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Abstract: Supersymmetric microstate geometries with five non-compact dimensions have

recently been shown by Eperon, Reall, and Santos (ERS) to exhibit a non-linear instabil-

ity featuring the growth of excitations at an “evanescent ergosurface” of infinite redshift.

We argue that this growth may be treated as adiabatic evolution along a family of ex-

actly supersymmetric solutions in the limit where the excitations are Aichelburg-Sexl-like

shockwaves. In the 2-charge system such solutions may be constructed explicitly, incorpo-

rating full backreaction, and are in fact special cases of known microstate geometries. In a

near-horizon limit, they reduce to Aichelburg-Sexl shockwaves in AdS3 × S3 propagating

along one of the angular directions of the sphere. Noting that the ERS analysis is valid

in the limit of large microstate angular momentum j, we use the above identification to

interpret their instability as a transition from rare smooth microstates with large angular

momentum to more typical microstates with smaller angular momentum. This entropic

driving terminates when the angular momentum decreases to j ∼ √n1n5 where the density

of microstates is maximal. We argue that, at this point, the large stringy corrections to

such microstates will render them non-linearly stable. We identify a possible mechanism

for this stabilization and detail an illustrative toy model.
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1 Introduction

The black hole information paradox [1, 2] and more recently the firewall argument [3, 4]

have reignited the search for the correct microscopic description of black holes. The study

of supersymmetric black holes in string theory has been a useful arena for this study,

providing many insights. For example, such black holes may be described as bound states of

strings and branes [5], which can then be explored using either the low-energy perturbative

worldvolume gauge theory on the branes or supergravity at finite coupling [6]. One of the

great triumphs of this approach is the explicit stringy counting [7] by Strominger and Vafa

of the number of microstates of the D1-D5-P system, which famously agrees precisely with

the Bekenstein-Hawking entropy of the naive black hole solution.

The fuzzball program [8–14] is an attempt to describe these microstates at finite cou-

pling. It argues that the extended objects of string theory modify the structure of the

black hole horizon and solves the information paradox by construction: there is no hori-

zon, only an end to spacetime. Some of the major goals of the program are to explain the

Bekenstein-Hawing entropy, construct representative microstates and, especially in light of
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the firewall paradox, to understand the consequences of the stringy/braney physics at the

horizon.

Within this program one may distinguish 3 types of microstates [14]: (i) microstate

geometries, smooth horizonless solutions of supergravity; (ii) microstate solutions, horizon-

less solutions of supergravity with singularities corresponding to D-brane sources or which

can be dualized patch-wise into smooth geometries; and (iii) general fuzzballs, horizonless

configurations which may be arbitrarily quantum and/or strongly curved. Since the horizon

is a classical notion, it may well be that this definition of general fuzzball includes all black

hole microstates in any approach to the information problem. In any case, it remains an

open question what fraction of black hole microstates fall into each category. In particular,

while in several examples of supersymmetric black holes it has been argued [14, 15] that

many microstates do in fact have a consistent description entirely within supergravity, it

is far from clear that they are typical.

New questions about this program were recently raised by Eperon, Reall and Santos

(ERS) [16]. Focusing on supersymmetric microstate geometries, they identified a non-linear

classical instability due to the growth of excitations at an “evanescent ergosurface” [17] of

infinite redshift. On such a surface, there are null geodesics with zero energy relative to

infinity which are stably trapped in the potential well near the ergosurface. They find

that perturbing the microstate by adding a massive particle or general wavepacket near

the evanescent ergosurface eventually leads to large backreaction, even if the particle has

negligible energy at infinity. In particular, the coupling of the particle to supergravity

fields will allow it to gradually radiate energy and angular momentum and its trajectory

will approach a geodesic that minimizes the energy. Since the particle is now following

an almost-null trajectory, the local energy and hence backreaction will be very large. The

instability is non-linear in the sense that it involves interactions between the particle and

the radiation field. A corresponding effect arises in perturbative field theory due to the

coupling of modes near the evanescent ergosurface (playing the role of the massive particle

above) to radiative degrees of freedom at infinity.1

The emission of angular momentum reduces the size of a fuzzball. However, at least in

well-understood cases, typical fuzzballs have structure on microscopic scales and thus are

not described by smooth solutions [21]. The ERS instability implies that smooth solutions

can only describe the system for a short time when it is coupled to the environment. In

a dual CFT description of the near-horizon region, the instability corresponds to motion

among the ground states towards larger (and more generic) twist numbers [22, 23]. As a

result, and as we emphasize below, such an instability might have been deduced on entropic

grounds even before the identification of a dynamical mechanism by ERS.

The implications of the ERS instability for the fuzzball program depend on its end-

point. ERS proposed that it could lead to a collapse of the evanescent ergosurface and thus

1It has long been known that a class of non-supersymmetric fuzzball solutions [18] exhibits a linear

ergoregion instability [19]. However, such a stability analysis of supersymmetric microstate geometries

had not been performed until the recent work by ERS. Another recent study of dynamics focuses on the

quantum tunneling of branes into microstate geometries [20]; the result suggests that a collapsing shell of

matter might tunnel into a fuzzball configuration before a horizon can form.

– 2 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
1

drive the initially smooth horizonless microstate geometry to an almost-supersymmetric

black hole with the same brane charges as the microstate geometry but with different

angular momenta. In particular, they suggested that the endstate of the instability (for

supersymmetric D1-D5 microstates with additional momentum charge) might be a near-

extremal black hole [24] or a black ring [25]. To support this argument one may note that

as the solution shrinks it is described by the duality cascade of [21], but since the evanes-

cent ergosurface is a consequence of supersymmetry it persists in every duality frame and

so the ERS instability argument continues to apply.

However, entropic reasoning leads to the expectation that the endpoint is instead a

typical microstate with angular momentum jtypical which maximizes the microstate den-

sity of states S(j). In particular, we suggest that the string-scale structure of a typical

microstate leads to corrections that remove the instability for j ∼ jtypical and prevents the

collapse to a black hole. Within the supergravity approximation the stabilized geometry

is indistinguishable from a supergravity black hole but has structure at the horizon that

differentiates the two in the full string theory. This structure is located at the bottom of

the duality cascade described in [21], and supergravity will not capture the full physics at

the fuzzball core.

To obtain a measure of analytic control over the ERS instability, we take an adiabatic

limit in which the particle is well-described by an Aichelburg-Sexl-like shockwave on the

evanescent ergosurface. We focus on 2-charge microstates, for which the general microstate

geometries are known. Solutions with such shockwaves preserve the same supersymmetries

as the microstate geometries and are thus independent of time, but a small departure

from this limit will lead to slow evolution. In particular, growth of the instability leads to

growth of the shockwave and thus to motion along this family of solutions. The geometries

accounting for the backreaction of the shock are known explicitly [26] and in fact correspond

to special cases of the more general family of microstate geometries. The CFT states dual

to their near-horizon limits were described in [27]. These facts can be used to justify the

entropic reasoning used above.

