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1 Introduction

The so-called ambitwistor string was proposed in [1] and corresponds to a chiral infinite

tension limit (α′ → 0) of the string, therefore containing only the massless spectrum.

Quantization of this model remarkably leads to the Cachazo-He-Yuan (CHY) tree level

amplitudes [2].

Soon after Mason and Skinner’s work, Berkovits came up with the pure spinor version

of the ambitwistor superstring [3], successfully describing the CHY formulas in an explicitly

supersymmetric way, as characteristic of the pure spinor superstring.

The coupling of the RNS ambitwistor string to (NS-NS) curved backgrounds was de-

veloped in [4], where quantum consistency naturally imposed the non-linear D = 10 super-

gravity equations of motion.

Following an analogous idea, Chandia and Vallilo [5, 6] analyzed the type II super-

gravity background coupled to the pure spinor string in the α′ → 0 limit and found that

Berkovits’ original proposal had an extra nilpotent symmetry in the action. As it turned

out, a consistent redefinition of the pure spinor BRST charge enabled a more natural cou-

pling of the action to the Kalb-Ramond field and superpartner, leading to the expected

type II supergravity constraints of [7].

It is interesting to point out that the ambitwistor string of Mason and Skinner have a

pair of ghost fields (b,b̃) satisfying

{Q, b} = T, {Q, b̃} = H, (1.1)

where Q is the BRST charge, T is the energy-momentum tensor and H = 1
2P

2 is the

particle-like Hamiltonian. Berkovits’ pure spinor version does not seem to have a BRST-

trivial energy-momentum tensor. On the other hand, as will be shown here, the results
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of [5, 6] can be interpreted as a splitting in the holomorphic theory which is responsible for

a very simple construction of the b ghost and a generalization of the operator b̃ of (1.1). In

simple terms, one can define for each “sector” a new field, b+ and b−, satisfying {Q, b±} =

T±, with

T+ + T− = T, (1.2a)

T+ − T− =
1

2
P 2 + . . . . (1.2b)

The dots in (1.2b) are extra terms required to make the right hand side BRST-closed.

The operators b+ and b− are very similar to the composite pure spinor b ghost but their

geometrical interpretation is not clear yet. Unlike in Berkovits’ proposal, a concrete form

for the integrated vertex operator is still lacking in Chandia and Vallilo’s modification and

a better understanding on the newly introduced b+ and b− might help to solve this issue.

Concerning the heterotic case, also proposed in [3], the energy-momentum tensor is

clearly BRST-trivial but there does not seem to exist a b̃ operator trivializing the particle-

like Hamiltonian. Maybe a bit more worrying is the fact that the supergravity states do

not have a satisfactory vertex operator description.

Motivated by the holomorphic sectorization of the type II case, the heterotic BRST

charge will be modified to

Q =

∮
{λαdα + cT+ − bc∂c}, (1.3)

where λα is the pure spinor ghost, dα is the improved operator proposed in [5, 6], (b,c) are

the reparametrization ghosts and T+ is a fake energy-momentum satisfying

T+(x)T+(y) ∼ 2T+
(z − y)2

+
∂T+

(z − y)
, (1.4a)

T+(x)λαdα(y) ∼ regular. (1.4b)

Besides having the (b,b̃) structure mentioned above, the BRST charge of (1.3) will be shown

to correctly describe the massless heterotic spectrum (super Yang-Mills and supergravity).

In terms of the redefined supersymmetric invariants, the heterotic action will be rewritten

such that the coupling with the Kalb-Ramond field is manifest, exactly like in the type

II case.

This work is organized as follows. Section 2 discusses the type II case of the infinite

tension limit of the pure spinor string. After a review of Berkovits’ proposal and the

modification proposed by Chandia and Vallilo, the holomorphic sectorization is studied

and the construction of the composite b ghost is presented in detail, together with several

properties. Section 3 starts with a review of the heterotic case, explaining why the natural

choice for the supergravity vertex is incomplete. With the new proposal for the BRST

charge, this flaw is corrected and a semi-composite b ghost is introduced. Section 4 discusses

the results and possible directions to follow.
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2 The type II ambitwistor pure spinor string

The α′ → 0 limit of the pure spinor superstring was first discussed in [3]. For the type II

case, the proposed action is simply

S =

∫
d2z{Pm∂Xm + pα∂θ

α + wα∂λ
α + p̂α̂∂θ̂

α̂ + ŵα̂∂λ̂
α̂}, (2.1)

where {Pm, pα, p̂α̂} denote the conjugate momenta to the N = 2 superspace coordinates

{Xm, θα, θ̂α̂}, and (wα, λ
α) and (ŵα̂, λ̂

α̂) are the usual pure spinor ghost conjugate pairs.

For convenience, the same chirality is being considered for the superspace coordinates θ

and θ̂ (type IIB) but the results are easily generalized to the type IIA case.

