
J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

Published for SISSA by Springer

Received: April 8, 2016

Accepted: May 9, 2016

Published: May 18, 2016

On information loss in AdS3/CFT2

A. Liam Fitzpatrick,a Jared Kaplan,b Daliang Lib and Junpu Wangb

aDepartment of Physics, Boston University,

Commonwealth Avenue, Boston, MA 02215, U.S.A.
bDepartment of Physics and Astronomy, Johns Hopkins University,

Charles Street, Baltimore, MD 21218, U.S.A.

E-mail: andrew.liam.fitz@gmail.com, jareddk@gmail.com,

daliang.li@jhu.edu, junpuwang@gmail.com

Abstract: We discuss information loss from black hole physics in AdS3, focusing on two

sharp signatures infecting CFT2 correlators at large central charge c: ‘forbidden singulari-

ties’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and

late-time exponential decay in the Lorentzian region. We study an infinite class of examples

where forbidden singularities can be resolved by non-perturbative effects at finite c, and

we show that the resolution has certain universal features that also apply in the general

case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative

effects that resolve forbidden singularities qualitatively change the behavior of correlators

at times t ∼ SBH , the black hole entropy. This may resolve the exponential decay of cor-

relators at late times in black hole backgrounds. By Borel resumming the 1/c expansion

of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states

that should correspond to classical solutions in AdS3. Our results suggest a line of inquiry

towards a more precise formulation of the gravitational path integral in AdS3.

Keywords: 1/N Expansion, AdS-CFT Correspondence, Black Holes, Conformal and

W Symmetry

ArXiv ePrint: 1603.08925

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2016)109

mailto:andrew.liam.fitz@gmail.com
mailto:jareddk@gmail.com
mailto:daliang.li@jhu.edu
mailto:junpuwang@gmail.com
http://arxiv.org/abs/1603.08925
http://dx.doi.org/10.1007/JHEP05(2016)109


J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

Contents

1 Introduction 2

1.1 ‘Hard’ and ‘easier’ information loss problems 2

1.2 Borel resummation and classical solutions 5

1.3 In brief: summary and outline 7

2 Information loss and forbidden singularities in AdS/CFT 7

2.1 Images of OPE singularities in AdS/CFT 8

2.2 Forbidden singularities in the Virasoro vacuum block 10

2.3 Correlators at large Lorentzian time 13

3 Exact Virasoro blocks at large central charge 14

3.1 Brief review of Virasoro blocks and degenerate states 14

3.1.1 Comments on analytic continuation and unitarity 16

3.1.2 A simple example: the O(2,1) degenerate state 17

3.2 Connecting degenerate and large c Virasoro blocks 19

3.2.1 Light degenerate states and ‘Hawking from Catalan’ 19

3.2.2 Heavy degenerate states 20

3.2.3 Light degenerate states and quasi-normal modes 22

3.3 Universal resolution of forbidden singularities 23

3.3.1 Growth of OPE coefficients at finite vs infinite c 23

3.3.2 Behavior near a forbidden singularity 24

3.4 Large Lorentzian time behavior from an interesting approximation 26

4 Information restoration as a non-perturbative effect 29

4.1 Borel resummation and a vacuum block 29

4.1.1 Not just a toy model 30

4.1.2 The Vacuum block with a heavy degenerate state 31

4.2 Asymptotic analysis of a degenerate block 33

4.2.1 Virasoro blocks with external O(2,1) 33

4.2.2 More general examples 37

5 Discussion 38

A Derivation of large c light degenerate state equations 40

B Universality of forbidden singularities and general 1/c corrections 42

C Asymptotic analysis of more degenerate blocks 44

D Details of critical points and Stokes phenomena 49

– 1 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

1 Introduction

Unitarity violation from black hole physics [1] lurks within the Virasoro symmetry struc-

ture [2] of the AdS3/CFT2 correspondence [3–5]. In this paper we will identify non-

perturbative effects in GN ≡ 3
2c that resolve this problem in an infinite class of examples.

We will argue that these results can be analytically continued to resolve information loss

in the general case, and may provide clues to the correct contour of integration for the

gravitational path integral. We begin by reviewing various manifestations of information

loss so that we can explain the specific problems that we will be addressing.

1.1 ‘Hard’ and ‘easier’ information loss problems

The ‘hard’ information loss problem is the paradox that pits local gravitational effective

field theory, vis-à-vis the equivalence principle, against unitary quantum mechanical evo-

lution [6–9]. AdS/CFT has declared that unitarity must win this fight, but it does not

explain how the equivalence principle can survive. To address this question we need a gen-

eral, self-consistent prescription for reconstructing local bulk observables near and across

horizons using CFT data. Since we do not expect bulk observables to be precisely defined

anywhere, the prescription would need to be cognizant of its own limitations, which would

presumably then answer the question of whether/when firewalls exist [8, 9]. We will have

little to add to the discussion of this ‘hard’ problem. It seems very difficult to precisely

formulate, let alone resolve, in terms of quantum mechanical observables in CFT.1

An ‘easier’ information loss problem can be formulated directly in terms of CFT cor-

relation functions [16]. A two-point CFT correlator probing a large AdS black hole will

decay exponentially at late times. This translates into the idea that all information about

an object thrown into a black hole will eventually be lost. Since field theories on compact

spaces cannot forget about initial perturbations, this behavior signals a violation of uni-

tarity. We should emphasize that this reasoning does not apply to CFTs on non-compact

spaces, at infinite temperature, or with an infinite number of local degrees of freedom.2

For example, the thermal 2-pt correlator of a scalar primary operator in a CFT2 on an

infinite line

〈O(tL)O(0)〉T =

(
πT

sinh(πTtL)

)2∆O
(1.1)

decays exponentially at arbitrarily late Lorentzian time tL. The large central charge limit

c→∞ can also produce thermal correlators, as we will discuss more precisely below.

Thus the ‘easier’ information loss problem arises because black holes are in a sense

too thermal. To resolve it we must understand the emergence of a kind of thermodynamic

limit as GN → 0, and then identify the non-perturbative ‘e
− 1
GN ’ corrections to this limit

that restore unitarity.

1For example, although bulk points outside horizons can be precisely defined in terms of the singularity

structure of large central charge CFT correlators [10–14], considerations of causality show that bulk point

singularities never occur behind horizons [15].
2The first two are closely connected because as T → ∞ we can measure distances in units of 1/T ,

effectively decompactifying space.

– 2 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

OH(0)

OH(1)

OL(1)

OL(z)

Figure 1. This figure suggests a heavy-light CFT correlator and its association with a light probe

object interacting with a deficit angle or BTZ black hole background.

We can sharpen the problem by studying pure states, as illustrated in figure 1, and

by focusing on another manifestation of thermal physics. The two-point correlator of a

light probe operator in a heavy, pure-state background can be written as the four-point

correlator

A(z, z̄) = 〈OH(∞)OL(1)OL(z, z̄)OH(0)〉 ?≈ 〈OL(1)OL(z, z̄)〉TH (1.2)

using the operator/state corresponence. In this expression z is a coordinate in the plane,

while t ≡ − log(1 − z) will be a Euclidean time coordinate on the boundary of the global

AdS cylinder. The operator OH creates a black hole microstate with approximate Hawking

temperature TH . If A is thermal then it satisfies the KMS condition, making A periodic

in Euclidean time. There is an intuitive but imprecise connection between this periodicity

and the exponential decay in Lorentzian time discussed above.

This periodic behavior is forbidden in the vacuum correlation functions of local CFT

operators. In the Euclidean region, CFT correlation functions can have singularities only

in the OPE limit, when pairs of operators collide. This follows because away from the OPE

limit we can interpret the correlator as the inner product of normalizable states in radial

quantization [17–19]. If A were periodic in Euclidean time then it would have additional

singularities at the periodic images of the OPE singularities, such as z = 1 − en/T for

integers n. These ‘forbidden singularities’ are a sharp manifestation of unitarity violation

and information loss. They will be a major focus in this work.

A universal piece of the resolution. Information loss in black hole backgrounds ap-

pears to be a generic feature of quantum gravity. Therefore it would be very surprising if

its resolution depended on intricate details that vary from theory to theory. Were this the

case, our task would be hopeless, since we will not be able to compute the exact heavy-light

correlator in any, let alone every, holographic CFT. Fortunately, in all CFT2 there is a

universal contribution to each heavy-light correlator, the Virasoro vacuum block [20–28],

which manifests information loss in the large central charge or c→∞ limit [29].

– 3 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

In any theory with a symmetry, it is natural to organize observables and amplitudes into

irreducible representations of that symmetry group. We encapsulate the full contribution

from all states related by the Virasoro symmetry in a Virasoro conformal block. So every

theory with a vacuum state must have a Virasoro vacuum block, which contributes to a

correlator like 〈OHOHOLOL〉 because the vacuum itself contributes — we obtain a non-

vanishing result when we insert |0〉〈0| between the OH and OL. Phrased in terms of

Virasoro this may seem rather abstract, but via AdS/CFT we learn that the gravitational

field is related to the CFT stress tensor via

gµν(X)↔ T (z) =
∑

n

z−2−nLn (1.3)

and so ‘gravitons’ in AdS are created by acting with the CFT stress-energy tensor on

the vacuum. Furthermore, the Virasoro generators Ln are simply the modes of the stress

tensor, so the Virasoro vacuum block includes all effects from the exchange of quantum

multi-graviton states. The Virasoro blocks contain a great deal of exact information about

quantum gravity.

We would like to study a light object probing a black hole in AdS. This means that

we should study a heavy-light correlator with hH ∝ c and hL fixed at large c, since CFT

operator dimensions correspond with AdS energies, and the Newton constant GN = 3
2c .

The corresponding Virasoro vacuum block has been computed [20–22], on the cylinder it is

V∞(t) =

(
πTH

sin(πTHt)

)2hL

(1.4)

where the Hawking temperature TH = 1
2π

√
24hHc − 1. This pure CFT2 computation clearly

‘knows’ about black hole physics in AdS3. We emphasize that this result is exactly periodic

in Euclidean time t, and so it has forbidden singularites at t = n
TH

. If we analytically

continue to Lorentzian tL = it, then the vacuum block decays exponentially at late times.3

Thus the c→∞ vacuum block manifests information loss.

On general grounds we expect that the Virasoro vacuum block’s information loss prob-

lem must be resolved within its own structure. In particular, the resolution should not

depend on a delicate interplay between many separate conformal blocks, since this would

indicate an intricate theory-dependence. One reason for this expectation is that at the

positions of the forbidden singularities, z = 1 − en/T is real and positive for n < 0 and T

real and therefore the sum over conformal blocks is a sum over positive contributions; thus

the sum over non-vacuum blocks cannot cancel the singular behavior.4 A more general

but more formal proof follows because the vacuum block can itself be viewed as an inner

product between normalizable states, and so it can only have OPE singularities at finite

central charge [17].

3By itself this does not indicate information loss in CFT2 correlators, because the full correlator is an

infinite sum over Virasoro blocks, and other blocks could behave differently at late Lorentzian time. In

section 2.3 we explain that known heavy-light blocks do all decay exponentially in tL at c =∞, but we do

not have explicit results when intermediate operator dimensions are of order c.
4Additionally, in the limit c = ∞, the vacuum block’s forbidden singularities are sharper than those of

all other Virasoro conformal blocks.
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In any case, we do not need to rely on general arguments, because we will explicitly

exhibit both the Euclidean time periodicity of large c blocks and its finite c resolution. For

instance, consider the degenerate Virasoro vacuum block

e−
1
2

(1+α+ε)tE
2F1

(
1 + ε, 1 + α+ ε, 2 + 2ε, 1− e−tE

) c→∞−→ e−
1
2
tE

sin(πTHtE)

πTH
(1.5)

where α =
√

(1 + ε)2 − 4hHε and ε = 1
12

(
c− 13−

√
(c− 1)(c− 25)

)
. This is a heavy-

light-vacuum block, where the heavy operator dimension hH and the central charge c can

take any value, but the light operator dimension is pegged to the value hL = −1
2 − 3

4ε.

As c → ∞ we have ε ≈ 6
c and the parameter α → 2πiTH , leading to a correlator that is

periodic in Euclidean time tE . In constrast, the exact block (the hypergeometric function)

is not periodic in tE for any finite c. Furthermore, if we analytically continue to Lorentzian

signature, the exact vacuum block does not have an exponential time-dependence.

The example of equation (1.5) was chosen for its simplicity, so although it is periodic in

Euclidean time, it does not have any forbidden singularities. In section 3 we will study an

infinite class of examples with degenerate external operators where the vacuum block can

be computed exactly at any c. These special cases agree precisely with our more general

results [20, 21, 29] as c→∞, and in particular, exhibit forbidden singularities in the large

central charge limit. Relating the infinite discretum of degenerate vacuum blocks to the

general heavy-light case requires analytic continuation, but as we review in section 3.1.1,

the Virasoro blocks are entire functions of the external operator dimensions hH and hL.

1.2 Borel resummation and classical solutions

It is interesting to have examples of correlators exhibiting information loss as c→∞. But

we would also like to understand the resolution of information loss from the vantage point

of perturbation theory in GN = 3
2c . In other words, we would like to expand the exact

result as

V(z) = Vc=∞(z)

(
1 +

f1(z)

c
+ · · ·

)
+ e−cs(z)

(
g0(z) +

g1(z)

c
+ · · ·

)
+ · · · (1.6)

to explicitly identify the non-perturbative effects that restore unitarity. The first term

corresponds to perturbation theory about the AdS3 vacuum. We expect that the other

terms correspond to non-perturbative corrections involving solutions to Einstein’s equations

incorporating the exchange of states with Planckian energy, as we will now explain.

Many series expansions in quantum mechanics have zero radius of convergence. Given

such a formal series

f(g) =
∑

n

ang
n (1.7)

we can define a Borel series B(g) by an → an
n! , and in many cases B(g) will then have a

finite radius of convergence. Now we can try to define a function

f(g) =

∫ ∞

0

dy

g
e−y/gB(y) (1.8)

– 5 –
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as the Borel transform, which reproduces the ang
n if we expand B in y. If the Borel

integral converges and has no singularities on the real axis, then it can be viewed as a

definition of f(g). Singularities on the real axis lead to ambiguities in f(g), and more

generally, singularities in the Borel plane lead to branch cuts when f(g) is analytically

continued [30]. Relevant examples will be studied in section 4.

We can connect singularities in the Borel plane to classical solutions of the field equa-

tions via an illustrative argument given by ’t Hooft [31]. Simply equate the Borel transform

and the path integral description of the correlator
∫ ∞

0
dy e−y/gB(y) ∼

∫
Dφ e−

1
g
S(φ)

(1.9)

where we use ∼ to denote the fact that this is a very formal relation. It leads to

B(y) ∼
∫
Dφ δ (y − S(φ))

∼
(
∂S

∂φ

)−1
∣∣∣∣∣
S(φ)=y

(1.10)

Thus we see that in order for B(y) to have a singularity at some y∗, we expect to have

∂S

∂φ∗
= 0 and S(φ∗) = y∗ (1.11)

for some field configuration φ∗. Thus singularities of B(y) in the y-plane correspond to

solutions of the classical equations of motion with an action equal to y∗.
We will be studying the Virasoro vacuum conformal block. In the large c limit, it

can be obtained from a number of direct CFT arguments [20–22], and also from AdS3

gravity [20, 25, 32, 33]. We expect that order-by-order in 1/c perturbation theory, the

Virasoro vacuum block could be obtained, at least in principle, from AdS3 calculations in a

perturbative GN expansion. The result should match with direct methods in CFT2, where

leading 1/c corrections have already been obtained.

In section 4.1 we will study the exact results for the degenerate Virasoro vacuum block

in 1/c perturbation theory and perform a Borel resummation of the result. We will see

that there are singularities in the Borel plane, and that they have a natural interpretation

as specific heavy states. In other words, when we expand the exact vacuum block in 1/c,

we will find a saddle point corresponding to the ‘perturbative vacuum’, plus other saddles

associated with the non-perturbative contributions from heavy states.

Given that we expect the 1/c perturbation theory to match between the gravitational

path integral and direct CFT2 calculations, it is natural to conjecture that the singularities

in the Borel plane must correspond to classical solutions of Einstein’s equations in AdS3.

In the general case these AdS3 solutions should correspond to the exchange of black holes

between the light probe and the heavy background states, and should become very (numer-

ically) important in the correlator in the vicinity of forbidden singularities. The Virasoro

vacuum block seems to know about heavy states in AdS3, which emerge as ‘solitons’ from

the Virasoro ‘graviton’ states that are created by the CFT2 stress tensor.