Analysis of any potential instability in typical microstates would require a better un-

derstanding of black hole microstates beyond supergravity. In the absence of such knowlege,

we describe a simple toy model displaying what we believe to be key features of their stringy

physics. In particular, the model includes both a low-energy region near the evanescent

ergosurface, a parameter that we also call j controlling the microstate size, and an analog

of the internal structure that would be associated with stringy excitations used to perturb

the microstates. We then study the model as one decreases j in analogy with the adiabatic

evolution described above. At small enough j the low-energy region displays features on

scales smaller than those set by the internal structure of the probe. The probe can then

no longer take full advantage of the low-energy region, raising the ground state energy and

shutting off the instability. Thus we argue that the net effect of the ERS instability is

to drive smooth solutions through the duality cascade of [21] towards typicality, and the

instability is stabilized by stringy corrections just as supergravity breaks down: a rough

end for smooth microstate geometries.

The organization of this paper is as follows. In section 2 we review some of the

salient features of the supergravity and CFT descriptions of the 2-charge system. We then
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address the ERS instability in section 3. After reviewing the main argument of [16], we

study Aichelburg-Sexl-like shockwaves described above and discuss their identification in

terms of known microstate geometries. This allows us to give a concrete description of

adiabatic evolution along this family. Section 4 then describes and analyzes our toy model

illustrating our proposed mechanism for stabilizing the system once the microstates become

typical. We conclude with a discussion of our results in section 5. Appendix A describes

the analogous physics for a special class of 3-charge microstate solutions.

2 2-charge microstates

Our analysis will focus on 2-charge supersymmetric microstate geometries; discussion of

the 3-charge case is relegated to appendix A. There is now considerable evidence [8, 28, 29]

supporting the identification of particular states |Ψ〉 in the D1-D5 CFT at small string

coupling gs and large brane charges Q1, Q5 with (the near-horizon limit of) a class of

horizonless supergravity solutions characterized by a profile ~F in the four non-compact

transverse spatial dimensions. The map between these descriptions takes the form

|Ψ〉 =
N∏
k=1

(σss
′

k )Nk |0〉 ←→ ~F (v) =
N∑
k=1

~Fke
ikωv , (2.1)

where the Nk are related to the Fourier amplitudes ~Fk. We will discuss the details of the

CFT and supergravity descriptions, and thus the two sides of (2.1), in section 2.1 and

section 2.2.

2.1 CFT review

Let us consider IIB string theory compactified to M1,4 × S1 × T 4, with n1 D1 branes

wrapping the S1 and n5 D5 branes wrapping S1×T 4. At parametrically large S1 the low-

energy dynamics of the bound state of these branes is described by a (1 + 1) dimensional

sigma model whose target space is the moduli space of n1 instantons in the D5-brane

gauge theory [22, 23], a resolution of the orbifold (T 4)
N
/SN (the symmetric product of

N = n1n5 copies of T 4). The CFT has N = (4, 4) supersymmetry and a moduli space

of supersymmetric deformations. It is conjectured that this moduli space contains the

“orbifold point” where the target space is just the orbifold (T 4)
N
/SN . This is the symmetric

product of a seed with 4 real bosons Xi (4 torus directions), 4 real left moving fermions

ψi, 4 real right-moving fermions ψ′i and central charge c = 6.

The complete theory with target space (T 4)
N
/SN has N copies of the c = 6 CFT with

states symmetrized between the N copies. Many details of this theory are given in [30],

here we just review some relevant aspects. Modular invariance requires that we introduce

twisted sectors, created by bosonic and fermionic twist operators permuting the N copies.

These operators are labeled by conjugacy classes of cycles of SN , which can be decomposed

into irreps σk labeled by a single cycle of length k (the particular elements are irrelevant

because of the symmetrization, which will be implicit). For simplicity, in our discussion
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below we place all oscillators ossciated with the T 4 in their ground state. A general such

twisted sector state corresponds to

|{Nk}〉 =
N∏
k=1

(σss
′

k )Nk |0〉 (2.2)

where s, s′ = ± and
N∑
k=1

kNk = N , (2.3)

since each copy must be involved in the permutation. We take the field theory on the

D1-D5 system to be in the Ramond sector [15]. The σk in (2.2) have (h, h̃) = ( c
24 ,

c
24)

and so any set of {Nk} satisfying (2.3) is a Ramond ground state. This fact underlies the

argument matching the ground state degeneracy with the black hole entropy.

In the D1-D5 CFT the R-symmetry is geometrized as the rotational symmetry of the

non-compact directions SO(4) ≈ SU(2)L × SU(2)R. Maximal R-charge hence corresponds

to maximal angular momentum. The left-moving fermions ψi carry spin s
2 under SU(2)L

while the right-moving fermions ψ′i carry spin s′

2 under SU(2)R; the R-charge of the state

is given by (j, j′) = (j3
L, j

3
R). The σk form bi-doublets of the SU(2) × SU(2) R-symmetry

and in (2.2) and below we take the (s, s′) = (−,−) component.

We can now explain the main features of the density of states S(j) as a function of

angular momentum. The state |N1〉 = σN1
1 |0〉 with N1 = N and all other modes zero is

the unique completely untwisted state, corresponding to the Ramond ground state with

maximal R-charge, and thus to a state of maximal angular momentum jmax = n1n5. Less

finely-tuned states have smaller angular momentum, so S(j) is a decreasing function of j

near jmax. Indeed, for j � √n1n5 (and once the oscillators associated with the internal

T 4 are included as well) one finds [30]

S(j) = 2π
√

2
√
n1n5 − |j| (2.4)

to leading order in N . On the other hand, since the twist operators can contribute angular

momentum with any sign, charge conjugation symmetry implies that the ensemble of all

ground states has vanishing expectation value for the angular momentum. Fluctuations

about the average imply typical states to have non-zero angular momentum of order
√
N =

√
n1n5, so S(j) is maximized in this regime and decreases when j is decreased further.

Before proceeding to discuss geometries, we remind the reader that states in the Ra-

mond sector can be mapped to states in the Neveu-Schwarz sector via a symmetry of

theories with N ≥ 2 in 2 dimensions known as spectral flow. The dimensions h and

R-charges j of operators change along the flow according to [31]:

hα = h− αj + α2 c

24
, jα = j − α c

12
. (2.5)

In particular, a Ramond ground state with maximal R-charge (h, j) = ( c
24 ,

c
12) can be

mapped via (2.5) with α = 1 to the Neveu-Schwarz vacuum (h, j) = (0, 0). Ramond

ground states of non-maximal R-charge map to chiral primaries in the NS sector. As a

– 5 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
1

result, the completely untwisted state |N1〉 becomes the NS vacuum dual to global AdS. In

particular, on the gravity side spectral flow of the near-horizon limit for the corresponding

solution will give simply AdS3 × S3 in global coordinates.

2.2 Geometries

The two-charge D1-D5 geometries are type IIB compactifications on S1 × T 4 (or K3)

characterized by a curve ~F (v) in R4 × T 4. Due to the fact that these solutions were

originally constructed in a duality frame where the charges are P-F1, the curve ~F (v) is

known as the string profile.

We will focus on solutions describing only oscillations in the four non-compact trans-

verse directions x. The complete solution with oscillations in the T 4 directions z is given

in refs. [15, 32]. Since the T 4 factor plays no further role in our discussion of the ERS in-

stability we will usually omit it henceforth. The argument v = t− y of the string profile is

a lightcone coordinate involving the spatial coordinate y along the S1. The metric, dilaton

and RR 2-form for such solutions are given by [15]

ds2 =
1√
H1H5

[
−(dt−A)2 + (dy +B)2

]
+
√
H1H5dx

2
4 +

√
H1

H5

√
V dz2

4 ,

eΦ = g

√
H1

H5
,

C2 = g−1
[
H−1

1 (dt−A) ∧ (dy +B) + ζ
]
, (2.6)

where the harmonic functions are

H5 = 1 +
Q5

L

∫ L

0

dv

|~x− ~F (v)|2
, H1 = 1 +

Q5

L

∫ L

0

| ~̇F |2dv
|~x− ~F (v)|2

, Ai = −Q5

L

∫ L

0

Ḟ idv

|~x− ~F (v)|2
.

