ¢? with dimension A = Ag = 2 +
5((]1)6 + O(€?). This is the only operator that contributes in the crossed channels up
to the O(¢®) order. In our computation we used only the poles v = Ay — h and
v = 2A4 — h. Let us see why the other poles do not contribute. Let us assume
n1 < g and ny < ¢+ 1. Then residues at the poles II and II give (where we have used
h =2 — €/2 and the familiar dimension of ¢, Ay =1 —€/2+ 5;2)62),

Coo(=1) ™1 (EM)2(1 + 68)2 fon, (¢, DT (g — ma + 1)

Resy—on,—h+2n, = — e+ O(e?),
2A4—h+2n, 32(5( ))2F3 (1+n1) ( )
C _177125() 1+5() f n2Qa1Fq_n
Resy—h—2A y4+25+2n, = — 20(=1) " (% )((2) 203) 2t2n (4, DL 2)e~|—O(e2).
32(6,7)2T3 (2 + n2)
(F.7)
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Here Oy is the OPE coefficient of ¢?. The subleading terms in € are cumbresome
and not shown. The above residues cancel off for the replacement no = nq — 1, and
quite nicely this cancellation is till the O(e3) order. Hence we have,

Resy—2A,—h+2n + Resy—p—2a,42s42n—2 = O(€") (F.8)

with n being a positive integer. This cancellation is true for any function f,(q,s).
When the poles III become a double pole for ny > ¢, the individual residues start
from a diffrent order, viz Res,—on,—h+2n, ~ Resy=p—24,+2512n5 ~ O(e71). However
the cancellation (F.8) till O(e3) would still hold.

2. Heavier scalars: now let us look at heavier scalars with dimensions of the form
Agmo = 24 2m + 0pme + O(e). Here m is a positive integer. It was argued in
section F.1 that OPE coeficients of such operators begin from Cap, 0 ~ O(€?) at least.
With this taken into account one makes the following observations:

Res,—on,—n = O(€°)
ReSV:A—h + Resu:2A¢—h+2m + Resu:h—2A¢+25+2m—2 = 0(64)
Res,—2n,—htn + ReSy=p_2A, 1251202 = O(e*) with n#m.
(F.9)

Hence we see, none of the higher dimensional scalars can contribute to the crossed
channels.

F.2.2 Spin-¢/ > 0 exchange

For spin ¢’ operators too, there are analogous cancellations just like what we have seen
above. Let us take the general expression (D.10). To avoid tedious expressions, we will not
give the explicit forms of the individual residues. We will just indicate the pairs of poles

)

that cancel each other under e-expansion. For both the log term cA7g/q(AZ,’;| » and the power
law term cijq(Al’Z)g, we can simply put s = A¢, which will give us the following poles,

o I. v=(A—h)— from the denominator of the spectral weight ,M(At)z,(l/)

o II. v=(2A4+ ¢ —h+2n) — from the numerator I' factors of the spectral weight

e III. v = (h+ ¢ 4 2n) — from the other T' factors in numerator

e IV.v=(h—-1),(h—2), -+, (h—2+¢) — from the denominator Pochhammer terms
in the spectral weight .

1. Lowest dimension spin ¢': the lowest dimension operators with spin ¢ are the Jy
operators, with dimensions Ay = ¢/ + 2 — e + O(e?) . For these operators we find the
following cancellations,

Res,—a_p + ReSV:2A¢+él_h + Resy—p—oyp = 0(64)
Resy—on,—h+e+2n+2 + Resympyopon = O(e*) where n=0,1,2,---
Res,—p—1 ~ Res,—p_2 ~ ---Res,—p1p_3 = 0(64) . (F.10)
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2. Higher dimensional spin ¢ operators: there are heavier operators with spin ¢ as
we discussed in F.1. These operators, labelled Oy, » have the dimensions Ay, , =
042+ 2m + dpe + O(e?). We had argued that since these operators must have
the composition ¢(0%)"0%¢ ~ ¢pd*pd°p0°¢, or a higher number of ¢-s, their OPE
coefficients go like Caypr ~ O(€?) or higher. Taking this into account for these
operators, we have the cancellations,

Resy—an +0—hn + Resy—p—o1p = O et

(€")
Resy—a—n + Resy=2A¢—h+2/+2m + Resy—pioram—2 = 0(64)
(e') where n#m—1
). (F.11)

Resy—a2A —h+0+2n+2 + Resy—p oo, = O(€

4
Resy—p—1 ~ Resy—p—2 ~ -+~ Resy—p1p—3 = O(e

Thus we conclude none of the operators in the crossed channels contribute except the ¢?
operator for which only two poles are sufficient up to the O(e?) order.

G Large £ behavior of Qa ¢

In this appendix we will derive the large ¢ approximation for Qs . Let us start by deriving
an approximation for the sF5 hypergeometric function. It has the integral representation,

—n, ki, ko [(k4) /1 - s
k3, ky ] T (ks — k1) Sy ~ (1-2) 2 F1(—n, ko, k3, 2)dz . (G.1)

Now as n — oo, we have [111],

['(ks)
(k2)T' (k3 — k2)

3F2[

[F(kg)(nz)_k2 +T (k3 — ko) (—nz)*2 ks (1 - z)k3_k2+”] .
(G.2)
For identical external scalars, the Qﬁo has a gF5 which is equal to the above under the map
n=~»k =7+0—1,ky =5+t k3 =3 and ks = 5. Since n > k3 — ko we can neglect the
second term in the parentheses above. Then (G.1) becomes,
—n,ki,ky | I'(ks)I(k4) e
ks, k4 ’ N F(kg)r(kg, — kl)r(k3 — kg) nk2
Carrying out the z integral it gives,

I'(k3)T (ka) 1 /1 o —ko—1 ka—ky—1
—_ z 1—2)"" "1 dz
F(kz)r(kg — kl)r(kg — kz) nk2 0 ( )

2F1(—’I’L, k2a k37 Z) ~ T

1
3F2[ / Skl yhehielgs Q)
0

D (kg)l(ka)l(k1 — ko) 1

= —. 4
F(kg)r(kg — kg)l‘(l@; — kg) nk2 (G )
So we get,
—n, k1, ko :| n~k2l (k‘l — /6‘2) r (k‘g) T (]4,‘4)
F: (1| = ) G.5
’ 2[ - )T (ks + k)T (o 1 k) (G:5)

Finally using this in (B.2) and putting the values of k; 234, we get the large ¢ approxima-
tion,
2 TGO (=14 5 —t+ )

Q' () ~ D(—t)2T(—1 + 7 + 2() ' (G.6)
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H Comparision with numerical results

In this appendix we compare the results obtained in section 5.2 with numerical data found
in [112]. To compare, we have taken the OPE coefficients (5.36) and obtained their square
roots. Then we re-expand in € to O(e?) to obtain fesg,, and put € = 1. As expected the
match worsens as we go higher in spin. The reason for this is discussed in section 5.4.3.

Spin £ | fse,/DSD foog,le=1 | Percentage Deviation
(=2 0.326 0.328 0.33
(=4 0.069 0.070 0.86
{=6 | 1.57 x1072 | 1.61 x10~2 2.55
(=8 |3.69 x1073 | 3.76 x10~3 2.04
(=10 | 8.76x107* | 8.82 x10~4 0.79
(=12 | 2.10 x107* | 2.06x1074 1.86
(=14 | 5.06x107° | 4.79 x107° 5.52
(=16 | 1.22x107° | 1.10 x107° 10.6
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