– 6 –
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1.3 In brief: summary and outline

In section 2 we provide a more complete discussion of information loss in CFT correlators.

We begin with a discussion based on AdS in section 2.1, and then in sections 2.2 and 2.3 we

explain how the same effects arise directly from CFT2 computations at large central charge.

Figure 2 provides a cartoon of the locations of forbidden singularities in CFT correlators.

We study degenerate external operators in section 3 in order to obtain exact infor-

mation concerning the Virasoro vacuum block. We review Virasoro blocks and degenerate

operators in section 3.1. For an infinite sequence of values of hH(r) = c
24(1− r2), indexed

by a positive integer r, the exact vacuum block obeys a linear differential equation of or-

der r. We provide a general argument suggesting that these results can be analytically

continued in r in section 3.1.1, and a quick illustrative example in section 3.1.2. Then in

section 3.2 we show that the exact results precisely match previous computations in the

large c limit. In section 3.3 we show that for all values of r, the forbidden singularities are

resolved in a universal way by non-perturbative effects at finite c. Analytic continuation in

r passes a very non-trivial check which we describe in section 3.3.2. Finally, in section 3.4

we study late Lorentzian time behavior via an approximation motivated by the resolution

of the forbidden singularities. We show that the Virasoro blocks change qualitatively after

a Lorentzian time tL ∼ SBH , the black hole entropy. Numerical results suggest that the

exact Virasoro blocks do not decay exponentially at late times.

We discuss the dependence of the exact Virasoro blocks on the central charge in

section 4, focusing on Borel resummation of the GN ∝ 1/c expansion in section 4.1.

In section 4.2 we take a different approach based on contour integral formulas for the

degenerate blocks, which arise from the Coulomb gas formalism [34, 35]. In both cases we

identify non-perturbative contributions to the Virasoro blocks associated with heavy inter-

mediate states. We leave it to future work to connect our results with classical solutions of

the gravitational or Chern-Simons [36, 37] action in AdS3. We provide an analysis of some

more involved Coulomb gas examples in appendix C; the other appendices collect various

technical details.

2 Information loss and forbidden singularities in AdS/CFT

We will discuss AdS/CFT correlators to identify signatures of information loss associated

with black holes. In section 2.1 we explain how certain singularities arise from finite tem-

perature AdS backgrounds, and we review the explicit results in AdS3. These singularites

are always present in the canonical ensemble, as a consequence of Euclidean time period-

icity. However, as we review in section 2.2, they also appear universally at large central

charge in pure state correlators, where they represent a violation of unitarity. These ‘for-

bidden singularities’ are an avatar of information loss. In section 2.3 we explain how known

results on heavy-light Virasoro blocks also manifest information loss as exponential decay

at late Lorentzian times.

We will be interested in exponentially small deviations from the thermodynamic limit.

In other words, we will study effects that would vanish in theories with an infinite number

of local degrees of freedom, ie with the central charge c = 2
3GN

→∞. We will also need to

carefully distinguish between the canonical ensemble and high-energy microstates.

– 7 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
9

2.1 Images of OPE singularities in AdS/CFT

We study AdS in global coordinates, taking the curvature scale RAdS = 1 so that the pure

AdS metric is

ds2 = −(r2 + 1)dt2L +
dr2

r2 + 1
+ r2dΩ2, (2.1)

which naturally corresponds to a CFT on the cylinder R×Sd−1. We can study finite temper-

ature CFT correlators in two different phases, separated by the Hawking-Page phase tran-

sition [38]. In the thermal AdS phase we simply compactify the Euclidean time tE ∼ tE+β.

In the AdS-Schwarzschild phase, which dominates at large temperatures, the bulk metric

ds2 = −r2

(
1− rd+ + (rd−2

+ − rd−2)

rd

)
dt2L +

dr2

r2

(
1− rd++(rd−2

+ −rd−2)

rd

) + r2dΩ2 (2.2)

has a horizon at r = r+. To avoid a conical singularity at the horizon we must compactify

the Euclidean time coordinate with β = 4πr+
dr2++(d−2)

. We will always be interested in large,

semi-classically stable AdS black holes with r+ & 1.

If we compute CFT correlation functions using a quantum field theory in either thermal

AdS or AdS-Schwarzschild, to any order in perturbation theory we will obtain correlators

satisfying the KMS condition, which requires periodicity in Euclidean time. Perturbative

corrections in GN will not alter the underlying topology of the space, or the geometry as

we approach the boundary of AdS.

This is exactly what we expect for CFT correlators in the canonical ensemble at fixed

temperature. For example, the thermal two point correlator is defined by

〈OL(t,Ω)OL(0)〉T ≡
∑

ψ

e−
Eψ
T 〈ψ|OL(t,Ω)OL(0)|ψ〉. (2.3)

Notice that Euclidean-time periodicity implies that for Ω = 0 there is a short-distance

(OPE) singularity at tE = 0,±β,±2β, · · · as a trivial consequence of the geometry. Trans-

forming the CFT from the cylinder to the (radially quantized) plane via z = 1 − e−t+iφ,

these singularities occur in the Euclidean region at z = z̄ = 1− e nT for any integer n.

Euclidean time periodicity, and the OPE image singularities that emerge as a corollary,

are perfectly acceptable for a correlation function in the canonical ensemble. However, they

are impermissible in a vacuum correlation function of local operators such as

〈OH(∞)OL(1)OL(z)OH(0)〉 (2.4)

in a unitary CFT with a finite number of local degrees of freedom. This also implies that

correlators in the micro-canonical ensemble cannot be exactly periodic in tE , since the

micro-canonical ensemble involves a finite sum over pure state correlators, ie a finite sum

over heavy operators OH with dimensions hH in a very narrow range.

In fact, correlators such as equation (2.4) can only have Euclidean singularities in the

OPE limits z → 0, 1,∞. The proof is an elementary consequence of the derivation of radial

– 8 –
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quantization [17]. Away from the OPE limits, we can interpret the correlator as an inner

product of normalizable CFT states, and so it must be finite.

Before focusing on AdS3, we should note that there is another signature of information

loss in CFT correlators [16]: the two-point correlator in an AdS-Schwarzschild geometry

decays exponentially at late Lorentzian times. This has an intuitive appeal, representing the

fact that information tossed into a black hole never comes back out. Of course Lorentzian-

time decay has an imprecise but intuitive relationship with Euclidean periodicity, since

exponential decay and periodicity are related by analytic continuation. We expect that via

the Luscher-Mack theorem [39] (see [40] for a recent relevant discussion) that if correlators

in the Euclidean region are non-singular and satisfy reflection positivity, then they can

be continued to provide healthy Lorentzian correlators. In what follows we will focus

more on the Euclidean region, though we will discuss late time Lorentzian behavior in

sections 2.3 and 3.4.

Even in the semi-classical limit, there are few explicit examples (see e.g. [41] for one) of

correlation functions in AdS-Schwarzschild backgrounds in general d. However, two-point

correlators in BTZ backgrounds can be easily obtained from the method of images [42], so

let us now focus on the case of AdS3. We will see that AdS3 correlators in the presence of

a heavy source have a nice analytic continuation in the heavy source mass, and that above

the BTZ black hole [43] threshold, the correlators develop OPE image singularities.

For simplicity let us consider scalar probes of scalar BTZ black holes or deficit angles.

The Euclidean metric is

ds2 = (r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dφ2 (2.5)

where we note that the horizon radius relates to the Hawking temperature via r+ = 2πTH .

If we interpret the black hole as a CFT state, then it will have holomorphic dimension

hH related to the horizon radius via r+ =
√

24hH
c − 1. Deficit angles are obtained by

analytically continuing to imaginary r+, which automatically occurs when hH < c/24. In

other words, all of our results can be analytically continued in hH .

Since the deficit angle and BTZ geometries are orbifolds of AdS3 [43], we can obtain

the correlator pictured in figure 1 using the method of images [42]. The result is

〈OL(z, z̄)OL(1)〉r+ =
∞∑

n=−∞
[V (z, n)]hL [V (z̄,−n)]h̄L (2.6)

where

V (z, n) =
(1− z)

(
sin
( r+

2 (log(1− z) + 2πin)
))2 (2.7)

is a function that will appear later in a different guise. The sum over n ensures that the

overall correlator is single valued in the Euclidean plane, where z and z̄ are related by

complex conjugation. If z and z̄ circle the branch cut at z = 1 in opposite directions, then

we simply have n→ n+ 1 for each summand, so that the total sum over images does not

change. Note that if z circles the branch cut while z̄ remains fixed, the correlator is altered;

this analytic continuation takes the correlator into the Lorentzian regime.

– 9 –
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Figure 2. This figure suggests the positions of OPE image singularities of CFT correlators. Black

holes produce the pattern on the right, while the ‘additional angles’ discussed in section 3 produce

the pattern on the left. These singularities are forbidden in unitary four-point correlators. The

heavy operators are located at 1 and ∞, and the light probe operators are at 0 and z in the

Euclidean plane.

Since the full two-point correlator is single-valued in the Euclidean region, let us study

its singularities on a single sheet. In that case the imaginary part of log(1 − z) varies

between 0 and 2πi, so for real r+, the only term in the sum that can ever be singular is

the n = 0 term. It is singular when

z = 1− e
2πm
r+ (2.8)

for all integers m, which always includes z = 0 as m = 0. For real r+ these singularities lie

on the real axis, while for imaginary r+ they form a unit circle around z = 1, as pictured in

figure 2. They are simply the periodic images of the singularity OL(z)OL(0) = 1
z2hL

+ · · ·
due to the universal presence of the operator ‘1’ in the light operator OPE. Thus we see

that correlators in BTZ black hole backgrounds develop singularities that are forbidden

from four-point correlators like equation (2.4).

In the presence of a rational deficit angle, with r+ = i
k and k an integer, there will

be no forbidden singularities. However, if r+ = ik for an integer k ≥ 2, then the image

sum in equation (2.6) is unnecessary (to ensure periodicity in the angular coordinate φ),

and the correlator develops k − 1 extra OPE image singularities. This case of ‘additional

angle’, pictured in figure 3, will be relevant later on; its structure of forbidden singularities

is shown on the left in figure 2.

2.2 Forbidden singularities in the Virasoro vacuum block

A crucial feature of the AdS3 correlator from equation (2.6) is that for real r+ the forbidden

singularities come exclusively from the n = 0 term in the image sum. This fact has a natural

and important interpretation in conformal field theory.

It is not clear whether an AdS computation in a black hole background represents

a thermal correlator or a correlator in the background of a heavy pure microstate, since

we expect these to be indistinguishable at leading order in large c ∝ 1/GN . But let us

interpret equation (2.6) as the latter, ie as a heavy-light four-point correlator in a CFT.

– 10 –
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All four-point correlators in CFT2 can be written as a sum over Virasoro conformal blocks

〈OH(∞)OL(1)OL(z)OH(0)〉 = V0(1− z)V0(1− z̄) +
∑

h,h̄

Ph,h̄Vh(1− z)Vh̄(1− z̄) (2.9)

where Ph,h̄ are products of OPE coefficients. There is a universal contribution from the

vacuum Virasoro block V0(1 − z) necessitated by the fact that both OL(z)OL(0) and

OH(z)OH(0) contain the operator ‘1’ in their OPE. In fact, the vacuum block can be

computed directly using the Virasoro algebra at large c [20–26, 29], and it corresponds pre-

cisely with the n = 0 term in the AdS image sum of equation (2.6). But before discussing

this further, let us briefly review the physical content of the Virasoro blocks.

In a quantum theory with a symmetry, we can decompose the states into irreducible

representations of the symmetry group. Once we know the matrix element of a single state

in the irreducible representation, we can work out matrix elements of related states using

the symmetry. This leads to a partial wave expansion for scattering amplitudes and corre-

lation functions. In CFTs, this conformal partial wave or conformal block decomposition

can also be derived by applying the OPE expansion (see [44, 45] for nice reviews). The

highest weight state of the conformal algebra is called a primary state/operator, and all

OPE coefficients in the theory are determined by the OPE coefficients of these primary

operators. The Ph,h̄ in equation (2.9) are products of these OPE coefficients.

The Virasoro conformal blocks contain an immense amount of information about quan-

tum gravity in AdS3. This follows because via AdS/CFT, the stress energy tensor Tµν of

the CFT creates gravitons in AdS. In the case of d = 2, the Virasoro generators Ln are

simply modes of the stress tensor

Tzz(z) =
∑

n

z−2−nLn (2.10)

and so Ln with n > 2 create states that can be naturally interpreted as ‘gravitons’ in AdS3.

Their interactions are governed by the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.11)

When we sum over all states related by Virasoro symmetry, we are actually including

all possible effects from the exchange of gravitons. The Virasoro vacuum block in equa-

tion (2.9) encapsulates the exchange of any number of pure graviton states between the

heavy object and the light probe.

The presence of additional singularities in equation (2.6) was rather ambiguous, since

it was unclear if we should interpret the BTZ black hole background as a pure state.

However, it has been shown [20] that the function V (z, 0) in equation (2.7), which was

obtained from a bulk computation, is in fact identical to the heavy-light Virasoro vacuum

block V0(1− z) in the limit c→∞ with hL and hH/c fixed. This means that in the large c

limit, heavy-light CFT correlators have forbidden singularities that must be resolved at any

finite c. These forbidden singularities will be present in any c→∞ limit of two-dimensional

CFTs because they come from the vacuum block.5

5Related singularities have been noted in a few cases [46–48].
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Furthermore, at finite c we know that the singularities must always be resolved within

the structure of the vacuum block itself. In other words, the forbidden singularities will

not be resolved by a conspiratorial cancellation between the vacuum block and the sum

over non-vacuum Virasoro blocks in equation (2.9). One reason for this expectation is that

vacuum block always makes the most singular contribution, proportional to z−2hL in the

OPE limit z → 0. Other conformal blocks behave as zh−2hL in this limit, with h > 0 in

unitary theories, and h = 0 only for conserved currents. Since the forbidden singularities

are images of the OPE singularity, other conformal blocks will be strictly less singular in

both the OPE and image singularity limits. This is borne out by the explicit formulas for

general Virasoro conformal blocks [21]

VhI (z) ∝
(

1− w
1− z

)hL
whI−2hL

2F1(hI , hI , 2hI , w) (2.12)

where w ≡ 1 − (1 − z)ir+ with r+ =
√

24hH
c − 1 as given above. The strength of the

forbidden singularity is reduced when the intermediate dimension hI > 0. When T is real,

we can make an even simpler argument: the forbidden singularities at z = 1 − en/T for

n < 0 are at real and positive z, and therefore the sum over the other conformal blocks is

a convergent sum over positive contributions that can only add to the singularity in the

vacuum block, and cannot cancel it.

There is a sharper and more formal argument that at finite c, forbidden singularities

must be resolved within V0. It is simply a restatement of the proof [17, 44] that Euclidean

CFT correlators only have OPE singularities. This argument follows directly from radial

quantization, whereby local operator insertions create (normalizable) states on enveloping

spheres, so that correlators can be interpreted as inner products of normalizable states.

Then a basic theorem on Hilbert spaces states that when such inner products are expanded

in an orthonormal basis of states, the resulting sum converges. This argument may seem a

bit formal, since it excludes singularities by presuming that local operator insertions create

normalizable states. So it is worthwhile to take a closer look at our specific setup. The

problem with the heavy-light Virasoro blocks is that as c → ∞ with hH/c fixed, we must

take hH →∞, and so states created by OH are no longer unambiguously normalizable. For

example, the correlator 〈OH(0)OH(z)〉 = z−2hH is either infinity or zero when hH → ∞.

We expect that this underlying issue explains the presence of forbidden singularities in the

heavy-light correlators as c→∞. In an AdS dual this occurs because perturbation theory

in GN requires us to take the limit GN → 0 with the quantity GNMBH fixed.

Although we are focusing on the vacuum conformal block, general blocks also have their

own forbidden singularities, as can be seen directly in equation (2.12) when 0 < hI < 2hL.

Even when hI > 2hL the correlators generically have forbidden branch cuts. We expect that

these singularities must also be resolved within the structure of these more general Virasoro

blocks. We are not focusing on the general case of hI > 0 because it is more complicated and

less universal, but the general heavy-light Virasoro blocks certainly warrant further study.

In summary, the vacuum conformal block, a function determined purely by Virasoro

symmetry, exactly matches AdS3 computations involving deficit angles and BTZ black
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holes [20–26, 29, 49, 50]. In the large c limit it has forbidden singularities that are indicative

of unitarity violation and information loss, and the large c result is analytic in the heavy

state dimension hH , interpolating between the deficit angle and black hole cases. At finite

c the forbidden singularities must be resolved within the structure of V0(z) itself. Thus

we can study universal aspects of information loss in black hole backgrounds by examining

V0(z) at large but finite central charge.