The first order action S is supersymmetric with respect to the charges

qα =

∮ {
pα +

1

2
Pm(γmθ)α

}
, (2.2a)

q̂α̂ =

∮ {
p̂α̂ +

1

2
Pm(γmθ̂)α̂

}
, (2.2b)

which define the invariants Pm and

Πm = ∂Xm +
1

2
(θγm∂θ) +

1

2
(θ̂γm∂θ̂), (2.3a)

dα = pα −
1

2
Pm(γmθ)α, (2.3b)

d̂α̂ = p̂α̂ −
1

2
Pm(γmθ̂)α̂. (2.3c)

As usual, S has to be provided with the BRST charge

Q =

∮
{λαdα + λ̂α̂d̂α̂}, (2.4)

Nilpotency of Q follows from the pure spinor constraints (λγmλ) = (λ̂γmλ̂) = 0.

As expected, the type II supergravity spectrum is in the cohomology of (2.4). BRST-

closedness of the vertex

USG = λαλ̂α̂Aαα̂(θ, θ̂)eikmX
m
, (2.5)

imply the linearized supergravity equations of motion for the superfield Aαα̂:

γαβmnpqrDβAαα̂ = 0, γα̂β̂mnpqrD̂β̂Aαα̂ = 0. (2.6)

Here, Dα ≡ ∂α+ i
2(γmθ)αkm and D̂α̂ = ∂α̂+ i

2(γmθ̂)α̂km are the supersymmetric derivatives

for momentum eigenstates. The gauge transformations come from the BRST-exact states

of the form Λ = λαΛα + λ̂α̂Λ̂α̂, implying the gauge transformation δAαα̂ = DαΛ̂α̂ + D̂α̂Λα,

as long as the superfield parameters satisfy DγmnpqrΛ = D̂γmnpqrΛ̂ = 0.

For convenience, Aαα̂ in (2.5) can be cast as Aαα̂ = Aα(θ)Âα̂(θ̂), such that one can

introduce the usual auxiliary fields satisfying

Am =
1

8
(Dαγ

αβ
m Aα), (2.7a)

Wα =
1

10
γαβm [DβAm − ikmγαβm Aβ ], (2.7b)

Fmn =
i

2
(kmAn − knAm) , (2.7c)
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and similar equations for Âm, Ŵ α̂ and F̂mn in terms of Âα̂. These auxiliary fields are the

basic ingredients of the integrated vertex V presented in [3], given by:

V =

∫
d2z δ(kmPm)[PmA

m+dαW
α+NmnFmn][PmÂ

m+ d̂α̂Ŵ
α̂+N̂mnF̂mn]eikmX

m
. (2.8)

Nmn and N̂mn are the ghost Lorentz currents, defined as

Nmn ≡ 1
2(λγmnw), N̂mn ≡ 1

2(λ̂γmnŵ), (2.9)

and the operator δ(kmPm) is detailedly described in [1], having the right conformal dimen-

sions necessary to make V a worldsheet scalar. Observe that BRST-closedness and gauge

transformations of V (δAm = kmΛ and δÂm = kmΛ̂) can be shown to be proportional to

δ(k · P ) kmPm.

The pure spinor tree level amplitudes computed using the massless vertices described

above have explicit spacetime supersymmetry and were shown to agree with the RNS

computations [3, 8].

In spite of the interesting outcomes, Berkovits’ proposal has yet to be better under-

stood. The BRST cohomology of (2.4) is not clear enough and a consistent coupling

with curved backgrounds seems to require a slight modification of the flat space limit just

presented [5, 6]. These features will be discussed, reviewed and extended in the rest of

the section.

2.1 Extra elements in the BRST cohomology

The simple form of the BRST charge (2.4) hides a fundamental feature of the closed string

spectrum that is the decoupling of the left-moving and right-moving sectors. Of course,

the chiral action (2.1) is not able to encode this information and this has an interesting

consequence, as there might be extra states in the BRST cohomology.

Most of the cohomology analysis for the α′ → 0 limit reviewed above can be parallelized

with the N = 2 pure spinor superparticle. In [9] there is a thorough discussion on the

physical spectrum coming from the quantization of the superparticle, in particular that of

the zero-momentum states. Of course, to talk about physical spectrum one has to define

the physical state conditions. This will be discussed in section 4 because it is fundamentally

related to the developments to be presented in the next subsections.

For now, it will be pointed out that at zero-momentum there are also non-vanishing

conformal weight states in the BRST cohomology. Consider, for example, the operator

(λγm∂θ),

which is BRST-closed and have conformal weight one. In the full superstring (finite α′), it

would correspond to the BRST transformation of the operator Πm. However here,

[Q,Πm] = (λγm∂θ) + (λ̂γm∂θ̂). (2.10)

In fact, there does not seem to exist an operator Om such that [Q,Om] = (λγm∂θ). The

same holds for (λ̂γm∂θ̂).
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Usually, BRST-closed states with nonvanishing conformal weight can be argued to be

BRST-exact. This follows from the fact that the energy-momentum tensor itself is BRST-

trivial, i.e. this argument relies on the existence of a b ghost satisfying {Q, b} = T . For the

action (2.1), the energy momentum-tensor is given by

T = −Pm∂Xm − pα∂θα − p̂α̂∂θ̂α̂ − wα∂λα − ŵα̂∂λ̂α̂, (2.11)

and the known procedure to build the composite pure spinor b ghost [10, 11] does not work

here. This will be clarified soon, but technically it is related to the mixing of the variables

that would describe the left and right-moving sector of the finite tension superstring.