(2.7)

The remaining quantities are defined via dB = ?4dA, dζ = − ?4 dH5.2 L = 2πQ5

R , and its

presence in (2.7) is a vestige of the original derivation of these solutions. The profile ~F

relates the D5 charge Q5 to the D1 charge:

Q1 =
Q5

L

∫ L

0
| ~̇F |2dv . (2.8)

These supergravity charges Q1, Q5 are related to the dimensionless quantized charges

n1, n5 by

Q1 =
gα′3

V
n1 , Q5 = gα′n5 . (2.9)

The y coordinate is identified under y → y+2πR and V is the asymptotic volume of the T 4

whose coordinates z have period 2π. The four flat transverese directions x are non-compact

and can be coordinatized as dx2
4 = dr̃2 + r̃2(dθ̃2 + sin2 θ̃dφ̃2 + cos2 θ̃dψ̃2). The relation

between the Cartesian coordinates (x1, x2, x3, x4) and the spherical coordinates (r̃, θ̃, φ̃, ψ̃)

is given by x1 = r̃ sin θ̃ cos φ̃, x2 = r̃ sin θ̃ sin φ̃, x3 = r̃ cos θ̃ cos ψ̃, x4 = r̃ cos θ̃ sin ψ̃.

2Our functions H5, H1, A correspond, respectively, to H−1,K + 1, A in e.g. [27].
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Supersymmetry fixes the energy to be

E = Q1 +Q5 (2.10)

while the angular momentum depends on ~F through [15]

Jij =
Q5R

L

∫ L

0
(FiḞj − FjḞi)dv . (2.11)

This quantity has dimensions [length]4 and is related to the quantized angular momentum

j by

J12 =
g2

V
j, J34 =

g2

V
j′ (2.12)

in units where α′ = 1. For details relevant to computing energy and angular momentum

in the above 6d geometries, see [33, 34].

It will be useful to estimate the size of a given curve ~F as this determines the validity

of the supergravity description at the string profile [21]. As argued in [30], the size of the

curve is roughly proportional to its angular momentum J =
√
JijJ ij . The ~F that carries

maximal angular momentum Jmax = Q1Q5 extends to a distance
√
Q1Q5/R from the center

while strings carrying a fraction Jmax/m of the maximum angular momentum are smaller

by a factor 1/m. As noted in section 2.1, most CFT states have jtypical/jmax ≈ 1/
√
n1n5

and so have size of order 1 in string units. The supergravity description is valid (i.e.

weakly curved) in the large N = n1n5 limit, so from this perspective both Jtypical and the

typical size are indistinguishable from zero. Indeed, in the strict supergravity limit one

may compute the density of states in direct analogy with [35, 36] to obtain (2.4) (which is

maximized only at j = 0).

In a different duality frame the solution (2.6) describes a singular string source along
~F (v) carrying momentum, but in the corner of moduli space where the asymptotic charges

are D1-D5 it has long been argued [15] that the geometry is completely smooth. This

feature is particularly intriguing, as the ensemble of 2-charge solutions approximates the

M = 0 BTZ black hole [30], so one could argue that the actual black hole microstates

were horizon-free geometries that cap off smoothly at the string profile. However, for

typical states it turns out [21] that maintaining the validity of the supergravity description

while descending toward the fuzzball requires a duality cascade. Furthermore, the cascade

terminates in a frame where the D1-D5 charges have become P-F1 and curvature of the S3

becomes string-scale, so that even this final supergravity description breaks down near the

location of the typical string profile. Typical 2-charge states are thus not well-described

by smooth geometries. However, states with atypically large angular momenta have string

profiles that vary slowly enough for supergravity to remain valid even at the locus defined

by ~F (v), in some cases using only a single duality frame. Such states are indeed described

by smooth geometries.

It is therefore of particular interest that ERS [16] found an instability for the geometry

with maximal angular momentum which is the prime example of such a solution. Since

we will also begin our discussion of shockwaves in section 3 with this special case, we now

pause to describe it in some detail.
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2.2.1 The maximally-rotating microstate

The angular momentum (2.11) obtains its maximum value for the profile function

~F (v) = (a cos(ωv) , a sin(ωv), 0, 0) , 0 ≤ v ≤ L , (2.13)

where

a =

√
Q1Q5

R
, ω =

2π

L
. (2.14)

The D1 charge (2.8) for this profile is

Q1 = Q5a
2ω2 , (2.15)

and the angular momentum (2.11) in the x1−x2 plane, or equivalently, along the φ̃ direction,

takes the value

J
φ̃

= J12 = Q1Q5 = Jmax . (2.16)

With the profile (2.13) the harmonic functions become (in the notation of [8])3

H5 = 1 +
Q5

r2 + a2 cos2 θ
, H1 = 1 +

Q1

r2 + a2 cos2 θ
, (2.18)

A
φ̃

= −Q5a
2ω

sin2 θ

(r2 + a2 cos2 θ)
, B

ψ̃
= −Q5a

2ω
cos2 θ

(r2 + a2 cos2 θ)
. (2.19)

The full solution is given by

ds2
R = −1

h
(dt2 − dy2) + hf

(
dθ2 +

dr2

r2 + a2

)
− 2a

√
Q1Q5

hf

(
cos2 θdydψ̃ + sin2 θdtdφ̃

)
+ h

[(
r2 +

a2Q1Q5 cos2 θ

h2f2

)
cos2 θdψ̃2 +

(
r2 + a2 − a2Q1Q5 sin2 θ

h2f2

)
sin2 θdφ̃2

]
,

(2.20)

with

f = r2 + a2 cos2 θ , h =
√
H1H5 =

[(
1 +

Q1

f

)(
1 +

Q5

f

)]1/2

. (2.21)

In the near-horizon limit, r � (Q1Q5)1/4, a � (Q1Q5)1/4 � R, this solution is dual to

a Ramond ground state with maximal R charge. To see this, we remind the reader that

spectral flow maps the Ramond ground state to the Neveu-Schwarz ground state and that

this flow is implemented by the large coordinate transformation

ψ = ψ̃ − y

R
, φ = φ̃− t

R
. (2.22)

3We use coordinates (r, θ, φ̃, ψ̃) in which the flat metric takes the form

dx2
4 = (r2 + a2 cos2 θ)

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θdφ̃2 + r2 cos2 θdψ̃2 , (2.17)

and εrθφ̃ψ̃ =
√
g = (r2 + a2 cos2 θ)r sin θ cos θ. These coordinates are related to (r̃, θ̃, φ̃, ψ̃) in which

the S3 takes its standard form dΩ2
3 = (Q1Q5)1/4(dθ̃2 + sin2 θ̃dφ̃2 + cos2 θ̃dψ̃2) by r̃ =

√
r2 + a2 sin2 θ

and cos θ̃ = r cos θ√
r2+a2 sin2 θ

.
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Applying (2.22) to the above metric yields

ds2
NS =

√
Q1Q5

[
−(r′2 + 1)

dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1
+ dθ2 + cos2 θdψ2 + sin2 θdφ2

]
.

