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1 Introduction

Electroweak baryogenesis (EWBG) is an interesting mechanism that could explain the

observed asymmetry between matter and antimatter in the universe [1] (for reviews see [2–

7]). It ties together cosmology and physics at the electroweak (EW) scale, specifically the

process of electroweak symmetry breaking (EWSB). However for this scenario to work,

the electroweak phase transition (EWPT) needs to be a strong first order one, i.e. it

should proceed through bubble nucleation and sphaleron transitions should be sufficiently

suppressed in the broken phase. The latter point prevents the asymmetry generated in the

bubble walls to not be washed out once the broken phase fills up the universe.

With a 125 GeV Higgs the Standard Model (SM) potential does not feature a barrier

between unbroken and broken phases at zero temperature, although this barrier could

in principle be produced by temperature dependent contributions to the potential via

cubic terms. However, the SM degrees of freedom are not sufficient to generate a large

enough barrier [8]. One then needs to add light degrees of freedom beyond the SM ones to

radiatively generate the barrier, since heavy degrees of freedom decouple from the thermal

bath and only light states provide a non negligible contribution to the effective potential.

Moreover the Sakharov conditions for successful baryogenesis require a much larger

amount of CP violation than the one present in the SM and one needs to find sources beyond

(BSM). In principle, supersymmetric extensions of the SM, such as the MSSM, could

provide the required amount. Then, if one wants to embed EWBG in a supersymmetric
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context one should first check whether or not the MSSM features a strong enough first order

phase transition. In principle the MSSM is able to generate a first order EWPT by the

introduction of light stops which can generate large cubic terms at finite temperature. The

problem in this case is that stops are required to be really light (below ∼ 150 GeV [9]) and

unless one goes to very special models this mass range for stops is excluded by experimental

searches. Moreover such light degrees of freedom modify the Higgs couplings and we would

have seen these modifications by now [10–12]. The problem can be generalized to any

BSM proposal that tries to generate a first order EWPT radiatively: new light degrees of

freedom below experimental bounds are commonly required and it often becomes difficult

to accommodate a strong enough first order EWPT with collider searches.

An interesting approach that can be taken is to modify the tree level potential and try

to generate a barrier already at T = 0. This can be done by extending the Higgs sector

of the MSSM, for instance e.g. by adding a gauge singlet field, the NMSSM [13]. To avoid

possible problems with tadpole generation and/or domain wall problems of the singlet

field [14, 15], here we use the same approach but using the Supersymmetric Custodial

Triplet Model (SCTM) which extends the field content of the MSSM by three SU(2)L
chiral superfields and was first introduced in [16].

The SCTM is a supersymmetric generalization of the non-supersymmetric model in-

troduced by Georgi and Machacek (GM) in ref. [17] and subsequently studied in ref. [18],

where an additional global SU(2)R symmetry is imposed in the Higgs sector to enforce the

tree level condition ρ = 1. Notice the difference with respect to the Standard Model where

the global SU(2)R is automatically a symmetry of the Higgs sector of the theory while

both in the GM and the SCTM the SU(2)R symmetry has to be imposed. In the Standard

Model, as well as in the SCTM and the GM model, the SU(2)R symmetry is explicitly

broken by Yukawa and hypercharge couplings, giving rise to violations of the custodial

symmetry at the quantum level. This issue was studied for the SCTM in detail in ref. [19].

The model is able to raise the tree level Higgs mass through new F -term contributions

and fit the ∼ 125 GeV measurement without the need of super-heavy stops. At the same

time it generates largish triplet vacuum expectation values (VEVs) that can participate in

the EW breaking up to a ∼ 15% order. This latter fact has a wide variety of theoretical

and phenomenological consequences that have been studied in several publications [19–21].

One of its most interesting features, as we will see in this paper, is that it is able to generate

a barrier between the origin and the EW minimum already at tree level. In this paper we

explore this fact and analyze the behavior of its EWPT for the purpose of being able to

generate a successful EWBG in supersymmetric extensions of the SM.

The paper is organized as follows: in section 2 we introduce the model and the loop

corrections to the potential, both at zero temperature and the temperature dependent ones.