2.3 Correlators at large Lorentzian time

Maldacena has emphasized [16] that in a black hole background, correlators decay expo-

nentially at late Lorentzian times. So a small perturbation to the initial density matrix

becomes arbitrarily well scrambled [27, 51, 52] at late times. Intuitively, this means that

information thrown into a black hole never returns. This behavior is forbidden in a theory

with a finite number of local degrees of freedom on a compact space, so it provides a sharp

signature of information loss when CFT correlators are obtained from AdS.

Instead of exponential decay at arbitrarily late times, in a unitary CFT we expect [16]

that correlators will have a value at least of very rough order e−κSBH for some numerical

constant κ. This expectation can be derived by imagining that the early-time correlator can

be written as a coherent sum of roughly eSBH terms, corresponding to intermediate energy

eigenstates in the OHOL → OHOL channel. If each term has a time dependence eiEt,

and if the energies E have a random distribution near the black hole mass,6 then at late

times the terms will add with incoherent phases, producing an average result suppressed

by ∼ e−SBH/2.

Equation (2.9) displays the decomposition of a complete CFT correlator into a sum

over general Virasoro blocks, with coefficients given by products of OPE coefficients. Fur-

thermore, all Virasoro blocks make important contributions at large Lorentzian time, so

we might not expect to be able to understand the behavior of the correlator in the large

Lorentzian time regime without knowing all CFT data (the spectrum and the OPE coeffi-

cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH ∝ c→∞, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI (z) ∝
(

1− w
1− z

)hL
whI−2hL

2F1(hI , hI , 2hI , w), w ≡ 1− (1− z)ir+ (2.13)

with r+ = 2πTH =
√

24hHc − 1, and hH > c
24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1− e−itL , in which case since α is imaginary,

we have w = 1− e2πTH tL . Furthermore, at large tL we have

2F1

(
hI , hI , 2hI , 1− e2πTH tL

)
∝ e−2πhITH tL (2.14)

6See [53–56] for some statistical relations between the spectrum and late time behavior.
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so that overall, every block is proportional to e−2πhLTH tL as tL →∞, regardless of the value

of hI � c. Notice that we have the same behavior as tL → −∞, as we should expect since

the two light operators OL in the correlator are identical. Thus all of the heavy-light, large

central charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian

times. Since we expect the sum over blocks to be convergent in CFT2 [14], this implies

that correlators constructed from such a sum must also vanish exponentially at large tL.

Since we do not have explicit expressions for the Virasoro blocks when hI ∝ c, a loophole

remains, as it is possible that heavy-light blocks with heavy intermediate states do not

vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times

of order SBH = π2

3 cTH , the black hole entropy.

3 Exact Virasoro blocks at large central charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where

exact information can be obtained. First we will very briefly review degerate operators in

section 3.1. We provide an illustrative example of the general story in section 3.1.2. Then

in section 3.2 we explain how the correlators of degenerate operators can be analytically

continued to precisely reproduce all of our previous large c results. In section 3.3 we will

discuss the non-perturbative resolution of the forbidden singlarities at finite c. Motivated

by these successes, in section 3.4 we discuss the late Lorentzian time behavior of the vac-

uum block.

3.1 Brief review of Virasoro blocks and degenerate states

Any CFT2 correlator can be written as a sum over Virasoro conformal blocks

〈O1(∞)O2(1)O3(z)O4(0)〉 =
∑

h,h̄

Ph,h̄Vhi,h,c(z)Vh̄i,h̄,c(z̄) (3.1)

where we have chosen the 12→ 34 channel derived from the OPE expansion of O3(z)O4(0),

and explicitly indicated the decomposition into a holomorphic and anti-holomorphic part.

The hi are dimensions of the external operators Oi and h, h̄ are intermediate operator

dimensions. These Virasoro conformal blocks, which are also known as partial waves,

encapsulate the contribution of an entire irreducible representation of the Virasoro algebra

to the correlator.

The holomorphic part of the blocks Vhi,h,c(z) depends on the four external operator

dimensions, the internal primary operator dimension h, the central charge c, and the kine-

matical variable z in the plane. Ideally we would like to have an explicit, closed-form

expression for the general Virasoro conformal blocks. Such a formula would allow us to

observe how the forbidden singularities and late Lorentzian time behavior discussed in

section 2 are resolved by non-perturbative effects ∼ e−c in the large c expansion.
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This is probably too much to hope for. Current tools provide recursion relations [57]

that efficiently compute the series expansion [58] of the blocks near z = 0 with generic

hi, h, c; closed form results in the limit h → ∞ [59]; and closed form results as c → ∞ in

the heavy-light limit [20–26], including general 1/c correction [29] to that limit. The heavy-

light limit displays the blocks’ forbidden singularities at large c, but none of these results

provide information about how those singularities are resolved at finite c. The relation of

the general large c semi-classical blocks to the Painlevé VI equation [60], which can only

be solved in terms of its own special function, does not seem to encourage those who might

seek a closed form expression for V.

However, as has been known since the early days of CFT2 [61], for certain special values

of the parameters hi, h, c we can obtain exact information about the Virasoro blocks.7

These are cases where one of the external operators is degenerate, meaning that some of

its Virasoro descendants are null states, or states with vanishing norm. When discussing

degenerate states it is useful to use a parameter b so that

c ≡ 1 + 6

(
b+

1

b

)2

(3.2)

We can take the c → ∞ limit via either b → 0 or b → ∞. In this notation, the simplest

example of a null state is the second level descendant

(
L2
−1 + b2L−2

)
|h1,2〉 = 0 (3.3)

One can check using the Virasoro algebra of equation (2.11) that the matrix of level two

inner products (
〈h|L2

1L
2
−1|h〉 〈h|L2

1L−2|h〉
〈h|L2L

2
−1|h〉 〈h|L2L−2|h〉

)
(3.4)

has a vanishing determinant when the holomorphic dimension h1,2 = −1
2 − 3

4b2
; the level

two descendant in equation (3.3) is the corresponding null vector. In general, degenerate

states can only occur for holomorphic dimensions satisfying the Kac formula

hr,s =
b2

4
(1− r2) +

1

4b2
(1− s2) +

1

2
(1− rs) (3.5)

for positive integers r, s. This formula determines the values of dimension h when the

Kac determinant, of which equation (3.4) is an elementary example, vanishes. Notice that

r ↔ s simply corresponds with b↔ 1/b.

Once inserted into a correlator, the relation (3.3) becomes a very useful differential

equation for the correlation functions of the primary operator O1,2(z) that creates |h1,2〉.
This follows because within a correlator with operators of dimension hi, a Virasoro gener-

ator L−m will act as the differential operator

L−m →
∑

{i}zi 6=z

(
(m− 1)hi
(zi − z)m

− 1

(zi − z)m−1
∂zi

)
, (3.6)

7For a thorough review see [62] or [63].
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as a consequence of stress energy tensor Ward identities. For example, applying these

differential operators and then performing a conformal transformation to send the operators

to canonical positions, in the case of O1,2 one finds

(
∂2
z +

(
2

1 + b−2

z
+

b−2

1− z

)
∂z +

b−2hH
(1− z)2

) 〈OH(∞)OH(1)O1,2(z)O1,2(0)〉
〈OH(∞)OH(1)〉〈O1,2(z)O1,2(0)〉 = 0 (3.7)

where hH is the dimension of OH . This is a version of the hypergeometric differential

equation; it is an exact relation for this correlator and its conformal blocks. One of its

solutions, the vacuum conformal block, was mentioned in equation (1.5).

In general, one obtains an (rs)th order differential equation for correlators of Or,s(z).

For the fairly wide range of cases of degenerate states with dimension hr,1, the null descen-

dant can be written in closed form as [62, 64]

∑

pi

[(r − 1)!]2
(
b2
)r−k

∏k−1
i=1 (p1 + · · ·+ pi)(r − p1 − · · · − pi)

L−p1 · · ·L−pk |hr,1〉 (3.8)

where the sum is over partitions of r into k positive integers pi. In later sections we will use

this relation to generate differential equations that must be obeyed by Virasoro conformal

blocks involving degenerate operators.

At large c, the degenerate dimensions hr,s become

hr,s
c→∞≈ c

24
(1− r2) +

1− s
2

+
(r − 1)(13 + 13r − 12s)

24
+

3
(
r2 − s2

)

2c
+ · · · (3.9)

so the h1,s approach a negative half-integer value at large c, while the hr,s with r > 1 are

proportional to (−c). In other words, the h1,s are light operators, with dimensions that

do not scale with c, while generically hr,s are heavy, and have a non-trivial effect on the

AdS3 geometry even as c→∞. These heavy operators lead to ‘additional angle’ in AdS3,

as pictured in figure 3.

3.1.1 Comments on analytic continuation and unitarity

States in unitary theories must all have positive norm. In the case of CFT2, this requires

that both c > 0 and h ≥ 0 for all states. This means that in the limit of large positive

c, correlators of operators with dimension hr,s will not be unitary.8 An immediate conse-

quence is that states with dimension hr,1 correspond to large negative mass sources in AdS.

Gravitational solutions incorporating these sources will have r+ = ir +O(1
c ) in the geom-

etry of equation (2.5), which means that they have an angular surplus, for a total of 2πr

radians. This contrasts with positive mass sources, which always create angular deficits.

At this point the reader may be wondering how we can use non-unitary conformal

blocks to study information loss. The answer is analytic continuation. As a function of c

and of intermediate operator dimensions, the Virasoro blocks are meromorphic functions

with only simple poles. The well-known Zamolodchikov recursion relations [57, 59] for the

z and q-series expansions of the blocks are based on this property. More importantly, as a

8We can study unitary values hr,s > 0 if we take c→ −∞. This may apply to correlators in dS/CFT [65].
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Figure 3. This figure provides a visualization of a space with an ‘additional angle’ totaling 4π

around the origin. This suggests the spatial geometry created by a heavy degenerate operator

with dimension h2,1 = − c
8 at large c. The hr,1 always produce a total angle equal to the integer

r times 2π.

function of the external dimensions hL and hH , the Virasoro blocks are completely analytic.

This follows because the q-expansion of the blocks converges absolutely away from OPE

limits [14], and the coefficients in the q-expansion are rational functions of c and polynomials

in hL and hH . Note that formulas like equation (1.5) appear to have square roots, but

this only occurs because of the relation between external dimensions and c for degenerate

operators, which follows from equation (3.5). There are no branch cuts or singularities as

a function of hH , as can be seen by explicitly expanding equation (1.5) in z or t.

We will see in section 3.2 that the vacuum blocks for degenerate correlators exactly

match the large c blocks (including perturbative 1/c corrections) once we analytically con-

tinue our large c results to reach external dimensions hr,s. In particular, in the large c limit,

the degenerate blocks have forbidden singularities, which are related by analytic continu-

ation to the forbidden singularities that arise from Euclidean time periodicity. We believe

that this provides very strong support for the conjecture that the degenerate blocks ‘know’

about the physics that resolves information loss. We will also provide further evidence

based on the behavior of 1/c corrections to the general heavy-light Virasoro vacuum block

in section 3.3.

3.1.2 A simple example: the O(2,1) degenerate state

In this subsection, we provide a simple example to illustrate how forbidden singulari-

ties appear at large c, and why their removal at finite c relies on a non-perturbative

effect. We will study the holomorphic vacuum block V2,1 in the 4-point function
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〈O(2,1)(∞)O(2,1)(1)OL(z, z̄)OL(0)〉. O(2,1) becomes heavy in the large c limit since

h2,1 = −1

4
(3b2 + 2), (3.10)

tends to negative infinity as we take c ∝ b2 → +∞. In this limit, the heavy operator

induces an additional angle of 2π. This additional angle geometry in AdS3 leads to a

forbidden singularity at z = 2 in the CFT vacuum block.

We will take the light operator to have dimension hL = 1 for simplicity. The null

condition on O2,1 implies the following 2nd order differential equation:

[
1

b2
∂2
z +

1

(1− z)2
+

(
2

b2z
+

(2− z)

z(1− z)

)
∂z

]
Ṽ2,1(b, z) = 0, (3.11)

where we denote Ṽ2,1 ≡ z2h2,1V2,1. The solution corresponding to the vacuum block is:

Ṽ2,1(b, z) = (1− z)2F1(2, b2 + 1, 2b2 + 2, z). (3.12)

This block is finite at z = 2. However, Ṽ2,1(b, 2) is proportional to b2 and becomes singular

as b→ +∞. This behavior is illustrated in figure 4.

Another way to see the emergence of the forbidden singularity is to take the b → ∞
limit directly in (3.11). Then we find

[
1 +

(2− z)(1− z)

z
∂z

]
Ṽ2,1(∞, z) = 0, (3.13)

with the solution

Ṽ2,1(∞, z) =
1− z

(2− z)2
, (3.14)

As expected, this forbidden singularity has the same property as the z−2 OPE singularity of

V2,1. It cannot be resolved at any order in the large c (or large b2) perturbation expansion.

In fact, we will show in section 4.1.2 that:

V2,1(b, z) =
∑

k

1

b2k
pk(z)

(z(2− z))2(k+1)
, (3.15)

where pk is a polynomial that is non-zero at z = 0, 2. So the forbidden singularity becomes

even more singular at higher orders in 1/c perturbation theory. This signals the break

down of the large c asymptotic expansion around z = 2, and implies that the removal of

this forbidden singularity is necessarily a non-perturbative effect with the schematic form

e−cf(z). We will characterize this non-perturbative effect in detail in section 4.

Comparing (3.11) and (3.13), we see that the crucial non-perturbative corrections to

the vacuum block actually originate from a ‘perturbative’ correction to the differential equa-

tion that the block obeys. We will show in 3.3 that this is in fact an universal mechanism

that removes all forbidden singularities in the vacuum blocks involving φr,1 heavy opera-

tors. We will then analytically continue in r to study the late Lorentzian time behavior of

the correlator induced by this type of non-perturbative effect.
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Figure 4. This figure shows the behavior of a degenerate Virasoro vacuum block near a forbidden

singularity for various values of the central charge c. We have specifically plotted log |V2,1| with

hL = 1 as a function of the variable log(z − 1) in the vicinity of z = 2.

3.2 Connecting degenerate and large c Virasoro blocks

In this section we will discuss the connection between correlators with degenerate operators

and the more general, but much less precise results on Virasoro blocks in the heavy-light

large central charge limit [20–26, 29]. In all cases we will find an exact match, but the

details are interesting and lead to a useful new computational method to be explored

elsewhere [66].

3.2.1 Light degenerate states and ‘Hawking from Catalan’

In this subsection we will study the case where the degenerate state is light, in the sense

that it has a fixed dimension h1,s = 1−s
2 at large c. So for this section we regard the

degenerate state as a light object probing the background created by a heavy state with

dimension hH ∝ c.
The Virasoro blocks in the heavy-light large c limit have been obtained via a number

of seemingly unrelated methods [20–26]. A recent derivation was based on a brute force

evaluation of Virasoro matrix elements. This led to a suprising new expression for the

blocks as a sum over diagrams composed of propagators and trivalent vertices. It was

then possible to compute the sum over all diagrams by observing it obeys a recursion

relation closely related to that of the Catalan numbers. The final result was a second order

differential equation for the heavy-light vacuum block [22].

If we write V = (1 − z)−hLW (z)−2hL and then use the variable t ≡ − log(1 − z), this

equation reduces to the simple form [22]

∂2
tW (t) +

1

4
r2

+W (t) = 0 (3.16)
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where we we recall that r+ ≡ i
√

1− 24hHc . This coincides precisely with the leading large

c limit of the h1,2 null state equation (3.7). Thus the null descendant differential equation

for h1,2 coincides with the ‘Hawking from Catalan’ differential equation in the large c limit,

and of course this also implies that the blocks themselves must be identical at large c.

We can also examine the cases h1,s at leading order in the large c expansion. In fact,

the results of [62, 67] imply that in the large c, the differential equation takes the form



∏

k=− s−1
2 +2j

j=0,...,s−1

(
∂t −

kr+

2

)

 e

s−1
2
tVs(t) = 0. (3.17)

The details are reviewed in appendix A. Substituting Vs = e
1−s
2
t[W (t)]s−1 we see that any

W satisfying equation (3.16) will automatically satisfy these differential equations. Thus

these equations all have the large c heavy-light vacuum block as solutions.