The above observation raises the question about massive states, which are usually built

out of non-vanishing conformal weight fields. Since the operators of the form exp(ikmX
m)

are worldsheet scalars in the α′ → 0 limit, in a BRST trivial energy-momentum scenario

this would mean that the cohomology consists of massless states only . On the other

hand, the action S has further symmetries. One of them, in particular, is generated by the

particle-like Hamiltonian

HB = −1

2
PmP

m, (2.12)

which can be interpreted as the mass operator and commutes with the BRST charge. If

one requires the physical states to be annihilated by HB, that would automatically project

out any possible massive BRST-closed state.

As it turns out, HB is BRST-exact [12]. To show that, consider first the following:

gα ≡ 1

4
(γmd)αPm, {Q, gα} =

1

2
λαHB,

ĝα̂ ≡ 1

4
(γmd̂)α̂Pm, {Q, ĝα̂} =

1

2
λ̂α̂HB.

(2.13)

Next, defining

B+ ≡ C · g
C · λ

+
Ĉ · ĝ
Ĉ · λ̂

, (2.14a)

B− ≡ C · g
C · λ

− Ĉ · ĝ
Ĉ · λ̂

, (2.14b)

for any nonvanishing (C · λ) and (Ĉ · λ̂), with Cα and Ĉα̂ constant spinors, it can be

demonstrated that

{Q,B+} = HB, (2.15a)

{Q,B−} = 0. (2.15b)

In particular, it implies that any BRST-closed eigenstate of HB with nonzero eigenvalue

is BRST-exact. The operator B− is BRST-closed and the absence of a b ghost makes it

hard to tell whether it is BRST-exact, although unlikely. The covariant versions of these

operators would require the introduction of the nonminimal sector [11] and have been

defined also in [13], similarly to what is done in subsection 2.3.
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Altogether, these observations indicate that the original proposal of [3] might be in-

complete, since the BRST cohomology is enhanced when compared to the zero-momentum

spectrum of the superstring and it is not clear whether this is relevant for a well-defined

worldsheet theory for supergravity.

In fact, Chandia and Vallilo [5, 6] already considered this possibility from another

perspective. In an attempt to obtain the supergravity constraints from a consistent coupling

of the type II background to the free action (2.1), they noticed another symmetry which

led to a modification of the flat space limit and a redefinition of the supersymmetry charge

and consequently the operators dα and d̂α̂. This will be reviewed next.

2.2 Review of the improved BRST-charge

The key observation in [5, 6] is that the action S is also invariant under another nilpotent

symmetry generated by

K ≡
∮ {

(λγmθ)

[
∂Xm +

1

2
(θγm∂θ)

]
− (λ̂γmθ̂)

[
∂Xm +

1

2
(θ̂γm∂θ̂)

]}
. (2.16)

Although the two terms (hatted and unhatted) above are independent symmetries of the

action, only this particular combination is BRST-closed. Concerning supersymmetry, it is

easy to show that K is supersymmetric up to BRST-exact terms:

{qα,K} = {Q,
∮

(γmθ)α

[
∂Xm +

1

2
(θγm∂θ)

]
}, (2.17a)

{q̂α̂,K} = −{Q,
∮

(γmθ̂)α̂

[
∂Xm +

1

2
(θ̂γm∂θ̂)

]
}. (2.17b)

Based on Berkovits’ suggestion that Q+K should be the BRST charge instead, Chandia

and Vallilo made a consistent redefinition of the supersymmetry charges and supersymmet-

ric invariants.1 The operators dα and d̂α̂ were redefined as

dα ≡ pα −
1

2
(Pm − ∂Xm)(γmθ)α +

1

4
(θγm∂θ)(γ

mθ)α, (2.18a)

d̂α̂ ≡ p̂α̂ −
1

2
(Pm + ∂Xm)(γmθ̂)α̂ −

1

4
(θ̂γm∂θ̂)(γ

mθ̂)α̂, (2.18b)

together with the supersymmetry charges

qα ≡
∮ {

pα +
1

2
(Pm − ∂Xm)(γmθ)α −

1

12
(θγm∂θ)(γ

mθ)α

}
, (2.19a)

q̂α̂ ≡
∮ {

p̂α̂ +
1

2
(Pm + ∂Xm)(γmθ̂)α̂ +

1

12
(θ̂γm∂θ̂)(γ

mθ̂)α̂

}
. (2.19b)

Pm is no longer invariant under supersymmetry, only the combination

Pm −
1

2
(θγm∂θ) +

1

2
(θ̂γm∂θ̂).

