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1 Introduction

One of the most important questions in neutrino physics is whether neutrinos are Dirac or

Majorana particles. The most promising way to determine this may be through the obser-

vation of neutrinoless double beta decay [1], though alternative possibilities are also often

studied, see e.g. [2–26]. The main difficulty in determining the Majorana character is that

in theories with V −A interactions such as the Standard Model (SM), any observable differ-

ence between Dirac and Majorana neutrinos is always suppressed with (mν/E)2, where mν

is the neutrino mass and E the energy scale of the process [27]. Examples are here the sup-

pression of the double beta decay width with m2
ν/(100 MeV)2, the small relative difference

in the decay width of the Z boson in Dirac or in Majorana neutrinos of order (mν/mZ)2,

or the suppression of neutrino-antineutrino oscillation probabilities with (mν/E)2.

However, if neutrinos have new interactions beyond the SM, the situation can be

different — see [26] for a recent realization of this idea. Considering that massive neutrinos

discovered via neutrino oscillations are regarded as an evidence of new physics beyond the

SM, they may also be accompanied with new interactions. In an early work by Rosen [6],

the most general Lorentz-invariant form of neutrino-fermion interactions was assumed,

including scalar, pseudo-scalar, vector, axial-vector and tensor couplings. It was pointed

out that in elastic neutrino-electron scattering, due to the absence of vector and tensor

interactions in the Majorana case, the ratio of forward to backward scattering cross sections,

defined as Rρ, could be used to distinguish between Dirac and Majorana neutrinos. For

Majorana neutrinos, Rρ should be less than or equal to 2, while for Dirac neutrinos Rρ
can be as large as 4. It is interesting to compare this with 0νββ. An observation of

the process implies that neutrinos are Majorana particles. Non-observation of the process

implies either Dirac or Majorana particles, only additional input from other neutrino mass
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approaches can possibly settle the situation [1]. In case of neutrino-electron scattering a

measurement of Rρ > 2 would imply Dirac neutrinos, while Rρ ≤ 2 would imply either

Dirac or Majorana particles.

In this paper, we will revisit Rosen’s approach to distinguish Dirac from Majorana

neutrinos. We will in particular show that a detailed analysis of the problem reveals that

even though Rρ does have different allowed values for Dirac and Majorana neutrinos as

described above, the situation is a bit more complicated. For example, we will show that

even if Rρ ≤ 2, there is still a possibility that Dirac and Majorana neutrinos can be

distinguished in neutrino scattering. Furthermore, the original work in ref. [6] only applies

to relativistic scattering with neutrino energies much higher than the target particle mass.

We will generalize the study to the non-relativistic case where the target particle mass is

not negligible, which is important for instance for reactor neutrino experiments. We will

also set limits on the strengths of the new interactions by using data from the CHARM-II

(νµ-e scattering) and TEXONO (ν̄e-e) experiments.

The paper is organized as follows: in the next section we compute the neutrino-electron

elastic scattering cross section in the presence of general new interactions. In section 3,

we first review Rosen’s proposal to distinguish between Dirac and Majorana neutrinos in

neutrino scattering and then generalize that analysis. In particular, two new ratios that

can fully describe the differences between Dirac and Majorana neutrinos in relativistic

scattering are introduced. Next we further extend our analysis to the non-relativistic case,

which is presented in section 4. In section 5 we confront our criteria to experimental

data, focusing on two experiments, CHARM-II and TEXONO, and we comment on future

prospects. Finally, we summarize our work in section 6.

2 Neutrino-electron scattering with general interactions

The most general Lorentz-invariant interaction of neutrinos with charged leptons can be

written as

L ⊃ GF√
2

∑
a=S,P,V,A,T

νΓaν
[
`Γa(Ca +Daiγ

5)`
]
, (2.1)

where Γa’s are the five possible independent combinations of Dirac matrices defined as

Γa =

{
I, iγ5, γµ, γµγ5, σµν ≡ i

2
[γµ, γν ]

}
. (2.2)

Here and henceforth we use the index a = (S, P, V, A, T ) to denote the above five cases

which are usually referred to as scalar, pseudo-scalar, vector, axial-vector and tensor in-

teractions, respectively. The Lorentz indices in the first and second Γa in eq. (2.1) should

be properly contracted with each other (e.g. νγµν
[
`γµ(CV +DV iγ

5)`
]

for a = V ). How-

ever, there could be two different ways to contract in the tensor case, gµµ′gνν′σ
µνσµ

′ν′ and

εµνµ′ν′σ
µνσµ

′ν′ . Here we only take the former, since the latter can be transformed to the

former up to a redefinition of CT and DT (for more details, see ref. [28]).