These results can be extended to obtain information about perturbative 1/c corrections

to the heavy-light vacuum blocks. The idea is to assume that the general heavy-light

vacuum block V can be written as the ansatz9

V = exp


hL

∞∑

n,m=0

(
1

c

)m(hL
c

)n
fmn

(
hH
c
, z

)
 (3.18)

Then the functions fmn can be determined by expanding the exact results for degener-

ate external operators and matching [66]. We have used this method to verify that the

degenerate states match onto results for the vacuum block [29, 68] to first order in 1/c

perturbation theory.

3.2.2 Heavy degenerate states

We can also study the limit where the light operator dimension hL is a free variable, while

the heavy operators are degenerate states with dimension hr,1. In fact, this case will be

of greater interest in the sections to follow, because the associated vacuum blocks have

forbidden singularities at c = ∞ and interesting non-perturbative structure in the 1/c

expansion. For now we will focus on the connection between these correlators and the

general heavy-light large c Virasoro blocks.

When the hH = hr,1, we find that r+ = 2πr with positive integer r, and so the

heavy-light large c vacuum block becomes

Ṽ(t) =
ehLt(1− e−t)2hL

[
sinh

(
r
2 t
)]2hL , (3.19)

where we recall t = − log(1− z). This has r singularities at t = πik
r for k = 0, 1, · · · , r− 1,

where the case k = 0 is the OPE limit and the other singularities are forbidden.

9Until recently it was not clear whether such an ansatz would be valid, but [21] provides a derivation for

the case of the vacuum block. However, a similar expansion of general Virasoro blocks in the intermediate

operator dimension hI
c

would not be valid, as the large c limit with hI fixed is not equivalent to the large

c limit with hI/c fixed.
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This result can also be obtained from the large c limit of the rth order null state

differential equation obtained from the operator of equation (3.8), as we now show. In

fact, when expanded at large c, we find that the differential equations become first order,

with the universal form

(∂t − hLgr(t)) Ṽ(t) = 0, (3.20)

where

gr(t) = coth

(
t

2

)
− r coth

(
rt

2

)
(3.21)

This equation has the heavy-light vacuum block with hH = hr,1 as its unique solution. For

instance, we have already discussed the exact differential equation in the case h2,1, valid

for general c and hL. In the current variables, it reads
[
∂t − g2(t)

hL + b−2∂2
t

1 + b−2

]
Ṽ(t) = 0, (3.22)

which approaches (3.20) in the limit b→∞.

To derive (3.20) more generally, note that in the limit of large c, the states Or,1 with

dimension hr,1 are approximately annihilated by L−r. More precisely,

0 =

(
L−r +

1

c

∑

pi

bpiL−p1 . . . L−pk

)
|hr,1〉 (3.23)

where the coefficients bpi are O(1) or smaller. To process the resulting differential equation

on the four-point function in such a way that the 1/c-suppressed terms do not produce

additional powers of hr,1 (and therefore powers of c) upstairs, we write it as

0 = 〈hr,1|LrOr,1(0)OL(x)OL(y)〉+
∑

pi

bpi
c
〈hr,1|Lpk . . . Lp1Or,1(0)OL(x)OL(y)〉. (3.24)

Now, all L’s can be commuted to the right until they annihilate the vacuum. They all

commute with Or,1(0) since this is a primary operator inserted at the origin, and the

commutators withOL just produce factors of hL ∼ O(1). Consequently, only Lr contributes

at leading order in 1/c. The four-point function in the above configuration is related to

V(z) by

〈hr,1|Or,1(0)OL(x)OL(y)〉 =
1

(x− y)2hL
Ṽ
(

1− x

y

)
. (3.25)

The action of Lr in (3.24) therefore takes the form

0 = x(x− y) (xr − yr) Ṽ ′
(

1− x

y

)
+ yhεṼ

(
1− x

y

)
(3.26)

× (xr(−rx+ ry + x+ y)− yr(rx− ry + x+ y)) .

Setting y = 1 and x = e−t (which involves multiplying the correlator by the Jacobian factor

e−hLt), this reduces to eq. (3.20).

Note that since the relations we obtain from external degenerate operators are exact,

we also have the ability to study ‘heavy-heavy’ correlators, where all external operators

have dimensions scaling with h ∝ c at large c. But for this paper we will only focus

on the heavy-light limit, where we have concrete expectations from AdS3 and from prior

CFT2 calculations.
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3.2.3 Light degenerate states and quasi-normal modes

In the heavy-light limit for heavy operators above the BTZ threshold, crossing symme-

try implies that the OPE of a heavy and a light operator contains a dense spectrum of

states. The spectral function has poles at the locations of the quasi-normal modes of the

corresponding BTZ metric [69]:10

hn = hH + 2πiTH(hL + n), (n ∈ N). (3.27)

It is interesting to ask how close light degenerate states can come to reproducing this

aspect of the spectrum. At first sight, degenerate operators would seem to be qualitatively

different: light degenerate states have only a finite number of operators in their OPE with

any other state, and thus cannot reproduce the spectrum of quasi-normal modes. However,

we will see shortly that they come extremely close, and in the limit r →∞ they reproduce

the full quasi-normal mode spectrum.

This is easiest to see in the Coulomb gas expressions for the degenerate state weights,

which refer to the charge α:

h(α) = α(Q− α), Q ≡ b+
1

b
. (3.28)

The charges α and Q−α correspond to the same weight and in fact to the same operator.

The charges of degenerate operators are

αr,s = −1

2

(
(r − 1)b+ (s− 1)b−1

)
. (3.29)

When the degenerate operator Or,s fuses with an operator OH of charge αH , the only states

it can make have charge αb satisfying [62]

αb = αH + p
b

2
+ q

b−1

2
, (3.30)

for the following allowed values of p, q:

p = −(r − 1),−(r − 3), . . . , (r − 3), (r − 1),

q = −(s− 1),−(s− 3), . . . , (s− 3), (s− 1). (3.31)

In the case where the degenerate operator is a light probe, one has r = 1. At large b

with hH/c fixed, we have αH ≈ b
2 (1± 2πiTH) + 1

2b

(
1∓ 1

24iπTH
± 13iπTH

6

)
. It follows that

the spectrum of operators in the O1,s ×OH OPE at large c is11

hb = hH + 2πiTH (h1,s + n) , n = 0, . . . , (r − 1), (3.32)

which is exactly the spectrum of quasi-normal modes in a black hole background, truncated

at n = (r − 1).

10Such modes are unstable and have corresponding imaginary components in the frequencies, so do not

correspond to primary operators in the CFT (which are necessarily stable eigenstates). However, in this

they are not much different from unstable particles in scattering amplitudes and their corresponding poles

in the complex plane.
11While this paper was in preparation, [70] appeared which also demonstrates this point.
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3.3 Universal resolution of forbidden singularities

In section 3.2 we explained how the vacuum Virasoro blocks involving a pair of degenerate

external operators agree with recent results on more general vacuum blocks in the heavy-

light, large central charge limit. At large c, heavy-light blocks have forbidden singularities,

as discussed in section 2.2, and these persist to all orders in the perturbative 1/c expansion.

Since for any finite value of c the vacuum block only has OPE singularities, the forbidden

singularities must be resolved by non-perturbative or ‘e−c’ effects.

In this section we provide an explicit characterization of the way that these forbidden

singularities are resolved at finite c by the degenerate Virasoro vacuum blocks. We begin

by providing some sample data concerning these singularities. However, our most inter-

esting finding is that for all heavy degenerate operators with dimensions hr,1, forbidden

singularities are resolved in a universal way. In the vicinity of a forbidden singularity at

x = 0, the vacuum block always behaves like

S(x, c) ≈
∫ ∞

0
dp p2hL−1e−px−

σ2

2c
p2 (3.33)

at large c, up to some order one coefficient σ2 in the exponent, which we explicitly compute.

This means in particular that the singularities have a characteristic ‘width’ of order 1√
hLc

in the z or t coordinates. We conjecture that this function also characterizes the general

Virasoro vacuum block near forbidden singularities at large but finite c. As we discuss

in section 3.3.2 and appendix B, a study of the 1/c corrections to the general heavy-light

vacuum block provides strong evidence in support of this conjecture.

3.3.1 Growth of OPE coefficients at finite vs infinite c

Both Virasoro and global conformal blocks are expected to converge in the region |z| < 1.

We can greatly extend the region of convergence by switching to the ρ coordinates, related

to z by

ρ ≡ z

(1 +
√

1− z)2
(3.34)

Using ρ is equivalent to performing radial quantization of the correlator 〈O(1)O(−1)

O(ρ)O(−ρ)〉, as pictured in figure 5, leading to convergence for |ρ| < 1. This corresponds

to the entire z-plane minus a branch cut from [1,∞). In fact, for CFT2 we can obtain an

even greater range of convergence using the uniformizing coordinate q [14, 59], but for this

pragmatic exercise the simpler ρ coordinates will be sufficient.

The convergence of V will be curtailed in the presence of forbidden singularities. Let us

study the concrete example of the h1,3 degenerate Virasoro block. As c → ∞, it develops

forbidden singularities at z± = 1−e± 2πi
3 , which correspond with ρ± = ∓ i√

3
. If we write it as

V3,1(ρ) =
∑

n

anρ
n (3.35)

then the presence of the forbidden singularities would lead to exponential growth of

an ∝ 3n/2. Thus at large c, we expect to see this growth in the low order coefficients,

but eventually an must transition to a polynomial behavior in n at large orders. To study
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Figure 4. This figure displays the logarithm of the 2nth coe�cient from equation (3.24), ie the

quantity log |a2n|, for various values of c. At c = 1 the coe�cients grow exponentially for all n,

leading to a forbidden singularity at |⇢±| = 1p
3
. At finite c the coe�cients initially grow exponentially,

but then fall back to sub-exponential behavior at large n.

coe�cients an:

an =

�
(n� 4)

�
28b4 + b2(8n+ 2)� 3(n� 6)(n� 3)

�
� 64b2

�
4b2 � n+ 6

�
hL

�

n (2b2 + n+ 1) (6b2 + n+ 2)
an�4

+

�
(n� 2)

�
�28b4 + b2(8n� 50) + 3(n� 3)n

�
� 64b2

�
4b2 + n

�
hL

�

n (2b2 + n+ 1) (6b2 + n+ 2)
an�2 (3.25)

where we note that only even powers of ⇢ appear. The initial conditions for the recursion

relation are a0 = 1 and a2 = �32(1+2b2)b2hL

6b2+13b2+6
. We have plotted the behavior of the an for

various values of c in figure 4. Experimentally, we have observed that the exact coe�icents

at finite c begin to diverge from the large c coe�cients by an order one factor at n / p
c.

3.3.2 Behavior Near a Forbidden Singularity

To explore how the singularities are resolved in the degenerate state di↵erential equation (as

shown in figure 5) we need to work beyond the leading order in large c equation (3.14). From

(3.8), we can read o↵ that the null state at sub-leading order in 1/c is9

0 = | i ⇡

0
@L�r +

6

c

r�1X

j=1

1

j(r � j)
L�r+jL�j

1
A |hr,1i. (3.26)

9It is somewhat easier to derive the coe�cients (3.26) directly by applying the constraints

limc!1 1
c
hhr,1|LiLr�i| i = 0.
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Figure 5. The figure on the left indicates the positions of the operators and the forbidden singu-

larities (green stars) associated with the ρ-expansion of V3,1. The figure on the right displays the

logarithm of the 2nth coefficient from equation (3.35) for various values of c. At c = ∞ the coeffi-

cients grow exponentially for all n, leading to a forbidden singularity at |ρ±| = 1√
3
. At finite c the

coefficients initially grow exponentially, but then fall back to sub-exponential behavior at large n.

this behavior, we can use the 3rd order null state differential equation to obtain a recursion

relation for the coefficients an:

an =

(
(n− 4)

(
28b4 + b2(8n+ 2)− 3(n− 6)(n− 3)

)
− 64b2

(
4b2 − n+ 6

)
hL
)

n (2b2 + n+ 1) (6b2 + n+ 2)
an−4

+

(
(n− 2)

(
−28b4 + b2(8n− 50) + 3(n− 3)n

)
− 64b2

(
4b2 + n

)
hL
)

n (2b2 + n+ 1) (6b2 + n+ 2)
an−2 (3.36)

where we note that only even powers of ρ appear. The initial conditions for the recursion

relation are a0 = 1 and a2 = −32(1+2b2)b2hL
6b2+13b2+6

. We have plotted the behavior of the an for

various values of c in figure 5. Experimentally, we have observed that the exact coeffiicents

at finite c begin to diverge from the large c coefficients by an order one factor at n ∝ √c.

3.3.2 Behavior near a forbidden singularity

To explore how the singularities are resolved in the degenerate state differential equation

(as shown in figure 4) we need to work beyond the leading order in large c equation (3.20).

From (3.8), we can read off that the null state at sub-leading order in 1/c is12

0 = |ψ〉 ≈


L−r +

6

c

r−1∑

j=1

1

j(r − j)L−r+jL−j


 |hr,1〉. (3.37)

12It is somewhat easier to derive the coefficients in (3.37) directly by applying the constraints

limc→∞ 1
c
〈hr,1|LiLr−i|ψ〉 = 0.
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As before, the large c differential equation is most effectively extracted from the operators

arranged as follows:

0 = 〈ψ|Or,1(0)OL(x1)OL(x2)〉

≈
〈
hr,1

∣∣∣∣∣∣
Or,1(0)


Lr +

6

c

r−1∑

j=1

1

j(r − j)LjLr−j ,OL(x1)OL(x2)



〉

(3.38)

where the four-point function in this configuration is related to the function V(z) by (3.25).

It is straightforward though tedious to work out the commutator of any individual factor

LjLr−j above. However, our main interest is in the behavior near the forbidden sin-

gularities, at z = 1 − e
2πin
r . To explore the behavior around this singularity, we take

x1 = 1, x2 = 1− z in a scaling limit

1− z = e−
2πin
r
−x
b , (3.39)

where b→∞, and b is defined conventionally by c = 1 + 6(b+ 1/b)2. At fixed x and large

|b|, this scaling limit therefore zooms in on the singularity and allows us to see explicitly

how the divergence is cut off by finite c effects. The correction terms in (3.37) survive in

this large b limit, and the new resulting leading order differential equation is

0 = 2hLV(x) + xV ′(x)− V ′′(x)σ2
n(r), (3.40)

where

σ2
n(r) ≡ 4

r−1∑

j=1

sin2
(
jnπ
r

)

rj(r − j) . (3.41)

This differential equation is solved by the function 1F1

(
hL,

1
2 ,

x2

σ2
n(r)

)
. It has an integral

representation of the form of equation (3.33), to be further discussed in section 4.1.1, and

so the function σn(r) sets the width of the correlator around the saddle point x = 0.

While this differential equation is derived for r a positive integer, σ2
n(r) can be analytically

continued as a function of r, and it is tempting to guess that this generalizes (3.40) beyond

the case of degenerate operators to a universal rule for how the forbidden singularities are

resolved in the conformal blocks. At large r, σn(r) is particularly simple:

σ2
n(r)

r�1≈ 4

r2

∫ 2πn

0

dt

t
sin2

(
t

2

)
, (3.42)

suggesting that σ2
n(hH) ≈ − c

6hH

∫ 2πn
0

dt
t sin2

(
t
2

)
in the limit of large c and hH/c.

Now we will provide a piece of evidence that the forbidden singularities in general

heavy-light Virasoro vacuum blocks at large c are resolved in the same way. Let us assume

for a moment that the blocks are well approximated by the following solution to (3.40):

S(x, c) ≈
∫ ∞

0
dp p2hL−1e−px−

σ2

2b2
p2 (3.43)
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in the vicinity of their forbidden singularities. Then the 1/c corrections to the leading large

c limit near the singularity must take the form

1

x2hL
− 6σ2hL(2hL + 1)

c

1

x2hL+2
+ · · · (3.44)

Notice that this makes a precise prediction for the strength of the singularity in x, for

the relationship between the h2
L and hL terms, and for the overall coefficient. Since we

have an explicit expression for the leading and 1/c corrected heavy-light blocks [26, 29], we

can search for the x−2hL−2 term in the vicinity of forbidden singularities, and extract the

coeffiicent σ2. In appendix B we show that the general Virasoro blocks match precisely to

the prediction from this analysis and from equation (3.42).