1In fact, the action (2.1) has two other nilpotent symmetries, generated by K1 =
∮

(λγmθ)(θ̂γ
m∂θ̂) and

K2 =
∮

(λ̂γmθ̂)(θγ
m∂θ), but there does not seem to be any operator redefinition consistent with N = 2

supersymmetry that would incorporate them, as they mix the spinor chiralities.
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It is convenient, however, to write it in a linear combination with Πm defined in (2.3a),

introducing two other supersymmetric invariants that will appear naturally in the OPE

algebra:

P−m ≡ Pm − ∂Xm − (θγm∂θ), (2.20a)

P+
m ≡ Pm + ∂Xm + (θ̂γm∂θ̂). (2.20b)

The action S in (2.1) can be rewritten in terms of the newly defined operators as

S =

∫
d2z

{
1

2
(P+

m + P−m)Π
m

+ dα∂θ
α + wα∂λ

α + d̂α̂∂θ̂
α̂ + ŵα̂∂λ̂

α̂

}
−1

2

∫
d2z{Πm[(θγm∂θ)− (θ̂γm∂θ̂)]− [(θγm∂θ)− (θ̂γm∂θ̂)]Πm}

−1

4

∫
d2z{(θγm∂θ)(θ̂γm∂θ̂)− (θ̂γm∂θ̂)(θγ

m∂θ)}, (2.21)

where Π
m

is just the antiholomorphic version of Πm. The BRST charge Q has the same

form (2.4), but now with the modified dα and d̂α̂ of (2.18). It is worth to point out the the

integrated vertex displayed in (2.8) is no longer BRST-closed with respect to the modified

charge and this is so far an unsolved issue.

The relevant OPE’s for the improved set of operators can be summarized as

dα(z)dβ(y) ∼ −
P−mγ

m
αβ

(z − y)
, d̂α̂(z)d̂β̂(y) ∼ −

P+
mγ

m
α̂β̂

(z − y)
,

dα(z)P−m(y) ∼ −2
(γm∂θ)α
(z − y)

, d̂α̂(z)P+
m(y) ∼ 2

(γm∂θ̂)α̂
(z − y)

,

P−m(z)P−n (y) ∼ 2
ηmn

(z − y)2
, P+

m(z)P+
n (y) ∼ −2

ηmn
(z − y)2

,

dα(z)Πm(y) ∼ (γm∂θ)α
(z − y)

, d̂α̂(z)Πm(y) ∼ (γm∂θ̂)α̂
(z − y)

,

P−m(z)Πn(y) ∼ − δnm
(z − y)2

, P+
m(z)Πn(y) ∼ − δnm

(z − y)2
.

(2.22)

Notice that there is a clear splitting and the two sectors {Pm − ∂Xm, pα, θ
α, wα, λ

α}
and {Pm+∂Xm, p̂α̂, θ̂

α̂, ŵα̂, λ̂
α̂} are “decoupled”. Next subsection will extend this idea and

introduce the pure spinor b ghost for the type II ambitwistor string.

2.3 Holomorphic sectorization and the b ghost

The proposal of [5, 6] splits the chiral action S in two sectors which emulate the would-

be left and right-moving sectors of the superstring. It can be shown that this feature

easily solves the cohomology issues discussed in subsection 2.1. In fact it enables a very

simple construction for the composite b ghost. To do that, the two sectors have to be

better understood.

It is interesting to observe, for example, that the energy-momentum tensor of (2.11)

can be written in a way that makes this splitting explicit. Using the operators defined

– 7 –
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in (2.18) and (2.20), T is written as

T = T+ + T−, (2.23)

where

T− ≡
1

4
ηmnP−mP

−
n − dα∂θα − wα∂λα, (2.24a)

T+ ≡ −
1

4
ηmnP+

mP
+
n − d̂α̂∂θ̂α̂ − ŵα̂∂λ̂α̂. (2.24b)

Both T− and T+ are BRST-closed and can be viewed as fake anomaly-free energy-

momentum tensors for each sector:2

T−(x)T−(y) ∼ 2T−
(z − y)2

+
∂T−

(z − y)
, (2.25a)

T+(x)T+(y) ∼ 2T+
(z − y)2

+
∂T+

(z − y)
, (2.25b)

T−(x)T+(y) ∼ regular. (2.25c)

Note that HB is not BRST-closed with respect to the new BRST-charge, which comes

from the fact that [K,HB] 6= 0 in subsection 2.2. However, one can define

HCV ≡ T+ − T−, (2.26)

which is interpreted as a generalization of HB in (2.12) [5, 6]. A natural question is

whether HCV is BRST-exact or not. If so, given the sectorization so far observed,

it is likely that both T+ and T− are BRST-exact, leading to a trivialization of the

energy-momentum tensor.

Motivated by the original proposal for the pure spinor b ghost [10], one can define the

operators

Gα ≡ −1

4
ηmnγαβm (dβ , P

−
m)− 1

4
Nmn(γmn∂θ)α − 1

4
J∂θα − ∂2θα, (2.27a)

Ĝα̂ ≡ 1

4
ηmnγα̂β̂m (d̂β̂ , P

+
m)− 1

4
N̂mn(γmn∂θ̂)α̂ − 1

4
Ĵ∂θ̂α̂ − ∂2θ̂α̂. (2.27b)

Nmn and N̂mn are ghost Lorentz currents displayed in (2.9), and J and Ĵ are the ghost

number currents:

J ≡ −w · λ, Ĵ ≡ −ŵ · λ̂. (2.28)

Observe that one has to take into account quantum effects of non-commuting operators

and the ordering prescription that will be adopted here is

(A,B)(y) ≡ 1

2πi

∮
dz

z − y
A(z)B(y). (2.29)

2One has to be careful with this interpretation because only the linear combination in (2.23) has the

expected properties of a energy-momentum tensor when acting on Xm or Pm, e.g.

