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1 Introduction

A possibility of an interacting theory of an infinite tower of massless higher spins in flat

space is an old question with various no-go theorems prohibiting the existence of minimal

(low-derivative) couplings or long-distance interactions (see [1] for a review). At the same
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time, non-trivial cubic vertices containing higher derivatives were constructed in the past

using various approaches in [2–16].1

The allowed cubic vertices ∂nφs1φs2φs3 have the number of derivatives n constrained by

s2+s3−s1 ≤ n ≤ s2+s3+s1 (assuming s1 ≤ s2 ≤ s3). Remarkably, the coupling constants

in these vertices can be fixed in terms of a single dimensional constant ℓ [6]. For example,

for the highest-derivative vertex one gets gs1s2s3 ∼ ℓs1+s2+s3−1

(s1+s2+s3−1)! . Assuming that a Noether

deformation procedure can completely determine also the quartic and higher vertices one

may conjecture the existence of a theory containing an infinite tower of massless Fronsdal

fields φs (s = 0, 1, 2, . . . ,∞) with an action depending on one dimensionless coupling g and

one dimensional parameter ℓ and having the following structure2

Sflat =
1

g2

∫

d4x

[

∑

s

φs∂
2φs +

∑

ℓn−1∂nφs1φs2φs3 +
∑

ℓk−2∂kφ4 + . . .

]

→
∫

d4x

[

∑

s

φs∂
2φs + g

∑

ℓn−1∂nφs1φs2φs3 + g2
∑

ℓk−2∂kφ4 + . . .

]

. (1.1)

Here g controls the expansion in number of fields (and also loop expansion) while ℓ sets up

an effective scale (i.e. it appears together with derivatives or momenta). Such a theory is

effectively non-local as the number of derivatives is unbounded given that spins can take

any value up to infinity.

One may wonder why such an unusual theory (assuming it indeed exists) may be of any

interest. One reason is that it may have hidden simplicity due to its large gauge (and global)

higher spin symmetry. For example, the free theory
∑∞

s=0

∫

d4xφs∂
2φs turns out to have

zero total number of effective dynamical degrees of freedom and thus a trivial partition

function Z = 1 [24].3 This is true if one uses a particular prescription of summation

1How some constraints of no-go theorems may be avoided is discussed in [1, 17, 18]. The Coleman-

Mandula theorem that prohibits existence of higher spin conserved charges assumes finite number of particles

of mass below certain scale and analyticity of the amplitudes. Weinberg’s soft theorem [19] is a requirement

of linearized gauge invariance with respect to the spin s leg in the amplitude. It is satisfied automatically

if 3-point vertices are gauge-invariant on-shell as is the case for the known flat space higher spin vertices

discussed below. In general, the soft theorem constraines a theory with s-s′-s′ couplings with minimal

number s of derivatives in the vertex. It imposes conditions on scattering amplitudes with at least one

higher spin s particle on an external line which are equivalent to conservation of higher spin charges (which

are higher than quadratic in external momentum and thus allow only elastic scattering with permutations

of momenta). It leads to non-trivial constraints only if exchanged spins are lower than external ones [17].

Constraints on cubic couplings based on the assumption of BCFW constructibility [20] applied to massless

4-point scattering amplitude [21–23] may not apply if one allows for some non-locality of the 4-point vertex

in a theory that contains infinite sum over spins/derivatives. It is likely that the condition of BCFW

constructibility is stronger than that of the existence of an interacting theory constructed from a free

theory via gauge symmetry deformation or Noether method (see also discussion below).
2Here we will consider the case of 4d space-time (so that φs are assumed to have dimension length−1)

but most of the discussion below will be true also in any dimension. In d = 4 the light-cone gauge vertices

of [6] that admit a local covariant generalization contain only two structures: with maximal s2 + s3 + s1

and with minimal s2 + s3 − s1 numbers of derivatives.
3In contrast to supersymmetric theories here Z = 1 even at finite temperature (all bosonic fields have

the same statistics) so closer analogy is with a topological field theory. A non-trivial generalization of Z to

quotients of flat space in the presence of angular potentials was discussed in [25].
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over spins that should be consistent with underlying symmetry of the theory. One may

then expect that under such summation prescription other quantum corrections may also

be simple.4 For example, despite having a dimensional coupling ℓ the theory (1.1) may

actually be UV finite. This would be analogous to what happens in string theory viewed

as a collection of a few massless and an infinite set of massive higher spin fields where

a particular prescription of summation over all contributions implied by the underlying

world-sheet formulation leads to the UV finiteness of scattering amplitudes.5

Another motivation to study (1.1) is its possible relation to the massless higher-spin

theory in AdS space. The existence of the consistent cubic couplings (containing also low-

derivative or minimal-coupling parts and avoiding the no-go theorems) was first pointed

out in [29, 30]. One may conjecture that elimination of an infinite set of auxiliary fields

present in the non-linear Vasiliev’s equations [31, 32] expanded near the AdS vacuum may

lead to an action for the tower of physical massless Fronsdal fields that has a structure

similar to that of (1.1) (cf. [33–35])

SAdS =
1

g2

∫

d4x

[

∑

s

φs(∇2+. . .)φs+
∑

Ln−1∇nφs1φs2φs3+
∑

Lk−2∇kφ4+. . .

]

. (1.2)

Here L is the AdS radius and the cubic vertices now contain also the low-derivative

(“minimal-coupling”) tail of terms (e.g. n = 1, 2, . . .). To understand a possible reason for

their presence let us imagine that the action (1.1) could admit a generalization to a curved

background where the flat metric would be replaced by a curved one gab and the flat deriva-

tives ∂a by the covariant ones ∇a. Then in addition to the cubic terms ℓn−1∇nφs1φs2φs3

as in (1.1) with n ≥ s2 + s3 − s1 one could also have terms of the same dimension

with less derivatives but with extra powers of the curvature, ℓn−1Rk∇n−2kφs1φs2φs3 , i.e.

ℓn−1L−2k∇n−2kφs1φs2φs3 in the case of the AdS space with R ∼ L−2. In the action (1.2)

corresponding to the Vasiliev-type theory there is just one dimensional scale, i.e. ℓ is ef-

fectively identified with the curvature scale L and thus the flat space limit (L → ∞) is

formally singular.6

While a naive flat-space limit that leads from (1.2) to (1.1) may not exist, there may

be still some formal procedure of relating the two actions in which these low-derivative

couplings would decouple and with L in (1.2) being effectively replaced by another scale ℓ

in (1.1). One might think that as the leading short-distance behaviour should be controlled

4Similar simplifications were observed in conformal higher-spin theory [24, 26, 27]. The existence of

higher spin conserved charges may also have drastic consequences for the S-matrix with higher spin particles

on external lines (as in the case of integrable theories in 2 dimensions [28]).
5At the same time, it seems unlikely that (1.1) may be consistently related to a zero-tension limit of

the bosonic string theory combined with a truncation to the leading Regge trajectory: zero-tension limit

does not appear to be well-defined in flat space and, moreover, the tower of fields on the leading Regge

trajectory may not lead to a consistent UV theory on its own.
6Here we assumed that the curved metric (e.g., ds2AdS = du2 + e−u/Ldxmdxm) has a smooth flat space

limit without need to rescale the coordinates. In general, one may contemplate taking a flat space limit

that involves some singular rescalings of the fields, coordinates and coupling constants (e.g., as in [12, 36]).

It is not clear if such a limit may actually exist beyond the cubic interaction level given that quartic vertices

may contain sums over all orders in derivatives for fixed external spins.
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by the highest derivative terms, one may then expect that the UV properties of a flat-space

and a curved-space (e.g. AdS) theories may be similar. This, however, may not be true in

the present context of an effectively non-local theory (containing all powers of derivatives

in the vertices due to summation over an infinite set of higher spin fields). Still, the study

of a simpler theory (1.1) may shed some light on some properties of (1.2).

The definition of a quantum theory with an infinite set of fundamental fields like the

one in (1.1) or (1.2) is a priori ambiguous as the sum of individual field contributions over

all spins may be divergent. This ambiguity is to be fixed in a way that is consistent with

preservation of underlying higher spin symmetry as was recently discussed in [26, 27, 37–

42]. In particular, under a special summation prescription the free-field partition function

of the AdS theory (1.2) is trivial, i.e. Z = 1 [38, 39], just as in the flat space theory (1.1) [24].

This definition should be consistent with the vectorial AdS/CFT duality [43–45] be-

tween the massless higher spin theory in AdSd+1 and singlet sector of the free U(N) or

O(N) scalar CFT in R
d which is also controlled by the underlying higher spin symmetry.

This duality was tested at the tree level for some 3-point functions [33, 46] which are essen-

tially fixed by unbroken higher spin symmetry [47].7 Let us note that some cubic vertices

for the Fronsdal fields derived from the Vasiliev’s theory upon elimination of auxiliary fields

are formally divergent [33, 35, 46] and thus require additional definition/regularization even

before summation over all physical spins.

Alternatively, one can try to reconstruct the cubic and quartic action (1.2) (with

g2 = 1/N) by requiring that it should reproduce the boundary CFT correlators at the tree

level [51–53] (for related earlier work see [54]). Then a crucial test of the duality will be

to check that all quantum corrections to the “on-shell” value of the effective action of the

theory (1.2) should vanish since the correlators of conserved currents in the free bound-

ary CFT do not receive 1/N corrections, i.e. are given exactly by their large N values.8

Assuming that the matching of correlators at separated points may be extended also to

integrated correlators, this suggests, in particular, that the vacuum partition function of

the AdS theory (1.2) should vanish not just at the leading one-loop order [38] but also to

all orders in g = 1/
√
N expansion.

Another non-trivial quantum test would be the demonstration of the vanishing of the

1-loop correction to the spin s field 2-point function — the 2-point functions or dimensions

of the currents in the boundary CFT should not be 1/N -corrected in the case of unbroken

higher spin symmetry. This “self-energy” correction is given by the sum of the two types of

one-loop Witten diagrams: the “bubble” diagram (with two bulk-to-bulk propagators and

two cubic vertices) and the “tadpole” diagram determined by the quartic vertex in (1.2).9

7Also, all n-point functions of the free CFT have been identified with suitable invariants in the Vasiliev

theory in [48–50].
8A priori it is possible that quantum corrections to the effective action of the theory (1.2) could be

non-vanishing but having such special “local” form that they do not contribute to derivatives over the

boundary sources taken at separated points. At the same time, this seems unlikely as quantum corrections

should be controlled by the higher spin symmetry that should constrain also possible contact terms.
9Some one-loop corrections to propagators in AdS were computed previously for spin 2 in [55, 56] and

for higher spins in [57]. One-loop computations based on Mellin representation were performed in [58].