3.4 Large Lorentzian time behavior from an interesting approximation

AdS correlators in a black hole background decay exponentially at late times, signaling

loss of information concerning initial perturbations. As we discussed in section 2.3, the

heavy-light Virasoro blocks with hH > c
24 (above the BTZ black hole threshold) exhibit

the same behavior as c → ∞. Thus it would be very interesting to be able to compute

the exact heavy-light blocks at late Lorentzian times. We do not have an exact relation

for these blocks, but we can make a very interesting approximation that incorporates the

non-perturbative physics that resolves the forbidden singularities.

We showed in section 3.2.2 that the blocks with heavy degenerate operators obey a 1st

order differential equation to leading order at large central charge. Furthermore, a universal

2nd order differential equation seems to resolve all forbidden singularites, as explained in

section section 3.3.2. In fact, all of these differential equations can be obtained from limits

of a single, 2nd order master equation. It can be written as

− hLgr(t)V(t) + V ′(t) +
Σr(t) + Σ−r(t)

b2
V ′′(t) = 0, (3.45)

where

gr(t) = coth

(
t

2

)
− r coth

(
rt

2

)
(3.46)

Σr(t) = − 1

r sinh
(
rt
2

)
(
e−

rt
2 B̃r(t) + e

rt
2 B̃r(−t)− 2 cosh

(
rt

2

)
B̃r(0)

)
. (3.47)

We have introduced the function B̃r(t) which can be represented in a few different ways

that each have different advantages. First, it arises directly from the sum over the different

terms in (3.37) as the following sum:

B̃r(t) =

r−1∑

j=1

etj

j
. (3.48)

This finite sum can be written as the difference of two infinite sums when |et| < 1:

B̃r(t) = − log(1− et)− ert
∞∑

k=0

ekt

k + r

= − log(1− et)− ert2F1(1, r, 1 + r, et)

r
= − log(1− et)−B(et; r, 0), (3.49)
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where B(z; a, b) is the incomplete beta function. This second form is more useful since

we are interested in analytically continuing the function to imaginary r. More precisely,

the main reason for our interest in equation (3.45) is that we can analytically continue

r → 2πiTH to study physical correlators associated with BTZ black hole physics. We

already saw in section 3.3.2 and appendix B that this procedure appears to produce sensible

results.13 Here, we will use it to study the large Lorentzian time behavior of the vacuum

Virasoro block.

A final form for B̃r(t) that is useful for understanding its analytic continuation in

Lorentzian time is its derivative

e−t
d

dt
B̃r(t) =

1− et(r−1)

1− et . (3.50)

As one increases Im(t), et winds around 1 in the complex plane, picking up a contribution

each time from the pole at t = 0. This allows the function to ‘remember’ how much

Lorentzian time has passed. We discuss this effect in more detail below.

In the large c ∝ b2 limit we can drop the entire V ′′ term to obtain equation (3.20), while

equation (3.40) can be obtained by scaling equation (3.45) towards a forbidden singularity.

This master differential equation can be derived by repeating the analysis from section 3.3.2

without taking the large b limit with fixed x = bz. For r = 2 this equation is exact, but

for degenerate operators φ(r,1) with r > 2 it neglects effects of order 1
c2

through 1
cr−1 . We

have also neglected effects ∼ 1
c in the coefficients of the V(t) and V ′(t) because they are

sub-dominant to the leading order terms when this 1/c expansion is controlled, and because

unlike the V ′′(t) term, they are not necessary to regulate the forbidden singularities.

The master equation appears perturbative, but in fact its solutions incorporate both

perturbative and non-perturbative effects in 1/c, as can be seen by (3.43), with non-

perturbative effects becoming important in the vicinity of forbidden singularities. One

way to understand this is to perturbatively expand V in powers of 1/c. The leading term

in V just solves (3.45) without the 1/c correction terms, and produces a source term for the

subsequent higher orders. When V is O(1), then source term it produces is O(1/c), and

consequently (3.45) just produces perturbative 1/c effects.14 However, when V is O(c) or

larger, as it is in the vicinity of forbidden singularities, the source term is large and (3.45)

captures some non-perturbative effects as well.

The correction term can of course also become important when it becomes large

through its time-dependence. In the Lorentzian regime, increasing tL = Im(t) causes

13In particular, we invert the relation c
24

(1 − r2) = hH and analytically continue as a function of hH .

Because the inverse r = ±
√

1− 24hH
c

passes through a branch cut when hH/c becomes positive, we have

to make a choice about how to treat the two different roots. In (3.45), we have taken both roots and added

them together. Our motivation in doing this is that this prescription passes a highly non-trivial check in

appendix B, and seems very reasonable given the analytic structure of the blocks themselves.
14In fact, solving (3.45) (plus the 1/c coefficients of V and V ′ terms that we have neglected) at next-to-

leading order in a formal 1/c is one way of deriving the perturbative 1/c corrections to the block. Since

the analytic continuation from the non-unitary region to the unitary region appears to be justified, the

differential equation (3.45) may provide an easier method for deriving 1/c corrections to Virasoro conformal

blocks in the heavy-light limit than that adopted in [29].
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Figure 6. In all cases, we take r = 2πiTH = i
2 and t = tE + itL with fixed tE = −i. Left, top: the

magnitude of the coefficient term 6
cΣr(t) for various values of c as a function of Lorentzian time.

At late Lorentzian time, it grows approximately linearly with a slope of order 1/SBH . Right, top:

same as left, top, but on a log scale to show the absolute size more clearly. Bottom: plots of the

numerical solution to (3.45) for various values of c. The solutions track the c =∞ solution at early

times, until the correction term becomes important at times of order tL ∼ SBH , as can be seen in

the plot. The large time behavior should not be taken literally, as our approximations break down

for tL & SBH .

B̃r(t) to pick up a shift by an exponential function every 2π, as can be seen from the in-

tegral expression (3.50) or from its expression (3.49) in terms of hypergeometric functions.

This produces linear times exponential growth, which becomes approximately linear growth

in Σr at late Lorentzian times due to the factor of sinh( rt2 ) in the denominator. This is

shown explicitly in figure 6, where we plot the magnitude of Σ for a range of c as a function

of tL; in all cases, we choose r = i
2 and t = tE + itL with tE = −i. We also show the

behavior of the solutions V to (3.45) for these choices of parameters. At early times, these

track the c = ∞ solution, and begin to deviate significantly after Σ(t) grows sufficiently

large. Once Σ(t) ∼ c, keeping just 1/c terms in the differential equation (3.45) is no longer

justified. So we do not have a controlled approximation for the conformal blocks at very

late Lorentzian times. We have checked that the 1/c suppressed coefficients of V and V ′
grow at the same rate as Σ(t), so we cannot neglect their effects at late times either.
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However, we can still determine when these 1/c correction terms start to become

important. Parametrically, because of the linear growth in tL and the factor of r = 2πiTH
in the denominator, we have

1

c
Σr(t) ∼ O

(
tL
cTH

)
∼ O

(
tL

SBH(hH)

)
, (3.51)

where SBH(hH) = π2

3 cTH is the corresponding black hole entropy. Thus we see that de-

viations from the exponential decay at late Lorentzian time appear to arise at times of

order tL ∼ SBH . This is what we would expect if the exponential decay ceases when

logV ∼ −SBH [16]. In general, by analytically continuing in r, we will obtain from equa-

tion (3.8) an infinite series of other corrections at order 1/cn with increasingly complicated

time-dependent coefficients. It would be interesting to understand the Lorentzian time-

dependence of further sub-leading terms, and to see if the 1/c approximation entirely breaks

down at tL ∼ SBH .

4 Information restoration as a non-perturbative effect

In section 2 we discussed forbidden singularities as a signature of information loss at large

central charge. Then in section 3 we connected the exact correlators of degenerate opera-

tors to more general results about the heavy-light Virasoro vacuum block, obtaining some

explicit theoretical ‘data’ about the resolution of forbidden singularities at finite c. We also

obtained some results on the late Lorentzian time behavior of Virasoro blocks.

In this section we will try to characterize the resolution of information loss as an

explicit non-perturbative effect. We consider two closely related approaches. As reviewed

in section 1.2, singularities in the Borel resummation of a perturbation series are intimately

connected to classical solutions of the field equations. So our first approach will be to

study the Borel resummation of the 1/c perturbation series. With our second approach,

we will represent a degenerate conformal block as a contour integral and study its large

c asymptotics. In both cases, the aspiration is to connect the behavior of the Virasoro

vacuum block to the saddle points and the contour of integration for the gravitational (or

Chern-Simons [36, 37]) path integral in AdS3 in future work. In other words, we would

eventually like to express the exact CFT2 conformal block as a specific sum over AdS3

geometries, including both the perturbative vacuum and other solutions corresponding to

the exchange of heavy states. Understanding the large c saddle points of the Virasoro

blocks themselves is a natural first step.

4.1 Borel resummation and a vacuum block

We will study the Borel resummation of the 1/c expansion of Virasoro vacuum blocks,

focusing on heavy degenerate external states. First we will study a simple model that seems

to describe the universal behavior of the blocks in the vicinity of a forbidden singularity,

and then we will study the full h2,1 block.
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4.1.1 Not just a toy model

Forbidden singularities take the form of power-laws x−2h. We would like a model that

regulates this singularity in such a way that at c =∞ we recover the power-law form, but

at finite c we are left with an entire function of x. It would not be sufficient to simply

move the singularity from x = 0 to some other point(s) in the complex plane; we must

eliminate the singularity completely at finite c. We argued in section 3.3.2 that in fact the

forbidden singularities are resolved by a simple universal function given in equation (3.33),

which is actually one of simplest models one might imagine with the desired properties.

Let us consider the Borel resummation of this function in 1/c perturbation theory.

We can write S as the formal series in 1/c by expanding the integrand

S(x, c) =

∫ ∞

0
dp p2h−1e−xp

∞∑

n=0

1

n!

(
−1

c

)n
p2n

=

∞∑

n=0

Γ(2h+ 2n)

n!

(
−1

c

)n
x−2h−2n (4.1)

but this series expansion does not converge for any value of x or c, due to the factorial

growth of the gamma function. Moreover, the higher order terms become ever more singular

near x = 0. As we discuss in section 3.3.2 and appendix B, the behavior of the 1/c term can

be used to verify our conjecture that the forbidden singularities have a universal resolution.

To resum the 1/c perturbation series, we define the Borel function

B(x, y) =

∞∑

n=0

Γ(2h+ 2n)

n!2
(−y)n x−2h−2n

=
Γ(2h)

x2h 2F1

(
h, h+

1

2
, 1,−4y

x2

)
(4.2)

We expect that the original function can be recovered from

S(x) =

∫ ∞

0
dy e−yB

(
x,
y

c

)
(4.3)

if the integral is well-defined, ie if there are no singularities on the real y-axis. But this

is not always the case, because the hypergeometric 2F1 will have a branch cut in its last

argument extending from 1 to infinity.15 This means that there is a branch cut in the Borel

integrand beginning at

y = −x
2c

4
(4.4)

and extending to infinity. This intersects the real axis when e.g. c > 0 is real and x is

imaginary. In applications to the Virasoro blocks we would take x = z − z∗, with z∗ the

position of a forbidden singularity, so imaginary values of x would be physically relevant.

Most importantly, when x ≈ 0 with fixed c we are in the vicinity of the forbidden singularity,

and in this region the Borel resummation becomes completely ambiguous, signaling the

importance of non-perturbative effects near the forbidden singularities.

15The function 2F1

(
h, h+ 1

2
, 1, 1− z

)
∼ A + Bz

1
2
−2h near z = 0, so for special values of h such as the

hL = 1 example that we will consider in the next section, the branch cut can simplify somewhat.
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4.1.2 The Vacuum block with a heavy degenerate state

We would like to study the vacuum block involving a pair of heavy degenerate states

with dimension h2,1 and a light state with dimension hL. This example was discussed in

section 3.1.2, and its vacuum block was plotted in the vicinity of its forbidden singularity

in figure 4. It is easy to write this block in closed form; for example for hL = 1 it takes the

particularly simple form

Ṽ2,1(z) = z2h2,1V2,1 = (1− z)2F1(2, b2 + 1, 2b2 + 2, z), (4.5)

where we wrote Ṽ because we factored out an overall 1
z2

for simplicity later on. Our goal

in this section will be to study its behavior in a 1/c ∝ 1/b2 perturbation expansion, and

then to Borel resum the resulting asymptotic series.

The idea is to write this degenerate vacuum block as a series in 1
c ≈ 6

b2
with functions of

the kinematic variable t = − log(1− z) as coefficients. The 2nd order differential equation

that the block obeys provides a recursion relation for these functions. It turns out that for

the particular value hL = 1, the recursion relation takes an especially simple and useful

form. We define a new variable16

s ≡ 2 log

(
sinh

(
t

2

))
, (4.6)

noting that the forbidden singularity at z = 2 corresponds to s = πi. Now if we write

Ṽ2,1(s) =
√

1 + e−s
∑

k

1

(b2)k
Gk(s), (4.7)

we find that the coefficient functions are remarkably simple17

Gk(s) =

(
−∂s +

1

2

)
(−∂s)k−1G0(s), (4.8)

where the leading coefficient is:

G0(s) =
e
s
2

(1 + es)
3
2

. (4.9)

The simple form of Gk implies that the Borel function can be obtained from translations

s→ s+ y of G0(s) and
∫
G0(s). Explicitly

B(s, y) =
∞∑

k=0

yk

k!

(
−∂s +

1

2

)
(−∂s)k−1G0(s) = − e

3
2

(s−y)

(1 + es−y)
3
2

+
1

(1 + e−s)
1
2

. (4.10)

16The reason for choosing this s variable is the hypergeometric function identity: Ṽ2,1(z)|hL=1 =

2F1

(
1, b2, b2 + 3

2
; z2

4(z−1)

)
, where es = − z2

4(z−1)
.

17We used the identity ∂w
[
(1−w)a+b−c wc−aF (a, b, c, w)

]
= (c−a)wc−a−1 (1−w)a+b−c−1 F (a−1, b, c, w)

in deriving this result.
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Therefore, Ṽ2,1 can be written as the Borel transform

Ṽ2,1(b, s) = 1−
√

1 + e−s
∫ ∞

0
dy

e−y−
3y

2b2
+ 3s

2

(
1 + es−

y

b2

) 3
2

. (4.11)

One can directly verify that this Borel integral reproduces Ṽ2,1.

We are interested in the behavior of the integrand of equation (4.11), and especially in

its singularities as a function of y for various values of b and s (which depends on our usual

kinematic variable t through equation (4.6)). The simple denominator has singularities at

yn = b2 (s− πi(1 + 2n)) (4.12)

for integers n. This is interesting because when s ≈ πi, the Borel integrand has a singu-

larity at y = 0, the very beginning of the integration contour. This signals the complete

breakdown of 1/c perturbation theory about the vacuum, which is exactly what we expect

in the vicinity of a forbidden singularity. Note that if we expand s(t) about the forbidden

singularity at t = πi, we find

s(t) ≈ iπ +
1

4
(t− iπ)2 + · · · (4.13)

We see that to keep the singularities yn in the Borel plane fixed as we take the semi-

classical limit b → ∞, we must keep the quantity b(t − iπ) constant. This is the scaling

we discovered in section 3.3.2 and it is also appropriate for the Gaussian example from the

previous section, recalling that c ∝ b2.

We explained in section 1.2 that singularities of the Borel integrand should correspond

with classical solutions of the relevant field equations, which in this case would be Einstein’s

equations in AdS3. We expect that these classical solutions or ‘solitons’ correspond to

heavy, non-perturbative states in the theory. So we would like to determine which physical

state(s) are associated with the non-perturbative effect that we have discovered. Since V2,1

represents a correlator of degenerate CFT operators, the physical states that are exchanged

follow from the fusion rule

O(2,1) ×O(2,1) = 1 +O(3,1). (4.14)

So the non-perturbative effect must come from the exchange of a ‘heavy’ O3,1 state.

We can argue for this conclusion more explicitly by noting that V(2,1) obeys the second

order differential equation (3.22). So the contribution of a contour wrapped around the

branch cut in equation (4.11) must also obey this differential equation. The two solutions

to that equation correspond to the vacuum or ‘1’ Virasoro block and to the O(3,1) Virasoro

block. Thus we see that when we expand the exact vacuum block in 1/c perturbation theory,

there is a non-perturbative contribution in the Borel plane from the ‘solitonic’ O(3,1) state.