T+(x)Xm(y) ∼ 1
2

(∂Xm+Pm)
(z−y)

, T−(x)Xm(y) ∼ 1
2

(∂Xm−Pm)
(z−y)

.

– 8 –
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It is straightforward to show that the operators in (2.27) satisfy the following properties,

{Q,Gα} = (λα, T−),

{Q, Ĝα̂} = (λ̂α̂, T+),

resembling the usual holomorphic construction.

In order to present a covariant version of the b ghost, the known chain of operators

introduced in [10, 11] will be mirrored here. In fact there is little to change, only some

overall factors. These operators are defined as

Hαβ ≡ − 1

768
γαβmnp(dγ

mnpd+ 24NmnηpqP−q ), (2.31a)

Ĥ α̂β̂ ≡ 1

768
γα̂β̂mnp(d̂γ

mnpd̂+ 24N̂mnηpqP+
q ), (2.31b)

Kαβγ ≡ 1

192
Nmnγ

[αβ
mnp(γ

pd)γ], (2.31c)

K̂α̂β̂γ̂ ≡ − 1

192
N̂mnγ

[α̂β̂
mnp(γ

pd̂)γ̂], (2.31d)

Lαβγλ ≡ 1

6144
(Nmn, N rs)ηpqγ[αβmnpγ

γ]λ
qrs , (2.31e)

L̂α̂β̂γ̂λ̂ ≡ − 1

6144
(N̂mn, N̂ rs)ηpqγ[α̂β̂mnpγ

γ̂]λ̂
qrs , (2.31f)

and satisfy

[Q,Hαβ ] = (λ[α, Gβ]), [Q, Ĥ α̂β̂ ] = (λ̂[α̂, Gβ̂]),

{Q,Kαβγ} = (λ[α, Hβγ]), {Q, K̂α̂β̂γ̂} = (λ̂[α̂, Ĥ β̂γ̂]),

[Q,Lαβγλ] = (λ[α,Kβγλ]), [Q, L̂α̂β̂γ̂λ̂] = (λ̂[α̂, K̂ β̂γ̂λ̂]),

(λ[α, Lβγλσ]) = 0, (λ̂[α̂, L̂β̂γ̂λ̂σ̂]) = 0.

(2.32)

The square brackets denote indices antisymmetrization and it can be read as

[α1 . . . αn] =
1

n!
(α1 . . . αn + all antisymmetric permutations) . (2.33)

The next step is to introduce the non-minimal variables of [11], which enter the ac-

tion as

Snm =

∫
d2z{wα∂λα + sα∂rα + ŵ

α̂
∂λ̂α̂ + ŝα̂∂r̂α̂}, (2.34)

with energy-momentum tensor

Tnm = −wα∂λα − sα∂rα − ŵ
α̂
∂λ̂α̂ − ŝα̂∂r̂α̂. (2.35)

The variables λα and λ̂α̂ are also pure spinors while rα and r̂α̂ are anticommuting spinors

satisfying the constraints (λγmr) = 0 and (λ̂γmr̂) = 0. The BRST charge is modified

accordingly,

JBRST ≡ λαdα + λ̂α̂d̂α̂ + wαrα + ŵ
α̂
r̂α̂, (2.36a)

Q ≡
∮

JBRST, (2.36b)
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but this does not affect the previous cohomology because any dependence on the non-

minimal variables can be gauged away (quartet argument).

The final step is the definition of b− and b+ as

b− =

(
λα

(λ · λ)
, Gα

)
− 2!

(
λαrβ

(λ · λ)2
, Hαβ

)
− 3!

(
λαrβrγ

(λ · λ)3
,Kαβγ

)

+4!

(
λαrβrγrλ

(λ · λ)4
, Lαβγλ

)
− sα∂λα − ∂

(
λαλβ

(λ · λ)2

)
λα∂θβ , (2.37)

and

b+ =

(
λ̂α̂

(λ̂ · λ̂)
, Ĝα̂

)
− 2!

(
λ̂αr̂β

(λ̂ · λ̂)2
, Ĥ α̂β̂

)
− 3!

(
λ̂α̂r̂β̂ r̂γ̂

(λ̂ · λ̂)3
, K̂α̂β̂γ̂

)

+4!

(
λ̂α̂r̂β̂ r̂γ̂ r̂λ̂

(λ̂ · λ̂)4
, L̂α̂β̂γ̂λ̂

)
− ŝα̂∂λ̂α̂ − ∂

(
λ̂α̂λ̂β̂

(λ̂ · λ̂)2

)
λ̂α̂∂θ̂β̂ . (2.38)

The last terms in b− and b+ are quantum ordering contributions.

The operators b− and b+ anticommute with the BRST charge Q to give the non-

minimal version of T− and T+:

{Q, b−} = T− − wα∂λα − sα∂rα,
≡ T− (2.39a)

{Q, b+} = T+ − ŵ
α̂
∂λ̂α̂ − ŝα̂∂r̂α̂.

