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1 Introduction

Renormalizable field theories like the Standard Model only include up to two derivatives

in the action. However, gravitational interactions and unified schemes like string theory

which go beyond the Standard Model do contain higher-order derivative couplings. More

generally, they contain higher-dimensional operators suppressed by the cut-off scale of the

theory. Higher-dimensional operators involving scalars are potentially important when

studying the vacua and the cosmological evolution of a theory. For example, in cosmic

inflation the inflaton field may start slow-roll at very large classical values and the kinetic

terms may be non-minimal. Another situation in which such operators may be important

is in moduli stabilization in string vacua with vacuum expectation values close to the string

or Planck scale.

Higher-dimensional operators involving chiral superfields have been studied in the past

in supersymmetry and supergravity [1–13]. In general the Kähler potential may depend

on the superfields and their derivatives, i.e.,∫
dθ2dθ̄2K(Φi, Φ̄i;DαΦi, D̄α̇Φ̄i; ∂µΦi, ∂µΦ̄i, . . . ) +

(∫
dθ2W (Φi) + h.c.

)
, (1.1)

where Dα denotes the usual supersymmetric covariant derivative. Higher-dimensional cor-

rections to W are generally model-dependent and involve, for example, higher powers of the

superfields. Therefore we focus on generic corrections to the D-term. One usually expands

the action in fields and covariant derivatives, keeping only the leading contribution of the

higher-dimensional operators. Such operators may lead to problems if not appropriately

constrained. In particular, upon expansion in components ghosts may appear and/or the

auxiliary fields of the superfields may become propagating.
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A classification of such operators was presented in [4]. A particular ghost-free linear

combination of them has been singled out, it reads∫
dθ2dθ̄2DαΦDαΦD̄α̇Φ̄D̄α̇Φ̄ . (1.2)

This operator and its component expression are simple and “clean” for a number of reasons,

and it has the potential advantage that it can be coupled to N = 1 supergravity in a

straight-forward manner [9]. Unfortunately, as discussed below, it is not the operator

we find in the effective action of D-branes in Type II string theory. Notice that, since

DαΦ = 2θαF + . . . where F is the auxiliary field, (1.2) includes a term proportional to

|F |4. This means that the equation of motion for F is cubic and has three solutions. This

fact has been discussed in [4] and more recently in [13] and [14], where the operator was

applied to Kähler moduli stabilization and inflation in Type IIB string compactifications.

In this paper we consider the issue of higher-derivative operators from the point of view

of the effective action of string theory. In particular, we study the effective action for the

scalars corresponding to position moduli of Type II Dp-branes. Such scalars parameterize

the motion of Dp-branes in compact dimensions and have been considered as possible

inflaton candidates in many models of string inflation [15–19], cf. [20] for an exhaustive list

of references. The bosonic action is given by the non-Abelian generalization of the Dirac-

Born-Infeld (DBI) action and the Chern-Simons (CS) action [21]. The former captures all

higher-dimensional operators involving arbitrary powers of single derivatives and the scalars

themselves. Hence it can give us information about higher-dimensional supersymmetric

operators in the effective action. We analyze the effective actions of the D-brane moduli of

Type IIB Dp-branes for p = 3, 5, 7. As mentioned above, we find that the operator in (1.2)

in fact never appears in these actions. Instead we find operators of the form∫
dθ2dθ̄2|Φ|2∂µΦ∂µΦ̄ , (1.3)

and variations thereof. An important property of this class of operators is that no terms

proportional to |F |4 arise and hence the solution of the equations of motion for F is

unambiguous. On the other hand, there appear non-canonical kinetic terms proportional

to (1 + |F |2)(∂µφ∂
µφ̄), where φ denotes the complex scalar component of Φ. This matches

what we find in the string-effective action: in orientifold compactifications, the kinetic

Lagrangian of the D-brane position moduli φi has the on-shell structure

L = − [1 + aV (φi)] ∂µφi∂
µφ̄i − V (φi) , (1.4)

where V is in many cases the leading-order scalar potential and a is a constant proportional

to the inverse fourth power of the string scale Ms = (α′)−1/2. This result is exact at second

order in the derivatives and at all orders in the potential. In particular, no corrections of

the form V n with n > 1 arise. Describing the string-effective DBI action in terms of su-

persymmetric higher-derivative operators allows an embedding into an N = 1 supergravity

formulation. In [18], for example, a supergravity description was proposed which did not

account for the higher-derivative terms. We can now close this gap by including the above
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operators, which allows us to study the flattening effects in a supergravity formulation

of [18] in combination with, for example, closed string moduli stabilization.