Related discussions from higher spin AdS/CFT perspective appeared in [59–62].
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With this motivation in mind here we will address a simpler question about the one-loop

bubble-diagram part of the self-energy correction in the higher spin flat space theory (1.1).

Certain features of the flat-space result should be similar to the ones in the AdS case,

at least in what concerns the leading UV behaviour. Our aim will be to extract the

UV divergence of the bubble diagram and to see if it can be cancelled against a tadpole

contribution coming from (yet unknown) 4-point vertex.

For simplicity, we shall consider the case when only the scalar particle (spin 0 member

of the higher spin tower) appears on the two external lines of the self-energy diagram.

In this case the bubble graph contribution is determined by the 3-point vertex 0-s2-s3
(containing n = s2 + s3 derivatives) which is essentially unique. We shall use the explicit

value of its coefficient ∼ ℓs2+s3−1

(s2+s3−1)! found in [6] and perform the summation over all spins

in the loop.10 The one-loop diagram will then be quadratic in dimensionless coupling g

in (1.1) and given by the virtual momentum integral with non-trivial dependence on the

product of ℓ with external momentum.

To find the full result for the g2 correction to self-energy diagram one is to add also

the ghost-loop contribution and the tadpole graph contribution. The latter requires the

knowledge of the 0-0-s-s quartic vertex (and similar one for the ghosts). The problem

of determining quartic interactions of massless higher spins in flat and AdS spaces was

addressed using different approaches in, e.g., [6, 14, 17, 52, 67–70], but its full conclusive

solution is yet to be found. While being unable to determine the tadpole contribution

explicitly here we shall still comment on its expected UV behaviour required to cancel the

UV divergent part of the bubble graph. We shall also note that the tadpole contribution is

not expected to alter the non-trivial (non-analytic) external momentum dependence coming

from the bubble graph.

The rest of this paper is organized as follows. In section 2 we shall define the free

Fronsdal action for totally symmetric massless higher spin fields in flat d dimensions and

impose the de Donder gauge. In section 3 we shall discuss the structure of the 0-s2-s3 cubic

vertices required for subsequent computations. We shall also consider the leading term in

the deformation of the gauge transformations due to the presence of the cubic interactions

and thus determine the corresponding quadratic and cubic terms in the ghost action. In

section 4 we shall review the derivation of the higher spin propagator in the de Donder

gauge and describe the resulting Feynman rules.

Section 5 will be devoted to the computation of the tree-level 4-scalar scattering am-

plitude. We shall first explicitly compute the exchange part of the amplitude and then

comment on possible contribution of the 4-scalar “contact” vertex. In section 6 we shall

compute the bubble diagram contribution to the one-loop scalar self-energy corrections and

discuss its UV behaviour. We shall then discuss a possibility that UV divergence of the

10This cubic vertex can be found, e.g., by requiring the gauge invariance of the full non-linear action to

the lowest order in the coupling g. At this order the coupling constants of individual vertices for different

spins are independent. By requiring gauge invariance to the next g2 order, these coupling constants can all

be expressed in terms of a unique dimensionful parameter ℓ as in (1.1). An equivalent analysis was carried

out in flat 4d space in the light-cone approach in [6]. In AdS similar relations were found within the Fradkin-

Vasiliev approach [30, 63, 64] by imposing the Jacobi identity for the gauge symmetry deformations [65, 66].

– 5 –
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bubble diagram may be cancelled against a tadpole graph contribution determined by the

4-point vertex. Some concluding remarks will be made in section 7.

In appendix A we shall explain the relation between the covariant cubic vertex we use

and the light-cone gauge cubic vertex in [6]. In appendix B we shall discuss whether these

vertices are consistent with the BCFW constructibility condition (see also comments at

the end of section 5). Appendix C will contain some details of the computation of sums

over spins in section 6.

2 Free higher spin action

To make expressions more compact we shall represent the totally symmetric higher spin

tensor fields by

φs(x, u) =
1

s!
φa1...as
s (x)ua1 . . . uas , (2.1)

where ua is an arbitrary constant vector. Then the Fronsdal action [71] may be written as11

S(2)[φs] =
s!

2

∫

ddx
[

φs(x, ∂u) T̂ F̂ φs(x, u)
]

u=0
, (2.2)

where

T̂ ≡ 1− 1

4
u2∂2

u , F̂ ≡ ∂2
x − (u · ∂x) D̂ , D̂ ≡ (∂x · ∂u)−

1

2
(u · ∂x)∂2

u , (2.3)

and the off-shell field φs is assumed to be double-traceless, i.e. satisfying (∂2
u ≡ ηab ∂

∂ua
∂

∂ub )

(∂2
u)

2φs(x, u) = 0 . (2.4)

As in the second line of (1.1) we assume that the dimensionless coupling g is absorbed into

φs so that it will appear in the interaction vertices.

The equation of motion for (2.2) is

δS(2)[φs]

δφs
= T̂ F̂ φs(x, u) ≈ 0 . (2.5)

Here and in what follows we use the symbol ≈ to denote the equalities that hold modulo

terms proportional to the free equations of motion. By noting that T̂ is invertible

T̂−1 ≡ 1− 1

2d+ 4u · ∂u − 12
u2∂2

u , T̂−1T̂ φs(x, u) = T̂ T̂−1φs(x, u) = φs(x, u) , (2.6)

one finds that the free equations (2.5) can be equivalently rewritten as

F̂ φ(x, u) ≈ 0 . (2.7)

Note, that in (2.6) we kept only those terms in T̂−1 that do not annihilate double-traceless

tensors, i.e. do not contain (∂2
u)

n with n > 1 (cf. (2.4)).

11The action (2.2) is canonically normalised and its overall sign is chosen appropriately to ensure positive

energy of field fluctuations for the mostly plus Minkowski metric η = diag(−,+,+, . . . ,+).
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The Fronsdal action (2.2) is invariant under the gauge transformations

δ(0)s φs(x, u) = (u · ∂x)εs−1(x, u) , (2.8)

with the traceless gauge parameter εs−1(x, u)

εs−1(x, u) ≡
1

(s− 1)!
ε
a1...as−1

s−1 (x)ua1 . . . uas−1 , ∂2
u εs−1(x, u) = 0 . (2.9)

It is convenient to impose the de Donder gauge

D̂ φs(x, u) = 0 . (2.10)

In this gauge the Fronsdal operator F̂ in (2.3) simplifies so that the action (2.2) becomes

S(2)[φs] =
s!

2

∫

ddx
[

φs(x, ∂u) T̂ ∂2
x φs(x, u)

]

u=0
, (2.11)

while the equations of motion (2.7) take the form

�φs(x, u) ≈ 0 , � = ∂2
x . (2.12)

3 Cubic interaction vertices

In this section we shall present cubic vertices for the physical fields φs and the ghosts

corresponding to the de Donder gauge (2.10). To construct cubic vertices in the covariant

form one usually starts by specifying their traceless transverse parts. Then these vertices

can be completed to full-fledged off-shell ones [13–16]. For our purposes it is not necessary

to face the difficulties inherent to general off-shell interactions as it suffices to know the

vertices in the de Donder gauge. Moreover, as here we will be interested in computing

diagrams with only spin 0 particles on external lines we may restrict consideration to cubic

vertices with one of the fields having s = 0. In this case it turns out that the traceless-

transverse vertices give already the consistent vertices in the de Donder gauge, i.e. do not

require any completion.12

3.1 Deformation of the free action

Adding cubic interaction part S(3) to the free action S(2) and requiring gauge invariance

of the combined non-linear action gives at the first non-trivial order the condition

δ(0)S(3) + δ(1)S(2) = 0 , (3.1)

where δ(1) is a deformation of the gauge transformation (2.8) which is linear in the fields

φs. The first term in (3.1) thus vanishes modulo the free equations of motion (2.5), i.e.

δ(0)S(3) ≈ 0 . (3.2)

12The observation that the traceless-transverse vertices are sufficient to find the consistent vertices in the

de Donder gauge was already made in [13–16]. In the most general case in the de Donder gauge apart from

traceless-transverse contribution there is also a term which is cubic in traces [13]. In our case it is absent

and this is indeed an extra simplification that we use.

– 7 –
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Once the cubic vertex is found, the associated deformation of the gauge transformation

can be extracted from (3.1).

The traceless-transverse part of the cubic vertex involving the spin 0 field and any two

other higher spin fields can be written as [13, 14, 16, 36]

S(3)[φ0, φs2 , φs3 ] = g0s2s3

∫

ddx
[

(∂u2 · ∂x31)
s2(∂u3 · ∂x12)

s3

× φ0(x1)φs2(x2, u2)φs3(x3, u3)
]

ui=0
xi=x

, (3.3)

where ∂xij ≡ ∂xi − ∂xj and g0s2s3 is a coupling constant. To show that it gives a consistent

vertex in the de Donder gauge, let us verify that it satisfies (3.2). Using that

[∂u2 · ∂x31 , u2 · ∂x2 ] = (∂x3 − ∂x1) · ∂x2 = −∂2
x3

+ ∂2
x1

+ t.d. (3.4)

where “t.d.” stands for a total derivative term, we find

δ(0)s2 φs2

δS(3)[φ0, φs2 , φs3 ]

δφs2

= g0s2s3 s2

∫

ddx
[

(∂u2 · ∂x31)
s2−1(∂u3 · ∂x12)

s3(∂2
x1

− ∂2
x3
)

× φ0(x1) εs2−1(x2, u2)φs3(x3, u3)
]

ui=0
xi=x

≈ 0 .

(3.5)

This leading-order deformation analysis fixes the structure of the cubic vertices but leaves

the coupling constants g0s2s3 in (3.3) undetermined. This happens because the gauge

invariance conditions (3.1), (3.2) are linear in the deformation S(3). To find g0s2s3 one

needs to consider higher-order deformations and to solve analogous higher-order constraints

which become non-linear in the fields. At the next order one gets the condition

δ(0)S(4) + δ(1)S(3) + δ(2)S(2) = 0 , (3.6)

which involves quartic vertices S(4).

A conclusive analysis of higher-spin interactions in the covariant form at this quartic

order was not performed so far, but to fix g0s2s3 we may use the result of Metsaev [6]

obtained in d = 4 in the light-cone gauge approach. Making the most general ansatz for

the cubic interaction vertex and requiring the closure of the Poincare algebra to the g2 order

it was found [6] that all cubic couplings can be expressed in terms of a single parameter.