In section 3 we study the strength of the phase transition at the degeneracy temperature.

Section 4 is devoted to the study of the thermal tunneling and the nucleation temperature.

In section 5 we study the gravitational waves generated by the EWPT of the model. We

end with a summary of our work and conclusions.
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2 The model

In this section we will construct a supersymmetric Higgs sector which is manifestly invariant

under the global symmetry SU(2)L ⊗ SU(2)R. The MSSM Higgs sector H1 and H2 with

respective hypercharges Y = (−1/2, 1/2)

H1 =

(
H0

1

H−1

)
, H2 =

(
H+

2

H0
2

)
(2.1)

is complemented with SU(2)L triplets, ΣY , with hypercharges Y = (−1, 0, 1)

Σ−1 =

(
χ−√

2
χ0

χ−− −χ−√
2

)
, Σ0 =

(
φ0√

2
φ+

φ− − φ0√
2

)
, Σ1 =

(
ψ+
√

2
ψ++

ψ0 −ψ+
√

2

)
, (2.2)

where Q = T3L + Y .

The two doublets and the three triplets are organized under SU(2)L ⊗ SU(2)R as

H̄ = (2, 2̄), and ∆̄ = (3, 3̄) where

H̄ =

(
H1

H2

)
, ∆̄ =

(
−Σ0√

2
−Σ−1

−Σ1
Σ0√

2

)
(2.3)

and T3R = Y . The invariant products for doublets A · B ≡ AaεabB
b and anti-doublets

Ā · B̄ ≡ ĀaεabB̄c are defined by ε21 = ε12 = 1.

The SU(2)L ⊗ SU(2)R invariant superpotential is defined as

W0 = λH̄ · ∆̄H̄ +
λ3

3
tr ∆̄3 +

µ

2
H̄ · H̄ +

µ∆

2
tr ∆̄2 (2.4)

2.1 Scalar potential at zero temperature and the vacuum

Accordingly with the previous superpotential and gauge particle content the total tree level

potential, as dictated by the symmmetries of the theory, is given by

Vtree = VF + VD + Vsoft , (2.5)

where

Vsoft = m2
H1
|H1|2 +m2

H2
|H2|2 +m2

Σ1
tr |Σ1|2 +m2

Σ−1
tr |Σ−1|2 +m2

Σ0
tr |Σ0|2

+

{
1

2
m2

3H̄ · H̄ +
1

2
B∆ tr ∆̄2 +AλH̄ · ∆̄H̄ +

1

3
Aλ3 tr ∆̄3 + h.c.

}
. (2.6)

Note that the soft part of the potential we just wrote is the same as in [16] but with non

custodial soft masses that explicitly spoil the SU(2)L ⊗ SU(2)R invariance. This small

breaking of custodial invariance can be understood as coming from the running of the

model parameters from the scale M , where supersymmetry is broken and the theory is

defined as exactly custodial in the Higgs sector, to the weak scale where the model param-

eters are defined [19]. This small breaking of custodial invariance is accounted for in the

minimization process next described.
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To the tree level piece one has to add the Coleman-Weinberg contribution for the one-

loop radiative corrections at T = 0, which will depend on the considered background scalar

fields: H0
1 , H

0
2 from the usual MSSM SU(2)L doublets, and ψ0, φ0, χ0, corresponding to the

new triplet sector. We will work for simplicity in the MS renormalization scheme for which

∆V T=0
1 (φk) =

∑
i

ni
64π2

m4
i (φk)

(
log

m2
i (φk)

Q2
− Ci

)
, (2.7)

where Ci = 5/6 for gauge bosons and Ci = 3/2 for the rest of states and ni is the number of

degrees of freedom for each particle (nW = 6, nZ = 3, nt = −12, nt̃1 = 6, nt̃2 = 6, . . . ) and

we write φk ≡ H0
1 , H

0
2 , ψ

0, φ0, χ0 for simplicity. In the MS (as in any mass independent

renormalization scheme) decoupling of heavy particles is not automatically implemented,

but has to be done by hand at a scale of the order of their mass where they are integrated

out, eventually leaving some threshold corrections (the run-and-match procedure) in the

low energy effective theory. The run-and-match procedure guarantees the absence of large

logarithms in the effective potential (for useful examples of this procedure in the MSSM

see refs. [22, 23]). On the other hand the MS renormalization scheme changes the location

of the tree-level potential minimum as well as the value of the (running) Higgses masses.