It is clear that the higher-dimensional terms induce a non-canonical redefinition of

the kinetic terms, which leads to a flattening of the effective scalar potential. A similar

redefinition of kinetic terms was discussed in string inflation in [22]. In a second part of this

paper we analyze the consequences for the inflationary dynamics. We give general analytic

formulae for the slow-roll parameters modified by the non-canonical kinetic terms in (1.4),

focussing on monomial inflaton potentials. In all cases the non-canonical kinetic term leads

to a flattening of the potential at large field values. This causes a substantial reduction of

the tensor-to-scalar ratio r, bringing chaotic inflation models to better agreement with the

recent Planck and BICEP data.

The structure of this paper is as follows. In the next section we study the structure

of the effective action for Dp-brane moduli in Type IIB toroidal compactifications. We

analyze in detail the cases of D3-, D5-, and D7-branes and display the bosonic action

up to fourth order in derivatives. The result is always of the form (1.4). In section 3

we discuss higher-derivative operators in globally supersymmetric theories in general and

describe how the result obtained from the DBI action can be written in terms of these

operators. Moreover, we show how these operators lead to a supergravity description of

the flattening effect in D-brane models like the one of [18], and comment on closed string

moduli stabilization. In section 4 we use the structure in (1.4) applied to a single inflaton

field to study the behavior of the slow-roll parameters for varying values of a. Section 5 is

left for our conclusions.

2 Higher-derivative terms for D-brane moduli from the DBI action

The four-dimensional effective theory for the bosonic open string fields of Dp-branes can

be derived from the DBI and CS actions describing the world-volume deformations of the

brane. This is especially useful in the case of toroidal compactifications, in which the in-

ternal profile of the scalar fields is constant and the compactification to four dimensions

is trivial. The DBI action is exact in α′ up to second derivatives of the scalars, leading

to a clear advantage over the standard supergravity description of the effective theory for

open string moduli in which α′ corrections are in general not known or highly difficult

to compute.1 We find that these α′ corrections affect the kinetic term, giving rise to a

non-canonical normalization as advanced in the Introduction. Keeping track of these cor-

rections, though interesting by itself, is essential in the study of large-field inflation models.

In this section we study under which circumstances the schematic structure (1.4) arises for

the open string fields of a system of Dp-branes in Type IIB orientifold compactifications,

leaving the inflationary analysis to section 4.

Let us start by giving the general form of the DBI action for Dp-branes [21, 26, 27],

S = −µp
∫
dp+1ξ STr e−φ

√
− det(P [EMN + EMi(Q−1 − δ)ijEjN ] + σFMN ) det(Qmn) .

(2.1)

1Cf. [23–25] for recent studies of α′ corrections and higher-derivative terms on M-theory reductions.
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The integral goes over the (p+ 1)-dimensional world-volume of the Dp-brane and we have

defined as usual

σ = 2πα′ , EMN = g1/2
s GMN −BMN , Qmn = δmn + iσ[ϕm, ϕp]Epn , (2.2)

M and N are ten-dimensional indices, µ and ν are spacetime indices, a and b are internal

indices labelling the (p − 3)-cycle wrapped by the brane, and m and n label the real

coordinates transverse to the brane. The ϕm are the real position moduli. We consider an

ansatz for the metric given by

ds2 = Z(xm)−1/2ηµνdx
µdxν + Z(xm)1/2ds2

CY , (2.3)

where Z denotes a possible warp factor and ds2
CY the line element in the internal Calabi-Yau

manifold.

We focus our discussion on the position moduli of the Dp-branes because they are

the ones which get a potential once fluxes are added. Thus, we omit all terms involving

gauge bosons and Wilson lines.2 In the absence of mixed Minkowski-internal tensors, i.e.,

gµa = Bµa = 0, and considering a constant internal profile for the position moduli, ∂aφ = 0,

the world-volume determinant can be factorized as

det(P [EMN + σFMN ])

= det
(
g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕn

)
det
(
g1/2
s gab + σFab −Bab

)
. (2.4)

This factorization of Minkowski and internal indices is exact in toroidal compactifications.