We have not found an explicit expression for the Borel resummation of the 1/c per-

turbation expansion of more general degenerate vacuum blocks. However, based on the

universality of the forbidden singularities, we expect that the general features from the

(2, 1) example will continue to hold. In particular, we expect that only states allowed in
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the OPE of OH × OH will appear as branch cuts in the Borel plane of the resummed

vacuum block. For the examples of interest with identical heavy degenerate operators, the

fusion rules are [62]

O(r,s) ×O(r,s) =
r∑

k=1

s∑

k′=1

O(2k−1,2k′−1) (4.15)

with r ≥ 2. We do not expect every possible state in the OPE to contribute as large c

non-perturbative contributions to the vacuum block. For example, we do not expect the

light states O(1,2k′−1) appearing in the OPE to be related to the resolution of forbidden

singularities. We will study the example of O(3,1)×O(3,1) and O(2,2)×O(2,2) in appendix C.

Finally, notice that in both this section and the last, we found a branch cut in the

Borel plane, not a set of isolated poles. We suspect this is because we are seeing the

combined contribution of a given state (e.g. O(3,1)) plus all of its Virasoro descendants.

In the physically relevant case of a generic heavy-light Virasoro vacuum block, we would

expect to find an infinite number of branch cuts, one for each forbidden singularity. It will

be interesting to understand whether these form a continuum of heavy states in AdS3, and

whether such a continuum begins at the BTZ black hole threshold.

4.2 Asymptotic analysis of a degenerate block

The degenerate Virasoro vacuum blocks can be written as contour integrals, known as the

Coulomb gas representation [34, 35, 62]. This means that we can study these Virasoro

blocks at large central charge using the methods of asymptotic analysis. In particular, we

can re-write the Coulomb gas integrals in the form

V =

∫

C
dw eI(b,z;w) (4.16)

for some contour C, and study the saddle points18 of the ‘action’ I at large but finite c ∝ b2.

As compared to the Borel resummation approach of the previous section, these methods are

not as intimately connected to 1/c perturbation theory, but they might have a more direct

relationship with the semi-classical gravitational path integral in AdS3. For example, we

might hope to uncover a relationship between the saddle points of the Coulomb gas integrals

and classical solutions of AdS3 gravity, Chern-Simons theory, or Liouville theory.

As we will discuss, the physical states exchanged in a conformal block do not correspond

with a single saddle point of I. In the cases we examine, a single saddle point can be

associated with the vacuum block, but non-vacuum blocks arise as linear combinations of

saddle points. At this stage it is unclear whether we should focus on the saddle points or

CFT primary states, so we will comment on both. In section 4.2.1 below we review the

methodology and discuss the simplest example; we relegate more complicated examples to

appendix C, providing only a brief summary in section 4.2.2.

4.2.1 Virasoro blocks with external O(2,1)

In this subsection we revisit the simplest heavy degenerate operator O(2,1). We will take

the simplifying limit hL = 1, in which case the degenerate four point function can be

18For a relevant review see section 3 of [36].
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written as

〈OL(∞)OL(1)O(2,1)(z)O(2,1)(0)〉 ∼ z−2h(2,1)(1− z)

∫

C
dw exp I, (4.17)

where we refer to the exponent

I(2,1) ≡ b2 log
[
w(1− w)

]
− 2 log(1− wz) (4.18)

as the “action”, and we have written the central charge as c = 1 + 6
(
b+ 1

b

)2
. We use

“∼” instead of an equality because we will not keep track of the normalization constant,

and because different contours of integration can produce different conformal blocks or

correlators. The integrand exp I(2,1)(w) has a singularity at w = 1
z . This singularity will

play a crucial role in this section, since integration contours must be deformed to avoid it

as we analytically continue the kinematic variable z.

If our goal is to pick out specific Virasoro blocks, then we can choose the integration

contour C to be either [0, 1] or [1
z ,+∞).19 To connect a given contour to a specific conformal

block (or linear combination of blocks) we can study the OPE limit z → 0. At small z, the

integral on [0, 1] becomes

z−2h(2,1)(1− z)

∫ 1

0
dw eI(2,1) ∝ z−2h(2,1) , (4.19)

which means that this contour of integration produces the Virasoro vacuum block. The

integral over [ 1
z ,∞] at small z is

z−2h(2,1)(1− z)

∫ ∞
1
z

dw eI(2,1) ∝ z−2h(2,1) × z−2b2−1 = z−2h(2,1)+2h(3,1) . (4.20)

This is the Virasoro block corresponding to the exchange of the primary state created by

O(3,1) and its Virasoro descendants.

As will be familiar from the study of path integrals, critical points (or saddle points)

occur when the action is stationary with respect to the integration variable w. Each critical

point w = pi is associated with steepest descent contours (of the real part of the action I)

passing through it. Following [36], we refer to the union of steepest descent contours passing

through a critical point pi as Ji, which are known as ‘Lefschetz thimbles’. In general, the

Ji are not in one-to-one correspondence with CFT states.

The steepest descent contours are curves in the complex w plane parameterized by a

real number t, so that w(t) satisfies a flow equation

dw

dt
= − ∂Ī

∂w̄
,

dw̄

dt
= − ∂I

∂w
, (4.21)

Famously, Im I is constant along a steepest descent contour,

1

2i

d(I − Ī)

dt
=

1

2i

[
∂I
∂w

dw

dt
− ∂Ī
∂w̄

dw̄

dt

]
= 0, (4.22)

19In general, by a contour on [x, y] we are really referring to a Pochhammer contour [62] associated with

the points x and y.
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so steepest descent contours can be determined from the algebraic equation Im I(2,1) =

constant. In the present case, the action I(2,1)(w) vanishes at w = 0 and w = 1, blows up

as w → eiφ∞ for any φ, and also blows up at w = 1
z , so all steepest descent contours end

at w = 0 or w = 1.

The action I(2,1) of equation (4.18) has two saddle points at w = p1 and p2, which

depend on b and z. We will focus on the regime of real b with b2 � 1 to simplify the

analysis. For the purpose of studying the forbidden singularity, it is convenient to write

z = 1 − eiθ, since the singularities of degenerate blocks all lie on the unit circle around

1. Notice that in this parameterization 1
z = 1

2 + 1
2 i cot

(
θ
2

)
, so the pole of the integrand

in equation (4.17) cuts across the [0, 1] w-contour each time θ → θ + 2π. This produces a

monodromy in the Virasoro vacuum block. We write the two critical points as p1 = 1
2 + iq−

and p2 = 1
2 + iq+ with

q∓ =
2b2 cos

(
θ
2

)
∓
√

2 (b2 − 2)2 cos θ + 2b4 + 8b2 − 8

8 (b2 − 1) sin
(
θ
2

) . (4.23)

The critical points and steepest descent contours are pictured in figure 7. Notice that

q+(π) = q−(−π), so the two critical points coincide at the forbidden singularity as b→∞,

which lies on a Stokes line. We discuss the Stokes phenomena further and provide a more

general parameterization of the critical points in appendix D.1.

The steepest descent contours, critical points, and branch points are displayed for two

choices of z in figure 7. Note that the J1 contour can be continuously deformed into a line

segment [0, 1], so evaluating the integral along J1 produces the Virasoro vacuum block. In

the more involved examples in appendix C we also use J1 to denote a contour that produces

the vacuum block. The critical points and the branch point are also pictured in figure 9.

The interpretation of the J2 contour is not as simple — it corresponds to a linear

combination of the vacuum block and the O(3,1) block (see figure 9.3 of [62]). There is a

general connection between the steepest descent contours we are finding and other contours

relevant for conformal blocks, such as [ 1
z ,∞). With real z ∈ (0, 1), consider the integrals

I± =

∫ ∞±iε

−∞±iε
dw (−w)A(1− w)B

(
1

z
− w

)C
(4.24)

∝ I(−∞, 0) + e±iπAI(0, 1) + e±iπ(A+B)I

(
1,

1

z

)
+ e±iπ(A+B+C)I

(
1

z
,∞
)

which are pictured in figure 8. The contour for I± is either directly above or below the real

axis, and I(x, y) involve piecewise integrals along the real axis with the same integrand,

which gain phase factors when the monomials in the integrand change sign. With A+B+

C < −1 we can close both contours I± at infinity to find that I+ − I− = 0, so we can

relate the integral on [ 1
z ,∞) to a contour integral enclosing the points 0, 1, and 1

z . This

means that up to an overall factor, the integral on [ 1
z ,∞) is equal to an integral on J2−J1.

For more general A,B,C we can use this method to relate J2 − J1 to a Pochhammer

contour [62]. This procedure is also useful for interpreting the higher dimensional integrals

discussed in appendix C.
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Figure 7. These figures show the positions of the critical points (black dots) of the action I(2,1)
and the associated steepest descent contours. Darker regions indicate smaller values of Re I(2,1),
and the steepest descent contours can only end at w = 0 and/or w = 1, where I(2,1) → −∞. The

integrand has a singularity at the branch point w = 1
z , and so the contours of integration cannot

cross this point without changing the value of the integral; this is why J1 6= J2. In the left figure,

we chose b2 = 10 and z = 1 − e
3iπ
4 , away from all singularities. In the right figure, we chose

b2 = 100 and z = 1 − e0.98iπ to show how the contours approach each other in the vicinity of the

forbidden singularity at z = 2. Note that as z revolves around 1, the branch point singularity at

1/z = 1
2 + 1

2 i cot(θ/2) parallels the imaginary axis, forcing contour deformations. This leads to a

monodromy for the vacuum block.

10

w

1

z I+

I�

Figure 8. This figure illustrates the integration contours I± from equation (4.24). By studying the

equation I+− I− = 0 we can relate the difference between the Ji contours to integration on [ 1z ,∞).

As we take the large c ∝ b2 limit and approach the forbidden singularity at z = 2

(ie θ = π), the branch point w = 1
z moves towards the real w axis, as do the steepest

descent contours J2 and J1; see figure 9 and the right panel of figure 7 for illustrations.

The vacuum block contour integral (4.17) diverges in the limit

b→ +∞, θ → π , (4.25)

since the integration contour J1 is pulled closer and closer to the branch point w = 1
z .

From the contour integral perspective, this is the origin of the forbidden singularity. We

find a similar pattern for the more general forbidden singularities discussed in appendix C.
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q-(θ)
q+(θ)

Im( 1
z
)

0.2 0.4 0.6 0.8 1.0

θ

2π

-2

-1

1

2
Forbidden Singularity

Figure 9. This figure illustrates the positions of the critical points of I(2,1) as z = 1 − eiθ varies

over θ ∈ [0, 2π], with c ≈ 90. The critical points are located at w = 1
2 + iq±. The solid line indicates

the branch point 1
z , where exp I(2,1) has a pole, while the various dashed lines are critical points.

In the vicinity of the forbidden singularity, both critical points approach the branch point in the w

coordinate, intersecting it as c ∝ b2 → ∞. A single critical point approaches the branch point in

the OPE limit z → 0.

The action of equation (4.18) has a singularity at w = 1
z , so integration contours must

be deformed to avoid this point. The difference between a contour above and below w = 1
z

is simply the combined contour J1 − J2, which is a contour that encloses all the branch

points 0, 1 and 1
z . As we explained above, the contour J1 −J2 is equivalent to the

[
1
z ,∞

)

contour [62]. When we cross the forbidden singularity we also cross a Stokes line (discussed

further in appendix D.1), and the vacuum block shifts by the Virasoro block associated

with O(3,1):
∫

J1−J2
dw exp I(2,1) ∝

(z − 2)(z − 1)b
2−1

z2b2+1
(4.26)

In other words, the contour integral along J1−J2 can be viewed as a non-perturbative ‘one

instanton’ correction to the asymptotic series for the vacuum block. This is the contour

integral manifestation of what we found using Borel resummation in section 4.1.2.

4.2.2 More general examples

We examine more complicated examples with external heavy degenerate operators O(3,1)

and O(2,2) in appendix C. The motivation is to gather data on the relationship between

Virasoro block, critical points in the Coulomb gas integrals, and heavy states, with the

hope of connecting these phenomena to the gravitational path integral in AdS3 [36, 37]

in future work. We find that in all cases, forbidden singularities occur when two or more

critical points approach a branch point (a pole of the integrand exp I). The first case has

a fusion rule

O(3,1) ×O(3,1) = 1⊕O(3,1) ⊕O(5,1) (4.27)
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so we can connect the behavior of the critical points to two different heavy states. We

find that when the forbidden singularity is approached by analytic continuation from the

OPE region z ∼ 0, there is sense in which the O(3,1) state and the vacuum make the

dominant contributions. However, we also obtain contributions from the O(5,1) state as z

fully encircles 1. The other case has a fusion rule

O(2,2) ×O(2,2) = 1⊕O(3,1) ⊕O(1,3) ⊕O(3,3) , (4.28)

which is of interest because in the large c limit it contains both the heavy states O(3,1) and

O(3,3), whose dimensions grow with c, and the light state O(1,3), which has a fixed dimension

as c→∞. However, in our preliminary work we have not found a clean separation between

effects from the light and heavy states, as all critical points of the I(2,2) action appear

to coalesce in the neighborhood of the forbidden singulairty. In the future it would be

interesting to explore the distinctions between the O(2,1) and O(2,2) cases, since these have

nearly identical dimensions at large c. Ultimately, we would like to understand which

critical points and heavy states are associated with the resolution of forbidden singularities

and information loss in the physical case of generic OH and OL.

5 Discussion

Information loss in AdS black hole backgrounds infects conformal field theory correlation

functions with sharply defined pathologies. We have discussed two: forbidden singulari-

ties in Euclidean CFT correlators [29], and late time exponential decay in the Lorentzian

regime [16]. Both pathologies appear at the level of the Virasoro conformal blocks in the

large c ∝ RAdS
GN

limit. Since these are the universal building blocks of all CFT2 correlators,

information loss in AdS3/CFT2 has a very robust character. We can learn a great deal

about black hole physics by studying the Virasoro blocks themselves, without focusing on

a specific CFT2. In this work we obtained exact information using degenerate external

operators, resolving the Virasoro blocks’ forbidden singularities via non-perturbative ef-

fects in 1/c. The same physics qualitatively alters the blocks’ behavior at Lorentzian times

t ∼ SBH ; beyond that timescale, available approximations seem to break down.

We expect that the Virasoro blocks can be obtained in 1/c perturbation theory from

the gravitational or Chern-Simons path integral [25, 33, 49], and so they provide a nat-

ural project for resurgence theory [30, 71, 72]; some of the groundwork has already been

laid [36, 37]. An important open problem is to determine which states appear as saddle

points in heavy-light Virasoro blocks, and to understand their role in resolving informa-

tion loss. As a first step, it would be interesting to better understand the simplifications

that occur in the case of degenerate operators [37, 73]. More generally, one would like

to obtain classical solutions in Chern-Simons corresponding to heavy-light correlators [33]

with a heavy operator exchange, since we expect that these solutions may arise as saddle-

points associated with the restoration of information. Studies of black hole formation in

AdS3 [27, 74, 75] should be useful for this purpose. Since the Virasoro blocks isolate and

encapsulate purely gravitational phenomena, there may be a well-defined interpretation for
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a gravitational path integral in AdS3 as an object that precisely generates the Virasoro

blocks without specifying a particular CFT2.20

If information loss in AdS3/CFT2 stems primarily from the behavior of the Virasoro

blocks as c → ∞, then it would seem that string and brane states play little to no direct

role in the resolution of the information paradox. Perhaps this goes hand in hand with

the possibility that the gravitational path integral in AdS3 can be well-defined. In AdSd+1

with d > 2 it seems exceedingly unlikely that the gravitational path integral has a sharp

definition. And in fact it is only in higher dimensions that we can study the scattering

of localized gravitons, a process that does generically require the inclusion of higher spin

states to avoid violations of causality in perturbation theory [40, 80, 81]. Somewhat beyond

perturbation theory, the correspondence between strings and black holes [82] suggests that

stringy states play a natural role in quantum gravity. But it remains unclear whether

extended objects are useful for resolving information loss in generic theories.

It seems unlikely that our results would have any direct analog in higher dimensions,

where multi-stress tensor OPEs (and multi-graviton scattering amplitudes) are not rigidly

determined, and where the gravitational sector is inextricably linked with the full CFT

spectrum. Nevertheless, there is a more general lesson: thermodynamics in holographic

theories must be governed by the exchange of multi-stress tensor states between heavy

microstates and light probes. This just restates black hole thermodynamics in the language

of the bootstrap [44, 45, 83–85], but the fact that it has not been derived or incorporated

into the bootstrap in d > 2 dimensions seems like a conceptual, and perhaps a technical,

shortcoming. In the future it will be interesting to see if thermodynamic constraints on

CFTs can extend the power of the bootstrap approach. In a certain sense, these constraints

do greatly simplify the analysis of two-dimensional CFTs [86, 87].