Our convention is a little different from Rosen’s original reference [6] in what regards

the presence of i. We take the above convention so that

Γ
a ≡ γ0(Γa)†γ0 = Γa . (2.3)
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We also define

Da ≡

{
Da (a = S, P, T )

iDa (a = V, A)
, (2.4)

so that all the coupling constants Ca and Da are real numbers. In ref. [29] the coupling

constants of tensor and scalar interactions are taken as complex numbers. Actually if

they are complex, then the interaction terms are not self-conjugate so they should be

added by their complex conjugates, which will make Ca and Da real. Here we do not

assume CP conservation, while in ref. [6] for simplicity CP conservation is assumed so that

DS = DP = DT = 0. Actually we find that the conclusions in ref. [6] still hold without

CP conservation.

It is well-known [6, 29, 30] that for Majorana neutrinos some coefficients should vanish:

CV = DV = CT = DT = 0 (Majorana).

In the SM, the neutral current (NC) interaction is

LNC =
GF√

2
2
[
νγµ(gνV − gνAγ5)ν

] [
`γµ(g`V − g`Aγ5)`

]
, (2.5)

where

gνV = gνA =
1

2
, g`V = −1

2
+ 2s2

W , g`A = −1

2
. (2.6)

The charged current (CC) interaction may also contribute to eq. (2.1) if the neutrino and

the charged lepton have the same flavor. To include the charged current contribution one

simply replaces g`V → g`V + 1 and g`A → g`A + 1 after a Fierz transformation. From eq. (2.5)

we can obtain the SM values of the couplings in eq. (2.1) assuming Dirac neutrinos

CSM
V = 2gνV g

`
V , D

SM
V = −2gνV g

`
A, C

SM
A = 2gνAg

`
A, D

SM
A = −2gνAg

`
V (Dirac), (2.7)

while the other couplings for a = S, P, T should be zero. If neutrinos are Majorana, i.e. ν

in eq. (2.1) is a Majorana spinor, then according to ref. [6] one should set CV and DV to

zero and double CA and DA,

CSM
V = 0, DSM

V = 0, CSM
A = 4gνAg

`
A, D

SM
A = −4gνAg

`
V (Majorana). (2.8)

The cross section in both cases is the same in the SM (note that we neglect neutrino

masses), as we will see next.

Now we can compute the cross section of elastic scattering of neutrinos (antineutrinos)

on charged leptons. Assuming the neutrino energy is Eν and the mass of charged leptons

M � Eν , the cross section in the laboratory frame is [31, 32]1

dσ

dT
(ν + `) =

G2
FM

2π

[
A+ 2B

(
1− T

Eν

)
+ C

(
1− T

Eν

)2
]
, (2.9)

dσ

dT
(ν + `) =

G2
FM

2π

[
C + 2B

(
1− T

Eν

)
+A

(
1− T

Eν

)2
]
, (2.10)

1In refs. [31, 32] some couplings such as DS , DP , DT are set to zero. To get a more general cross section

with non-zero DS , DP and DT , we use FeynCalc [33, 34] and Package-X [35] to compute the cross section

again, which is consistent with the result in [31, 32] in the zero limit of DS , DP and DT .
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where we have defined

A ≡ 1

4
(CA −DA + CV −DV ) 2 +

1

2
CPCT +

1

8
(C2

P + C2
S +D2

P +D2
S)

−1

2
CSCT + C2

T +
1

2
DPDT −

1

2
DSDT +D2

T , (2.11)

B ≡ −1

8

(
C2
P + C2

S +D2
P +D2

S

)
+ C2

T +D2
T , (2.12)

C ≡ 1

4
(CA +DA − CV −DV ) 2 − 1

2
CPCT +

1

8
(C2

P + C2
S +D2

P +D2
S)

+
1

2
CTCS + C2

T −
1

2
DPDT +

1

2
DSDT +D2

T , (2.13)

and T is the recoil energy of the charged lepton. Note that eqs. (2.9) and (2.10) are

derived under the assumption that the incoming neutrinos or anti-neutrinos are left-handed

or right-handed, respectively. However this assumption requires that the neutrinos are

produced via the CC interaction in the SM, such as in beta decay, pion decay etc. In

principle, one could also consider new neutrino interactions in the production of neutrinos,

but for this one needs to introduce some other new interactions with new independent

parameters. Our calculations assume incoming left-handed neutrinos or right-handed anti-

neutrinos.

It is interesting to note that the vector and axial-vector interactions do not inter-

fere with the other interactions (scalar, pseudo-scalar, tensor) in the cross sections (2.9)

and (2.10). This is due to the property that ΓV = γµ and ΓA = γµγ5 have odd numbers of

gamma matrices (γ5 is a combination of four gamma matrices) while in ΓS = I, ΓP = iγ5,

ΓT = σµν the number is even. When computing the cross section involving the interference

of Γa and Γb, the relevant part of the squared amplitude is proportional to /pPRΓa/kΓbPL,

where p/k is the incoming/outgoing momentum of the neutrino and PL/R = (1 ∓ γ5)/2.