However, in a Calabi-Yau compactification the internal profile of the scalar fields is in

general not constant. This implies one has to solve an eigenstate equation for the internal

space, which is usually non-trivial. Besides, the zero eigenmodes might correspond to

mixings between the original position moduli and Wilson lines, making the computation

technically much more involved. Therefore we restrict our study to the simplest cases in

which the above factorization can be performed. For a D3-brane all world-volume indices

are in Minkowski spacetime so there are no subtleties regarding the compactification.

Moreover, taking into account the contribution from the transverse coordinates,

the quantity inside the square root in the DBI action is composed of three factorized

determinants,

det
(
g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕm

)
, (2.5a)

det
(
g1/2
s gab + σFab −Bab

)
, (2.5b)

det
(
gmn + iσ[ϕm, ϕp]

(
g1/2
s gpn −Bpn

))
. (2.5c)

For a Dp-brane these three matrices have dimension 4, (p − 3), and (9 − p), respectively.

After rearranging the real fields ϕm in a complex basis denoted by φi, the first determinant

2Cf. [28, 29] for a recent analysis of inflation with D6-brane Wilson lines in type IIA.
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becomes

− det
(
g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕm

)
= g2

sZ
−2

(
1 + 2Zσ2∂µφi∂µφ̄i + Z2σ4

[
2(∂µφi∂µφ̄i)

2

− (∂µφi∂µφ̄j)(∂
νφj∂ν φ̄i)− (∂µφi∂µφj)(∂

ν φ̄i∂ν φ̄j)
])

. (2.6)

We can now Taylor-expand the square root in powers of spacetime derivatives of φ. This

expansion is in accordance with the slow-roll approximation during inflation. This yields

L = −µpZ−1Vp−3f(φ)

1 + Zσ2
∑
i

∂µφi∂
µφ̄i −

1

2
Z2σ4

∑
i 6=j

(∂µφi∂µφ̄j)(∂
νφj∂ν φ̄i)

+
∑
i,j

(∂µφi∂
µφj)(∂ν φ̄i∂

ν φ̄j)

+ . . .

 , (2.7)

with

f(φ) =

√
det
(
g

1/2
s gab + σFab −Bab

)
det
(
gmn + iσ[ϕm, ϕp]

(
g

1/2
s gpn −Bpn

))
. (2.8)

Here µp and Vp−3 denote the tension of the brane and the volume wrapped by the brane,

respectively. Note that, after the square root expansion, no term of the form (∂µφ∂
µφ̄)2

is present in the effective action in the case of a single complex position modulus, i.e., for

a D7-brane.

We observe that in all cases the bosonic action has the structure

L = − [1 + aV (φ)] |∂µφ|2 − V (φ) +O(∂4
µ) , (2.9)

where we have implicitly redefined the scalar fields to absorb the global factors in (2.7).

We have also subtracted the orientifold tension which is required for an (approximate)

Minkowski vacuum, cf. [18, 30], implying that V (φ) = a−1(f(φ)− 1). The constant a

includes the remaining global factors and is proportional to (µpVp−3)−1, so it has mass

dimension −4. Let us remark that the above result includes all α′ corrections arising from

higher-order terms containing powers φn in the DBI action. However, it is an expansion

in derivatives of the scalar fields, so it can only be trusted as long as they remain small

compared to the string scale. In particular, the DBI action does not include information

about second- or higher-order derivatives of φ, which will be important in the next section.

In addition to the DBI piece discussed above there is a contribution from the CS action.

As discussed in more detail in [18], in supersymmetric settings this contribution is equal

to the DBI piece, leading to a factor of two in front of the scalar potential in the above

expression — but not in the correction to the kinetic term.

The structure of the scalar potential depends, through the specific form of f(φ),

on the Dp-brane under consideration and on the closed string background. In the fol-

lowing we summarize the results for D7-, D3-, and D5-branes in Type IIB orientifold

compactifications.
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• D7-branes

In the case of D7-branes there is only one complex scalar field φ in the adjoint rep-

resentation of the gauge group of the system of D7-branes. One can obtain more

realistic quantum numbers, for example the Standard Model gauge group and bifun-

damentals, if the branes are located at orbifold singularities, cf. [18]. The scalar φ

parameterizes the position of the brane in the two-real dimensional transverse space.