(2.23)

This is just global AdS3 × S3 and is indeed dual to the NS vacuum state as desired.

2.2.2 Evanescent ergosurface

The ERS instability relies on a key feature of supersymmetric microstate geometries dubbed

the evanescent ergorsurface in [17]. To describe this surface, recall [37] that supersymmetry

implies the existence of a globally null Killing vector field which, when there exists a Kaluza-

Klein Killing field ∂y, may be written

V = ∂t + ∂y . (2.24)

Here ∂t and ∂y are commuting Killing vector fields. The Killing field ∂y is spacelike and is

associated with the Kaluza-Klein direction of the 6d geometry, while ∂t becomes timelike

and canonically normalized near infinity. As a result, V can also be related to a non-

spacelike Killing vector of the 5d geometry obtained from dimensional reduction along the

y circle. Since V is globally null it is everywhere tangent to affinely parametrized null

geodesics. It will be convenient to refer to V as the SUSY Killing field below.

The evanescent ergosurface S is then defined by V · ∂y = 0. It is thus located at f = 0

in the geometry (2.20), where r = 0 and θ = π/2. Hence S is a 2d timelike submanifold of

the 6d geometry. At this locus the Kaluza-Klein circle y pinches off smoothly, as does ψ. At

constant t the topology of S is S1 where the coordinate around this circle is φ. The Killing

vector field ∂t is timelike everywhere except on S where it is null (V is null everywhere and

∂y vanishes on S). There are zero-energy null geodesics with tangent vector V which are

stably trapped on S and thus stay at constant (r, θ) = (0, π/2); more on this in section 3.

This evanescent ergorsurface will be the location of our Aichelburg-Sexl pp-wave.

3 Adiabatic instability of 2-charge microstate geometries

We are now ready to add null particles moving in the φ direction of the S3 at θ = π/2

and at the center of AdS3 (r = 0). This is the location of the evanescent ergosurface after

spectral flow. Our focus will be on studying the backreaction induced by such particles.

From the CFT perspective, the addition of a particle corresponds to exciting higher

harmonics Nk. Starting with the NS vacuum or, after spectral flow, the Ramond ground

state with maximal R-charge, we will see in section 3 that the instability found in [16]

will take us towards more complex and typical states |{Nk}〉. Our main focus, however,

is on explaining the physical implications of the instability found in [16] for the gravity

solutions (2.6). We therefore begin with a brief review of this instability.

3.1 The ERS instability

The instability identified in [16] is a consequence of a property called stable trapping, which

is exhibited by the microstate geometries near the evanescent ergosurface S where the SUSY
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Killing field V is tangent to affinely parameterized null geodesics with zero energy. These

geodesics are at rest relative to infinity, in contrast to the microstate geometries which have

a non-zero angular momentum. This implies that particles following orbits of V resist the

frame-dragging effect caused by the rotation of the background geometry. In this sense,

the zero-energy null geodesics can be seen as possessing angular momentum opposite to

that of the microstate geometry. These geodesics remain within the bounded region of

the evanescent ergosurface and are thus trapped. Because they sit at the bottom of a

gravitational potential well they minimize the energy and so the trapping phenomenon is

stable.

Now imagine perturbing the spacetime by adding an uncharged massive particle near

to the evanescent ergosurface. If we neglect backreation, the particle moves on a geodesic.

When coupled to supergravity fields it will gradually radiate energy and angular momentum

and its trajectory will approach a geodesic that minimizes the energy. Hence the trajectory

of the particle will approach one of the zero-energy trapped null geodesics tangent to V

on the evanescent ergosurface. The particle will have very small energy as measured at

infinity but, since the massive particle is now following an almost null trajectory, the energy

measured by a local observer will be very large. It will thus give rise to strong backreaction.

As argued in [16], this suggests an instability that triggers a large change in the spacetime

geometry.

While the above reasoning used particles, one should obtain the same conclusions using

a field-theoretic analysis in the WKB limit, and analogous physics follows from studying

quasi-normal modes [16]. In the particle context, the fact that interactions played an

important role (by allowing the massive particle to radiate) means that the instability

is a non-linear effect. Note that the instability is fundamentally a consequence of the

existence of stably trapped null geodesics and that an evanescent ergosurface per se is

not required. In particular, one expects this instability to arise even in supersymmetric

microstate geometries that do not possess a Kaluza-Klein Killing vector field and thus no

concept of an evanescent ergosurface. In this sense, the ERS instability appears to be a

rather robust feature of supersymmetric microstate geometries.

What could be the endpoint of this instability? Its overall effect is to remove angu-

lar momentum from the microstate geometry via radiation. This will cause the evanes-

cent ergosurface to shrink. It was suggested in [16] that a natural endpoint is a non-

supersymmetric black hole with the same conserved charges as the microstate geometry

but different angular momenta.

We will now argue for a different conclusion. To do so, we recall [16] that orbits of

the SUSY Killing field V on the evanescent ergosurface are null geodesics. We then return

to the above discussion of adding a particle and consider the limit where the particle

becomes massless and travels precisely along such a geodesic. Such particles preserve the

supersymmetry of the background geometry, so in this limit one expects there to be a

stationary supergravity solution that incorporates the full backreaction from the particle

even when the local energy and momentum of the null particle are large. This is not

to say that the ERS instability has been completely removed, as even tiny deformations

away from this limit will still trigger its effects. However, continuity implies that the ERS
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instability proceeds very slowly when the system is close to this SUSY null particle limit.

Furthermore, we recall that the ERS instability tends only to make the particle more

null and to move it even closer to the above null geodesics while increasing the locally-

measured energy. As a result, close to our SUSY null limit, one may approximate the

evolution induced by the ERS instability as adiabatic evolution along a one-parameter

family of fully-backreacted supersymmetric supergravity solutions describing null particles

on the above SUSY geodesics. The natural parameter labeling the solutions is just the

locally-measured energy of the null particle, and dynamical evolution drives this energy to

slowly increase.

Our first task is thus to identify the relevant supergravity solutions. As is well known,

the backreaction of a null particle in flat space is described by the Aichelburg-Sexl solu-

tion [38], which preserves the desired supersymmeries [39]. We therefore seek supersym-

metric solutions of the D1-D5 system which locally take the Aichelburg-Sexl form near

the null geodesic on which the particle travels. To simplify the analysis, we will in fact

consider a more symmetric situation describing an ensemble of such particles that pre-

serves both translation invariance on the internal T 4 and rotational invariance under ∂φ:

in the language commonly used to describe such solutions, we smear the particles over

these directions. It will be convenient to begin with the maximally rotating microstate

and in fact to start our discussion in the near-horizon limit which, under the spectral flow

transformation discussed in section 2.2.1 becomes just AdS3 × S3.

3.2 Aichelburg-Sexl solutions

We therefore consider the addition to AdS3×S3 of an Aichelburg-Sexl shock wave associated

with a ring of particles moving at the speed of light around a circle on the S3 at the center

of AdS. As shown in [26, 27], the resulting geometry is

ds̄2
NS =

√
Q1Q5

[
−(r′2 + 1)

dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1
+ dθ2 + cos2 θdψ2 + sin2 θdφ2

]

+
q
√
Q1Q5

r′2 + cos2 θ

[(
(r′2 + 1)

dt

R
+ sin2 θdφ

)2

−
(
r′2
dy

R
− cos2 θdψ

)2
]
, (3.1)

where we have corrected some typos in the expressions of [26, 27]. In (3.1), q parametrizes

the locally-measured energy of the null particle; i.e., it describes the strength of the shock.