In appendix A we will establish a dictionary between the light-cone cubic vertices and the

covariant ones in the de Donder gauge and show that the result of [6, 7] when translated

into the covariant language implies that

g0s2s3 = g
ℓs2+s3−1

(s2 + s3 − 1)!
. (3.7)

Here g is an overall dimensionless coupling counting the power of fields and ℓ is a unique

dimensional parameter (cf. (1.1)). Here g000 = 0, i.e. there is no cubic scalar self-coupling.

Remarkably, the same expression for the cubic couplings (3.7) appears also in the

action (1.2) for the massless higher spin fields in AdS4 which was reconstructed from the

– 8 –
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condition of consistency with the vectorial AdS/CFT duality. Namely, in [59] it was noted

that g00s couplings (3.7) agree with their AdS counterparts reconstructed from the free

boundary CFT [52] and it was further conjectured that the agreement should hold also for

general trilinear couplings of higher-spin gauge fields. This was indeed confirmed recently

in [53]. This gives hope that some relation between the AdS action (1.2) and the flat space

one (1.1) may hold even beyond the cubic order (despite a naive flat-space limit of (1.2)

being singular).13

3.2 Deformation of gauge transformations

In addition to cubic interactions of the physical fields we need also to find similar vertices

involving the ghost fields as these are required to compute the one-loop self-energy graphs.

To find the ghost action corresponding to the de Donder gauge we need to know the

deformation of the free gauge transformations (2.8) induced by the presence of the cubic

vertex (3.3).14

This deformation may be found using (3.1). In order to compensate for the term

containing ∂2
x3

in (3.5) one has to deform the spin s3 field gauge transformation. In general,

one has

δ(1)s2 φs3

δS(2)[φs3 ]

δφs3

= s3!

∫

ddx
[

δ(1)s2 φs3(x3, ∂u3) T̂3 ∂
2
x3
φs3(x3, u3)

]

u3=0
. (3.8)

Substituting (3.5) and (3.8) into (3.1) we find
∫

ddx
[

− g0s2s3s2(∂u2 · ∂x31)
s2−1(∂u3 · ∂x12)

s3φ0(x1)εs2−1(x2, u2)∂
2
x3
φs3(x3, u3)

+ s3! δ
(1)
s2 φs3(x3, ∂u3) T̂3 ∂

2
x3
φs3(x3, u3)

]

ui=0
xi=x

= 0 . (3.9)

Employing (2.6) we get
∫

ddx
[(

s3! δ
(1)
s2 φs3(x3, ∂u3)− g0s2s3s2(∂u2 · ∂x31)

s2−1(∂u3 · ∂x12)
s3 T̂−1

3 φ0(x1) εs2−1(x2, u2)
)

× T̂3 ∂
2
x3
φs3(x3, u3)

]

ui=0
xi=x

= 0 . (3.10)

After some simple manipulations this yields

δ(1)s2 φs3(x3, u3) = g0s2s3
s2
s3!

[{

{

T̂−1
3 (u3 · ∂x12)

s3
(

∂u2 · (−2∂x1 − ∂x2)
)s2−1

×φ0(x1) εs2−1(x2, u2)
}

}]

x1=x2=x3

, (3.11)

13Let us also mention that instead of solving a full-fledged version of (3.6) one may study a simpler

consequence of it: one may consider deformations of gauge transformations induced by a cubic vertex and

demand that they satisfy a generalised version of the Jacobi identity [4, 72]. In higher-spin theory in AdS

it was shown [65, 66] that under some natural assumptions the general solution to the Jacobi identity is

quite constraining. Then similarly to (3.7) this should allow one to express all non-Abelian cubic couplings

in terms of a single coupling constant ℓ, as was shown in the light-cone gauge in [6, 7].
14Deformations of gauge transformations induced by cubic couplings of higher spin fields and the asso-

ciated gauge algebra deformations have been studied, in particular, in [4, 73–76]. However, due to certain

issues (such as possible non-trivial contributions from non traceless-transverse terms, ambiguity in field

redefinitions, etc.) these results cannot be directly used here.
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where {{. . .}} denotes the double-traceless projection in u3, which in (3.10) was enforced

implicitly by contraction with double-traceless φs3 .

The presence of ∂2
x1

in (3.5) indicates that the cubic vertex (3.3) also induces a non-

trivial transformation of the spin 0 field (which was not transforming at the leading order

in (2.8)) with respect to the gauge symmetries of the higher spin fields. The explicit

knowledge of this transformation will not, however, be required for the computation of the

one-loop scalar self-energy below.

Let us remark on an ambiguity in the cubic vertex related to field redefinition freedom.

The perturbative deformation procedure of the free gauge theory always has an ambiguity

of additional local field redefinitions. Some preferred choice of basic fields may be selected

by the requirement of the most simple form of the full non-linear theory consistent with

manifest symmetries (cf. Einstein theory). Here we shall choose the “minimal” form (3.3)

of the cubic vertex which is universal for all spins. When solving the gauge invariance

condition (3.1) one usually ignores cubic vertices that vanish on the free equations of mo-

tion. Such vertices are “fake” in the sense that they can be generated from the free theory

Lagrangian by field redefinitions. For example, in addition to the non-trivial vertex (3.3)

one may consider, e.g., for s2 = s3 = s

S(3)[φ0, φs, φs] ∼
∫

ddxφ0(x)Rs(x) · Rs(x) , (3.12)

where Rs is the de Wit-Freedman curvature [77] which is manifestly invariant under the

linearized gauge transformations (2.8) (and thus does not induce any gauge symmetry

deformation, i.e. δ(1)φs = 0). This does not contradict (3.11) implying that the deformation

of the gauge symmetry is non-zero for s2 = s3. Indeed, one can show that (3.11) for s2 = s3
can be removed by a field redefinition.15

The local field redefinitions that preserve the asymptotic states should not, of course,

change the on-shell amplitudes. That means that the “contact” contribution of the “one-

shell trivial” 3-point vertex containing the free kinetic operator acting on one of the legs (i.e.

the one that can be removed by a field redefinition) to, e.g., the 4-point scattering amplitude

will be cancelled by the contribution of the 4-vertex produced by the field redefinition.

3.3 Ghost action

According to the standard Faddeev-Popov procedure, the ghost action for the free the-

ory (1.1), (2.11) invariant under (2.8) in the de Donder gauge (2.10) is

S(2)[c̄s−1, cs−1] = (s− 1)!

∫

ddx

[

c̄s−1(x, ∂u) D̂
δ
(0)
s φs

δεs−1
cs−1(x, u)

]

u=0

= (s− 1)!

∫

ddx
[

c̄s−1(x, ∂u)∂
2
xcs−1(x, u)

]

u=0
. (3.13)

15For different spins s2 < s3 the deformation of the gauge symmetry of the spin s3 field is always non-

trivial [75, 76] and the vertex cannot be put into the form (3.12).
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The cubic vertex involving the ghost fields is found analogously by using the deformation of

the gauge transformation (3.11) instead of the leading-order transformation δ
(0)
s φs in (3.13)

S(3)[c̄s3−1, cs2−1, φ0]

= (s3 − 1)!

∫

ddx

[

c̄s3−1(x3, ∂u3
) D̂3

δ
(1)
s2 φs3

δεs2−1
cs2−1(x3, u3)

]

u3=0

= −g0s2s3
s2
s3

∫

ddx

[

c̄s3−1(x3, ∂u3
)

(

(∂x1
+ ∂x2

) · ∂u3
− 1

2
u3 · (∂x1

+ ∂x2
)∂2

u3

)

×
{

{

T̂−1
3 (u3 · ∂x12

)s3
(

∂u2
· (−2∂x1

−∂x2
)
)s2−1

φ0(x1)cs2−1(x2, u2)
}

}

]

ui=0
xi=x

.

(3.14)

The double-traceless projector in u3 can be dropped as it is already imposed by the con-

traction with the remaining part of the integrand. After some straightforward algebra

eq. (3.14) acquires a remarkably simple form

S(3)[φ0, c̄s3−1, cs2−1] = −g0s2s3 s2

∫

ddx
[

(∂u3 · ∂x12)
s3−1(∂u2 · ∂x31)

s2−1(∂x12 · ∂x3)

× c̄s3−1(x3, u3)φ0(x1)cs2−1(x2, u2)
]

ui=0
xi=x

. (3.15)

4 Feynman rules

The propagator for the free Fronsdal field in the de Donder gauge was originally found in

d = 4 in [71] and was later extended to any dimension d in [78]. For completeness, we shall

review its derivation below. The expression for the propagator in terms of the Gegenbauer

(or Chebyshev in d = 4) polynomials was given in [79] that we follow here.

It is convenient to split the double-traceless field φs into two traceless fields νs and

µs−2 as

φs(x, u) = νs(x, u) +
1

s(s− 1)
u2µs−2(x, u) . (4.1)

Then the gauge fixed action (2.11) becomes

S(2)[φs] =
s!

2

∫

ddx
[

νs(x, ∂u)∂
2
x νs(x, u)

]

u=0

− (d+2s−4)(d+2s−6)

s(s− 1)

(s−2)!

2

∫

ddx
[

µs−2(x, ∂u)∂
2
x µs−2(x, u)

]

u=0
. (4.2)

The Fronsdal field propagator is found to be

Dd
s(u, u

′; p) = − i

p2

[

Pd
s (u, u

′) +
s(s− 1)

(d+ 2s− 4)(d+ 2s− 6)

u2u′2

s2(s− 1)2
Pd
s−2(u, u

′)

]

, (4.3)

where Pd
s is a generating function for the standard rank-s traceless projector bi-tensor

Pd
s (u, u

′) =
1

(s!)2
(u · u′)s + . . . , ∂2

u Pd
s (u, u

′) = ∂2
u′Pd

s (u, u
′) = 0 . (4.4)
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It can be defined as a series

Pd
s (u, u

′) =
1

(s!)2

[s/2]
∑

k=0

tds,k(u
2)k(u′2)k(u · u′)s−2k, (4.5)

where

tds,k =
(−1)ks!

4kk!(s− 2k)!
(

d
2 − 1 + s− k

)

k

(4.6)

and (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol. It is convenient to rewrite (4.5) as

Pd
s (u, u

′) =
1

(s!)2
s!