In the presence of three-form closed string fluxes G3, the position of the branes can be

stabilized due to the flux-induced B-field on the brane which yields a non-vanishing

F-term scalar potential for φ. This potential comes from the first determinant in (2.8)

which reads

det
(
gab + Z−1/2g−1/2

s Fab
)

= det(gab)

[
1 + Z−1g−1

s F2 + Z−2g−2
s

1

4
(F ∧ F)2

]
,

(2.10)

where Fab = σFab − Bab. Whenever F is a selfdual or anti-selfdual two-form, F =

± ∗4 F , we have

(F ∧ F)2 = (F ∧ ∗4F)2 =
(
F2dvolS4

)2
= (F2)4 , (2.11)

and hence

f(φ)2 = g2
sZ

2

(
1 +

1

2
Z−1g−1

s FabFab
)2

, (2.12)

a perfect square. This is the case for a configuration with only imaginary selfdual

closed string fluxes including (0, 3)-form and (2, 1)-form fluxes denoted by G and S,

respectively [31–37]. In that case the B-field is a (2, 0) + (0, 2)-form. Far from being

isolated or useless cases, these are indeed the fluxes which solve the ten-dimensional

supergravity equations of motion in a Calabi-Yau compactification [38]. The F-term

scalar potential, after a field redefinition, reads [18]

V (φ) =
Z−2gs

2
|G∗φ− Sφ̄|2 . (2.13)

In addition to this flux potential there is a contribution from the superpotential that

couples the modulus to two complex Wilson line scalars, which we have omitted

in the DBI reduction for simplicity. These two fields together with φ complete the

scalar components of the N = 4 structure that underlies the toroidal compactification

before any twist or background decreases the number of supersymmetry generators.

On the other hand, the second determinant in (2.8) leads to a D-term given by

det(Qij) = 1 + gsσ
2Z[φ, φ̄]2 . (2.14)

For simplicity we consider D-flat configurations and neglect this contribution to the

scalar potential from now on. The generalization to non-vanishing D-terms is trivial

and does not change any of our conclusions. Finally, the CS contribution to V can be

checked to be equal to (2.13) when only G and S fluxes are turned on. Therefore the

effective Lagrangian is of the form (2.9) with V given by (2.13) and a = 1
2(V4µ7gs)

−1.

– 6 –
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• D3-branes

In the case of D3 branes only the second determinant in (2.8) is present since all

world-volume indices are spacetime indices. Notice then that the structure (2.9) is

more robust than for the case of D7- or D5-branes because the factorization (2.5)

always exists, regardless of the specific compactification. At leading order the square

of (2.8) is given by

det
(
δmn + iσg1/2

s Z1/2[ϕm, ϕn]
)

= 1− 2σ2gsZ
∑
i<j

[φi, φj ]
2 − σ2gsZ

∑
i,j

[φi, φ̄j ]
2 + . . .

= 1 +
∑
i

|Fi|2 +
∑
i

D2
i + . . . , (2.15)

where the dots include higher-order terms in σ. Notice that at leading order this cor-

responds to the sum of three F-terms and three D-terms. It is remarkable that in the

absence of D-terms the above determinant can again be written as a perfect square,

f(φ)2 = det
(
δmn + iσg1/2

s Z1/2[ϕm, ϕn]
)

=

1− σ2gsZ
∑
i<j

[φi, φj ]
2

2

, (2.16)

implying (2.9) with a = µ−1
3 Z and V =

∑
i<j gs[φi, φj ]

2. This structure is partially

broken if we introduce warping and fluxes. The situation is slightly more subtle since,

as described in [31–37], the local equations of motion force the internal metric and

five-form background to be non-vanishing. One can then locally expand the warp

factor around the position of the brane as

Z−1/2 = Z
−1/2
0 +

1

2
σ2Kmnϕ

mϕn + . . . . (2.17)

This induces an additional contribution to the scalar potential coming from the warp

factor Z in (2.7) which does not appear multiplying the kinetic term. Therefore, in

the presence of non-constant warping the correction to the kinetic term is given by

only a part of the scalar potential.