For q = 0 (3.1) is empty AdS3 × S3 as desired.

The geometry (3.1) has a curvature singularity at the locus of the shockwave. Near

the evanescent ergosurface (r, θ) = (0, π/2), the leading terms in (3.1) yield

ds̄2
NS =

√
Q1Q5

[
−dt

2

R2
+ dr′2 + dθ2 + dφ2 +

q

f

(
dt

R
+ dφ

)2
]
, (3.2)

which is precisely an Aichelburg-Sexl shock in otherwise-flat space propagating along φ̃ =

φ+ t
R . Note that, as for the 2-charge geometry without the shockwave (2.20), the y and ψ

circles pinch off at f = 0.
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It is now straightforward to invert the spectral flow (2.22) and obtain the R sector

solution. We further restore the asymptotically flat region by judiciously adding back the

appropriate constants inside the harmonic functions. Defining the parameter ξ = 1 − q,
this construction suggests that taking the maximally-rotating geometry (2.20), adding a

ring of particles to the evanescent ergosurface and incorporating their backreaction, one

obtains the geometry

ds̄2
R = −1

h̄
(dt2 − dy2) + h̄f̄

(
dθ2 +

dr̄2

r̄2 + ā2

)
− ξ 2a

√
Q1Q5

h̄f̄

(
cos2 θdydψ̃ + sin2 θdtdφ̃

)
+ h̄

[(
r̄2 + ξ

ā2Q1Q5 cos2 θ

h̄2f̄2

)
cos2 θdψ̃2 +

(
r̄2 + ā2 − ξ ā

2Q1Q5 sin2 θ

h̄2f̄2

)
sin2 θdφ̃2

]
,

(3.3)

where

h̄ =
√
H̄1H̄5 =

[(
1 +

Q1

f̄

)(
1 +

Q5

f̄

)]1/2

, f̄ = r̄2 + ā2 cos2 θ = ξf . (3.4)

One can show that (3.3) is generated by the string profile

~̄F (v) = (ā cos(ωv/ξ + φ0), ā sin(ωv/ξ + φ0), 0, 0) , 0 ≤ v ≤ Lξ
~̄F (v) = (ā cosφ0, ā sinφ0, 0, 0) , Lξ ≤ v < L (3.5)

after smearing over φ0 [27]. The smearing operation should be understood as generaliz-

ing (2.6) by adding further terms to the harmonic functions sourced by a set of independent

string profiles ~Fi with independent values of φ0 and then taking a limit where the profiles in

fact coincide and the ensemble of φ0 values forms the uniform distribution on [0, 2π]. This

construction makes it clear that the result (3.5) is indeed an appropriately supersymmetric

solution, once augmented by the appropriate dilaton and form fields generated by (3.5).4

Readers concerned about the breakdown of the supergravity description near the shock

may think of (3.5) as an approximation to a smooth profile whose Fourier decomposition

has no excitations higher than the N th harmonic.

Returning to the string profile (3.5), before smearing one sees that the profile describes

a string that winds once around the φ-circle on the interval v ∈ [0, Lξ] and then remains

at the same x-location for the remaining v-length (1 − ξ)L. The last straight segment

corresponds to the added particle: just a bump on a fuzzball.5 From this profile one

obtains the harmonic functions [27]

H̄5 = 1 +
Q5ξ

r̄2 + ā2 cos2 θ
+

Q5(1− ξ)
(x1 − ā cosφ0)2 + (x2 − ā sinφ0)2 + x2

3 + x2
4

, (3.6)

H̄1 = 1 +
Q5ā

2ω2/ξ

r̄2 + ā2 cos2 θ
, (3.7)

Ā
φ̃

= −Q5ā
2ω

sin2 θ

r̄2 + ā2 cos2 θ
, (3.8)

4While the profile function (3.5) is very similar to the profile function that generates the solutions dual

to spectral flows of the conical deficits [30, 40, 41], it has a different range of integration which destroys the

Hopf structure that leads to the conical singularity. With (3.5) one finds a curvature singularity instead.
5We are grateful to Iosif Bena for emphasizing this viewpoint.
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where the radial coordinate at infinity r̄ is related to r by

r̄ =
√
ξ r , (3.9)

so that ε
r̄θφ̃ψ̃

=
√
g = (r̄2 + ā2 cos2)r̄ sin θ cos θ and the flat metric takes the form

dx2
4 = (r̄2 + ā2 cos2 θ)

(
dr̄2

r̄2 + ā2
+ dθ2

)
+ (r̄2 + ā2) sin2 θdφ̃2 + r̄2 cos2 θdψ̃2 . (3.10)

Averaging over φ0 gives

H̄5 = 1+
Q5

r̄2 + ā2 cos2 θ
, H̄1 = 1+

Q1

r̄2 + ā2 cos2 θ
, Ā

φ̃
= −Q5ā

2ω
sin2 θ

r̄2 + ā2 cos2 θ
, (3.11)

which leads to the geometry (3.3). Note that the relation (2.8) yields

ā =
√
ξ a . (3.12)

Though it seems innocent enough, this equation is actually key to our analysis. It implies

the backreacted solution to be scaled down by a factor
√
ξ.

3.3 The shrinking shockwave

We argued above that the ERS instability admits an adiabatic limit described by the family

of solutions (3.3) with increasing strength q of the Aichelburg-Sexl shock, and thus with

decreasing ξ. From (2.11) and the asymptotics of the metric (3.3) one finds that the angular

momentum of any such solution is smaller than in the maximally rotating case by a factor

ξ = 1− q ≤ 1 while the total energy is unchanged. We find

Ē = Q1 +Q5 , J̄
φ̃

= ξQ1Q5 (3.13)

which corresponds to j = ξjmax = ξn1n5. Since (3.3) still possesses an evanescent ergosur-

face, the solution will continue to shrink and radiate angular momentum to infinity so long

as the ERS analysis remains valid. Indeed, while a consistent supergravity description will

require a series of duality frames as we decrease j [21], the existence of a (perhaps singular)

evanescent ergosurface is guaranteed in all frames by the supersymmetry of the solution.

The solution will continue to shrink at least until we can no longer trust the ERS

analysis at ξ ∼ 1/
√
n1n5 = 1/

√
N . In the large N limit this corresponds to taking ξ → 0,

which gives

ā =
√
ξa→ 0 , f̄ = r̄2 + ξa2 cos2 θ → r̄2 , h̄ =

[(
1 +

Q1

f̄

)(
1 +

Q5

f̄

)]1/2

→
√
Q1Q5

r̄2
.

(3.14)

In this limit we recover the near-horizon metric of the M = 0 extremal BTZ black hole

with transverse S3 [42, 43]:

ds̄2
R =

r̄2

√
Q1Q5

(−dt2 + dy2) +
√
Q1Q5

(
dr̄2

r̄2
+ dθ2 + cos2 θdψ̃2 + sin2 θdφ̃2

)
. (3.15)

This is consistent with the ERS suggestion that the system evolves to become a black hole.
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One effect not taken into account by ERS is the possibility that the particle seeding

the instability will decay. So long as the decay products continue to be treated as classical

particles, one presumes this to give rise to a set of ERS-like instabilities all acting in

concert. But since we consider a limit where the instability is adiabatically slow, this

system of particles will reach some sort of equilibrium at each j. Indeed, in the absence

of other constraints, a coarse-grained description of this equilibrium should resemble the

microcanonical ensemble of all appropriately supersymmetric states with the given value

of j; after including backreaction, this is just the microcanonical ensemble of microstate

geometries.