(

d
2 − 1

)

s

(

1

2

√
u2u′2

)s

C
d
2
−1

s

(

u · u′√
u2u′2

)

, (4.7)

where

Cα
s (z) ≡

[s/2]
∑

k=0

(−1)k(α)s−k

k!(s− 2k)!
(2z)s−2k (4.8)

is the Gegenbauer polynomial. Observing that the coefficients in (4.6) satisfy

tds,k −
s(s− 1)

(d+ 2s− 4)(d+ 2s− 6)
tds−2,k−1 = td−2

s,k , (4.9)

or using the identity

Cα
s (z)− Cα

s−2(z) =
α+ s− 1

α− 1
Cα−1
s (z) , (4.10)

the propagator (4.3) can be put into the following simple form

Dd
s(u, u

′; p) = − i

p2
Pd−2
s (u, u′) . (4.11)

Thus, in agreement with the result of [78], the tensorial part of the Fronsdal propagator is

just the traceless projector in d− 2 dimensions.

Let us note that for d = 4 the higher spin propagator contains the two-dimensional

projector P2
s , for which the representation in terms of the Gegenbauer polynomial (4.7) is

singular due to vanishing of the denominator in the prefactor. Instead, one can use the

expression

P2
s (u, u

′) =
1

(s!)2
2

(

1

2

√
u2u′2

)s

Ts

(

u · u′√
u2u′2

)

, (4.12)

where

Ts(z) ≡
s

2

[s/2]
∑

k=0

(−1)k(s− k − 1)!

k!(s− 2k)!
(2z)s−2k (4.13)

is the Chebyshev polynomial of the first kind. It can also be defined by

Ts(z) =
1

2

[(

z +
√

z2 − 1
)s

+
(

z −
√

z2 − 1
)s]

. (4.14)

The free ghost field in (3.13) is canonically normalised and traceless, i.e. has propagator

Gd
s−1(u, u

′; p) = − i

p2
Pd
s−1(u, u

′) . (4.15)

– 12 –



J
H
E
P
0
5
(
2
0
1
6
)
1
8
4

The cubic vertex for physical fields can be easily obtained from (3.3)

V(∂u2 , ∂u3 ; p1, p2, p3) = 2ig0s2s3(−ip31 · ∂u2)
s2(−ip12 · ∂u3)

s3 , (4.16)

where pij ≡ pi − pj and 2 is a symmetry factor.16 This vertex is non-trivial only when

s2 + s3 is even (A.20). Similarly, for the ghost vertex we find from (3.15)

W(∂u2 , ∂u3 ; p1, p2, p3) = ig0s2s3s2(−ip31 · ∂u2)
s2−1(−ip12 · ∂u3)

s3−1(−p12 · p3) . (4.17)

The resulting set of Feynman rules for the physical fields (wavy line or solid line for

s = 0) and the ghosts (dotted line) can be summarised as follows

= Dd
s(u, u

′; p)

= V(∂u2 , ∂u3 ; p1, p2, p3) (4.18)

= Gd
s−1(u, u

′; p)

= W(∂u2 , ∂u3 ; p1, p2, p3)

where explicit expressions are given in (4.7), (4.12), (4.11), (4.15)–(4.17) and the momenta

are assumed to be ingoing.

5 Tree-level 4-scalar scattering amplitude

In this section we shall compute the tree-level 4-scalar scattering amplitude due to exchange

of the tower of higher spin fields. For charged external scalar particles and arbitrary

coupling constants in the corresponding cubic vertex this was earlier discussed in [79].

Here we shall repeat the same computation in the case of a real scalar which is the s = 0

member of the tower of higher spin fields using the specific values of the cubic couplings

given by (3.7).17

The important difference between the present case of a real scalar scattering and a

complex scalar one in [79] is that in the real scalar case all interactions with odd spins

vanish (cf. (3.3)). In the complex scalar case the odd spins contribute to the exchange

16Such symmetry factor appears when the vertex contains two identical fields. In the considered case

spins s2 and s3 may be different. However, eventually, we are going to sum over spins and both φs2 and

φs3 appear as particular members of two identical higher spin multiplets. Alternatively, this factor can be

understood by arguing that during summation over spins each unordered pair (s2, s3) is counted twice.
17While our final expression may be viewed as a special case of the general one in [79] the use of the

particular values of the couplings in (3.7) is important as it leads to a convergent sum over all higher spin

contributions and thus to a completely explicit expression for the exchange amplitude.
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amplitude with the opposite sign compared to the even spins. The resulting sum over spins

contains terms with alternating signs which leads to an improved high energy behaviour [79]

compared to the real scalar scattering case, where all exchange contributions add up with

the same sign.18 Note that this remark applies to the full amplitude assuming the “contact”

4-point vertex contribution does not alter the UV asymptotics of the amplitude which need

not be the case here (see discussion below).

5.1 Exchange contribution

The s-channel exchange of spin j field gives (see (4.18))

≡ Aj
exch(s, t, u) = V(∂u; p1, p2, p)V(∂u′ ; p′1, p

′
2, p)Dd

j (u, u
′; p) , (5.1)

where all the external momenta p1, p2, p
′
1 and p′2 are assumed to be ingoing: p1 and p2 into

the left vertex and p′1 and p′2 into the right one (p = p1 + p2 = −p′1 − p′2). Let us introduce

the Mandelstam variables

s ≡ −(p1 + p2)
2, t ≡ −(p1 + p′1)

2, u ≡ −(p1 + p′2)
2, s + t + u = 0 , p2i = p′2i = 0 .

(5.2)

Using (4.11), (4.16) and that p212 = p′212 = −t− u, p12 · p′12 = −t + u we find19

Aj
exch(s, t, u) = −

ig200j
s

2−jj!

(d2 − 2)j
(t+ u)j C

d
2
−2

j

(

t− u

t + u

)

. (5.3)

In d = 4 for an individual spin j contribution we obtain

Aj
exch(s, t, u) = −

ig200j
s

2−j+1(t + u)j Tj

(

t− u

t + u

)

, (5.4)

where Tj(z) is given in (4.13), (4.14).

Summing over all even spins j = 2k we obtain in d = 4

Aexch(s, t, u) =
∞
∑

j=0,2,4,...

Aj
exch(s, t) = − i

s

∞
∑

k=0

g200 2k 2
−2k+1(t + u)2k T2k

(

t− u

t + u

)

. (5.5)

Let us introduce the function

F (z) ≡
∞
∑

k=0

g200 2k z
2k = g2

∞
∑

k=0

1

[(2k − 1)!]2
(ℓ2z)2k, (5.6)

where we used the values of the couplings in (3.7) (note that here the k = 0 term vanishes).

It can be expressed in terms of the Bessel and the modified Bessel functions

Jα(z) =

(

z

2

)α ∞
∑

k=0

(−1)k

Γ(k + 1)Γ(α+ 1 + k)

(

z

2

)2k

,

Iα(z) =

(

z

2

)α ∞
∑

k=0

1

Γ(k + 1)Γ(α+ 1 + k)

(

z

2

)2k

(5.7)

18Similar softening mechanism was discussed, e.g., in [80].
19Here the symmetry factor 2 in the cubic vertices (4.16) is not needed.
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as follows

F (z) =
1

2
g2 ℓ2z

(

I0(2ℓ
√
z)− J0(2ℓ

√
z)
)

. (5.8)

Using (4.14) the s-channel amplitude (5.5) in d = 4 may then be written as20

Aexch(s, t, u) = − i

s

[

F

(

1

2

(√
s + t +

√
t
)2
)

+ F

(

1

2

(√
s + t−

√
t
)2
)]

. (5.9)

Note that for s → 0 the 1
s pole is not cancelled

s → 0 : Aexch(s, t, u) = − i

s

[

g2ℓ2t
(

I0(2ℓ
√
2t)− J0(2ℓ

√
2t)
)

+O(s)
]

. (5.10)

The full exchange amplitude is found by adding also the contributions of the t and u

channels,

Âexch(s, t, u) = Aexch(s, t, u) +Aexch(t, s, u) +Aexch(u, t, s) . (5.11)

In the Regge limit (t → ∞, s=fixed) the s-channel amplitude (5.9) gives the dominant

contribution and using the standard asymptotics

z → ∞ : Iα(z) =
1√
2πz

ez + . . . , Jα(z) =

√

2

πz
cos

(

z − απ

2
− π

4

)

+ . . . , (5.12)

we find

t → ∞ , s = fixed : Âexch(s, t, u) ∼ − ig2

s
ℓ2t I0

(

2ℓ
√
2t
)

∼ − ig2

s

(ℓ2t)3/4

25/4π1/2
e2ℓ

√
2t (5.13)

Similar behaviour is found also in the fixed-angle limit (cf. [79]). Analogous are expected

also for other spin s scattering amplitudes. Such an exponential growth of the tree-level

scattering amplitude in the high energy regime is an indication of the presence of similar

ultraviolet divergences in loop diagrams. Indeed, we shall find similar UV divergences in

the one-loop self-energy bubble diagram contribution discussed in the next section.

Let us note that despite
√
s and

√
t arguments appearing in (5.9) the exchange am-

plitude is actually analytic in s, t. Indeed, the Bessel functions in (5.8) have expansion

in even powers of their arguments and, as a consequence, the sum of the two F -functions

in (5.9) has a convergent expansion in integer powers of s and t only. The appearance of a

non-analytic function ea
√
t in (5.13) is just an artifact of the large t limit.21

5.2 Comments on 4-vertex contribution

The full tree-level 4-point spin 0 scattering amplitude should also include the contribution

of the 4-point 0-0-0-0 vertex:

20In contrast to a similar amplitude in conformal higher-spin theory [27] here the sum over spins is

convergent and the amplitude has non-trivial (non-scale-invariant) dependence on the Mandelstam variables

due to the presence of the dimensionful parameter ℓ.
21To give a simple example, cosh

√
z is an analytic function on the z-plane (given by a series of integer

powers of z) but its large z asymptotics is the same as that of a non-analytic function 1
2
e
√

z.
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This vertex is expected to be effectively non-local (i.e. may contain an infinite series of pow-

ers of derivatives) and may thus “soften” the large momentum behaviour of the exchange

diagram contribution.