• D5-branes

The result for D5-branes is a combination of the two cases considered above. Both de-

terminants in (2.8) contribute to the F-term scalar potential. The computation is sim-

ple in a purely supersymmetric configuration with no D-terms or fluxes. In that case,

f(φ)2 = det
(
δmn + iσg1/2

s Z1/2[ϕm, ϕn]
)

=
(
1− 4σ2gsZ[φ1, φ2]2

)2
, (2.18)

where φ1 and φ2 are the two complex fields parameterizing the position of the D5-

brane in the transverse space, which we have assumed to be a T 4 for simplicity. We

thus once more obtain a Lagrangian of the form (2.9) with a = µ−1
5 V −1

2 g
−1/2
s Z1/2

and V = (µ5V2σ
2)−1Z−1/2g

1/2
s [φ1, φ2]2.

– 7 –
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In general, expression (2.8) is an infinite series in powers of σ. However, we have seen

that in certain configurations the determinant is a perfect square, simplifying the computa-

tion. This is the case for configurations which preserve a certain amount of supersymmetry

at the string scale, i.e., when the D-terms vanish and only specific choices of fluxes are

allowed so that supersymmetry can be spontaneously — not explicitly — broken at a lower

scale. In that case, taking the square root of the determinant is trivial and the scalar poten-

tial is given by the leading-order scalar potential V0. In other words, all higher-order terms

in α′ vanish, so the potential is simply V = V0. However, these corrections do leave a trace

in the effective theory because the kinetic terms for the scalar fields are non-canonical. The

prefactor of the kinetic term is indeed given by (1 + aV0), where a is a constant depending

on the brane tension and the string scale, showing the stringy nature of the correction.

Let us stress that the structure (2.9) is quite general and valid beyond the supersym-

metric configurations described here as examples. The advantage of these configurations

is that one can replace V by the well-known leading-order result V0 to simplify the com-

putation, while in general the scalar potential receives corrections as well. However, those

corrections will also appear in the kinetic term, implying that the structure (2.9) is pre-

served anyway. In the case of D5 and D7-branes, this structure relies on the assumption

that the factorization (2.5) can be done, which is characteristic of toroidal compactifica-

tions. It would be interesting to study to what extent it can be generalized to more general

compactifications.

Finally, notice that the scalar potential V (φ) entering in the non-canonical kinetic term

is only the contribution from the DBI action and not the full potential in general. However,

in the supersymmetric configurations described above, the CS contribution equals the DBI

potential, and the prefactor f(φ) is indeed a function of the full scalar potential for φ,

including the pieces generated by background fluxes. This is the case we have in mind in

section 4 when studying the implications of this structure for inflation.

3 Supersymmetric higher-derivative operators and the DBI action

The lesson of the previous discussion is that the DBI action yields a very particular four-

dimensional effective action for the D-brane position moduli. For simplicity, let us consider

the case of a single complex modulus because the generalization to an arbitrary number of

open string moduli is straightforward. The action can be written as

L = − [1 + aV (φ)] ∂µφ∂
µφ̄+ |∂µφ∂µφ|2 − V (φ) , (3.1)

at four-derivative order and after absorbing all global coefficients. This corresponds, for

example, to the case of D7-branes in a toroidal background. The aim of this section is

to identify the supersymmetric higher-derivative operators which lead to the DBI result

in (3.1). The above correction to the kinetic term is purely of stringy nature. Hence it

can be used to select operators which describe the effective action of a scalar descending

from a consistent theory of quantum gravity among all possible supersymmetric operators.

In section 3.1 we consider the structure of globally supersymmetric operators and briefly

discuss the coupling to supergravity in section 3.2.
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3.1 Higher-derivative operators in global supersymmetry

As outlined in the Introduction, our aim is to write (3.1) in the supersymmetric form

L =

∫
dθ2dθ̄2K(Φ, Φ̄) +

(∫
dθ2W (Φ) + h.c.

)
, (3.2)

where Φ = φ + iθσµθ̄∂µφ + θ2F + 1
2θ

2θ̄2�φ denotes a chiral multiplet with its fermionic

component set to zero.3 Hence we must find suitable higher-derivative terms to include

in K.4 A list of operators with the desired amount of fields and derivatives was proposed

in [4]. A specific linear combination of these was singled out in [4, 13],

1

16
DΦDΦD̄Φ̄D̄Φ̄|

θ2θ
2 = |∂µφ∂µφ|2 − 2|F |2∂µφ∂µφ̄+ |F |4 . (3.3)

The derivatives on the left-hand side denote the usual spinor-covariant derivatives. This

term was deemed “clean” in the sense that it is ghost-free and it contains no derivatives

for the auxiliary field F . In addition, once the spinor is set to zero the operator is a

pure D-term with no lower-order superspace components, and it contains only a single

four-derivative term for φ.