In other words the tree-level potential must be minimized after inclusion of radiative cor-

rections, as we will do next.

The total background-dependent one-loop zero temperature potential is then

V1(φk) = Vtree(φk) + ∆V T=0
1 (φk) (2.8)

and the EWSB vacuum is derived by solving the five minimization conditions

∂V1(φk)

∂H0
1

∣∣∣∣
φk=vk

=
∂V1(φk)

∂H0
2

∣∣∣∣
φk=vk

=
∂V1(φk)

∂ψ0

∣∣∣∣
φk=vk

=
∂V1(φk)

∂φ0

∣∣∣∣
φk=vk

=
∂V1(φk)

∂χ0

∣∣∣∣
φk=vk

= 0 ,

(2.9)

where we impose the EW vacuum to be at

v1 =
√

2 cosβ vH , v2 =
√

2 sinβ vH and vψ = vχ = vφ ≡ v∆. (2.10)

so that we allow breaking of custodial invariance only in the doublet sector, which is a very

good approximation as that breaking is triggered in the running mainly by the top Yukawa

coupling [19]. The Higgs mass is computed numerically from the scalar mass matrix that is

derived from the above potential, and we have checked that it is very well approximated by

the analytical expressions from refs. [24, 25], although the plots are based on the numerical

calculation. Note that we are only including dominant contributions to the Higgs mass.1

The custodial symmetry of the vacuum is only broken by tan β. As it was argued

in [21], by allowing for tan β 6= 1 to deal with the parametrization of some possible custodial

breaking, we capture the main features of it without the need to perform a thorough study

of a UV complete model. To set the Z mass, the total VEV must be

v2 ≡ (174 GeV)2 = 2v2
H + 8v2

∆. (2.11)

1Because we have introduced three extra SU(2)L triplets, the scalar sector of this model is enhanced with

respect to the MSSM by a new set of states that carry a large triplet component and couple very weakly [20].
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Finally, in order to solve the five minimization conditions we need to fix five parameters.

We will choose for them the soft scalar masses mH1 ,mH2 and mΣ1 ,mΣ−1 ,mΣ0 as in ref. [21].

2.2 Finite temperature scalar potential

The finite temperature potential at one-loop is

V1(φk, T ) = Vtree(φk) + ∆V T=0
1 (φk) + ∆V1(φk, T ) + ∆Vdaisy(φk, T ) (2.12)

with the finite temperature part

∆V1(φk, T ) =
T 4

2π2

(∑
i

niJi

[
m2
i (φk)

T 2

])
. (2.13)

and the thermal integrals,2

J±(y) ≡
∫ ∞

0
dxx2 log

(
1∓ e−

√
x2+y

)
(2.14)

Here Ji = J+(J−) if the ith particle is a boson (fermion). The Daisy piece is given by

∆Vdaisy(φk, T ) = − T

12π

∑
i=bosons

ni
[
M3

i (φk, T )−m(φk)
3
]
, (2.15)

where

M2
i = m2

i (φk) + Πi(φk, T ) . (2.16)

Since the thermal corrections to the (un-resummed) one-loop potential potential auto-

matically decouple heavy degrees of freedom we will only Daisy resum the longitudinal

components of light gauge bosons WL, ZL and γL just as in the SM [4]. In the one-loop

approximation
ΠWT

(φk, T ) = ΠZT
(φk, T ) = ΠγT (φk, T ) = 0 ,

ΠWL
(φk, T ) =

11

6
g2T 2

(2.17)

and the SM Debye masses M2
i for ZL, γL are given by

M2
ZL

=
1

2

(
m2
Z(φk) +

11

6

g2

cos2 θW
T 2 + ∆(φk, T )

)
,

M2
γL

=
1

2

(
m2
Z(φk) +

11

6

g2

cos2 θW
T 2 −∆(φk, T )

)
.