If Γa and Γb have even and odd numbers, respectively, in the number of gamma matrices,

then PR can be put in front of PL according to the commutation relations of gamma ma-

trices, resulting to zero. If both are even or odd, then the relevant part of the amplitude

does not vanish. Therefore, interactions containing odd gamma matrices (V and A) do

not interfere with interactions containing an even number of gamma matrices (S, P and

T ) but interference terms do appear among (V , A) as well as among (S, P , T ).

Since the A, B, C terms in eqs. (2.9) and (2.10) have different energy dependencies,

they can be extracted from scattering data by fitting the event distributions with respect to

the recoil energy. Besides, one could also combine the neutrino and antineutrino channels

to obtain a better determination of A, B, C, according to eqs. (2.9) and (2.10).

If the neutrino interactions are described by the SM, the cross section has the same

value for Dirac and Majorana neutrinos, as one can check by using eqs. (2.7) and (2.8) to

compute A, B, C defined in eqs. (2.11)–(2.13). The SM values2 of A, B and C are

(A, B, C)SM =
(
(1− 2s2

W )2, 0, 4s4
W

)
(NC only), (2.14)

if only the NC interaction is present in the scattering (e.g. for νµ + e− → νµ + e−). If the

neutrino has the same flavor as the charged lepton (e.g. for νe + e− → νe + e−), then the

2Note that due to the RG running we take different values of s2W at different scattering energies.
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CC interaction makes an additional contribution so that

(A, B, C)SM =
(
(1 + 2s2

W )2, 0, 4s4
W

)
(NC + CC). (2.15)

However, when the other interactions in eq. (2.1) exist, the cross sections are expected to

be different for the Dirac and Majorana cases.

3 Distinguishing Dirac from Majorana neutrinos

In ref. [6] Rosen proposed a measurable ratio

Rρ ≡
2(A+ 2B + C)

A+ C
(3.1)

to distinguish between Dirac and Majorana neutrinos. One could determine this ratio

experimentally by either binning the neutrino or antineutrino cross section in at least three

bins, or by evaluating the ratio of forward (T = 0) and backward (T = Eν) scattering of

the sum of neutrino and antineutrino scattering. The ratio Rρ has different bounds for the

two cases:

0 ≤ Rρ ≤ 4 (Dirac), (3.2)

0 ≤ Rρ ≤ 2 (Majorana). (3.3)

If Rρ is found to be larger than 2 and less than or equal to 4 then it implies neutrinos are

Dirac particles. If it would lie in the range of [0, 2] then one can not distinguish between

Dirac and Majorana neutrinos.

Note that the SM value of Rρ is 2. Majorana neutrinos only allow a downward deviation

while Dirac neutrinos allow both downward and upward deviations.

The bounds (3.2) and (3.3) proposed by Rosen imply that the parameter space of

(A, B, C) in the Dirac case is larger than that in the Majorana case. Some values of

(A, B, C) that can be reached by Dirac neutrinos are not allowed in the Majorana case,

which is used as a criterion to determine the nature of neutrinos. However, eqs. (3.2)

and (3.3) do not fully cover the difference. There are some other parts of the parameter

space that also enable us to exclude Majorana neutrinos. Next, we will examine in full

generality the parameter space of (A, B, C) to find the most general conditions that allows

to discriminate Dirac from Majorana neutrinos.

Since the dependence of (A, B, C) on the couplings (Ca, Da) is very complicated,

we first try a random scan to numerically find out the boundary of the space. That is,

we randomly generate arbitrary values of (Ca, Da) with a = S, P, V, A and T , except

that for Majorana neutrinos we set CV = DV = CT = DT = 0. Then we compute

the corresponding values of (A, B, C) according to eqs. (2.11)–(2.13). Note that for any

allowed value of (A, B, C), (rA, rB, rC) is also allowed for any positive r since it just

corresponds to a rescaling of (Ca, Da) by a factor of
√
r. Therefore for simplicity, we can

normalize (A, B, C) to show the allowed region. In figure 1 we show the normalized values

of 104 samples generated by randomly choosing values of (Ca, Da) in [−1, 1]. The red
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Figure 1. Allowed values of normalized (A, B, C) assuming Dirac (blue points) or Majorana (red

points) neutrinos. The blue curves represents Rosen’s original results (Rρ = 0, 2 and 4 from left to

right, respectively) while the actually allowed ranges are smaller, surrounded by the red curves (for

Dirac neutrinos) or black curves (for Majorana neutrinos).

points are for the Majorana case and blue points for Dirac, which are confined by the black

and red curves respectively. The bounds (3.2) and (3.3) are marked by the blue curves,

with Rρ = 0, 2 and 4 from left to right, respectively. The original criterion proposed

by Rosen is that if (A, B, C) is measured between the central and the right blue curves

then neutrinos should be Dirac particles. If (A, B, C) is measured such that one ends up

between the central and the left blue curves, both Dirac and Majorana are possible.