≡ T+ (2.39b)

The demonstration of (2.39) is a bit lengthy because of the reordering operations. Using

the operators chain of (2.27) and (2.31), the b ghost defined by

b ≡ b− + b+, (2.40)

can be shown to satisfy

{Q, b} = T+ + T−, (2.41)

which is equal to the energy momentum tensor of the action S + Snm,

T = −Pm∂Xm − pα∂θα − p̂α̂∂θ̂α̂ − wα∂λα − ŵα̂∂λ̂α̂

−wα∂λα − sα∂rα − ŵ
α̂
∂λ̂α̂ − ŝα̂∂r̂α̂. (2.42)

The existence of the b ghost (2.40) ensures that the BRST cohomology is composed of

worldsheet scalars only, excluding the extra states described in subsection 2.1. Therefore,

BRST-closed massive states are unequivocally BRST-exact.

Observe that the operator HCV defined in (2.26) can be rewritten as

HCV = {Q, (b+ − b− + ŝα̂∂λ̂α̂ − sα∂λα)}, (2.43)
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but once the non-minimal sector is included, it makes sense to define

H ≡ T+ − T−, (2.44)

which is also BRST-exact.

The properties of b− and b+ are now easy to determine because they have the same

structure of the the composite b ghost of [11]. Nilpotency, for example, follows from the

same arguments of [14, 15] and it can be shown that

b±(z)b±(y) ∼ 0.

Clearly, the OPE b+(z)b−(y) is also regular, but this follows from the sector splitting. With

respect to the BRST current, the OPE’s with b± are computed to be

JBRST(z)b±(y) ∼ 3

(z − y)3
+

J±
(z − y)2

+
T±

(z − y)
,

where J− and J+ are interpreted as the ghost number currents for each sector, defined as

J− ≡ J + rαs
α − 2

(λ · ∂λ)

(λ · λ)
+ 2

(r · ∂θ)
(λ · λ)

− 2
(r · λ)(λ · ∂θ)

(λ · λ)2
(2.45a)

J+ ≡ Ĵ + r̂α̂ŝ
α̂ − 2

(λ̂ · ∂λ̂)

(λ̂ · λ̂)
+ 2

(r̂ · ∂θ̂)

(λ̂ · λ̂)
− 2

(r̂ · λ̂)(λ̂ · ∂θ̂)

(λ̂ · λ̂)2
. (2.45b)

The unusual terms in J± are BRST-exact [11] and can in fact be eliminated by a BRST

transformation of the b ghost [16]. The ghost number currents have the following OPE’s:

T±(z)J±(y) ∼ − 3

(z − y)3
+

J±
(z − y)2

+
∂J±

(z − y)
, (2.46)

J±(z)J±(y) ∼ 3

(z − y)2
. (2.47)

Altogether, these results can be summarized as

b(z)b(y) ∼ 0, (2.48a)

JBRST(z)b(y) ∼ 6

(z − y)3
+

Jg
(z − y)2

+
T

(z − y)
, (2.48b)

Jg(z)Jg(y) ∼ 6

(z − y)2
, (2.48c)

T (z)Jg (y) ∼ − 6

(z − y)3
+

Jg
(z − y)2

+
∂Jg

(z − y)
, (2.48d)

with

Jg ≡ J− + J+ (2.49)

defined as the total ghost number current.

The equations displayed in (2.48) resemble the N = 2 topological algebra of [11] but

now with ĉ = 6 and no antiholomorphic currents.

In the next section the heterotic ambitwistor string will be discussed.
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3 The heterotic ambitwistor pure spinor string

In [3], Berkovits also introduced the infinite tension limit of the heterotic pure spinor

superstring. The chiral action is given by

S =

∫
d2z{Pm∂Xm + pα∂θ

α + wα∂λ
α + b∂c+ LC}, (3.1)

where (b, c) is the known Virasoro ghost pair for the heterotic string. LC accounts for

the Lagrangian of the SO(32) or E(8) × E(8) current algebra with central charge 16 and

(holomorphic) generators JI , with I denoting the adjoint representation of the gauge group.

The action S is invariant under the N = 1 supersymmetry transformations generated by

the charge

qα =

∮ {
pα +

1

2
Pm(γmθ)α

}
. (3.2)

The heterotic pure spinor BRST charge was proposed to be

Q =

∮
{λαdα + c(−PmΠm − dα∂θα − wα∂λα − b∂c+ TC)}, (3.3)

where

Πm = ∂Xm +
1

2
(θγm∂θ), (3.4)

dα is the same of (2.3b) and TC is the energy-momentum tensor associated to LC . The

full energy-momentum tensor is given by

T = −Pm∂Xm − pα∂θα − wα∂λα − b∂c− ∂(bc) + TC . (3.5)

The massless spectrum of the heterotic string includes the non-abelian super Yang-

Mills fields and N = 1 supergravity. The former can be encoded by the vertex operator

USYM = λαcAIα(θ)JIeik·X , (3.6)

where AIα(θ) satisfies

Dαγ
αβ
mnpqrA

I
β = 0. (3.7)

The gauge transformations of USYM are described by the BRST-exact operator

δUSYM ≡ {Q, cΛI(θ)JIeik·X},
= λαc(DαΛI)JIeik·X . (3.8)

As for the supergravity states, the natural guess for the vertex operator would be

USG = λαcAmα (θ)Pme
ik·X . (3.9)

BRST-closedness of USG implies

Dαγ
αβ
mnpqrA

s
β = 0, (3.10a)

kmA
m
α = 0, (3.10b)
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which are the usual equations for the supergravity field Amα . However, the expected gauge

transformation δAmα = DαΛm + kmΛα does not come from a BRST-exact state:

δUSG ≡ λαc(DαΛm + kmΛα)Pme
ik·X ,

6= {Q, something}. (3.11)

Therefore, the vertex (3.9) does not seem to properly describe the heterotic supergravity

spectrum [3].