(2.18)

Where

∆2(φk, T ) = m4
Z(φk) +

11

3

g2 cos2 2θW
cos2 θW

(
m2
Z(φk) +

11

12

g2

cos2 θW
T 2

)
T 2 . (2.19)

2These integrals can also be written in terms of an infinite sum of Bessel functions [8]

J±(y) ≡ −
∞∑

n=1

(±1)n

n2
y2K2 (ny) .

By truncating the sum to a large enough order, one can obtain a more calculable situation which still

represents a good approximation to the thermal integrals written above. We will not use any high (low)

temperature expansion in this work since our interesting parameter space does not qualify for any of the

two regimes.
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Figure 1. Left panel: for λ = 0.7, µ = 750 GeV, and tan β = 1 (blue), tan β = 1.5 (red), regions in

the (v∆, µ∆) plane where the zero temperature tree level potential shows a false minimum at the

origin. Right panel: for tan β = 1, v∆ = 20, GeV µ = 650 GeV and µ∆ = 415 GeV sections of the

five-dimensional potential at different temperatures along the direction that joins the false and true

vacuums by a straight line, T = 0 and T = Tc are depicted with dotted and dashed lines respectively.

3 Strength of the phase transition

We have found that µ and µ∆ are the parameters to which the potential shows more

sensitivity for creating a barrier between the origin and the EW minimum already at

T = 0, they are therefore critical to the study of the phase transition. To simplify the

study we will make contour plots of different quantities on the (µ, µ∆) plane while holding

other parameters fixed. To start doing numerical computations we first choose a set of

benchmark values given by

Aλ = Aλ3 = At = 0, λ3 = 0.35,

m3 = 750 GeV, B∆ = −(750 GeV)2,

mQ̃3
= 800 GeV, and mũc3

= 800 GeV.

(3.1)

In the left panel of figure 1 we plot regions in the (v∆, µ∆) plane, for µ = 750 GeV and

different values of tan β, where the origin is a false minimum at zero temperature and there-

fore there is a barrier separating the origin from the true EW minimum. These regions are

then eligible to generate, at finite temperature, a strong enough EWPT as that exhibited

in the right panel of figure 1. One can realize from the plot in the left panel of figure 1 that

this region only appears, and becomes important, when v∆ is non negligible. By means of

the needed sizeable values of v∆, the plot shows how critical is for the appearance of the

barrier to have a non negligible contribution of the triplet sector to EWSB.

For any fixed value of tan β and points outside the corresponding band the zero temper-

ature potential does not fulfil our required conditions for having a strong enough EWPT at

finite temperature. In particular for points below the corresponding band the EW vacuum

– 6 –
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Figure 2. Left panel: sections of the potential at zero temperature in the direction of minimum

slope for values of µ and µ∆ above (dotted), inside (dashed) and below (solid) the bands where a

first order phase transition is realized. Right panel: for v∆ = 20 GeV, values of λ that are needed

to get the correct Higgs mass in the (µ, µ∆) plane for tan β = 1 (blue) and tan β = 1.5 (red).

is a false minimum (or even it does not exist) and thus no transition from the origin to

the EW minimum is possible at any temperature. This is exhibited at a particular point

below the band, for the zero temperature potential along the direction where the slope of

the barrier is minimized, in the left panel of figure 2 (solid line) where we can see that the

EW minimum is not the true minimum. For points inside the corresponding band the EW

minimum is the true minimum and the EWPT can proceed through a strong enough first

order phase transition. The zero temperature potential for a point inside the band is exhib-

ited in the left panel of figure 2 (dashed line). Finally for points above the corresponding

band, the origin of the zero temperature potential becomes a saddle point as shown in the

left panel of figure 2 (dotted line). Therefore in this region the barrier between the origin

and the EWSB minimum can only be generated by thermal corrections, and the EWPT is

too weak (or not even first order) as it happens in the SM or in the MSSM. At each point

the value of the parameter λ is adjusted such that the value of the Higgs mass reproduces

the experimental result mH = 125 GeV. The needed values of λ are provided in the right

panel of figure 2 where we show, for v∆ = 20 GeV, in the (µ, µ∆) plane contour lines of

constant values of λ inside the bands for tan β = 1 (blue) and tan β = 1.5 (red).