However, the allowed regions are smaller, as we can see from the blue and red points.

Furthermore, the difference between the Dirac and Majorana cases is not simply that the

allowed region of the latter is half of the former. The Majorana region does not fully cover

the left half of the Dirac region, thus revealing new criteria to distinguish between Dirac

and Majorana neutrinos. For example, if B < 0 then from the parameter Rρ one can not

determine the nature of neutrinos since Rρ is always less than 2. But if (A, B, C) falls into

the small region between the left boundary of Majorana and the left boundary of Dirac,

one can still draw the conclusion that neutrinos are Dirac particles.

Since the scale factor of (A, B, C) is not important here, we define two ratios X and Y :

X ≡ B

R
, Y ≡ A− C

R
, (3.4)

where R is the normalization factor,

R ≡
√
A2 +B2 + C2 . (3.5)

The two ratios X and Y suffice to describe the difference between the Dirac and Ma-

jorana parameter spaces. Using X and Y , we can present the parameter spaces in a

two-dimensional form, as shown in figure 2. The Dirac bound is marked by the red ellipse;

the analytic expression (derived in the appendix) to describe it is

Dirac bound : 3X2 + Y 2 ≤ 1 . (3.6)
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+
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Figure 2. Various bounds on X and Y defined in eq. (3.4), converted from figure 1 to a two-

dimensional form. The two black dots in the middle indicate the SM values, the lower and upper

one corresponding to NC (e.g. νµ + e− scattering) and NC+CC (e.g. νe + e−), respectively.

The Majorana bound consists of parts of the two black dashed ellipses and a central vertical

line, described by the expressions (also derived in the appendix)

Majorana bound : 2X2 + (Y ±X)2 ≤ 1 and X ≤ 0 . (3.7)

The region bounded by the black solid line fulfills those three criteria. Besides, we also show

Rosen’s Dirac bound (0 ≤ Rρ ≤ 4) by the blue ellipse, which in this formulation is 3X2 +

Y 2/2 ≤ 1. For Rosen’s Majorana bound, only the left half of the blue ellipse is allowed, i.e.√
1/3− Y 2/6 ≤ X ≤ 0. The two black dots on the central vertical line represent the SM

values, without or with the CC interaction included, according to eqs. (2.14) and (2.15),

respectively.

4 Non-relativistic scattering

So far we have only considered the case with neutrino energies much higher than charged

lepton masses (Eν � M) so that all particles are assumed approximately massless. For

low energy neutrino scattering, this approximation may not hold so we need to take the

mass into account. For example, in reactor neutrino experiments, neutrino energies are

typically at the MeV scale3 which are not much higher than the electron mass, 0.511 MeV.

3A typical reactor neutrino flux peaks roughly near 1 MeV and then decreases quickly above 2 MeV.

However, the uncertainty of the flux below 2 MeV is quite large [36, 37]; often the events are selected from

3 MeV to 8 MeV.
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In this section, we consider the more general case with the charged lepton masses taken

into account.

The result for the cross section of elastic scattering of neutrinos with massive charged

leptons is

dσ

dT
(ν + `) =

GF
2M

2π

[
A+ 2B

(
1− T

Eν

)
+ C

(
1− T

Eν

)2

+D
MT

4E2
ν

]
, (4.1)

dσ

dT
(ν + `) =

GF
2M

2π

[
C + 2B

(
1− T

Eν

)
+A

(
1− T

Eν

)2

+D
MT

4E2
ν

]
, (4.2)

where

D ≡ (CA −DV ) 2 − (CV −DA) 2 + C2
S − 4C2

T +D2
P − 4D2

T . (4.3)

Note that the A, B, C terms remain the same as the relativistic case [cf. eqs. (2.9)–(2.13)]

while the D term is the only additional term that contains the contribution of nonzero

charged lepton mass. It is the same for both the neutrino and antineutrino channels. In

the SM, the value of D is given by4

DSM = 1− (1 + 4s2
W )2 . (4.4)

From eqs. (4.1) and (4.2) one can deduce that there are four parameters (A, B, C, D)

that could be measured in non-relativistic neutrino scattering. If there were measurements

of (A, B, C, D), then again their values could be used to distinguish between Dirac and

Majorana neutrinos. The difference between the relativistic and non-relativistic cases is

that in the former we have only three measurable quantities (A, B, C) while in the latter

we have four, (A, B, C, D). However, in both cases (A, B, C) are subject to the same

constraint shown in figure 1, which implies our previous bounds on (A, B, C) in relativistic

scattering also apply here. Actually if the scattering is quasi-relativistic, e.g. for reactor

neutrinos scattering on electrons, M/Eν is small,5 and the measurement of D would be the

most inaccurate among the four quantities. So for such experiments, the most important

quantities would still be (A, B, C). In case D were known, a ratio such as

Rσ =
A+ 2B + C −D

A+ C
(4.5)

could be studied. For Dirac neutrinos Rσ lies within [−4, 4], while for Majorana neutrinos

between [−4, 3].