The ERS analysis thus suggests that there is a general tendency for asymptotically flat

microstate geometries to evolve towards smaller j. This is no surprise for j ∼ jmax, as the

microcanoncal entropy S(j) decreases with increasing j in this regime according to (2.4).

In fact, S(j) behaves this way for all j > jtypical, and so any interaction should lead to this

behavior when the microstate is well-described by supergravity.

On the other hand, we recall from section 2.1 that S(j) is maximized at jtypical of

order
√
n1n5. As a result, so long as our microcanonical ensemble approximation remains

valid and the entropy in radiation at infinity can be neglected,6 unitarity prohibits any

interaction from causing j to decrease below jtypical. This strongly suggests that — at least

for generic microstates — the ERS mechanism shuts down for j near jtypical. The effect of

the ERS instability is thus to drive smooth solutions towards stringy typicality — a rough

end for these supposedly smooth spacetimes.

There is indeed ample room for corrections to the ERS analysis in this regime. As

noted in section 2.2, microstate geometries with j ∼ jtypical have string-scale structure and

could well require large corrections to the classical supergravity description used by ERS.

While a full analysis is beyond the scope of this work, we describe a particular stringy

effect in section 4 below that could plausibly provide such corrections and illustrate the

resulting stabilization in a simple toy model.

4 A model for stabilization at typicality

The ERS analysis considered test particles and fields propagating on microstate geometries.

At large j the geometries are quite smooth, so stringy corrections can be incorporated via

an asymptotic expansion in α′. However, due to the presence of string-scale structure

when j ∼ jtypical, an accurate analysis in this regime requires any probes to be treated

as quantum strings. In particular, the zero-point oscillations of probe strings mean that

they will not sit sharply at the minimum of any background potential. One may thus

expect this effect to raise the energy of the probe above what would be expected by naively

extrapolating results from the smoother geometries at larger j. As a result, this mechanism

has the potential to deactivate the ERS instability at j ∼ jtypical. While a complete stringy

6This is a subtle point. The entropy of radiation at infinity is divergent. We may regulate the model by

placing the system in a finite-sized box. Then near jtypical, in the limit of large charges n1, n5 with fixed box

size, the entropy in the radiation is negligible when compared with the microstate density of states S(j).
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analysis is beyond the scope of our work, we provide a simple toy model below exhibiting

what we believe to be key features of the physics.

To set the context for our model, let us briefly return to the ERS discussion of massive

particles. As discussed in section 2.4 of ERS, the energy of such particles is minimized at

jparticle = −∞ in the geometry (2.20) with j = jmax. In particular, the minimum of the

energy Emin(jparticle) decreases as jparticle → −∞ and so the particle tends to roll down

this effective-potential hill by radiating into the asymptotically flat region.

Of course, once jparticle becomes large one must take backreaction into account. One

would then like to compute the minimum energy Ebackreacted, min(j) consistent with a given

total angular momentum j (including jparticle) and the existence of the particle. Doing so

will be complicated away from the adiabatic limit of section 3, but one expects the result to

give an effective potential Ebackreacted, min(j) whose qualitative features are similar to the

above Emin(jparticle), and in particular which again decreases as we make j more negative.

A toy model for such an effective potential computation is given by a family of one-

dimensional models in non-relativistic quantum mechanics defined by potentials Vj(x) for

which we wish to compute the energy Emodel, min(j) of the ground state. We consider the

Hamiltonian

H =
p2

2m
+ Vj(x) (4.1)

for each value of a parameter that we will also call j. Here there is no explicit notion of

backreaction, though it has been incorporated implicitly through our comparison of ground

state energies for different values of the external parameter j.

One would like this potential to model the effective potential for timelike particles

in a microstate geometry, which is minimized at the evanescent ergosurface and which

becomes constant far away. It thus takes the general shape of the potential in figure 1. For

simplicity, we model this shape by choosing

Vj(x) =


1
2mω(j)2x2 − V0(j) |x| < L

V1(j) |x| > L .
(4.2)

L characterizes the scale over which the potential differs from its asymptotic value, and

continuity of the potential requires

1

2
mω2L2 − V0 = V1. (4.3)

To model the ERS instability, all the parameters should depend on j except the particle

mass m. We will often leave this functional dependence implicit.

Near x = 0 the eigenfunctions match the harmonic oscillator, but the effects of the flat

potential in the |x| > L region begin to affect the nth and higher states when the position

fluctuations

〈x2〉 ≈ (2n+ 1)

2mω
(4.4)

become O(L2). In particular, in states with 〈x2〉 � L2 the particle will not be bound to

the harmonic trap. It will be useful to define the dimensionless quantity

C := mωL2 (4.5)
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Figure 1. The potential in our toy model. The real shape of the effective potential for timelike

particles in a microstate geometry is a smoothed version.

which essentially counts the number of bound states in the potential Vj(x): states with

excitation number n� C are well-approximated by harmonic oscillator eigenstates, while

those with n ∼ C are still bound but receive significant corrections from the turning point

in the potential (4.2). For n� C the particle is effectively free.

As j decreases, the length scales of structures in our potential should decrease in

analogy with the decreasing size of structures in the microstate geometries. Thus we take

ω to increase, and in order to keep the number of bound states constant we hold ωL2

fixed (this is the natural scaling in non-relativistic quantum mechanics). We take V0 to

slowly decrease with j in order to make the ground state energy Emodel, min(j) behave like

Emin(jparticle), and in particular to slowly drive the solution towards smaller j.

So far we have merely constructed a simple quantum-mechanical toy model of the

original ERS particle analysis. However, we wish to consider effects associated with the

zero-point oscillations of stringy probes of the microstate geometries. In our model this

can be accomodated by letting the test particle have internal structure. For the present

purposes, it will be enough to regard the particle as a bound state of K partons (say, each

of mass m/K) coupled by an additional internal potential εint that depends only on the

relative separations of the partons and not on j. If one likes, one may take these K particles

to be connected by springs in a ring in order to give a discrete model of a quantum string.

Since the potential Vj largely models gravitational redshift effects in each microstate

background, we will take each parton to experience the same potential V parton whose

parameters ωparton, Lparton, V
parton

0 we fix below in terms of the parameters of the particle

model (4.2). The full Hamiltonian is

H =

K∑
i=1

(
Kp2

i

2m
+ V parton(xi)

)
+ εint. (4.6)
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We begin in the regime where the external potential ωparton is small compared to all scales

in the internal potential εint. This models microstates, like the maximally-rotating solution,

whose structures are large compared to the string scale. In this regime the internal degrees

of freedom are effectively in their ground state and we obtain a “tight binding” limit in

which any differences between the xi are small compared to any scales in the external

potential. The result is an effective description of the parton composite as a single particle

of mass m moving in a 1-particle potential KV parton evaluated at the center of mass

coordinate x̄. The effective physics exactly matches the single-particle model above if we

identify

V parton =
Vj
K
. (4.7)

This implies Lparton = L, ωparton = ω and KV parton
0 = V0.