While the precise form of the 4-scalar vertex in the flat-space action (1.1) is presently

unknown, we may try to get some idea about its structure using an analogy with a similar

term in the action (1.2) of the massless higher-spin theory in AdS. The 0-0-0-0 term in the

AdS action was recently reconstructed [52] from the free boundary CFT data by assuming

the AdS/CFT correspondence. We shall use a heuristic trick of replacing the AdS covariant

derivatives by the flat space ones in the expression in [52]. This then gives

S(4)[φ0] = g2
∫

d4x

[ ∞
∑

j=0

f2j(∆x34) (∂x12 · ∂x34)
2j φ0(x1)φ0(x2)φ0(x3)φ0(x4)

]

xi=x

, (5.14)

where ∆x34 ≡ (∂x3 + ∂x4)
2, ∂x12 ≡ ∂x1 − ∂x2 and the function f2j(z) is given by some

infinite power series in z. To estimate the large momentum expansion of the resulting

amplitude we may choose the large z asymptotics of the function f2j(z) to be the same as

in corresponding function in the AdS 4-scalar vertex in [52], i.e.

f2j(z) = c2j
ℓ4j−2

z
, z → ∞ . (5.15)

Here c2j are numerical coefficients and we introduced the parameter ℓ to balance the

dimensions.22 Given (5.14), (5.15) the contribution of the 4-vertex to the 4-scalar amplitude

may, in principle, cancel the exponential growth (5.13) of the exchange amplitude. For

example, choosing c2j in the form similar to the one they have in the AdS expression [52]

c2j =
1

[(2j − 1)!]2
, (5.16)

we find that the asymptotic contribution of the vertex (5.14) to the 4-point amplitude is

proportional to

∞
∑

j=0

f2j
(

− (p3 + p4)
2
)[

(p1 − p2) · (p3 − p4)
]2j

=
∞
∑

j=0

f2j(s) (t− u)2j

=
2t + s

2s

[

I0
(

2ℓ
√
2t + s

)

− J0
(

2ℓ
√
2t + s

)]

,

(5.17)

where s is assumed to be large. It is thus also expressed in terms of the Bessel functions

as in (5.8), (5.9), i.e. has a similar Regge behaviour as in (5.13).

In the case of higher-spin theory in AdS one may interpret the result for the tree-level

amplitude (that reproduces the free CFT 4-point correlator) as indicating a soft behaviour

in the UV. It was previously observed that the expressions for the Witten diagrams in

AdS written in the Mellin representation look similar to the scattering amplitudes for the

22Note that the exact expression for f2j(z) in [52] does not have poles (in particular, is regular at z → 0),

so its flat-space counterpart should also not contain an essential non-locality like 1
∂2 .
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same processes in flat space [58]. In particular, the contact interactions with 2n deriva-

tives give rise to the Mellin amplitudes given by polynomials of n-th degree in the Mellin

variables (which play the role of the AdS counterparts of the Mandelstam variables). The

AdS exchanges produce the Mellin amplitudes with poles associated to the dimensions of

the exchanged operators and their descendants. The total four point scattering amplitude

should have a similar structure to the Mellin amplitude for the 4-point correlator of spin 0

primary operator in the free O(N) CFT. This amplitude is a distribution [81, 82] in the

sense that it is a certain combination of delta functions and hence it is zero everywhere

except certain specific values of the Mellin variables. That could be interpreted as sug-

gesting that the total tree-level 4-scalar amplitude in flat space may also be a distribution

and thus should have trivial UV asymptotics.23 It is not clear, however, how such simple

amplitude could come out of an explicit flat-space scattering computation (for example,

adding the 4-vertex contribution is unlikely to cancel the massless pole appearing in the

exchange contribution).

Finally, let us note that the cubic vertices (3.7) appear to be inconsistent with the

BCFW constructibility condition. This was previously discussed in a similar context in [10,

69]. This condition requires that the scattering amplitudes vanish under infinite complex

shifts of momenta [21]. Together with the assumption of analyticity24 this leads to certain

recurrence relations which allow one to express any tree-level amplitude in terms of the

on-shell three-point ones. Applied to the four-scalar amplitude that we have studied above

this would allow one to determine the quartic scalar self-coupling in terms of the cubic

vertices (3.3), (3.7). However, the BCFW construction can be applied only if the cubic

vertices satisfy a certain non-trivial consistency condition, the so called the four-particle

test [21]. As we will show in appendix B, the cubic vertices (3.3), (3.7) fail to satisfy this

test.

It is not clear a priori if the condition of BCFW constructibility should, in fact, apply

to an effectively non-local theory like (1.1) containing infinite number of higher-spin fields

with higher derivatives of any order in vertices. For example, the BCFW approach relies

on the assumption of the analyticity of the amplitudes. While perturbative amplitudes

reconstructed from higher spin vertices will be given by sums of integer powers of momenta

(i.e. are analytic before summation over spins) the sums over spins could not converge fast

enough. This did not happen for the exchange amplitude (5.9) discussed above but was the

case for the 4-scalar scattering in the conformal higher-spin theory [27] where the amplitude

was not analytic — was given by a distribution.

6 One-loop scalar self-energy correction

Let us now consider the spin 0 one-loop self-energy correction. It is given by the sum

of the two parts — of bubble diagrams and of tadpole diagrams. Each of these contains

23Similar behaviour was found for the external scalar scattering amplitude in the conformal higher-spin

theory [27] (there the amplitude actually vanished for the physical values of the Mandelstam variables).
24If an analytic function vanishes at infinity it can be reconstructed from poles and their residues.
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contributions from the physical higher spin loops and from the ghost loops:

Bubble diagrams: +

Tadpole diagrams: +

The bubble diagrams are straightforward to evaluate using the Feynman rules described

in section 4. The tadpole diagrams contain the physical 4-point 0-0-s-s vertices S(4) and

their ghost counterparts (determined by subleading gauge symmetry deformations δ(2)φ

quadratic in fields) which are not known at present. While we will not be able to compute

the tadpole diagram, the bubble diagram already provides an important information about

the self-energy contribution as it captures a non-trivial part of its dependence on external

momenta. Indeed, the tadpole contribution is expected to be a regular function of external

momentum while the bubble one should contain branch cuts coming from logarithmic terms

appearing from massless loops.

6.1 Individual bubble diagrams

Let us start with the bubble diagram with two physical field propagators in the loop. The

momenta of particles ingoing the left vertex will be denoted p1 for the external scalar and

p2 and p3 for the spin s2 and spin s3 fields. Similarly, the momenta ingoing the right vertex

will be p′1 for the external scalar and p′2 and p′3 for higher-spin fields, i.e.

p1 + p2 + p3 = 0 , p′1 + p′2 + p′3 = 0 , p1 = −p′1 , p2 = −p′2 , p3 = −p′3 .

(6.1)

We shall also use the notation k ≡ p1 for the external momentum and p ≡ −p2 for the

virtual momentum. The contribution of such bubble diagram reads25

=
1

2

∫

ddp2 V(∂u2 , ∂u3 ; p1, p2, p3)V(∂u′
2
, ∂u′

3
; p′1, p

′
2, p

′
3)

×Dd
s2(u2, u

′
2; p2)Dd

s3(u3, u
′
3; p3) , (6.2)

where 1
2 is a symmetry factor and s2, s3 may take any values including 0. Here V is the

cubic vertex from (3.3), (4.16) and Dd
s is the propagator from (4.11) (cf. (4.18)). The

dependence on u-variables is spurious — it goes away after acting by derivatives ∂u. For

example, the left vertex V contains an operator (−ip31 · ∂u2)
s2 which should be applied

to the propagator Ds2 thus performing the tensor index contraction. Given that Ds2 is a

homogeneous polynomial of degree s2 in u2 (cf. (4.5), (4.8)) the result of this contraction

25We omit the standard overall factor (2π)−d that should be reinstated in the final expression for the

self-energy Σ(k2).
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amounts to replacing u2 → −ip31 inside the propagator and also cancelling the factor of

s2! in the denominator. Computing other contractions in the same way we find

= 2g20s2s3

∫

ddp2
p22p

2
3

s2!C
d
2
−2

s2 (1)

2s2
(

d
2 − 2

)

s2

s3!C
d
2
−2

s2 (1)

2s3
(

d
2 − 2

)

s3

(p231)
s2(p212)

s3 , (6.3)

where g0s2s3 is the cubic coupling constant (to be chosen as in (3.7)) and C
d
2
−2

s2 (1) is found

from (4.8), i.e.

Cα
s (1) =

Γ(2α+ s)

Γ(2α)Γ(s+ 1)
. (6.4)

We thus obtain26

= 2g20s2s3
(d− 4)s2

2s2
(

d
2 − 2

)

s2

(d− 4)s3
2s3
(

d
2 − 2

)

s3

∫

ddp2
p22 p

2
3

(p231)
s2 (p212)

s3 . (6.5)

The ghost loop contribution can be computed in a similar way using (4.15), (4.17), (4.18)

= g20s2s3
s2 (d− 2)s2−1

2s2−1
(

d
2 − 1

)

s2−1

s3 (d− 2)s3−1

2s3−1
(

d
2 − 1

)

s3−1

×
∫

ddp2
p22 p

2
3

(p231)
s2−1 (p212)

s3−1(p31 · p2) (p3 · p12) . (6.6)

Combining (6.5) and (6.6) and expressing the momenta in terms of k ≡ p1 and p ≡ −p2
we get for the bubble diagram contribution with the spin s2, s3 loop

Σs2s3(k
2) = g20s2s3

∫

ddp

p2(p− k)2
(2k − p)2s2(k + p)2s3

[

2
(d− 4)s2

2s2
(

d
2 − 2

)

s2

(d− 4)s3
2s3
(

d
2 − 2

)

s3

+
s2 (d− 2)s2−1

2s2−1
(

d
2 − 1

)

s2−1

s3 (d− 2)s3−1

2s3−1
(

d
2 − 1

)

s3−1

(2kp− p2)(p2 − k2)

(2k − p)2(k + p)2

]

. (6.7)

6.2 Summing over spins

Using the expression for the coupling constants in (3.7) and specifying to d = 4 we find for

the sum Σ(k2) of the individual contributions (6.7)

Σ(k2) = g2
∫

d4p

p2(p− k)2

∞
∑

s2,s3=0
s2+s3=even

ℓ2(s2+s3−1)

2s2−12s3−1[(s2 + s3 − 1)!]2
[

2(2k − p)2s2(k + p)2s3

+ s22s
2
3(2k − p)2(s2−1)(k + p)2(s3−1)(2kp− p2)(p2 − k2)

]

. (6.8)