Next, we shall study the Dirac and Majorana bounds in the presence of four measurable

quantities (A, B, C, D). Similar to the relativistic case, the normalization of (A, B, C, D)

is not important so we only care about their ratios. From the four quantities, we can define

at most three independent ratios, we choose here

(X, Y, Z) ≡
(

B√
A2 +B2 + C2

,
A− C√

A2 +B2 + C2
,

D√
A2 +B2 + C2 +D2

)
. (4.6)

4Note that in the relativistic case, D is not measurable but it does not mean D is zero. So for all the

equations or conclusions in this section, to get their relativistic limit one needs to set M → 0, not D → 0.
5But not negligibly small so that one still has to use eqs. (4.1) or (4.2) instead of eqs. (2.9) or (2.10).
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Note that D2 appears in the denominator of the definition of Z, but not in X and Y . In

principle we could also put D2 in the definitions of X and Y , but we choose the current

form because we want to keep the same definitions of X and Y as the relativistic case. As

we have just mentioned, the previous bounds in the relativistic case on (A, B, C) can also

be used in the non-relativistic case and might probably be the most important bounds if

the scattering is quasi-relativistic, so we prefer to define the first two ratios independent of

D, which enable us to apply the relativistic bounds directly to the non-relativistic case.

With the three ratios, the problem essentially becomes finding the allowed regions in

the X-Y -Z space for Dirac and Majorana neutrinos. Finding the boundaries analytically as

for the relativistic case in the previous section turns out to be much more complicated and

difficult than the 2-dimensional problem that lead to figure 2. Though the projections of

these regions in some special directions can be analytically computed, they can not provide

a full description of the allowed regions. So instead, we will use a numerical method to find

the allowed regions. We generate 106 samples with random values of (Ca, Da) in [−1, 1] and

then compute the corresponding (X, Y, Z) according to eqs. (2.11)–(2.13), (4.3) and (4.6).

Since the allowed regions are 3-dimensional objects, we display their 2-dimensional projec-

tion with various Z values. The results are presented in figure 3, where blue points are

for Dirac neutrinos and red for Majorana. For each fixed value of Z, the section shows

the allowed values of (X, Y ). As one may expect, combining the results of all possible Z

values should lead to a result analogous to that shown in figure 2.

5 Experimental constraints

As we have derived different bounds for Dirac and Majorana neutrinos in the presence of

general interactions, we would like to confront these bounds with current experimental con-

straints. Possible experimental constraints may directly come from elastic neutrino scatter-

ing experiments such as CHARM [38], CHARM-II [39, 40], LAMPF [41], MINERνA [42],

LSND [43] and TEXONO [44], or from other experiments sensitive to new neutrino interac-

tions, such as LEP or observations of atmospheric, reactor, solar, and accelerator neutrinos

in neutrino oscillation experiments.

A complete analysis including all possible experimental constraints is beyond the scope

of this paper. Instead we will only focus on the strongest constraints from elastic neutrino

scattering experiments,6 which provide direct measurements on A, B, C and D (if the

scattering is relativistic, then D can not be measured) according to eqs. (2.9) and (2.10)

or (4.1) and (4.2).

Since our discussion in this section may refer to different channels such as νµ + e

or ν̄e + e, we would like to distinguish them by adding subscripts of the corresponding

6Note that for the widely-studied Non-Standard Interaction (NSI) there has been a comprehensive

study on the various constraints from present and future experiments [45]. It turns out that for εeµµ and

εeee, the current strongest constraints are from elastic neutrino scattering experiments (see table 2 in [45]).

Therefore we expect that the strongest constraints on more general new interactions may also come from

such experiments. This is one of the reasons that we only focus on elastic neutrino scattering experiments

in this work.
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Figure 3. Dirac and Majorana bounds on (X, Y, Z) in non-relativistic scattering. For different

values of Z, allowed regions are shown with blue (Dirac) and red (Majorana) points. The last plot

(right bottom) shows the combination of all possible values of Z, which reproduces the result from

figure 2.
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lepton flavors. If the flavors of the neutrino and charged lepton are α and β respectively

(α, β = e, µ, τ) then the corresponding (A, B, C, D) is denoted by (Aαβ , Bαβ , Cαβ , Dαβ),

and (X, Y ) by (Xαβ , Yαβ).