So long as C > 1, there is a ground state bound to the well in which

〈x̄2〉 ≈ 1

2mω
. (4.8)

The harmonic oscillator approximation to V (x̄) implies that the ground state energy of the

composite system is

E0 ≈ Etight binding :=
ω

2
− V0 + ε0, (4.9)

where ε0 is the ground state energy of Hamiltonian describing the intra-parton couplings.

However, the properties of the model become very different at ω � εint, i.e. as j

decreases towards typicality. Any bound partons are much more strongly coupled to the

external potential than to each other; if the partons remained bound, the ground state

of the composite system would have each parton separately in the ground state of the

potential V parton. However, defining Cparton in analogy with (4.5) yields

Cparton :=
m

K
ωpartonL

2
parton =

C

K
. (4.10)

This is the quantity that counts states bound to the external potential when interactions

between partons can be ignored. Taking K & C partons, the number of such bound states

will become less than one in this regime and it will be inconsistent to continue to treat all

partons as bound in the external potential.

Instead, the partons pop out of the external potential well and experience only the flat

potential V parton
1 = V1/K to good approximation when K � 1.7 As a result, the actual

ground state energy in this regime will be

Emodel, min ≈ V1 +εint =
1

2
mω2L2−V0 +εint = Etight binding +(εint−ε0)+

ω

2
(C−1). (4.11)

Taking C > 1 so that there is at least initially a bound state, the corrections to the tight

binding energy are positive. They scale with ω at large ω and so counteract any tendency

7At any given time, some of the partons will in fact lie within their potential well. This effect can be

estimated by studying the effective potential K〈V parton〉x̄, where the notation indicates the expectation

value of V parton for some one parton in the approximation that x̄ is held fixed but that the system is

otherwise in its ground state. One finds it to be of order 1/
√
K, so we neglect it.
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of Etight binding to slowly decrease due to the j-dependence of V0. The behavior at smaller

K is similar.

Note that the analogue of the ERS effective potential is Etight binding, and that this

generally differs from the actual ground state energy that would arise from putting all the

particles inside the external potential well. The latter knows about the internal structure

of the composite particle, while the ERS potential does not. Writing Emodel, min in terms

of Etight binding clearly displays the extra positive term that exhibits stabilization.

To summarize, in our toy model decreasing j causes the ground state energy to de-

creases for a while as the instability proceeds. However, it then begins to increase again

when the zero-point oscillations of the probe string no longer fit into the external potential

well. Analogous behavior for the ERS phenomenon would mean that the instability stabi-

lizes when the evanescent ergosurface develops string-scale structure, which occurs as the

CFT state approaches typicality.

5 Discussion

We have argued that an adiabatic limit of the ERS instability of the 2-charge D1-D5

system is described by motion along a family of microstate geometries associated with

the D1-D5 CFT. In particular, due to the emission of radiation to infinity, the angular

momentum labelling the relevant microstate geometries should be thought of as a slowly-

evolving function of time j(t). When the instability is very weak and this evolution is

especially slow, there is time for any perturbation to induce transitions between microstates

and the geometry at any time t should admit an approximate description as the ensemble

of all supersymmetric geometries with angular momentum j(t), described in [10]. At large

j the ERS instability is consistent with entropic reasoning in the CFT and indeed could

have been anticipated on such grounds. From the field theory point of view, the instability

simply causes evolution from states described by rare collections of twist operators to those

described by more generic such collections.

On the other hand, entropic reasoning suggests that the instability terminates when j

approaches jtypical ∼
√
n1n5. Since this is also the regime where stringy corrections to [16]

naturally become large, we suggested that the system is indeed stabilized at such j. A

plausible scenario is that the zero-point oscillations of any perturbing string then prohibit

it from taking full advantage of the strong redshift near the evanescent ergosurface as this

surface also exhibits string-scale structure. A full analysis is beyond our scope, but the toy

model of section 4 illustrates how this effect might tame the instability.

It is important to emphasize that we have argued for stabilization only in our adiabatic

limit. Since the ERS instability is non-linear, it will evolve quickly under large perturba-

tions that take the system far away from the supersymmetric moduli space. It appears

difficult to analyze this regime, and one could well imagine the endpoint in the case being

either a horizon-free (but not smooth) solution with string-scale structure (a.k.a. a rough

microstate), or a traditional black hole. As usual in this field, the question remains open

for future investigation.
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It would be interesting to consider a similar analysis for the 3-charge system. While

in that setting it is unclear that there is any geometric analogue of typical microstates,

one may in any case choose to study known classes of geometric solutions. Some initial

steps involving the addition of Aichelburg-Sexl shockwaves to one such family are taken

in appendix A, but it remains to check that the conjectured fields do in fact satisfy the

supergravity equations of motion, or to study more typical 3-charge microstates [44].

Even with our presumed stabilization at j ∼ jtypical, the fact that it modifies the

ERS instability only when the supergravity description breaks down means that much of

the physical interpretation of ERS remains intact: the slightest perturbation will cause

microstates with large angular momentum to collapse, with the likely endpoint being (ge-

ometrically) indistinguishable from the M = 0 BTZ black hole. This does not prevent one

from preparing the black hole in such a microstate but, depending on parameters, it could

well cause the microstate to collapse and absorb the observer into its structure before she

can sail through any smooth region where the spacetime caps off.
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A Instability of 3-charge microstate geometries

We now discuss the ERS instability for the special class of 3-charge geometries constructed

in [45–48] and studied also by ERS [16]. Building on the 2-charge solution of section 2 (but

now with rotation along both angles φ and ψ of the S3 turned on) dual to Ramond ground

states, the action of spectral flow (2.5) with α 6= ±1 yields excited states. In addition to

D1 and D5 brane charge, these solutions have momentum excitations along the common

D1-D5 direction. We review this special class of 3-charge solutions from the CFT and

geometry descriptions and then briefly discuss the ERS instability along the same lines as

section 3.

A.1 CFT

States in the D1-D5 CFT with momentum excitations along the common y direction cor-

respond to excited Ramond sector states. Starting with the Neveu-Schwarz vacuum we

can generate excited states in the Ramond sector through the action of spectral flow (2.5).

The 3-charge states of interest are obtained by acting on the Neveu-Schwarz vacuum in

the left-moving sector with

α = 2n+ 1 with n integer , (A.1)
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and in the right-moving sector with α = 1 (so that the right movers are in their Ramond

ground state and the CFT is supersymmetric). After spectral flow (2.5) with (A.1) the

states in the symmetric product theory have dimensions (h, h̃) and charges (j, j′):

h =
1

4
(2n+ 1)2n1n5 , h̃ =

1

4
n1n5 , (A.2)

j = −1

2
(2n+ 1)n1n5 , j′ = −1

2
n1n5 . (A.3)

We get D1-D5-p states carrying momentum charge

np = h− h̃ = n(n+ 1)n1n5 , (A.4)

along the S1 and angular momenta

jψ = −j′ + j = −nn1n5 , jφ = −j′ − j = (n+ 1)n1n5 , (A.5)

on the angles of the S3.