Once identified the region in the parameter space where our potential is able to gen-

erate a first order EWPT we will study its temperature dependence. We will search for

points where the phase transition is strong enough as to avoid any washout of the gener-

ated baryon asymmetry due to sphaleron transitions. This condition translates into the

– 7 –
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Figure 3. Critical temperature in GeV (left panel) and order parameter of the phase transition

(right panel) in the (µ, µ∆) plane for v∆ = 20 GeV and tan β = 1 (blue), tan β = 1.5 (red). In

both plots we have shown the band where there is a barrier between the origin and the global EW

minimum in the zero temperature effective potential for tan β = 1 (blue) and tan β = 1.5 (red). At

each point λ is adjusted such that the Higgs mass reproduces the experimentally observed value.

following bound for the Standard Model [26],

v(Tn)

Tn
& 1 (3.2)

where v(Tn) is the VEV of the Higgs field at the nucleation temperature. We do not expect

this bound to be very different in the present model, since the sphaleron energy is dom-

inated by the contributions from the gauge field configurations excited in the sphaleron

rather than the scalar ones [27].

As the condition v(Tc)/Tc . v(Tn)/Tn, where v(Tc) defined by

v(Tc) =
√
H0

1 (Tc)2 +H0
2 (Tc)2 + 2ψ0(Tc)2 + 4φ0(Tc)2 + 2χ0(Tc)2 . (3.3)

is the Higgs VEV at the critical temperature (the temperature at which both minima are

degenerate), is generically satisfied as we will see later on in this paper, it is sufficient to

consider the EWPT strong enough when the condition v(Tc) & Tc is fulfilled. In fact this

sufficient condition is much simpler to analyze than (3.2) as it can (and will) be easily done

in the full five-dimensional Higgs potential.

In figure 3 we present results for the critical temperature (left panel) and the order

parameter of the phase transition at the critical temperature (right panel) in the (µ, µ∆)

plane. Our results for the EWPT are even stronger than what it is shown in the left and

right panels of figure 3, since the true order parameter of the EWPT (the order parameter

at the nucleation temperature) will be bigger than the one at the critical temperature, as it

was already observed. We only show points where the strong phase transition is generated

– 8 –
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by the zero temperature potential exhibiting a false minimum at the origin, the blue (for

tanβ = 1) and red (for tan β = 1.5) bands. As we can see in the right panel of figure 3

the strength of the phase transition increases as we approach the lower boundary of the

corresponding band. As we will see in section 5 this region will be favored for the detection

of the gravitational waves emitted during the EWPT.

4 Thermal tunnelling and nucleation temperature

Once we have computed the strength of the phase transition at the critical temperature,

the next step is to compute the tunneling temperature to make sure that bubble nucleation

does happen. Of course this is ensured if the phase transition is generated radiatively since

there is no barrier at zero temperature and, as the universe cools down, we will always cross

a point where the tunneling probability is O(1). However in the region we are interested in

this is not guaranteed as there is a barrier at zero temperature and it could be too strong

for the field to tunnel from the symmetric to the broken phase at any temperature.

As the computation of the thermal tunneling in the five-field case presents compu-

tational challenges that are out of the scope of this work, we will use an approximation

to strip down our five field configuration to a one-dimensional field space. We will first

consider the following,

H0
1 →

v1(T )

v2(T )
H0

2 and ψ0 →
vψ(T )

vφ(T )
φ0, χ0 → vχ(T )

vφ(T )
φ0. (4.1)

For the doublet sector this approximation is expected to be a very good one near the

decoupling limit, where all scalar masses are much heavier than the SM Higgs mass, which

is nearby the spectrum we are considering in this paper,3 for the dependence of tan β on

the temperature is a mild one [28]. Moreover the smallness of v∆ with respect to vH will

also ensure that the triplet sector is well approximated by eq. (4.1).