It is clear from the discussion in section 2 that the structure in (3.3) is not what we

find in the effective action of D-branes in string theory. While the first two pieces are

indeed contained in (3.1) after identifying V = |F |2, the term proportional to |F |4 is not.

More concretely, the term |F |4 cannot be set to zero while, at the same time, keeping the

correction to the kinetic term in the action. Therefore it cannot describe the particular

cases studied in the previous section. This leads us to consider a number of other possible

higher-derivative operators, focussing on those without a piece proportional to |F |4, while

postponing the discussion of unwanted states such as propagating auxiliary fields. To this

end, the list of operators given in [4] is particularly instructive. The relevant operators can

be written in terms of component bosonic fields as follows, cf. (8)-(13) in [4],

O1 = |Φ|2D2ΦD̄2Φ̄ = 16|φ|2�φ�φ̄+ 20|F |2φ̄�φ+ 20|F |2φ�φ̄+ 16|F |4 − 8|F |2∂µφ∂µφ̄
+ 4|φ|2F�F̄ + 4|φ|2F̄�F − 8|φ|2∂µF∂µF̄ + 8φ̄F∂µφ∂

µF̄

− 8φ̄F̄ ∂µφ∂
µF + 8φF̄∂µφ̄∂

µF − 8φF∂µφ̄∂
µF̄ , (3.4)

O2 = Φ̄D̄2Φ̄(DΦ)2 = 16∂µφ∂
µφφ̄�φ̄− 16|F |2φ̄�φ+ 16|F |2∂µφ̄∂µφ̄− 16|F |4

+ 16φ̄F̄ ∂µφ∂
µF − 16φ̄F∂µφ∂

µF̄ , (3.5)

O3 = |Φ|2DD̄Φ̄D̄DΦ = 8(∂µφ∂
µφ̄)2 + 8φ∂µφ̄(∂ν φ̄∂

µ∂νφ− 8∂νφ∂
µ∂ν φ̄)

− 8|φ|2∂µφ∂µ�φ̄− 8|φ|2∂µF∂µF̄ − 8|F |2∂µφ∂µφ̄
− 8φ̄F∂µφ∂

µF̄ − 8φF̄∂µφ̄∂
µF , (3.6)

O4 = Φ2DD̄Φ̄DD̄Φ̄ = −4|∂µφ∂µφ|2 − 4φ�φ∂µφ̄∂
µφ̄− 4φ2∂µ∂ν φ̄∂

µ∂ν φ̄

− 16φ∂µφ∂ν φ̄∂
µ∂ν φ̄− 4φ2∂µ�φ̄∂

µφ̄− 32φF∂µφ̄∂
µF̄ . (3.7)

3We adopt the superspace conventions of [39].
4The connection between the DBI action and higher-derivative supersymmetry or supergravity was

previously studied in [4, 6, 8]. However, the previous analyses considered the kinetic terms for only one of

the real scalars of the complex position modulus, freezing the other. This simplifies the discussion but leads

to different results compared to the general case considered here. For a different approach, cf. [40–43].
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These are dimension-eight operators which in the action appear divided by Λ4, where Λ is

the cut-off scale of the theory. In addition there are the complex conjugates O2 and O4.

Notice that we did not include (14) and (15) of [4] because, after partial integration, they

are proportional to O4 and O4, respectively. Important for us is that O3, O4, and O4 span

a basis of |F |4-free operators. In particular, any |F |4-free linear combination of O1, O2,

and its complex conjugate can be expressed in terms of this basis. The operator (3.3), on

the other hand, is not described by this basis but is instead given by the linear combination

DΦDΦD̄Φ̄D̄Φ̄ = 2O3 −O1 −O2 −O2 . (3.8)

While comparing supersymmetric operators to the DBI action one has to keep in mind that

the latter does not capture higher-derivative contributions involving multiple derivatives

of the scalar fields, for example terms containing �φ and ∂µ∂νφ. Ignoring these we obtain