A.2 Geometry

The special class of 3-charge solutions obtained from the spectral flow (A.14) of the maxi-

mally rotating 2-charge solution (2.20) are given by [46, 48]

ds2
R = −1

h
(dt2 − dy2) +

Qp
hf

(dt− dy)2 + hf

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)
+h

(
r2 + γ̃1(γ̃1 + γ̃2)η − (γ̃2

1 − γ̃2
2)ηQ1Q5 cos2 θ

h2f2

)
cos2 θdψ̃2

+h

(
r2 + γ̃2(γ̃1 + γ̃2)η +

(γ̃2
1 − γ̃2

2)ηQ1Q5 sin2 θ

h2f2

)
sin2 θdφ̃2

+
Qp(γ̃1 + γ̃2)2η2

hf
(cos2 θdψ̃ + sin2 θdφ̃)2

−2

√
Q1Q5

hf

(
γ̃1 cos2 θdψ̃ + γ̃2 sin2 θdφ̃

)
(dt− dy)

−2
(γ̃1 + γ̃2)η

√
Q1Q5

hf

(
cos2 θdψ̃ + sin2 θdφ̃

)
dy , (A.6)

where

η ≡ Q1Q5

Q1Q5 +Q1Qp +Q5Qp
, (A.7)

f = r2 + (γ̃1 + γ̃2)η(γ̃1 sin2 θ + γ̃2 cos2 θ) , (A.8)

γ̃1 = a
jψ
n1n5

= −an , γ̃2 = a
jφ
n1n5

= a(n+ 1) , (A.9)
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while the functions h,H1, H5 are as in section 2. The dilaton and gauge fields are

eΦ = g

√
H1

H5
, (A.10)

C2 = −
√
Q1Q5 cos2 θ

H1f
(γ̃2dt+ γ̃1dy) ∧ dψ +

√
Q1Q5 cos2 θ

H1f
(γ̃1dt+ γ̃2dy) ∧ dφ

+
(γ̃1 + γ̃2) ηQp√
Q1Q5H1f

(Q1dt+Q5dy) ∧
(
cos2 θdψ + sin2 θdφ

)
− Q1

H1f
dt ∧ dy − Q5 cos2 θ

H1f

(
r2 + γ̃2(γ̃1 + γ̃2)η +Q1

)
dψ ∧ dφ. (A.11)

This solution has n1 units of D1 branes and n5 units of D5 branes wrapping the S1, np
units of momentum along the S1 and jψ, jφ units of angular momenta on the S3. The

dimensionful quantities in (A.6) are related to these quantized values by (using (A.4))

Q1 =
gα′3

V
n1 , Q5 = gα′n5 , Qp =

g2α′4

V R2
np = −γ̃1γ̃2 . (A.12)

For n = 0, i.e. in the absence of momentum Qp = 0, we have η = 1 , γ̃1 = 0 , γ̃2 = a thus

recovering (2.20).

The energy and angular momenta are

E = Q1 +Q5 + 2Qp , J
ψ̃

= γ̃1R
√
Q1Q5 , J

φ̃
= γ̃2R

√
Q1Q5 (A.13)

and the coordinate transformation correponding to spectral flow (2.5) with (A.1) is given by

ψ = ψ̃ − α̃ a√
Q1Q5

y + (α̃− 1)
a√
Q1Q5

t , φ = φ̃− α̃ a√
Q1Q5

t+ (α̃− 1)
a√
Q1Q5

y . (A.14)

For α̃ = 1 this reduces to the coordinate transformation (2.22) for which the metric in the

near-horizon limit r �
√
Q and a �

√
Q � R (implying Qp � Q and η → 1) becomes

AdS3 × S3 dual to the NS vacuum. The exicted Ramond states obtained from spectrally

flowing the NS vaccuum with (A.1) are dual to geometries obtained from AdS3 × S3 via

the coordinate transformation (A.14) with α̃ = n.

A.3 Aichelburg-Sexl in excited AdS3 × S3

The same procedure as in section 3.2 suggests that the addition of massless particles to the

class of 3-charge solutions (A.6) is described by the geometries8

ds2
R = −1

h̄
(dt2 − dy2) +

Qp

h̄f̄
(dt− dy)2 + h̄f̄

(
dr̄2

r̄2 + (¯̃γ1 + ¯̃γ2)2η
+ dθ2

)

+h̄

(
r̄2 + ¯̃γ1(¯̃γ1 + ¯̃γ2)η − ξ (¯̃γ

2
1 − ¯̃γ

2
2)ηQ1Q5 cos2 θ

h̄2f̄2

)
cos2 θdψ̃2

8The dilaton is as in (A.10), while the RR 2-form picks up an extra piece proportionl to (1− ξ) relative

to (A.10) as in [27].
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+h̄

(
r̄2 + ¯̃γ2(¯̃γ1 + ¯̃γ2)η + ξ

(¯̃γ
2
1 − ¯̃γ

2
2)ηQ1Q5 sin2 θ

h̄2f̄2

)
sin2 θdφ̃2

+
Qp(¯̃γ1 + ¯̃γ2)2η2

h̄f̄
(cos2 θdψ̃ + sin2 θdφ̃)2 (A.15)

−2ξ

√
Q1Q5

h̄f̄

(
γ̃1 cos2 θdψ̃ + γ̃2 sin2 θdφ̃

)
(dt− dy)

−2ξ
(γ̃1 + γ̃2)η

√
Q1Q5

h̄f̄

(
cos2 θdψ̃ + sin2 θdφ̃

)
dy

where
¯̃γi =

√
ξγ̃i. (A.16)

In particular, in the near-horizon limit this yields an Aichelburg-Sexl shockwave propagat-

ing along both angles of the S3:

ds2NS = −
(
r2+a2

) dt2√
Q1Q5

+r2
dy2√
Q1Q5

+
√
Q1Q5

dr2

r2+a2
+
√
Q1Q5

(
dθ2+cos2 θdψ2+sin2 θdφ2

)
+
q
√
Q1Q5

f

{[(
r2+a2

) dt√
Q1Q5

+γ̃1 cos2 θdψ+γ̃2 sin2 θdφ

]2

−
[
r2
dy

Q
−γ̃2 cos2 θdψ−γ̃1 sin2 θdφ

]2}
. (A.17)

We have not checked that this is a solution other than for the trivial cases q = 0 and q = 1.

Assuming that it is, we may then again describe an adibatic limit of the ERS instability

as the growth of q with time. Again, this causes the backreacted solution to shrink as a

function of time, decreasing the angular momentum by a factor ξ = 1− q while leaving the

total energy unchanged:

Ē = Q1 +Q5 + 2Qp , J̄
ψ̃

= γ̃1R
√
Q1Q5ξ , J̄

φ̃
= γ̃2R

√
Q1Q5ξ . (A.18)

As in the 2-charge case, the solution will continue to shrink at least until we can no longer

trust the ERS analysis at ξ ∼ 1/
√
n1n5 = 1/

√
N . In the large N limit this corresponds to

taking ξ → 0. Making this replacement in (A.15) yields the near-horizon metric of extremal

BTZ black hole with a transverse S3:

ds2
R=

r̄2

√
Q1Q5

(−dt2+dy2)+
Qp√
Q1Q5

(dt−dy)2+
√
Q1Q5

(
dr̄2

r̄2
+dθ2+cos2 θdψ̃2+sin2 θdφ̃2

)
.

(A.19)

This is the near-horizon limit of the 5d non-rotating D1-D5-p (Strominger-Vafa) black

hole [49]. Hence this preliminary analysis suggests that, as in the 2-charge microstates, the

ERS instability proceeds until the 3-charge microstate is geometrically indistinguishable

from the extremal BTZ black hole outside its putative horizon.
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