26Note that the coefficient here is regular at d = 4: (d−4)s
(

d
2
−2

)

s

=
(d−4) (d−3)s−1
(

d
2
−2

)(

d
2
−1

)

s−1

→ 2.
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Here the sum goes over even s2 + s3 because the vertex (3.3) vanishes when the total spin

s2 + s3 is odd and the same is also true for the ghost vertex (3.15).27 Evaluating the sum

one finds (see appendix C for details)

Σ(k2) = g2ℓ−2

∫

d4p

p2(p− k)2
Φ(p, k) , (6.9)

Φ(p, k) =

(

4x2

x− y
+

2(2kp− p2)(p2 − k2)

(2k − p)2(k + p)2
4x2y2(x2 + 4xy + y2)

(x− y)5

)

[

I0(2
√
x)− J0(2

√
x)
]

+
2(2kp−p2)(p2−k2)

(2k−p)2(k+p)2

(

x3y(x+ y)

(x− y)3
[

I2(2
√
x)− J2(2

√
x)
]

(6.10)

+
2x2y(x2−8xy−5y2)

√
x

(x− y)4
[

I1(2
√
x)+J1(2

√
x)
]

)

+(x ↔ y) ,

where In and Jn are the Bessel functions (5.7) and we defined

x ≡ 1

2
ℓ2(2k − p)2 , y ≡ 1

2
ℓ2(k + p)2 . (6.11)

6.3 UV divergences and regularization

Let us now discuss the UV divergence of Σ. There are at least two possible approaches:

(i) first introduce an explicit momentum UV cutoff, sum over spins and then take cutoff to

infinity, or (ii) first drop all power divergences in each individual loop using the dimensional

regularization and then sum over spins.28

Following the first approach, to isolate the UV divergence of the loop integral in (6.10)

let us consider the p → ∞, k = fixed limit of the integrand. In this limit x
y → 1. To extract

the leading singularity one may just set k = 0. The apparent x = y poles of the integrand

are spurious and one finds (see appendix C)

Σ(0) = 2g2ℓ−2

∫

d4p

p4

(

− 1

30

(

ℓp√
2

)7
[

I5(
√
2ℓp)+J5(

√
2ℓp)

]

− 1

2

(

ℓp√
2

)6
[

I4(
√
2ℓp)−J4(

√
2ℓp)

]

− 13

6

(

ℓp√
2

)5
[

I3(
√
2ℓp)+J3(

√
2ℓp)

]

−3

(

ℓp√
2

)4
[

I2(
√
2ℓp)−J2(

√
2ℓp)

]

+

(

ℓp√
2

)3
[

I1(
√
2ℓp)+J1(

√
2ℓp)

]

+4

(

ℓp√
2

)2
[

I0(
√
2ℓp)−J0(

√
2ℓp)

]

)

.

(6.12)

From the asymptotic behaviour of the Bessel functions (5.12) we conclude that Σ in (6.9)

is exponentially UV divergent, i.e. introducing an explicit UV momentum cutoff Λ we get

Σ(0) ∼ g2ℓ−2

∫ Λ d4p

p4
([

(ℓp)13/2 + . . .
]

e
√
2ℓp + . . .

)

∼ g2ℓ−2(ℓΛ)11/2 e
√
2ℓΛ + . . . . (6.13)

27The cubic vertex S[φ0, φs2 , φs3 ] leads to the two terms in the ghost action, schematically V1 =

S[c̄s3−1, cs2−1, φ0] and V2 = S[c̄s2−1, cs3−1, φ0] (see (3.14)). Similarly, the vertex S[φ0, φs3 , φs2 ] leads

to V3 = S[c̄s2−1, cs3−1, φ0] and V4 = S[c̄s3−1, cs2−1, φ0]. One can check that V1 = (−1)s2+s3V4 and

V2 = (−1)s2+s3V3, so that for s2 + s3=odd the ghost action vanishes.
28In general, dimensional regularization is known to be a preferable choice in order to preserve gauge

invariance of the theory at the quantum level but in an effectively non-local theory like the present one its

use needs to be further justified, e.g., it may not commute with summation over spins (see also below).
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Keeping also the subleading order k2 term in the large p expansion of the integrand in (6.9)

gives

Σ(k2) = g2ℓ−2

∫ Λ d4p

p4

(

[

− 1

15

(

ℓp√
2

)7

+
1

15

(

ℓp√
2

)8kp

p2
− 8

105

(

ℓp√
2

)9(kp

p2

)2

− 1

6

(

ℓp√
2

)8k2

p2
+ . . .

]

e
√
2ℓp

23/4
√
πℓp

+ . . .

)

∼ g2ℓ−2

(

1 +
1

7
ℓ2k2 + . . .

)

(ℓΛ)11/2e
√
2ℓΛ + . . . . (6.14)

Note also that the logarithmic log Λ
k divergence in (6.9), (6.14) has a non-zero coefficient

Φ(0, k) =
2

3
ℓ2k2

(

16
[

I0(2
√
2ℓk)− J0(2

√
2ℓk)

]

−
[

I0(
√
2ℓk)− J0(

√
2ℓk)

])

. (6.15)

Instead of using the UV momentum cutoff in the summed over spins expression one

may first define each loop integral (6.7) with the help of dimensional regularization which

gets rid of all power divergences, i.e. sets
∫

d4p(p2)n = 0 , n = −1, 0, 1, . . . . (6.16)

Then for integer n = −1, 0, 1 . . . and m = 0, 1, . . . (or vice versa) one has also
∫

d4p(p2)m
[

(p− k)2
]n

= 0 . (6.17)

The integral (6.8) has the general form

Σ(k2) = g2ℓ−2

∫

d4p

p2(p− k)2
Φ
(

p2, (p− k)2, k2
)

, (6.18)

where the function Φ is a series in positive integer powers of its arguments. Then assum-

ing (6.17) we conclude that only Φ(0, 0, k2) ≡ Φ(k2) produces a non-zero contribution in

dimensional regularisation, i.e. we are left with only logarithmically divergent integral

Σ(k2) = g2ℓ−2Φ(k2)

∫

d4p

p2(k − p)2
, Φ(k2) =

∞
∑

s2,s3=0
s2+s3=even

(8− s22 s
2
3) (ℓ

2k2)s2+s3

[(s2 + s3 − 1)!]2
.

(6.19)

Computing the sum as discussed in appendix C we get

Φ(k2) = − 1

60
(ℓk)7

[

I5(2ℓk) + J5(2ℓk)
]

− 1

4
(ℓk)6

[

I4(2ℓk)− J4(2ℓk)
]

− 13

12
(ℓk)5

[

I3(2ℓk) + J3(2ℓk)
]

− 3

2
(ℓk)4

[

I2(2ℓk)− J2(2ℓk)
]

(6.20)

+
7

2
(ℓk)3

[

I1(2ℓk) + J1(2ℓk)
]

+ 8(ℓk)2
[

I0(2ℓk)− J0(2ℓk)
]

.

Thus with this dimensional regularization prescription (where one discards all power diver-

gences before summation over spins) one finds that instead of an exponential divergence
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in (6.13) the self-energy divergerges only logarithmically29 and, in particular, vanishes at

zero momentum, Σ(0) = 0, so that the spin 0 field remains massless.

6.4 Comments on tadpole diagram contribution

One may wonder if the exponential divergence (6.13) may get cancelled upon adding the

tadpole diagram contribution Σtp(k
2). As we have seen in section 5, the expected struc-

ture of the 4-vertex (5.14) leads to a contribution to the 4-scalar tree-level scattering

amplitude that has similar exponential large momentum behaviour (5.17) as the exchange

diagram (5.13). One may thus expect that this 4-vertex contribution to the self-energy

tadpole diagram will also have an exponential UV behaviour similar to the one in (6.13).

Let us consider just a single virtual s = 0 field contribution to the tadpole diagram

for which the knowledge of the 0-0-0-0 vertex (5.14) is sufficient. Computing the scalar

loop with two scalar external legs we then get the following estimate for its large virtual

momentum behaviour (using (5.15), (5.16), cf. (5.17))

Σtp(k
2) ∼ g2

∫

d4p

p2

∑

j=0

[

f2j
(

−(k−p)2
)[

(k+p)2
]2j

+f2j
(

−(k+p)2
)[

(k−p)2
]2j
]

. (6.21)

Setting k = 0 to get the leading UV asymptotics we find

Σtp(0) ∼ g2
∫

d4p

p2

∑

j=0

a2j(−p2)(p2)2j =
1

4
g2
∫

d4p

p2
[

I0(
√
2ℓp)− J0(

√
2ℓp)

]

. (6.22)

Thus this tadpole diagram has a similar exponential UV behaviour as the bubble dia-

gram (6.10).

This gives a hope that the UV divergence of the bubble diagram contribution may

get cancelled once all tadpole diagrams (for all spins propagating in the loop) are taken

into account. Ideally, the sum of the bubble and tadpole contributions may be given by a

convergent momentum integral that will not require UV regularization and may actually

vanish.30 The same may be true also for the case of self-energy diagram with an arbitrary

spin s field on external lines. Such a result is expected in the AdS higher-spin theory

dual to a boundary U(N) or O(N) scalar where a one-loop self-energy correction would

represent a 1/N correction to the 2-point function of conserved currents which should be

absent in a free theory (i.e. a theory with unbroken higher spin symmetry).

29The self-energy diagram we are computing is an off-shell one, and as in scalar electrodynamics this

logarithmic divergence may be absorbed into a wave function renormalization of the spin 0 field.
30The prescription where one first combines all contributions together, sums over spins and only then

discusses the need for a UV regularization seems the most natural one. The application of dimensional

regularization to individual graphs may be objected as it may not commute with summation over spins.

For example, a convergent integral like
∫

d4p e−ℓ2p2

p2(k−p)2
may be represented as a sum of divergent integrals

∑∞
n=0

(−1)n

n!

∫ d4p (ℓ2p2)
n

p2(k−p)2
with all n ≥ 1 terms vanishing if computed in dimensional regularization but the

remaining n = 0 one having the logarithmic divergence.
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7 Concluding remarks

In this paper we have computed the one-loop bubble diagram correction to the scalar

propagator generated by interactions with an infinite tower of higher-spin gauge fields in

flat 4d space. One motivation was to investigate whether in higher-spin theories, similarly

to what happens in string theory, the summation over an infinite number of spins may

make loop integrals finite in the ultraviolet. Another is that this may also be considered as

a simplified version of the analogous computation in the massless AdS higher-spin theory,

aiming to verify a remarkable prediction of the vectorial AdS/CFT duality that all loop

corrections in this higher-spin theory should vanish.