Extensions of our analysis may lead to a resolution of information loss in AdS3/CFT2,

explaining why correlators are ‘too thermal’ at large central charge, and displaying the

non-perturbative corrections that restore unitarity. But a much larger question remains

— can we reconstruct local bulk physics across the horizon of a black hole, resolving the

information paradox? Perhaps with sufficiently sharp technical tools supervening upon the

thermodynamic limit, we may better understand proposals [88, 89] for the reconstruction

of the black hole interior.
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A Derivation of large c light degenerate state equations

This appendix reviews21 results from [62, 67] in order to derive the light null state differ-

ential equations in the large c limit. An alternate explicit closed form for the |h1,s〉 null

states is given in [62] (see their eqs. (8.26) and (8.28)). Let D1,s be the following matrix:

D1,s = −J− +

∞∑

m=0

(
J+

b2

)m
L−m−1, (A.1)

where J± are matrix generators of the spin (s− 1)/2 representation of SU(2):

(J0)ij =
1

2
(s− 2i+ 1)δij ,

(J−)ij =

{
δi,j+1 (j = 1, 2, . . . , s− 1)

0 else
,

[J+, J−] = 2J0,

[J0, J±] = ±J±.

(J+)ij =

{
i(s− i)δi+1,j (i = 1, 2, . . . , s− 1),

0 else
. (A.2)

Then, the null state equation of motion is given by the equation f0 = 0 after eliminating

f1, . . . , fs−1 from the equation

D1,s




f1

f2

...

fs




=




f0

0
...

0



. (A.3)

Formally, this can be written

0 = ∆1,s(b)|h1,s〉,

∆1,s(b) ≡ det

[
−J− +

∞∑

m=0

(
J+

b2

)m
L−m−1

]
. (A.4)

The differential operator on the four-point function can be obtained by taking

0 = 〈h1,s| (∆1,s)
†O1,s(0)OH(x)OH(y)〉 (A.5)

and commuting Lms to the right. In the large c limit, it immediately follows that only L2

and L1 give non-vanishing contributions the the null state differential equation at infinite

c in the above formula. This is because of the suppression factor of b−2(m−1) for Lm when

we take the limit b → ∞. For L1, this is no suppression, and for L2, this is suppression

by a factor of 1/c which is compensated for by the factor of hH when L2 hits the heavy

operators. For L3 and higher, there is suppression by 1/c2 or more, and they are never

compensated by more than one hH upstairs, so their contributions vanish.

21See specifically [62] exercise 8.8; this appendix streamlines their argument for present purposes.
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To work out the action of b−2L2 and L1 in the large c limit, consider a generic contri-

bution of the form

〈h1,s|Lp1Lp2 . . . LpnO1,s(0)OH(x)OH(y)〉 (A.6)

where pi = 1, 2. Now, commute the Ls to the right. Acting on the correlation function

〈h1,s|O1,s(0)OH(x)OH(y)〉, parameterized as

1

(y − x)2hH
Ṽ
(

1− x

y

)
, (A.7)

L1 produces

x

y

1

(y − x)2hH−1
Ṽ ′
(

1− x

y

)
x=y(1−z)

=
1

y2hH−1

(1− z)

z2hH−1
Ṽ ′(z), (A.8)

whereas −b−2L2 = 6
cL2 produces

1

4
(1 + r2

+)
1

(y − x)2hH−2
Ṽ
(

1− x

y

)
x=y(1−z)

=
1

y2hH−2

1

4
(1 + r2

+)
Ṽ(z)

z2hH−2
,

where we have taken the leading large c piece and used hH = c
24(1 + r2

+). More generally,

after the action of each L1 or L2, we will have a function of the form yag(z) for some

integer a and function z. Acting on such a function (parameterized slightly differently for

later convenience), we have:

L1 ·
(
ya−2hHz−a−2hH (1−z)ag(z)

)
= y1+a−2hHz−1−a−2hH (1−z)a+1

(
z2g′(z)

)
(A.9)

L2 ·
(
ya−2hHz−a−2hH (1−z)ag(z)

)
= y2+a−2hHz−2−a−2hH (1−z)a+2hH

z4

(1−z)2
g(z)+O(c0)

which we can summarize, changing to t coordinates, as

L1 : {g(t), a} →
{

4 sinh2

(
t

2

)
g′(t), a+ 1

}
,

−b−2L2 : {g(t), a} →
{

4(1 + r2
+) sinh4

(
t

2

)
g(t), a+ 2

}
. (A.10)

To simplify further, we can change basis by redefining the fs−j ’s by

fs−j = sinh1−s
(
t

2

)
sinh2j

(
t

2

)
f̃s−j . (A.11)

This has the effect of factoring out sinh1−s ( t
2

)
from fs, and also of removing the factors

of sinh2
(
t
2

)
from L1 and sinh4

(
t
2

)
from L2. After this change, we effectively replace the

action of L1 and L2 with

L1 : {g(t), a} →
{

4(g′(t)− (s− 1− 2j)

2
coth

(
t

2

)
g(t)), a+ 1

}
,

−b−2L2 : {g(t), a} →
{

4(1 + r2
+)g(t), a+ 2

}
, (A.12)
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so that in the basis of the f̃js, D1,s takes the form

D̃1,s = −J− + 4∂t + 4 coth

(
t

2

)
J0 + 4(1 + r2

+)J+. (A.13)

Now, we can perform a transform of the form D̃1,s → U †D̃1,sU where U = ey(t)J+ is

an upper right-triangular matrix with 1s on the diagonal, and therefore the new basis

manifestly preserves ∆1,s = 0. Using the algebra of J0, J±, it follows that D̃1,s transforms to

D̃1,s → −J−+4∂t+

(
4 coth

(
t

2

)
+2y(t)

)
J0 +

(
4(1+r2

+)+4y′(t)−y2(t)
)
J+. (A.14)

Choosing y = −2 coth
(
t
2

)
to eliminate the J0 term, we finally arrive at

D̃1,s → −J− + 4∂t + 4r2
+J+. (A.15)

All terms above now commute, so in computing the determinant, we can treat all contri-

butions as regular numbers. Computing the determinant of (−J− + x+ J+) as a function

of x is equivalent to computing the eigenvalues of the matrix

− J− + J+, (A.16)

which is 2J1 in a conventional notation. This is related to 2J0 by a similarity transform and

thus has the same eigenvalues: x = −(s− 1),−(s− 3), . . . , (s− 3), (s− 1).22 Substituting

x → 2
r+
∂t in the resulting characteristic polynomial then gives the form of the singular

operator at level s. This proves (3.17), reproduced here for convenience:23




∏

k=− s−1
2 +2j

j=0,...,s−1

(
∂t −

kr+

2

)

 f̃s(t) = 0. (A.17)

B Universality of forbidden singularities and general 1/c corrections

We showed in section 4 that the degenerate Virasoro vacuum blocks take a universal form

of equation (3.33), as they are governed by the differential equation (3.40) near their

forbidden singularities. In this appendix we will provide a piece of evidence that this

universal regulator also governs the behavior of general heavy-light Virasoro vacuum blocks

at large c. The point is that if the blocks are well approximated by

S(x, c) ≈
∫ ∞

0
dp p2hL−1e−px−

σ2

2c
p2 (B.1)

in the vicinity of their forbidden singularities, then the 1/c corrections to the leading large

c limit near the singularity must take the form

1

x2hL
− σ2hL(2hL + 1)

c

1

x2hL+2
+ · · · (B.2)

22Equivalently, we can diagonalize (A.15) directly by conjugating with (2r+)
1
2
J0− s+1

4 e
π
4
(J−+J+).

23Note that f̃s = sinhs−1
(
t
2

)
Vs(t) = (1− z) 1−s

2 Vs(t).
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where we inserted the constant σ2 in accord with equation (3.33). Notice that this makes

a precise prediction for the relationship between the h2
L and hL terms. Since we have

an explicit expression for the leading and 1/c corrected heavy-light blocks [26, 29], we

can search for the x−2hL−2 term in the vicinity of forbidden singularities, and extract the

coeffiicent σ2.

The general 1/c corrections to the heavy-light Virasoro vacuum block are [26, 29]

V(t) = ehLt
(

πTH
sin(πTHt)

)2hL
[
1 +

hL
c
V(1)
hL

+
h2
L

c
V(1)

h2L

]
, (B.3)

V(1)
hL

=
csch2

(
αt
2

)

2

[
3
(
e−αtB

(
e−t,−α, 0

)
+ eαtB

(
e−t, α, 0

)

+ eαtB
(
et,−α, 0

)
+ e−αtB

(
et, α, 0

) )

+
1

α2
+ cosh(αt)

(
− 1

α2
+ 6H−α + 6Hα + 6iπ − 5

)
+ 12 log

(
2 sinh

(
t

2

))
+ 5

]

− t
(
13α2 − 1

)
coth

(
αt
2

)

2α
+ 12 log

(
2 sinh

(
αt
2

)

α

)
,

V(1)

h2L
= 6

(
csch2

(
αt

2

)[
B(e−t,−α, 0) +B(et,−α, 0) +B(e−t, α, 0) +B(et, α, 0)

2

+H−α +Hα + 2 log

(
2 sinh

(
t

2

))
+ iπ

]
+ 2

(
log

(
α sinh

(
t

2

)
csch

(
αt

2

))
+1

))
.

where B(x, β, 0) = xβ2F1(1,β,1+β,x)
β is the incomplete Beta function, z ≡ 1− e−t, Hn is the

harmonic function, and α ≡
√

1− 24hH
c
∼= 2πiTH .

Note that (despite naive appearances) if we expand either of these results around t = 0

they are non-singular. However, after the analytic continuation t → t + n
TH

singularities

develop.

Let us consider the forbidden singularities of the 1/c corrections to the general large c

heavy-light blocks. This means we want to evaluate equation (B.3) in an expansion around

t = n
TH

= 2πin
α , which gives a coefficient for the nth forbidden singularity 1/(t−n/TH)2hL+2

V(1)

h2L
= 2V(1)

hL
→ − 3

2π2T 2
H

[
2H−α + 2Hα + 2πi+ 4 log

(
2 sinh

(
n

2TH

))
(B.4)

+B
(
e
− n
TH ,−α, 0

)
+B

(
e
− n
TH , α, 0

)
+B

(
e
n
TH ,−α, 0

)
+B

(
e
n
TH , α, 0

)]

Now let us compare to what we obtained from the degenerate blocks. Using some spe-

cial function identities, we find that the degenerate blocks have forbidden singularities

characterized by the function

σ2
deg(n, r) =

12
(
B
(
e−

2πin
r , r, 0

)
+B

(
e

2πin
r , r, 0

)
+ 2 log

(
2 sinh

(
πin
r

))
+ 2Hr−1

)

r2
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Using the fact that Hr−1 = Hr− 1
r , we see that by analytically continuing r → α = 2πiTH ,

we find that

σ2
deg(n, α) + σ2

deg(n,−α)

2
(B.5)

= − 3

2π2T 2
H

[
2H−α + 2Hα + 2πi+ 4 log

(
2 sinh

(
n

2TH

))

+B
(
e
− n
TH ,−α, 0

)
+B

(
e
− n
TH , α, 0

)
+B

(
e
n
TH ,−α, 0

)
+B

(
e
n
TH , α, 0

)]

This result from the degenerate blocks exactly matches the result from 1/c correction to the

general heavy-light blocks, equation (B.4). We cannot say for certain that it should have

been necessary to average the r = ±α results, although we think this is quite reasonable

since the analytic continuation of r =
√

1− 24hH
c to hH > c/24 has a sign ambiguity, and

so it makes sense that both signs should contribute.24 In any case, averaging appears to

be the correct procedure since in this case we find the two results match exactly.

C Asymptotic analysis of more degenerate blocks

In this appendix we study the two-dimensional Coulomb gas integrals with external O(3,1)

and O(2,2) operators. The rather involved analysis demonstrates that groups of critical

points coalesce as we approach forbidden singularities. Via contour deformation, we can

re-interpret the behavior of the critical points and their associated steepest descent contours

in terms of linear combinations of specific CFT states. In the future we would like to better

understand the relationship between non-perturbative effects in the vacuum Virasoro block,

critical points in the Coulomb gas integrals, heavy states, and AdS3 geometry.

C.1 Virasoro blocks with external O(3,1)

Using the Coulomb gas formalism [34, 35], the correlators of higher order degenerate op-

erators can be written in terms of higher dimensional contour integrals. For example, we

can write the O(3,1) degenerate four point function as [62]

〈OL(∞)OL(1)O(3,1)(z)O(3,1)(0)〉 ∼
∫
dw1

∫
dw2

(1− z)2

z2h(3,1)
exp I(3,1) , (C.1)

where for the special choice hL = 1 the action I(3,1) is given by

I(3,1) = 2b2 log
[
w1(1−w1)w2(1−w2)

]
−2b2 log(w1−w2)−2 log

[
(1−zw1)(1−zw2)

]
(C.2)

Once again the action has a singularity at wi = 1
z , requiring the deformation of contours

as we analytically continue in z. The action I(3,1) is defined on C2, with a symmetry under

24Furthermore, as we have discussed in section 3.1.1, the series expansion in q of the conformal blocks,

at every order there is an α→ −α symmetry (which follows from the fact that the coefficients are rational

functions of the weights). Since the q expansion converges absolutely on the infinite-sheeted covering

space [14, 59], this should be a symmetry of the full block itself.
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w1 ↔ w2. There are three integration contours relevant to the study of specific Virasoro

blocks, namely [0, 1]× [0, 1], [0, 1]× [1
z ,∞), and [1

z ,∞)× [1
z ,∞). To connect them to the

primary operators occurring in the fusion rules, we can study the integrals in the OPE

limit of small z. We find

z−2h(3,1)(1− z)2

∫ 1

0
dw1

∫ 1

0
dw2 e

I(3,1) ∼ z−2h(3,1) (C.3)

so the first integration contour [0, 1] × [0, 1] corresponds to the Virasoro vacuum block.

Similarly, one can show that the [0, 1] × [1
z ,∞) and [1

z ,∞) × [1
z ,∞) integration contour

gives rise to the O(3,1) and O(5,1) blocks, respectively.

We would like to understand which critical points and heavy states are involved in

the resolution of forbidden singularities. For example, in section 4.1.2 we saw that the

Borel resummation became ill-defined in the vicinity of a forbidden singularity due to a

branch cut in the Borel integrand, which we could associate with the O(3,1) state. We want

to gather information about similar phenomena using the Coulomb gas representation.

For this purpose we need to determine what happens to the integration contours as we

analytically continue z towards the forbidden singularities.

Let pi be a critical point, and define the Lefschetz thimble Ji as the submanifold of

C2 connected to the critical point pi by a steepest descent contour. At critical points, the

derivatives of the action with respect to w1 and w2 vanish. Naively there are six critical

points, but due to the symmetry w1 ↔ w2 of the action I(3,1), they can be grouped into

three pairs. To simplify the analysis, as in the previous subsection we write z = 1 − eiθ
and study the region of real θ ∈ [0, 2π). In this case, the coordinates of the critical points

(w1, w2) are pi =
(

1
2 + iηi,

1
2 + iσi

)
with i = 1, 2, 3, where the σi’s and ηi’s are solutions

to algebraic equations that have been relegated to appendix D.2. The pairs of physically

identical critical points are related by the exchange ηi ↔ σi.

Since the action I(3,1) is defined on a four real dimensional manifold C2, it is not

possible to illustrate the relative positions of the branch points and the critical points

in a single planar picture, as we did in the O(2,1) case. Instead, in figure 10 we project

them onto the complex w1 plane (left) and the w2 plane (right), respectively. The branch

points of the action I(3,1) are plotted in blue, and the critical points in black. We also

schematically indicate the steepest descent contours associated with each critical point pi,

which we refer to as J (1)
i and J (2)

i when projected in the w1 and w2 planes, respectively.

Note that in figures 10 the integration contours passing through p1 (yellow lines) can be

continuously deformed into [0, 1] × [0, 1] without passing through any branch point. In

other words, the one-dimensional integration contours J (j)
1 (yellow lines) correspond to

the vacuum Virasoro block.