Next, motivated by the work of Chandia and Vallilo and the analysis of the previous

section, a new BRST charge for the action (3.1) will be presented. The BRST cohomology

will be shown to correctly describe the massless spectrum of the heterotic string and the

correspondent b ghost will be constructed.

3.1 New proposal for the BRST charge

The action (3.1) also has a nilpotent symmetry that commutes with the BRST charge (3.3),

generated by

K =

∮
(λγmθ)

[
∂Xm +

1

2
(θγm∂θ)

]
. (3.12)

Therefore, there should be an analogous procedure to absorb this symmetry and redefine

the BRST charge consistently.

First, the supersymmetry charge will be redefined as

qα =

∮ {
pα +

1

2
(Pm − ∂Xm)(γmθ)α −

1

12
(θγm∂θ)(γ

mθ)α

}
, (3.13)

exactly like in subsection 2.2, which provides the supersymmetric invariants:

dα = pα −
1

2
Pm(γmθ)α +

1

2
Πm(γmθ)α, (3.14a)

P−m = Pm − ∂Xm − (θγm∂θ), (3.14b)

P+
m = Pm + ∂Xm. (3.14c)

Note that P±m and Πm are not all independent as P+
m = P−m + 2Πm, cf. equation (3.4). In

terms of the new invariants, the action can be rewritten as

S =

∫
d2z

{
1

2
(P+

m + P−m)Π
m

+ dα∂θ
α + ωα∂λ

α + b∂c+ LC
}

−1

2

∫
d2z{Πm(θγm∂θ)−Π

m
(θγm∂θ)}, (3.15)

and the relevant non-regular OPE’s are simply

dα(z)dβ(y) ∼ −
P−mγ

m
αβ

(z − y)
, P±m(z)P±n (y) ∼ ∓2

ηmn
(z − y)2

,

dα(z)P−m(y) ∼ −2
(γm∂θ)α
(z − y)

, dα(z)Πm(y) ∼ (γm∂θ)α
(z − y)

,

P−m(z)Πn(y) ∼ − δnm
(z − y)2

, P+
m(z)Πn(y) ∼ − δnm

(z − y)2
.

(3.16)
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The analogy with the type II case can be pushed further and a similar sectorization

can be shown to hold in the heterotic case. The energy-momentum of (3.5) can be cast as

T = T+ + T−, (3.17)

where

T− ≡
1

4
ηmnP−mP

−
n − dα∂θα − wα∂λα, (3.18a)

T+ ≡ −
1

4
ηmnP+

mP
+
n + TC − b∂c− ∂(bc), (3.18b)

satisfying the same set of OPE’s of (2.25).

As before, the new BRST current should naturally incorporate this splitting and will

be defined as

JBRST ≡ λαdα + c

(
− 1

4
ηmnP+

mP
+
n + TC − b∂c

)
+

3

2
∂2c, (3.19)

cf. (3.14). The last term is introduced to make JBRST a conformal primary operator, but

disappears in the BRST charge Q =
∮
JBRST, such that:

Q =

∮
{λαdα + cT+ − bc∂c}. (3.20)

It is straightforward to show that the action is invariant under the BRST transformations

generated by (3.20).

3.2 BRST cohomology and the semi-composite b ghost

Concerning the cohomology of the BRST charge of (3.20), only a minor modification is

required. The super Yang-Mills states are still described by the vertex USYM and gauge

transformation δUSYM displayed in (3.6) and (3.8) respectively. On the other hand, the

N = 1 supergravity vertex will be corrected to

USG = λαcAmα (θ)P+
me

ik·X . (3.21)

BRST-closedness will again provide the equations displayed in (3.10). The gauge transfor-

mations of USG are given in terms of BRST-exact states of the form

[Q,Λ] = λαcP+
m(DαΛm + ikmΛα)eik·X , (3.22)

where Λ = 2λαΛα − cP+
mΛm and λαλβDαΛβ = kmΛm = 0.

Defining Amα (X, θ) ≡ Amα eik·X , the superfield equations of motion of USG can be cast as

γαβmnpqrDβAmα = 0, (3.23a)

∂n∂nAmα − ∂m∂nAnα = 0, (3.23b)

with gauge transformations given by

δAmα = DαΛm + ∂mΛα. (3.24)
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As long as the gauge parameters satisfy

DγmnpqrΛ = 0, (3.25a)

∂n∂nΛm − ∂m∂nΛn = 0, (3.25b)

(3.24) can be seen as a BRST transformation of USG, as opposed to (3.11) in the original

formulation. Note that even with this improvement with respect to Berkovits’ proposal, it

is not clear whether the supergravity theory can be recovered through these vertices. In

the RNS ambitwistor string of [1], the tree level amplitudes in the heterotic theory could

not be interpreted in terms of standard space-time gravity. This has yet to be clarified

here and will be left for a future work.