The explicit cubic coupling coefficients (3.7) that we used were previously derived by

demanding consistency of higher-spin interactions to the subleading g2 order in the light-

cone approach [6]. We also used these coefficients to compute the tree scattering amplitude

of the massless scalars due to the exchange of an infinite tower of massless higher spins.

We found that this exchange amplitude has an exponential growth in the Regge limit,

suggesting singular UV behaviour in the loops. Indeed, the bubble diagram contribution

to the scalar self-energy (summed over all virtual spins propagating in the loop) was found

to be exponentially divergent at high energies.

Qualitatively, this happens because all contributions from different spins (each of which

grows in the UV due to the presence of higher derivatives in the cubic vertex) enter with

the same sign and thus the summation over spins cannot improve the ultraviolet behaviour.

The external spin 0 field we were scattering is a member of the higher-spin tower, i.e. a

real scalar which couples via 0-0-s vertex only to even spin s fields.31

In addition to the exchange diagrams, the full tree-level 4-scalar amplitude should

contain also the contribution of the 4-point vertex. Similarly, besides the bubble diagrams,

the full one-loop self-energy correction should contain also the contributions of the tadpole

diagrams. To compute these extra contributions requires the knowledge of quartic vertices

which are not fully understood at present. To get an idea of possible structure of 4-vertex

contributions we used the 4-scalar interaction term found in the AdS higher-spin theory [52]

and formally continued it to flat space in the short distance limit. We found that it leads,

indeed, to similar UV behaviour as the tree-level exchange diagrams and also to similar

tadpole momentum integrals as appear in the bubble diagram. There is thus a potential

possibility of cancellation of UV divergences in the full one-loop self-energy correction.

This is what is to happen in the AdS higher-spin theory dual to a boundary CFT and

would be in line with the expectation that the UV behaviour in the flat space and AdS

theories should be similar.

31At the same time, if one considers the scattering of a complex scalar that couples also to odd spins

(with extra i in the vertex) one may get softer UV behaviour due to alternating signs of coefficients in sum

over all spins [79]. It is not clear, however, if there is a consistent higher-spin theory (with complex scalars

being part of the spectrum) where this UV softening mechanism can be implemented also at the loop level.

In particular, it is not clear if similar alternating series may appear in the bubble diagrams depending on

cubic vertices with two higher spin fields.
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A Relation between covariant and light-cone cubic vertices

Our aim here will be to establish the relation between the covariant cubic vertex (3.3), (3.7)

and the light-cone gauge one in [6]. We shall consider the case of d = 4 Minkowski space

with metric ηab = diag(−,+,+,+) and define

x± =
1√
2
(x0 ± x3) , x =

1√
2
(x1 + ix2) , x̄ =

1√
2
(x1 − ix2) ,

∂± = −∂∓ =
1√
2
(−∂0 ± ∂3) , ∂ =

1√
2
(∂1 + i∂2) , ∂̄ =

1√
2
(∂1 − i∂2) , (A.1)

so that ds2 = −2dx+dx− + 2dxdx̄. Below we will label the 4d indices by a = 0, 1, 2, 3

and by (+,−, x, x̄) and also use I, J, . . . to label the x and x̄ directions. We will follow the

standard notation

φa(s) ≡ φa1a2...as ,
(

∂x
)

a(s)
≡ ∂

∂xa1
∂

∂xa2
. . .

∂

∂xas
, (A.2)

that is instead of writing all indices of the symmetric tensor, we just write one of them and

indicate their number in brackets.

A.1 Free fields in light-cone gauge

The light-cone gauge for the Fronsdal fields that fixes the gauge freedom (2.8) completely

corresponds to setting to zero all the components of the off-shell field φa(s) that have at

least one upper “+” index

φ+−(n)I(s−n−1) = 0 . (A.3)

Here n is the number of “−” indices and the remaining s−n− 1 indices are the transverse

ones I = (x, x̄). In the light-cone gauge approach one usually assumes that derivatives ∂+

of all fields and gauge parameters are non-vanishing, i.e. one can divide by ∂+.32

Let us review the consequences of this gauge condition when combined with partial

set of the equations of motion (2.7) that allow one to express all of the components of the

Fronsdal field in terms of just two independent ones. The components of e.o.m. (2.7) with

two “+” indices give

∂+∂+φm
ma(s−2) = 0 ⇒ φm

ma(s−2) = 0 , i.e. φI
Ia(s−2) = 0 . (A.4)

32Inverse powers of ∂+ need not be considered as indication of genuine non-localities but originate from

solution of on-shell constraints.
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This implies that there are only two non-vanishing components of φI(s)

ϕs ≡ φx(s), ϕ̄s ≡ φx̄(s). (A.5)

The components of (2.7) with one “+” index give

∂+∂mφma(s−1) = 0 ⇒ ∂mφma(s−1) = 0 , (A.6)

so the field is also transverse. Special cases of (A.6) give

φ−I(s−1) =
∂J
∂+

φJI(s−1), φ−−I(s−2) =
∂J
∂+

φ−JI(s−2), φ−−I(s−2) =
∂J∂J
(∂+)2

φJJI(s−2).

(A.7)

Proceeding in the same manner one gets

φ−(k)I(s−k) =
1

(∂+)k
(∂J)

kφJ(k)I(s−k). (A.8)

Thus there are only two on-shell independent components of the d = 4 Fronsdal field in the

light-cone gauge — the two helicity fields (A.5). The equations of motion for them have

the standard ∂a∂a = � kinetic term, i.e. follow from the action33

S2[ϕs, ϕ̄s] =

∫

d4x ϕ̄s�ϕs . (A.9)

A.2 Cubic interactions

One imposes the same light-cone gauge (A.3) also at the interacting level. Interactions

deform the free equations in a way that (A.4), (A.6), (A.8) now hold only up to terms

linear in the coupling constant, e.g.,

φm
ma(s−2) = O(g) , ∂mφma(s−1) = O(g) . (A.10)

These equations should be again used to express all of the auxiliary components of φs in

terms of the two dynamical helicity fields ϕs and ϕ̄s. The elimination of the auxiliary fields

generates higher powers of ϕs and ϕ̄s even from the quadratic action but they contribute

only to quartic and higher order interactions. Indeed, noting that except for the ∂2
x-term

all other terms in the free action (2.2) are at least bilinear in traces and divergences we

conclude that

s!

2

∫

d4x
[

φs(x, ∂u) T̂ F̂φs(x, u)
]

u=0
=

∫

d4x ϕ̄s�ϕs +O(g2) . (A.11)

Thus to find the cubic vertices for ϕs field in the light-cone gauge from those in the covariant

approach one just needs to plug (A.3)–(A.8) into the covariant cubic action.

33It is interesting to note the light-cone gauge action for free Fronsdal fields in AdS4 also has the same

form as (A.9) [83], i.e. there are no extra “mass” terms present in the covariant expression (such terms

appear though in d > 4).
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Let us start with the traceless-transverse part of the highest derivative cubic vertex in

4 dimensions [13, 14, 16, 36]34

S(3)[φs1 , φs2 , φs3 ] = gs1s2s3

∫

d4x
[

(∂u1 · ∂x23)
s1(∂u2 · ∂x31)

s2(∂u3 · ∂x12)
s3

× φs1(x1, u1)φs2(x2, u2)φs3(x3, u3)
]

ui=0
xi=x

. (A.12)

The vertex in (3.3) is the special case of (A.12) corresponding to s1 = 0. In the light-cone

gauge one finds35

(∂x12
)a(s3)φ

a(s3)(x3) =

s
∑

n=0

s!

n!(s− n)!
(∂x12

)
−(n)(∂x12

)I(s3−n)φ
−(n)I(s3−n)

=
s
∑

n=0

(−1)ns!

n!(s− n)!
(∂x12

)+(n)(∂x12
)I(s3−n)

∂3J(n)

(∂+
3 )n

φJ(n)I(s3−n)

=

s
∑

n=0

(−1)ns!

n!(s−n)!
(∂+

x12
)n∂̄s3−n

12

∂̄n
3

(∂+
3 )n

ϕs3
+

s
∑

n=0

(−1)ns!

n!(s−n)!
(∂+

x12
)n∂s3−n

12

∂n
3

(∂+
3 )n

ϕ̄s3

=

(

∂̄12 −
∂+
12∂̄3

∂+
3

)s3

ϕs3
+

(

∂12 −
∂+
12∂3

∂+
3

)s3

ϕ̄s3

=

(

2
∂̄2∂

+
1 − ∂̄1∂

+
2

∂+
3

)s3

ϕs3
+

(

2
∂2∂

+
1 − ∂1∂

+
2

∂+
3

)s3

ϕ̄s3
. (A.13)

Following [6] let us introduce the notation

P ≡ 1

3

[

∂1(β2 − β3) + ∂2(β3 − β1) + ∂3(β1 − β2)
]

, β ≡ ∂− . (A.14)

It is easy to see that
∂̄2∂

+
1 − ∂̄1∂

+
2

∂+
3

= − P̄

β3
, (A.15)

so that (A.13) can be rewritten as

(∂x12)a(s3)φ
a(s3)(x3) =

(

− 2
P̄

β3

)s3

ϕs3 +

(

− 2
P

β3

)s3

ϕ̄s3 . (A.16)

As a result, we find that the covariant cubic vertex (A.12) written in the light-cone gauge

becomes

S3 = gs1s2s3

∫

d4x

(

− 2
P̄

β1

)s1(

− 2
P̄

β2

)s2(

− 2
P̄

β3

)s3

ϕs1ϕs2ϕs3 + . . . , (A.17)

where dots stand for analogous terms involving ϕ̄. The light-cone gauge vertex found in [6]

has exactly this form with36

gs1s2s3 = g
ℓs1+s2+s3−1

(s1 + s2 + s3 − 1)!
, (A.18)

where g is an overall coupling constant and ℓ is an arbitrary dimension-length parameter.