We illustrate the relationship between the positions of the critical points and the

forbidden singularities in figure 11. Notice that as z approaches a forbidden singularity,

pairs of critical points approach the branch point of I(3,1) at 1
z . We provide analytic

formulas documenting this behavior in appendix D.2. As we discussed in the O(2,1) case,

the contours of integration must be deformed to avoid the branch point at 1
z , just as the

Borel contour must be deformed to avoid singularities in the Borel plane. In the present
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Figure 10. This figure shows the projection onto the w1 plane (left) and the w2 plane (right) of

the critical points (black points) of the action I(3,1); the colored curves are sketches of the steepest

descent contours attached to these critical points. At branch points (blue dots) the action diverges,

and the integrand has a pole, so one cannot deform the contours across the branch points without

changing the value of the integral. In the above plots we chose 2b2 = 20 and z far from all forbidden

singularities. The integration contour J (j)
1 can be deformed to [0, 1]× [0, 1], and so it corresponds

to the vacuum Virasoro block. Note that as z revolves around 1, the branch point singularity

at 1/z = 1
2 + 1

2 i cot(θ/2) parallels the imaginary axis, forcing various contour deformations, and

producing a monodromy for the vacuum block.
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Forbidden Singularities

Figure 11. This figure illustrates the positions of the three critical points of I(3,1) as z = 1 − eiθ
varies over θ ∈ [0, 2π]. The critical points have coordinates (w1, w2) =

(
1
2 + iσi,

1
2 + iηi

)
, and so

the left and right plots are of the imaginary part of w1 and w2, respectively. The solid line indicates

the branch point 1
z where exp I(3,1) has a pole, while the various dashed lines are critical points.

In the vicinity of the forbidden singularities, pairs of critical points approach the branch point,

intersecting it as c ∝ b2 → ∞. In these plots we take c ≈ 500, so pairs of critical points approach

but do not meet.
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case, we need to deform J (2)
1 (the yellow curve in w2 plane in figure 10) as we approach

a forbidden singularity. As a result, there is ambiguity in the integration contour for the

integral (C.1). As we showed with equation (4.24), the ambiguity is proportional to an

integral over the contour [0, 1]× [1
z ,∞). We encounter an identical phenomenon when we

approach the second forbidden singularity at b =∞, z = 1−e 4iπ
3 , as illustrated in figure 11.

We conclude that although the fusion rule

O(3,1) ×O(3,1) = 1⊕O(3,1) ⊕O(5,1) (C.4)

contains more than one heavy state, only the O(3,1) state has an immediate connection with

the behavior of the correlator near the forbidden singularities. As we analytically continue

in z around 1, we will be forced to deform the contour further and pick up contributions

that can be associated with the O(5,1) state as well [62].

C.2 A light operator in the fusion rule: the O(2,2) case

Thus far we have studied heavy degenerate external operators that can only fuse to form

either the Virasoro vacuum or heavy states with dimensions proportonal to c. In this

subsection we will study the degenerate four point functions with external O(2,2) states.

From equation (4.15), we see that the fusion rule of O(2,2) with itself is given by

O(2,2) ×O(2,2) = 1⊕O(3,1) ⊕O(1,3) ⊕O(3,3) , (C.5)

which involves both the light operator O(1,3) and heavy operators O(3,1) and O(3,3). Nev-

ertheless, at large c we have h(2,2) ≈ h(2,1), and so this case only has a single forbidden

singularity at z = 2, much like in the case of external O(2,1).

By studying the contour integral representation of this degenerate correlation function,

we wish to shed light on the question of which saddle points and states contribute non-

perturbative corrections to the vacuum block in association with forbidden singularities.

We will see that the O(2,2) case behaves rather differently from those above. In particular,

all four of the saddle points coalesce near the single forbidden singularity.

Using the Coulomb gas formalism, we can write

〈O(2,2)(0)O(2,2)(z)OL(1)OL(∞)〉 ∼
∫
dw1

∫
dw2

(1− z)1+ 1
b2

z2h(2,2)
exp I(2,2) (C.6)

for hL = 1, where the action I(2,2) reads

I(2,2) = (1 + b2) log
[
w1(1− w1)

]
+

(
1 +

1

b2

)
log
[
w2(1− w2)

]
− 2 log(w1 − w2)

− 2 log(1− zw1)− 2

b2
log(1− zw2) . (C.7)

Once again the action has a singularity at wi = 1
z , requiring the deformation of contours

as we analytically continue in z. As in the I(3,1) case, the contour for I(2,2) is also defined

on C2. However, notice that the point w1 = finite, w2 = ∞ is now a regular point of the

action I(2,2), and therefore should be considered when we search for critical points.
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Figure 12. This figure shows the projection onto the w1 complex plane (left) and the w2 complex

plane (right) of the branch points (blue dots) and critical points (black points) of the action I(2,2).
Colored curves are sketches of the steepest descent contours attached to each critical points. In the

above plots we chose b2 = 3 and z = 1− e0.8∗iπ to indicate the generic case where one is away from

forbidden singularities. The contour integral C.6 along the curves labeled J1 is the vacuum block.

Note that as z revolves around 1, the branch point singularity parallels the imaginary axis, forcing

various contour deformations, and producing a monodromy for the vacuum block.

Due to the absence of a symmetry swapping w1 and w2, there are four inequivalent

integration contours relevant for the study of conformal blocks, namely [0, 1]×[0, 1], [0, 1]×
[1
z ,∞), [1

z ,∞)× [0, 1], and [1
z ,∞)× [1

z ,∞). As in the I(3,1) case, it is easy to show that

z−2h(2,2)(1− z)1+ 1
b2

∫ 1

0
dw1

∫ 1

0
dw2 exp I(2,2) ∼ z−2h(2,2) (C.8)

to leading order at small z. That is the [0, 1] × [0, 1] integration contour gives rise to the

vacuum block. Similarly, one finds that the [0, 1]×[1
z ,∞), [1

z ,∞)×[0, 1], and [1
z ,∞)×[1

z ,∞)

contours correspond to the O(1,3), the O(3,1), and the O(3,3) blocks, respectively.

We refer to the steepest descent contours from the ith critical point in the wj variable

as J (j)
i . If we include the point (w1,∞) as part of the (w1, w2) manifold, then there

are a total of six critical points, with two at w2 = ∞. However, the action I(2,2) at the

points with w2 = ∞ has a degenerate Hessian matrix, and so it is more difficult to define

Lefschetz thimbles associated with these points. These points do not seem to play a role

in the Virasoro blocks, so we will ignore them in what follows. For z = 1 − eiθ, the

coordinates of the four finite critical points, written in the form (w1, w2), can again be

written as pi =
(

1
2 + iσi,

1
2 + iηi

)
for i = 1, 2, 3, 4. The explicit form of σis and ηis have

been relegated to appendix D.2.

In figure 12 we plot the branch points (blue dots) and the critical points (black dots)

of the action I(2,2), along with the steepest descent contours passing through each critical

point. These plots are of the same style as the ones in the previous subsection, projecting

C2 onto the w1 and w2 complex plane. As one can see, the green curves, J (1)
1 and J (2)

1 ,

can be deformed into [0, 1]× [0, 1] without crossing the branch point w = 1
z , so the integral

over the Lefschetz thimble J1 corresponds to the vacuum block.

As one approaches the forbidden singularity, all four of the Ji move towards the branch

point w = 1
z , as pictured in figure 13. We describe this phenomenon analytically in
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Figure 13. This figure illustrates the positions of the four critical points of I(2,2) as z = 1 − eiθ
varies over θ ∈ [0, 2π]. The critical points have coordinates (w1, w2) =

(
1
2 + iσi,

1
2 + iηi

)
, and so

the left and right plots are of the imaginary part of w1 and w2, respectively. The solid line indicates

the branch point 1
z where exp I(2,2) has a pole, while the various dashed lines are critical points. In

the vicinity of the forbidden singularity, all four critical points approach the branch point in the w1

coordinate, intersecting it as c ∝ b2 →∞, while two of the critical points also approach the branch

point in w2. In these plots we take c ≈ 20, so groups of critical points approach but do not meet.

appendix D.2. When the contours intersect the branch point, the integral (C.6) over J1

(the vacuum block) becomes ambiguous, as we discussed in the O(2,1) case, and so we must

deform the contour to avoid the branch point. Unlike in the case of external O(3,1), here

we must deform the contour in both w1 and w2 planes, picking up a linear combination

of states in the O(2,2) × O(2,2) fusion rules. It would be interesting to try to interpret the

branch points in this O(2,2) case as a dressing of those in the simpler O(2,1) case studied in

section 4.2.1, and to understand the behavior of the block with an intermediate O(1,3) state.

D Details of critical points and Stokes phenomena

D.1 Stokes phenomena in the O(2,1) example

This appendix provides an alternative and more general approach to section 4.2.1, which

is useful for studying Stokes phenomena. We will study a representation of the hyper-

geometric function associated with the simplest heavy degenerate operator, which obeys

equation (3.22). We will also take the simplifying limit hL = 1, in which case the result

can be written as

2F1

(
2, b2 + 1, 2b2 + 2, z

)
=

22b2+1Γ
(
b2 + 3

2

)
√
πΓ (b2 + 1)

∫ 1

0
wb

2
(1− w)b

2
(1− zw)−2dw (D.1)

when z < 1, where we recall that the central charge is c = 1+6
(
b+ 1

b

)2
. This function was

plotted in the vicinity of its forbidden singularity in figure 4. In principle, the boundaries

at 0 and 1 can make important contributions. However, we will be interested in the regime
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Re(b2) � 1 where the integrand vanishes at these boundaries, and where the integrand

blows up as w → eiφ∞ for any φ. In this case the boundary contributions vanish, and all

steepest descent contours end at w = 0 or w = 1.

Our integral has two saddle points at w = p±. The p± depend on b and z, but it is

more convenient to write b and z as functions of the p± via

b2 =
2p+p− − p+ − p− + 1

(1− 2p+)(1− 2p−)
, z =

2p+p− − p+ − p− + 1

p+p−
(D.2)

The large c ∝ b2 limit corresponds to p+ or p− near 1
2 . Taking p− ≈ 1

2 , we have z ≈ 1
p+

.

The forbidden singularity is located at z = 2 and b→∞, which occurs precisely when the

two saddlepoints coincide at p+ = p− = 1
2 .

Stokes surfaces are locations in b, z where the steepest descent contour from multiple

saddles coincide. Clearly this occurs at p± = 1
2 . In general, the imaginary part of the

action is constant on steepest descent curves. Therefore a Stokes line can only exist if

the action has the same imaginary part at two different saddles points. If we study the

situation where b2 is real and large due to p− ≈ 1
2 , then this can only happen if

Im

[
log ((1− p+) p+)

(1− 2p+)

]
= 0 (D.3)

which means that 0 < p+ < 1 with p− real and in the vicinity of 1
2 . Translating this to

a statement about z, we identify it with the region z ∈ (1,∞). This coincides with the

branch cut of the hypergeometric function, which is exactly what we should have expected.

Crossing the Stokes line corresponds to crossing the branch cut of the hypergeometric

function. When the parameters b2 � 1 and z ∈ (0, 1) are real, the integrand is real for

real w, and the contour of integration [0, 1] corresponds exactly with a steepest descent

contour through p− ≈ 1
2 . Since p+ > 1 its corresponding saddle will not contribute to the

hypergeometric function, and so we have 2F1 = J1, the contour associated with p1 ≡ p−.

D.2 Explicit forms for the critical points

As we discussed in appendix C, the critical points for the action I(3,1) take the form of

pi =

(
1

2
+ iσi,

1

2
+ iηi

)
, i = 1, 2, 3 , (D.4)

for z = 1− eiθ, where σi’s and ηi’s are solutions to the algebraic equations

− 2

b2
(
cot
(
θ
2

)
− 2σ

) +
1

σ − η −
8σ

4σ2 + 1
= 0 ,

2

b2
(
cot
(
θ
2

)
− 2η

) +
1

σ − η +
8η

4η2 + 1
= 0 . (D.5)

For generic values of b2 and θ, it is difficult to obtain useful analytic expressions for the

solutions. However, for b2 � 1, which is the case of interest, we can solve the above
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equations perturbatively in b2. Thus, up to O(b−2), we find

σ1 = − 1

2
√

3
− 2

(√
3− 9 cot

(
θ
2

))

b2
(
9− 27 cot2

(
θ
2

)) η1 =
1

2
√

3
+

2
(
9 cot

(
θ
2

)
+
√

3
)

b2
(
9− 27 cot2

(
θ
2

)) , (D.6)

σ2 = −1

2
tan

(
θ

4

)
+

2 sin
(
θ
2

)
− sin(θ)

2b2
(
cos
(
θ
2

)
+ cos(θ)

) , η2 =
1

2
cot

(
θ

2

)
+

1

2b2
(
sin(θ)− sin

(
θ
2

)) ,

σ3 =
1

2
cot

(
θ

2

)
+

1

2b2
(
sin(θ) + sin

(
θ
2

)) , η3 =
1

2
cot

(
θ

4

)
+

2 sin
(
θ
2

)
+ sin(θ)

2b2
(
cos
(
θ
2

)
− cos(θ)

) .

although this identification will only match figure 11 in the regime where θ < 2π
3 . This

perturbative solution breaks down when θ = 2π
3 and θ = 4π

3 , near the forbidden singulari-

ties. At these special values of θ, we have to look for different ansatz. It turns out that at

θ = 2π
3 , the solutions of σ and η are given by

σ1 = − 1

2
√

3
− 1

3
√

2b
, η1 =

1

2
√

3
−
√

2

3b
, (D.7)

σ2 = − 1

2
√

3
+

1

3
√

2b
, η2 =

1

2
√

3
+

√
2

3b
,

σ3 =
1

2
√

3

(
1 +

1

b2

)
, η3 =

√
3

2

(
1 +

3

2b2

)
.

Notice that as b → ∞, we find that η1 → η2 at a rate set by 1
b . This effect was pictured

for general θ with fixed, large b in figure 11. At θ = 4π
3 , the critical points are given by

σ1 = −
√

3

2

(
1 +

3

2b2

)
, η1 = − 1

2
√

3

(
1 +

1

b2

)
,

σ2 = − 1

2
√

3
−
√

2

3b
, η2 =

1

2
√

3
− 1

3
√

2b
,

σ3 = − 1

2
√

3
+

√
2

3b
, η3 =

1

2
√

3
+

1

3
√

2b
.

Once again, as b→∞, we find that η1 → η2 at a rate set by 1
b , as was pictured for general

θ but fixed b in figure 11. As we discussed in appendix C, we use notation such that the

contour integrals over the steepest descendant curves J1 through p1 correspond with the

vacuum block when z is near the origin.

The critical points of the I(2,2), which are relevant to section C, take the form

pi =

(
1

2
+ iσi,

1

2
+ iηi

)
, i = 1, 2, 3, 4 , (D.8)

where the σi’s and ηi’s are solutions to the algebraic equations

4
(
b2 + 1

)
σ

4σ2 + 1
+

1

η − σ +
2

cot
(
θ
2

)
− 2σ

= 0 ,

2
(
b2 + 1

)
η

b2 (4η2 + 1)
+

1

2σ − 2η
+

1

b2
(
cot
(
θ
2

)
− 2η

) = 0 . (D.9)
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Solving them perturbatively in b2, we find

σ1 = −tan
(
θ
2

)

b2
, η1 =

1

2
cot

(
θ

2

)
+

1

b2
(
sin(θ)− 2 tan

(
θ
2

)) , (D.10)

σ2 = −tan
(
θ
2

)

2b2
, η2 = −tan(θ)

4
b2 − 15 cos(θ) + 2 cos(2θ) + cos(3θ)− 2

16 sin(θ) cos2(θ)
,

σ3 =
1

2
cot

(
θ

2

)
+

csc(θ)

b2
, η3 = −1

2
tan

(
θ

2

)
+

2 sin
(
θ
2

)

b2
(
3 cos

(
θ
2

)
+ cos

(
3θ
2

)) ,

σ4 =
1

2
cot

(
θ

2

)
+

2 csc(θ)

b2
, η4 =

1

2
cot

(
θ

2

)
+O(b−4) ,

for θ < π. The formulas still apply for θ > π, but the labels must be permuted. For the

special value θ = π, ie near the forbidden singularity at z = 2, we need to use a different

ansatz. It turns out that these solutions are given by

σ1 = − 1√
2b
− 3

4
√

2b3
, η1 = − 1√

2b3
, (D.11)

σ2 = − 1

2b
− 1

4b3
, η2 =

b

2
+

1

4b
,

σ3 =
1

2b
+

1

4b3
, η3 = − b

2
− 1

4b
,

σ4 =
1√
2b

+
3

4
√

2b3
, η4 =

1√
2b3

.

Notice that all four of the σi → 0 as b → ∞, so these critical points all approach the

branch point at 1
z = 1

2 + i0. We also see that η1, η3 → 0 at a faster rate as b → ∞, so

this particular pair of critica points approaches the branch point in the w2 plane at large

b. These results are plotted for fixed b and general θ in figure 13.
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