The most interesting and promising channel to achieve a high precision of measurement

are (α, β) = (µ, e) or (e, e). In this paper, we will not include all the elastic neutrino

scattering experiments but only two representative experiments, CHARM-II (for the µe

channel) and TEXONO (for the ee channel) as they may provide the strongest constraints.7

The CHARM-II collaboration has measured both νµ and νµ neutrinos scattering on

electrons with a mean neutrino energy at 20 GeV (i.e. the scattering is highly relativistic).

The unfolded differential cross sections from this measurement have been published in [39],

from which it is quite straightforward to perform a χ2-fit to obtain the constraint on

(Aµe, Bµe, Cµe), including both νµ and νµ data. We consider the following χ2-function:

χ2(Aµe, Bµe, Cµe) =
∑

i=T bins

[
( dσdT )i − si

]2
σ2
s,i

+ (νµ → νµ) , (5.1)

where si and σs,i represent the measured differential cross section of νµ + e− and its un-

certainty respectively. The antineutrino part is also included in the χ2-fit. The data of si
and σs,i, taken from [39], is shown in figure 4.

For any given (Aµe, Bµe, Cµe) we can compute the corresponding χ2-value according

to eq. (5.1). However, to distinguish between Dirac and Majorana neutrinos, what actually

concerns us is (Xµe, Yµe). One can convert the χ2-fit on (Aµe, Bµe, Cµe) to the correspond-

ing fit on (Xµe, Yµe) according to eq. (3.4) if the normalization factor Rµe is known. In

this work, for simplicity, we fix Rµe at the SM value. The result is presented in the left

panel of figure 5 where the 90% C.L. constraint is shown by the blue region. The black

and red points represent the SM value and the best fit, respectively.

From the left panel of figure 5 we can see that large deviations of (Xµe, Yµe) from the

the SM value (the black point) are still allowed by the CHARM-II constraint (the blue

region), which covers both the Dirac and Majorana regions. Both the best fit (the red

point) and the SM value (black point) are well compatible with data, which can be directly

understood from the red and black curves in figure 4.

Currently a large part of the blue region (including the best fit) locates in the Xµe > 0

region, which can only be reached if neutrinos are Dirac. Though the constraint is too

weak8 to show any preference for Dirac or Majorana neutrinos, it illustrates how future

measurements might enable us to determine the nature of neutrinos: such data may prefer

a region inaccessible to Majorana neutrinos.

7Actually their measurements of s2W may be a good indicator of the precision, s2W = 0.2324± 0.0083 in

CHARM-II [40], 0.249 ± 0.063 in LAMPF [41], 0.248 ± 0.051 in LSND [43] and 0.251 ± 0.031 ± 0.024 in

TEXONO [44]. From s2W we can expect that CHARM-II and TEXONO provide the strongest constraints

on new interactions in the corresponding channels.
8Here we have only used the data of unfolded differential cross sections of CHARM-II [39]. The constraint

obtained in this way is weaker than the actual constraint from the original event spectrum, because the

unfolding process would inevitably lead to a loss of information of the original spectrum. Since the original

event spectrum is not accessible to us, we have to use the unfolded data instead.
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Figure 4. Differential cross sections of νµ+e− (left) and νµ+e− (right) measured in CHARM-II.

The black points represent the data of CHARM-II measurement, taken from [39]. The black and

red curves are the SM prediction and the best fit, respectively.
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Figure 5. Constraints from elastic neutrino scattering experiments in the µe channel (left) and

the ee channel (right). The blue regions correspond to 90% C.L. constraints from CHARM-II [39]

(µe channel) and TEXONO (ee channel). The black and red points represent the SM values and

the best fit. respectively. The black and red curves are the Majorana and Dirac bounds in eqs. (3.6)

and (3.7).

The TEXONO experiment [44] has measured elastic νe+e
− reactor neutrino scattering

with a CsI(Tl) crystal detector. The scattering events are selected from 3 MeV to 8 MeV.

In this experiment, the electron mass is not negligible and should be taken into account.

So we shall use the non-relativistic formula (4.2). The event rates in each recoil energy bin
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Figure 6. Event rates of νe+e− elastic scattering in the TEXONO experiment. The black points

represent the measured data, taken from [44]. The black and red curves are the SM prediction and

the best fit, respectively.

can be estimated by

Ni =

∫ Ti+∆T

Ti

dT

∫ 8 MeV

0
dEνΦ(Eν)

dσ

dT
(T,Eν) , (5.2)

where ∆T is the bin width and Φ(Eν) is the reactor neutrino flux. We use the following

χ2-function to fit the parameters in the cross section,

χ2(Aee, Bee, Cee, Dee) =
∑

i=T bins

[
Ni −N0

i

]2
σ2
N,i

, (5.3)

where N0
i and σN,i are the observed event rates and the corresponding uncertainties, re-

spectively. We take Φ(Eν), N0
i and σN,i all from [44]. The result is presented in the right

panel of figure 5 where to convert the χ2-fit on (Aee, Bee, Cee, Dee) to (Xee, Yee) we have

fixed the normalization factors Ree and Dee to their SM values.