In order to go from the two field configuration (H0
2 , φ

0) to one direction we will further

reduce our field space by considering the smooth direction that joins the origin and the

electroweak minimum passing through the saddle point,4 as can be seen in figure 4. We

have chosen this direction by considering an ellipse in the (H0
2 , φ

0) plane,

H0
2 → f(φ0) =

1− a+

√
a2 + (a− 1)2 −

(
φ0

vφ
− a
)2
 v2(T ) (4.2)

where the parameter a is the eccentricity of the ellipse. By tuning a we can get the

right path and ensure that we connect smoothly the origin, the saddle point and the EW

minimum at any temperature.

3For a light spectrum our calculation of the approximated nucleation temperature might require strong

corrections.
4As pointed out in [29], the tunneling path is the one where the barrier is minimized so any approximation

will only overestimate the size of it.

– 9 –
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Figure 4. Two dimensional projection of the tree level potential in a point which exhibits a first

order phase transition between the origin and the EW minimum (which for the considered point

is located at v∆ = 20 GeV and vH = 116.35 GeV). The orange plane that intersects the potential

corresponds to the ellipsoidal direction that joins the origin and the EW minimum.

The tunneling probability per unit time and unit volume from the false (symmetric)

to the real (broken) minimum in a thermal bath is given by [30],

Γ

ν
∼ A(T ) exp [−B(T )], B(T ) ≡ S3(T )

T
(4.3)

where the prefactor is A(T ) ' T 4 and S3 is the three-dimensional effective action. At

very high temperature the bounce solution has O(3) symmetry and the euclidean action is

simplified to

S3 = 4π

∫ ∞
0

r2dr

[∑
k

1

2

(
dφk
dr

)2

+ V (φk, T )

]
, (4.4)

where r2 = ~x 2. Using (4.1) and (4.2) we can rewrite it as,

S3 = 4π

∫ ∞
0

r2dr

[
1

2
F (φ0)

(
dφ0

dr

)2

+ V (φ0, T )

]
(4.5)

where,

F (φ0) =

(
1 +

v1(T )2

v2(T )2

)
f ′(φ0) +

(
1 +

vψ(T )2

vφ(T )2
+
vχ(T )2

vφ(T )2

)
. (4.6)

The bounce will be the solution to the euclidean equations of motion which yield the

following equation

F (φ0)

[
d2φ0

dr2
+

2

r

dφ0

dr

]
+

1

2
F ′(φ0)

(
dφ0

dr

)2

= V ′(φ0, T ) , (4.7)
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Figure 5. Left panel: plot of the effective action over the temperature for µ = 650 GeV,

µ∆ = 475 GeV, v∆ = 20 GeV and tan β = 1. The order parameter at the critical temperature

is φ(Tc)/Tc = 1.82 and Tc = 89 GeV. The dashed line corresponds to S3(T )/T ∼ 135 and the cross-

ing point with the thick blue line happens at the nucleation temperature Tn = 65 GeV. Right panel:

the same for µ = 650 GeV, µ∆ = 375 GeV, v∆ = 20 GeV and tan β = 1.5, where φ(Tc)/Tc = 1.65,

Tc = 96 GeV and Tn = 79 GeV.

with the boundary conditions

lim
r→∞

φ(r) = 0 and dφ/dr|r=0 = 0. (4.8)

The nucleation temperature Tn is defined as the temperature at which the probability for

a bubble to be nucleated inside a horizon volume is of order one, in our case it turns out

to happen when S3(Tn)/Tn ∼ 135.

In figure 5 we plot the effective action over the temperature for two points of the

(µ, µ∆) plane. These plots show how the nucleation temperature depends on the strength

of the phase transition. If the phase transition is not very strong then there is no large gap

between the Tn and Tc (right plot). When the phase transition is very strong, a supercooling

phenomenon happens and the nucleation temperature is quite smaller than Tc (left plot in

the figure). Of course if we move in the parameter space to points where φ(Tc)/Tc is even

larger we will eventually find a situation where S3/T never reaches the correct value and

bubble nucleation does not happen as the universe cools down. These points correspond to

a thin band that is located at the bottom of the blue and red bands that we plot in figure 3.