The absence of massive states in the cohomology is ensured by the existence of a

semi-composite b ghost. While in [3] the fundamental b fits the role of such operator, the

modifications introduced in the BRST charge (3.20) imply the sectorization of the new b

ghost as well. Note that {Q, b} = T+, i.e. only part of the energy-momentum tensor (3.5).

Defining

b ≡ b+ b−, (3.26)

where b− has the same form of (2.37) in terms of the non-minimal variables, it is direct to

show that {Q, b} = T , with

T = −Pm∂Xm − pα∂θα − wα∂λα + TC

−b∂c− ∂(bc)− wα∂λα − sα∂rα. (3.27)

The heterotic b ghost consists of a fundamental part b and the usual (pure spinor) composite

one, b−.

For completeness, the heterotic case can be shown to have a similar OPE set as the

one displayed in (2.48),

b(z)b(y) ∼ 0, (3.28a)

JBRST(z)b(y) ∼ 6

(z − y)3
+

Jg
(z − y)2

+
T

(z − y)
, (3.28b)

Jg(z)Jg(y) ∼ 4

(z − y)2
, (3.28c)

T (z)Jg (y) ∼ − 6

(z − y)3
+

Jg
(z − y)2

+
∂Jg

(z − y)
, (3.28d)

with

Jg ≡ J− + cb, (3.29)

where J− is defined in (2.45a).

4 Final remarks

The results presented in [5, 6] and developed here have to be further explored, but it is

interesting to see that the sectorization of the holomorphic α′ → 0 limit of the pure spinor
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superstring describes the expected massless spectrum in a very simple way and enables a

natural definition for the composite b ghost.

The geometrical interpretation of (b+,b−) for type II and (b,b−) for heterotic theories is

not clear yet. The ideas of [17] might shed some light in the pure spinor construction, since

there the 1-loop scattering equations of the ambitwistor formulation for the RNS string

were studied in detail. To make it more precise, notice that in [1], the operators b and b̃

satisfy

{Q, b} = T, (4.1a)

{Q, b̃} =
1

2
PmP

m, (4.1b)

while in the pure spinor case discussed here one has

{Q, b} = T, (4.2a)

{Q, b̃} = T+ − T−,

=
1

2
PmP

m + . . . . (4.2b)

The operator b̃ is defined as

b̃II ≡ b+ − b−, (4.3a)

b̃het ≡ b− b−, (4.3b)

according to the results of subsections 2.3 and 3.2. Since the parallel is clear, a natural

step now would be to investigate the consistency (e.g. modular invariance) of the 1-loop

amplitude prescription in the same line of [17] with the adequate identifications. In [13], an

amplitude prescription was presented following Berkovits’ proposal [3]. There, because of

the absence of a true b ghost satisfying {Q, b} = T , BRST-invariance of the amplitude does

not have the usual surface terms in the moduli space integration but is achieved through

the δ(P 2) insertions proposed in [17], much like BRST invariance of Berkovits’ integrated

vertex depends on the δ(k · P ) operator (see equation (2.8)). It would be interesting to

have an alternative prescription using the sectorized construction and to compare both

approaches.

From another perspective, the operators b̃II and b̃het of (4.3) seem to provide the

analogous of the physical state condition in the closed string,

(bL)0 − (bR)0 |ψ〉 = 0. (4.4)

The index 0 denotes the zero mode of the left and right-moving b ghost of the closed string.

Physical states here will then be defined as elements of the BRST cohomology satisfying

(b̃II)0 |ψ〉 ≈ 0, (4.5a)

(b̃het)0 |ψ〉 ≈ 0. (4.5b)

The symbol ≈ means equal up to BRST-exact terms.
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The integrated form of the vertex operators is still lacking, but the sectorized b ghost

operators (b± and b) might play an important role. In [17] there is a direct relation between

the integrated and the unintegrated vertices through b and b̃ insertions. It is very likely

that a similar construction can be found here to build the integrated vertices associated

to (2.5), (3.6) and (3.21). This idea has to be further developed and certainly deserves more

attention for a precise formulation of the ambitwistor string in the pure spinor formalism.

Last, concerning the heterotic case, there is a very straightforward test for the new

BRST charge proposed in (3.20). The heterotic action

Shet =

∫
d2z

{
1

2
(P+

m + P−m)Π
m

+ dα∂θ
α + ωα∂λ

α + b∂c+ LC
}

−1

2

∫
d2z{Πm(θγm∂θ)−Π

m
(θγm∂θ)}, (4.6)

given in terms of the redefined supersymmetric invariants of (3.14), naturally presents the

coupling with the Kalb-Ramond field in the zero-momentum limit (second line), analo-

gous to Chandia and Vallilo’s proposal for the type II case [5, 6]. Therefore, the curved

background embedding of Shet should provide the heterotic supergravity constraints of [7]

through a sensible curved space generalization of T± [18]. As mentioned in section 3, the

RNS ambitwistor string does not provide the expected supergravity amplitudes. A sim-

ilar analysis will have to be performed here. It seems, however, that one might expect

similar results and possible inconsistencies could show up in determining the supergravity

constraints.
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