As is shown in figure 5, the current constraint from TEXONO not only allows both

the Dirac and Majorana cases, but also allows the parameters to be outside the Dirac

bound. Actually the current best fit (the red point) is just on the borderline of this case.

Indeed, the red curve in figure 6 which is generated with the parameters at this point,

shows directly that it can fit the TEXONO data very well. If the scattering parameters

turn out to lie outside the Dirac bound, then this would imply exotic new physics that can

not be described by the most general Lorentz invariant interactions in eq. (2.1).

From the fits it is straightforward to obtain the current limits on the fundamental

parameters Ca and Da in eqs. (2.1) and (2.4). The result is shown in figure 7. The fit

assumes Dirac neutrinos, for Majorana neutrinos the results look very similar. As one

can see, small values of tensor interactions and small departures from the SM values are
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a from one-parameter fitting of

CHARM-II (left panel) and TEXONO (right panel). Blue bars represent 90% C.L. allowed values

for δCa and δDa. There are two local minima for CA,V and DA,V in the fit of TEXONO. The

slightly more minimal global minimum is around −2 for CV , 0 for DV , 0 for CA and +2 for DA.

In the SM, CV,A and DV,A are non-zero for Dirac neutrinos, while only CA and DA are non-zero

for Majorana neutrinos. The plot assumes Dirac neutrinos.

allowed. Scalar and pseudo-scalar interactions are weakly constrained. Recently ref. [46]

published constraints on tensor and scalar interactions from TEXONO data, which as we

have checked is consistent with our result.

Since the current constraints from CHARM-II and TEXONO allow both the Dirac and

Majorana cases, we would like to investigate whether future experiments with improved

sensitivities could distinguish between them. This possibility will crucially depend on how

far away the actual values of (X, Y ) are from the SM values. For illustration, we choose

two points which are still in the 90% C.L. bounds of CHARM-II and TEXONO, but

significantly deviate from the SM values. Then we assume that future experiments have

improved sensitivities so that compared to CHARM-II or TEXONO, the uncertainties of

measurement would be reduced by a factor of 3 or 4, respectively. In figure 8, we show the

90% C.L. bounds of such hypothetical experiments (the blue regions). We can see that if the

actual values (the yellow points) deviate from the SM values (the black points) significantly,

then such experiments could exclude Majorana neutrinos at more than 90% C.L.

6 Conclusion

If neutrinos have new interactions beyond the SM, then their Dirac/Majorana nature could

have observable differences in neutrino scattering, which are not suppressed by neutrino

masses. We have performed an exhaustive study on all possible criteria that could be used

to distinguish between Dirac and Majorana neutrinos in this context.

We have computed the cross sections of elastic neutrino-fermion scattering in the pres-

ence of the most general interactions including scalar, pseudo-scalar, vector, axial-vector

and tensor interactions. The result is given by eqs. (2.9), (2.10) for the relativistic case

and it implies that there are at most three independent scattering parameters (A, B, C)

that could be measured in this case. These parameters are subject to certain bounds which
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Figure 8. Future constraints from elastic neutrino scattering experiments in the µe channel (left)

and the ee channel (right). We assume the actual values of (X, Y ) are located at the yellow points,

and the uncertainties of the future experiments are reduced by a factor of 3 or 4 with respect to

CHARM-II or TEXONO, respectively. Other details are the same as figure 5.

depend on the Dirac/Majorana nature of neutrinos, as shown in figure 1 or figure 2 in terms

of two ratios (X, Y ) defined from (A, B, C). Therefore the Dirac and Majorana bounds

in figure 1 or figure 2 [for analytic expressions, see eqs. (3.6) and (3.7)] could be used to

determine the nature of neutrinos. If the parameters measured in neutrino scattering ex-

periments are out of the Majorana bound but inside the Dirac bound, then neutrinos are

Dirac particles.

As for the non-relativistic case, we find there is only one additional term in the cross

sections [cf. eqs. (4.1), (4.2)]. This extends the three scattering parameters (A, B, C) in

the relativistic case to four parameters (A, B, C, D) and the two ratios (X, Y ) to three,

(X, Y, Z), with their explicit expressions given by eq. (4.3) and eq. (4.6). The corre-

sponding Dirac and Majorana bounds are numerically found and presented in figure 3.

Note that the bounds found for the relativistic case, i.e. without D, also apply to the

non-relativistic case.

Currently the constraints from two neutrino scattering experiments, CHARM-II and

TEXONO, are well consistent with both Dirac and Majorana neutrinos as shown in figure 5.

Nevertheless they are able to effectively constrain the ratios (X, Y ). If in the future

neutrino scattering experiments would achieve much higher precision, deviations from the

SM might be observed, from which one might be able to determine the nature of neutrinos.