5 Gravitational waves from the phase transition

It is known that a strong enough first order phase transition can generate sizable gravi-

tational waves (GW). Since we are able to generate such a strong phase transition, due

to the tree level nature of the barrier, we analyze in this section the possible spectrum of

GWs. The spectrum can be characterized by only two parameters: the duration of the

phase transition 1/β, which is given by

β

H
= T

d

dT

(
S3

T

)
, (5.1)
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Figure 6. Left panel: values of the α parameter for v∆ = 20 GeV, µ = 650 GeV and tan β = 1.

The number of effective degrees of freedom at the time of nucleation is g∗ = 115.75 . Right panel:

values of the β/H parameter for the same values of the model parameters.

460 470 480 490 500

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

μΔ (GeV)

ϕ(T n
)/
T
n

460 470 480 490 500

50

55

60

65

70

75

μΔ (GeV)

T
n

Figure 7. Left panel: values of the order parameter at the nucleation temperature as a function

of µ∆ for v∆ = 20 GeV, µ = 650 GeV and tan β = 1. Right panel: nucleation temperature Tn for

the same values of the parameters.

and the latent heat

ε = ∆V (Tn)− Tn
d∆V (T )

dT

∣∣∣
Tn
, (5.2)

where

∆V (T ) = V (0, T )− V (〈φ(T )〉, T ) . (5.3)

The latent heat is usually normalized to the energy density of the radiation in the plasma,

through the dimensionless parameter α,

α =
ε

π2

30 g∗T
4
n

(5.4)

where g∗ is the effective number of degrees of freedom at the temperature Tn. In figure 6 we

show results for the computation of the α (left panel) and β/H (right panel) parameters

along a vertical straight line of the band in figure 3 which corresponds to a fixed µ =

650 GeV value. In figure 7 we also show the values of the nucleation temperature (right

panel) and the order parameter at that temperature (left panel). Note that for stronger
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values of the phase transition, α gets bigger and β/H smaller. This means that the energy

gap between the false and the true vacuum is big at the nucleation temperature and that

the phase transition happens fast, which is precisely what one needs to get observable

gravitational waves.

The above described parameters, which only depend on the finite temperature effective

potential, are the only input coming from the particle physics model. Once we determine

these two, we have to plug them into the cosmological picture. First we will treat the

expanding bubbles, and the fluid they drag with, as if the bubbles where the only existing

object. The collisions of these vacuum bubbles will then generate a GW spectrum [31]

(see section 5.1). In the second part we will consider calculations that model the fluid in

a more detailed manner, in this case the phase transition leads to the creation of sound

waves which in turn will produce gravitational waves [32] (see section 5.2).

5.1 Gravitational waves from bubble collisions

In the case we use the envelope approximation to model bubble collisions the peak frequency

is [31]

f̃env = 16.5µHz

(
f

β

)(
β

H

)(
Tn

100 GeV

)( g∗
100

)1/6
(5.5)

and the energy density

h2Ω̃env = 1.84× 10−6κ2

(
v3
b

0.42 + v2
b

)(
H

β

)2( α

α+ 1

)2(100

g∗

)1/3

. (5.6)

The efficiency factor κ is

κ =
1

1 + 0.715α

(
0.715α+

4

27

√
3α

2

)
(5.7)

the bubble wall velocity vb is

vb =

√
1/3 +

√
α2 + 2α/3

1 + α
, (5.8)

and
f

β
=

0.62

1.8− 0.1vb + v2
b

. (5.9)

The spectrum then has the following shape

Ωenv(f) = Ω̃env
3.8(f/f̃env)2.8

2.8 + (f/f̃env)3.8
. (5.10)

5.2 Gravitational waves from sound waves

The peak amplitude of GW radiation from sound waves is given by [32, 33]

h2Ω̃sw = 2.65 · 10−6 vb κ
2

(
H

β

)(
α

α+ 1

)2 ( g∗
100

)−1/3
, (5.11)
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Figure 8. Spectrum of stochastic gravitational wave background coming from bubble collisions

(dashed) and sound waves (solid) for a point where α ∼ 0.22 and β/H ∼ 57, which corresponds to

µ = 650 GeV and µ∆ = 455 GeV. The sensitivity curves of the eLISA designs are displayed in blue;

design 1 (dotted), design 2 (dashed) and design 3 (solid).

which is larger than the result one gets from the envelope approximation by a factor β/H.