34This vertex contains the maximal number of derivatives consistent with the condition of being non-zero

when the fields are restricted to solutions of free equations of motion.
35Here in the last line we assume the possibility of integration by parts, i.e. ∂3 → −∂1 − ∂2.
36The result (A.18) was derived in [6] for the special case when all spins entering the vertex are even

and the more general case (with symmetric/antisymmetric internal indices on even/odd spin fields φs) was

considered in [7]. We shall assume that (A.17) holds for all values of the spins.
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Let us note that the vertex (A.12) has the following symmetry under the exchange of

any two arguments

S(3)[φs1 , φs2 , φs3 ] = (−1)s1+s2+s3S(3)[φs2 , φs1 , φs3 ] . (A.19)

To get a complete cubic interaction, this vertex has to be summed over all fields and this

implicitly symmetrizes it over its arguments. This implies that the cubic vertex (A.12)

contributes under summation over all spins only if the total spin of the fields is even, i.e.

we may assume that the vertex with the total spin being odd may be effectively set to zero

S(3)[φs1 , φs2 , φs3 ] = 0 if s1 + s2 + s3 = odd . (A.20)

B Test of BCFW constructibility condition

In this appendix we shall discuss if the above higher spin cubic vertices can be used to

derive the quartic ones within the BCFW framework, i.e. if the BCFW constructibility

condition is satisfied (cf. [21, 22]).

Let us consider a formal shift of two momenta

pi → pi(w) = pi + wq , pj → pj(w) = pj − wq , (B.1)

where w is a complex number and the vector q satisfies

q2 = 0 , q · pi = 0 , q · pj = 0 . (B.2)

The BCFW constructibility condition [21] is that under such shift the total 4-point ampli-

tude should vanish in the limit w → ∞,

lim
w→∞

Â(w) = 0 . (B.3)

Then assuming Â(w) is analytic it may have only poles at finite values of w. These

poles should correspond to the values of w for which the internal propagators that involve

shifted momenta go on-shell. The residues at these poles are given by products of on-shell

amplitudes resulting from the original one after cutting the propagator that goes on-shell

under the shift. Using analyticity of the shifted amplitude A(w) as a function of w, one

can then recursively express it in terms of the products of on-shell three-point amplitudes.

Let us apply these considerations to the tree-level four-scalar amplitude discussed in

section 5. Under the shift (B.1) applied to p1 and p2 in (5.1) we find for the Mandelstam

variables in (5.2)

s(w) = s , t(w) = t + w∆ , u(w) = u− w∆ , ∆ ≡ −2q · p′1 . (B.4)

Then the constructibility condition (B.3) implies that the total 4-scalar amplitude contain-

ing the exchange and “contact” (4-vertex) contributions

Â(s, t, u) = Âexch(s, t, u) +Acont(s, t, u) , (B.5)
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should vanish at t → ∞. The total exchange part (5.11) of the 4-point amplitude corre-

sponding to the s-channel expression in (5.9), (5.8) is

Âexch(s, t, u) = − i

s

[

F

(

1

2

(√
−u +

√
t
)2
)

+ F

(

1

2

(√
−u−

√
t
)2
)]

− i

t

[

F

(

1

2

(√
−u +

√
s
)2
)

+ F

(

1

2

(√
−u−√

s
)2
)]

− i

u

[

F

(

1

2

(√
−s +

√
t
)2
)

+ F

(

1

2

(√
−s−

√
t
)2
)]

. (B.6)

To satisfy the constructibility condition, the contact contribution should cancel the expo-

nential singularity (5.13) of this exchange amplitude (B.6) at t → ∞. Given that F (z)

in (5.8) is an entire function, then (under a natural assumption that “contact” contribution

should not introduce new poles) the only remaining singularities of (B.6) will be poles at

t = 0 and t = −s. Keeping only the contributions from these finite poles (as required by

the assumption of BCFW constructibility), the total amplitude would then be

Â′(s, t, u) = −i
s

t(s + t)
F (2s) , (B.7)

where we used that F (z) = F (−z) (see (5.8)). At the same time, applying the BCFW

shift (B.1) to the momenta p1 and p′1 in (5.1) and assuming a similar large w singularity

cancellation due to the contact term contribution we get instead

Â′′(s, t, u) = −i
t

s(s + t)
F (2t) . (B.8)

The two expressions (B.7) and (B.8) could agree provided F (z) = c
z2

but this contradicts

the actual form of F in (5.8).

We are thus led to the conclusion that the cubic vertices (3.3) with the couplings (3.7)

which led to the exchange amplitude (5.9) are inconsistent with the condition of BCFW

constructibility.

C Details of summation over spins

Here we shall evaluate some sums over spins appearing in section 6. The bubble diagram

contribution to the scalar self-energy (6.8) can be rewritten as

Σ(k2) = 4g2ℓ−2

∫

d4p

p2(p− k)2

[

2S1 +
(2kp− p2)(p2 − k2)

(2k − p)2(k + p)2
S2

]

, (C.1)

where

S1 ≡
∞
∑

m,n=0
m+n=even

xmyn
(

(m+ n− 1)!
)2 , S2 ≡

∞
∑

m,n=0
m+n=even

m2n2 xmyn
(

(m+ n− 1)!
)2 , (C.2)

and x ≡ 1
2ℓ

2(2k − p)2, y ≡ 1
2ℓ

2(k + p)2 as in (6.11). To evaluate S1 let us first introduce

the new variables

u ≡ xy , v =
x

y
, (C.3)
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and then rearrange the series to sum over m and n obeying m+ n = 2r with fixed integer

r first

S1 =
∞
∑

m,n=0
m+n=2r

u(m+n)/2v(m−n)/2

(

(m+ n− 1)!
)2 =

∞
∑

r=0

urvr
(

(2r − 1)!
)2

2r
∑

n=0

v−n =
∞
∑

r=0

urvr
(

(2r − 1)!
)2

1− v−(2r+1)

1− v−1
.

After some simple manipulations we find

S1 =
v

v − 1

∞
∑

r=0

x2r
(

(2r − 1)!
)2 − 1

v − 1

∞
∑

r=0

y2r
(

(2r − 1)!
)2

=
x2

2(x− y)

[

I0(2
√
x)− J0(2

√
x)
]

− y2

2(x− y)

[

I0(2
√
y)− J0(2

√
y)
]

, (C.4)

where J0(z) and I0(z) are the Bessel functions in (5.7).

Similarly, for the second sum we find

S2 =
∞
∑

m,n=0
m+n=2r

m2n2

(

(m+ n− 1)!
)2u

(m+n)/2v(m−n)/2 =
∞
∑

r=0

urvr
(

(2r − 1)!
)2

2r
∑

n=0

n2(2r − n)2v−n.

Let us set j ≡ 2r = m+ n. Then the sum over n acquires the following form

j
∑

n=0

n2(j−n)2v−n =
v

(v − 1)5
[

A(v, j)− v−jB(v, j)
]

, (C.5)

A(v, j) = j2v3+2jv3+v3−j2v2+6jv2+11v2−j2v−6jv+11v+j2−2j+1 ,

B(v, j) = j2v3−2jv3+v3−j2v2−6jv2+11v2−j2v+6jv+11v+j2−2j+1 .

It is convenient to represent A and B as

A(v, j) = (j−1)(j−2)(v−1)2(v+1) + (j−1)(v−1)(v2−8v−5) + 4(v2+4v+1) ,

B(v, j) = (j−1)(j−2)(v−1)2(v+1) + (j−1)(v−1)(5v2+8v−1) + 4v(v2+4v+1) .

Then S2 may be written as

S2 =
v

(v − 1)5

∞
∑

r=0

x2r
(

(2r − 1)!
)2A(v, 2r)−

v

(v − 1)5

∞
∑

r=0

y2r
(

(2r − 1)!
)2B(v, 2r) . (C.6)

Substituting here the expressions for A and B we obtain

S2 =
v

(v−1)5

[

(v−1)2(v+1)

∞
∑

r=0

x2r

(2r−1)!(2r−3)!
− 4v(v2+4v+1)

∞
∑

r=0

y2r
(

(2r−1)!
)2

+ (v−1)(v2−8v−5)

∞
∑

r=0

x2r

(2r−1)!(2r−2)!
+ 4(v2+4v+1)

∞
∑

r=0

x2r

(

(2r−1)!
)2

− (v−1)2(v+1)

∞
∑

r=0

y2r

(2r−1)!(2r−3)!
− (v−1)(5v2+8v−1)

∞
∑

r=0

x2r

(2r−1)!(2r−2)!

]

.
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Using (5.7) to perform the summations and expressing the result back in terms of x and y

in (C.3) we find

S2 =
x3y(x+ y)

2(x− y)3
[

I2(2
√
x)− J2(2

√
x)
]

+
x2y(x2 − 8xy − 5y2)

√
x

2(x− y)4
[

I1(2
√
x) + J1(2

√
x)
]

+
2x2y2(x2 + 4xy + y2)

(x− y)5
[

I0(2
√
x)− J0(2

√
x)
]

+ (x ↔ y) . (C.7)

As a result, we get the following expression for (C.1) which is equivalent to (6.9), (6.10)

Σ(k2) = 4g2ℓ−2

∫

d4p

p2(p− k)2

([

x2

x− y

[

I0(2
√
x)− J0(2

√
x)
]

+ (x ↔ y)

]

+
(2kp− p2)(p2 − k2)

(2k − p)2(k + p)2

[

x3y(x+ y)

2(x− y)3
[

I2(2
√
x)− J2(2

√
x)
]

+
x2y(x2 − 8xy − 5y2)

√
x

2(x− y)4
[

I1(2
√
x) + J1(2

√
x)
]

(C.8)

+
2x2y2(x2 + 4xy + y2)

(x− y)5
[

I0(2
√
x)− J0(2

√
x)
]

+ (x ↔ y)

])

.

Let us note that (C.8) is not directly applicable for x = y because intermediate summations

over powers of v resulted in a spurious pole at v = 1. The x = y limit is actually regular

as one can show by expanding the numerators in powers of (x − y) and checking that all

factors of (x − y) in the denominator get cancelled. Equivalently, one may just evaluate

the above sums explicitly for v = 1. This gives

S1|x=y =
1

2
(
√
x)3
[

I1(2
√
x) + J1(2

√
x)
]

+ x
[

I0(2
√
x)− J0(2

√
x)
]

, (C.9)

S2|x=y =
1

60
(
√
x)7
[

I5(2
√
x) + J5(2

√
x)
]

+
1

4
x3
[

I4(2
√
x)− J4(2

√
x)
]

+
13

12
(
√
x)5
[

I3(2
√
x) + J3(2

√
x)
]

+
3

2
x2
[

I2(2
√
x)− J2(2

√
x)
]

+
1

2
(
√
x)3
[

I1(2
√
x) + J1(2

√
x)
]

. (C.10)

As a result, in the x = y limit (which corresponds according to (6.11) to the k2 = 0 value

of the self-energy correction and thus determines the leading UV p → ∞ behaviour of the

integrand in (C.1)) one finds the expression given in (6.12).
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