So far we have not included measurements from other experiments, which if combined may

give stronger constraints.
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Our analysis shows that there is still room for exciting new physics in the neutrino

sector, and searches for new neutrino interactions are surely of large interest, as they can

contribute to the exciting question of whether neutrinos are Dirac or Majorana particles.
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A Proof

Here we shall analytically derive the Dirac bound (3.6) and the Majorana bound (3.7). In

the Dirac case, we write (A, B, C) in the following form

A = E2 +G2 +H2 −K , (A.1)

B = −G2 +H2 , (A.2)

C = F 2 +G2 +H2 +K , (A.3)

where

E2 ≡ 1

4
(CA −DA + CV −DV ) 2 , F 2 ≡ 1

4
(CA +DA − CV −DV ) 2 , (A.4)

G2 ≡ 1

8
(C2

P + C2
S +D2

P +D2
S) , H2 ≡ C2

T +D2
T , (A.5)

K ≡ 1

2
CT (CS − CP ) +

1

2
DT (DS −DP ) . (A.6)

Note that here (E, F, G, H) can be treated as free parameters without any constraints

among them, i.e. for any values of (E, F, G, H) one can always find the corresponding

(Ca, Da) to generate them. After subtracting the non-negative parts E2( or F 2)+G2 +H2

from A (or C), the remaining terms represented by K can be negative or positive, but

|K| can not be too large if G2 and H2 is fixed. The limitation from G2 and H2 is that

K plus G2 and H2 should be non-negative as well, since it can be written as a sum of

squared forms9

G2 +H2 ±K =

(
CS + CP

4

)2

+

(
±CS − CP

4
+ CT

)2

+ (C → D) . (A.7)

This gives the upper bound of |K|. On the other hand, there is no lower bound on |K|
because for any given values of G2 and H2, K always can reach 0 by the cancellation of

9This actually can be understood physically. Cross sections are generated from squared amplitudes,

which makes them always non-negative. If there are only tensor and scalar interactions, i.e. E = F = 0, the

cross sections should be non-negative as well. Then from the neutrino cross section (2.9) we have A ≥ 0 by

taking the limit T → Eν . A similar argument also applies for C ≥ 0 from the antineutrino cross section.

Therefore, without explicit calculation one can expect that G2 + H2 ±K ≥ 0.
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CS (DS) with CP (DP ) in eq. (A.6). Therefore |K| can be any values from 0 to G2 +H2.

Based on this conclusion, we further write

K = 2GH cos γ (A.8)

which can be considered as the definition of γ. The advantage of γ is that it can be treated

as a free parameter so that (A, B, C) can be expressed in terms of five free parameters

(E, F, G, H, γ). As one can check, for any values of (E, F, G, H, γ), the corresponding

(Ca, Da) always exist.

Next we will prove that if

L2
± ≡ G2 +H2 ± 2GH cos γ , (A.9)

are fixed at any two non-negative values (assuming L± ≥ 0 without loss of generality), then

− L+L− ≤ H2 −G2 ≤ L+L− . (A.10)

To prove eq. (A.10), we start by constructing a parallelogram with its diagonal lengths

equal to G and H and the angle between them equal to γ. According to eq. (A.9), the

side lengths of the parallelogram should be L+ and L−. If one angle of the parallelogram

is defined as α, then we have the following transformation from (L+, L−, α) to (G, H, γ):

4H2 = L2
+ + L2

− + 2L+L− cosα , (A.11)

4G2 = L2
+ + L2

− − 2L+L− cosα , (A.12)

cos γ =
L2
− − L2

+

4HG
, (A.13)

which is essentially a transformation between a parallelogram and its Varignon parallelo-

gram. From eqs. (A.11) and (A.12) we have

H2 −G2 = L+L− cosα , (A.14)

which implies that the maximal and minimal values of H2 −G2 appear when the parallel-

ogram collapses to a line. So H2 −G2 can be any values from −L+L− to L+L−.

From eqs. (A.9), (A.10), (A.1) and (A.3) it is straightforward to derive

−
√
A− E2

√
C − F 2 ≤ B ≤

√
A− E2

√
C − F 2 , (A.15)

and then

B2 ≤ AC . (A.16)

Converting eq. (A.16) to the corresponding constraint on the X − Y plane, we get the

result in eq. (3.6).

The Majorana bound is much simpler to derive. Since for Majorana neutrinos CV =

DV = CT = DT = 0, we have

A = E2 +G2 , (A.17)

B = −G2 , (A.18)

C = F 2 +G2 . (A.19)
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Thus, the upper bound of B is 0 while the lower bound depends on A and C:

A+B ≥ 0 , (A.20)

C +B ≥ 0 . (A.21)

Then by converting (A, B, C) to (X, Y ), it is straightforward to get the Majorana

bound (3.7).
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