The peak frequency is

f̃sw = 19µHz
1

vb

(
β

H

)(
Tn

100 GeV

)( g∗
100

)1/6
(5.12)

and the fit to the numerical spectrum is given by

Ωsw(f) = Ω̃sw

(
7

4 + 3(f/f̃sw)2

)7/2

(f/f̃sw)3 . (5.13)

5.3 Results for the spectrum of GWs

As we said in the previous section, when the phase transition is not radiatively generated,

there will be points in the parameter space where the barrier is so large that no nucleation

is possible. It is precisely close to these regions, but inside the region where the nucleation

still happens, where the characteristics of the phase transition will be optimized for the

detection of its GW spectrum. In particular the parameter β/H, will be minimized close

to the region where S3/T never reaches the value ∼ 135 and β/H ∼ 0. As can be seen in

figure 6, approaching this region we have found points where β/H ∼ 50 and α ∼ 0.22. A

spectrum coming from a point of these features is shown in figure 8 and may be probed

by eLISA [34, 35] and BBO [36, 37]. In the case of eLISA, the chances for detecting

GWs improve with the design. Design 3, which features three 5 Gm arms and 5 years of

data taking, is the one that could probe both GWs coming from bubble collisions, in the

envelope approximation, and GWs coming from sound waves. We also see that GWs from

sound waves could be detected by eLISA, even with design 1.

– 14 –



J
H
E
P
0
5
(
2
0
1
6
)
1
7
7

6 Summary and conclusions

In this paper we have explored the nature of the EWPT in the SCTM. We have shown that,

thanks to a tree level effect by which there is a barrier separating the minimum at the origin

and the EWSB minimum, an important part of the parameter space of the model exhibits

a phase transition whose order parameter is strong enough, both for the purpose of EWBG

and for the detection of gravitational waves. We have decided to not focus on the regions

where no barrier is generated at tree level (above the bands in figures 3 and 2), as analyzing

the phase transition in this region would involve the consideration of higher order loop cor-

rections in the thermal effective potential, which goes beyond the scope of the present paper.

In section 3 we have discussed how the appearance of the barrier is directly linked to a

non negligible contribution of the triplet sector to EWSB. Thanks to previous studies we can

establish a relation between strong EWPT and collider searches. In fact the consequences

for collider phenomenology of a scenario where EWSB is driven by doublets, but also

features some triplet impurities, have already been studied in [19, 20]. In these papers a

relation between a sizable v∆ and light triplet like states was found, in agreement with the

upper bounds derived in [38]. One therefore expects these new states to be there in the

regions where a barrier is generated at tree level. As explained in the previous studies their

detection is challenging due to their triplet like nature. However, modified Higgs coupling

rates (h→ γγ) or some signals such as W±W± or W±Z, which are specific of Higgs sectors

with triplet representations, could act as smoking gun signals of the model and therefore

probe the nature of the phase transition at high temperature.

We also have checked that nucleation does happen in most parts of the parameter space

where the order parameter is larger than one. The potential of the model features a five-

dimensional field space due to the introduction of three new triplet chiral superfields, on top

of the two usual MSSM doublets. To simplify the calculation of the nucleation temperature

we have minimized the euclidean action functional in the multi-field configuration space by

using a smooth path going from the minimum at the origin to the EWSB minimum at finite

temperature through the saddle point. Because of the character of our parameter space we

are confident enough that the approximation works properly up to small corrections. In the

last section it is shown how future interferometers such as eLISA could observe gravitational

waves generated during the phase transition for some parts of the parameter space.
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