O3

Λ4
=

8

Λ4

[
(∂µφ∂

µφ̄)2 − |φ|2∂µF∂µF̄ − |F |2∂µφ∂µφ̄− φ̄F∂µφ∂µF̄ − φF̄∂µφ̄∂µF
]
, (3.9)

O4

Λ4
= − 4

Λ4

[
|∂µφ∂µφ|2 − 8φF∂µφ̄∂

µF̄
]
. (3.10)

Partial integration of the quartic kinetic terms introduces an ambiguity here, since terms

with second derivatives can be written as first derivatives and vice versa. This ambiguity is

manifest in a free coefficient of the four-derivative terms in the two expressions above. This

makes the quartic kinetic terms not meaningful in the comparison with the DBI action.

Thus, the strongest constraint on possible operators is indeed the absence or presence of

|F |4. All operators without |F |4 can be written as

c1O3 + c2

(
O4 +O4

)
. (3.11)

Therefore this includes all operators that, after partial integration, yield (3.1) up to

terms containing derivatives of F . Such terms seem to imply that the auxiliary field

propagates. This would be unacceptable since we know from the DBI side that no such

extra bosonic fields should be present. In fact, as emphasized in [5], derivative terms of

auxiliary field are artefacts of the effective field theory description. Theories with higher-

derivative corrections like (3.11) must be UV completed above the cut-off scale Λ. The

momenta of auxiliary fields with kinetic terms from higher-derivative operators are larger

than Λ and are hence irrelevant in the EFT. This argument is strongly supported by the

fact that UV-complete theories, such as the DBI action, should be free of ghosts and

propagating auxiliary fields. To see this more explicitly, note that the lowest-dimensional

action in (3.2) contains the bosonic pieces

L ⊃ −|F |2 −
(
F
∂W

∂φ
+ h.c.

)
. (3.12)

To obtain the standard mass dimension for the field F we redefine F̃ = F/Λ. We thus get

L ⊃ −m2
F̃
|F̃ |2 −mF̃

(
F̃
∂W

∂φ
+ h.c.

)
, (3.13)
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with mF̃ = Λ. Thus, actually the scalar field F̃ has a mass of the same order as the cut-off

scale and should decouple below the scale Λ. One has to be careful though, since integrating

out F̃ is not equivalent to setting mF̃ →∞, due to the presence of the dimensionful coupling

of F̃ to φ in the above expression. In an effective action description one neglects all terms

proportional to ∂µF̃ /m
2
F̃

. This leads us to conclude that, ignoring the quartic kinetic

terms, the operators O4 and O4 above may be ignored and the operator O3 is left with the

only desired piece

O3 = − 8

Λ2
|F̃ |2∂µφ∂µφ̄+O

(
(∂µφ)4

)
. (3.14)

One might be tempted to argue that not even this term survives in the effective action

because F̃ decouples. However, it is easy to convince oneself that this is not the case

due to the second term in (3.13). Indeed, as shown in figure 1, one can draw a tree-level

Feynman diagram with a vertex stemming from (3.14) and two F̃ propagators. The latter

end in vertices provided by the second piece in (3.13). In the effective action limit with

(∂µF̃ ) � m2
F̃

the propagator of F̃ is approximately −1/m2
F̃

so that, in the end, we are

left with

O3 = − 8

Λ4

∣∣∣∣∂W∂φ
∣∣∣∣2 ∂µφ∂µφ̄+O

(
(∂µφ)4

)
. (3.15)

In conclusion we find the effective action

L = −

(
1 +

8c1

Λ4

∣∣∣∣∂W∂φ
∣∣∣∣2
)
∂µφ∂

µφ̄−
∣∣∣∣∂W∂φ

∣∣∣∣2 +O
(
�φ, ∂µ∂νφ, (∂µφ)4

)
, (3.16)

which derives from the supersymmetric action

L =

∫
dθ2dθ̄2|Φ|2

(
1 +

c1

Λ4
DD̄Φ̄D̄DΦ

)
+

(∫
dθ2W (Φ) + h.c.

)
. (3.17)

Using the identity DαD̄α̇Φ̄ = {Dα, D̄α̇}Φ̄ = −2iσµαα̇∂µΦ̄ we can write this action in the

more transparent fashion

L =

∫
dθ2dθ̄2|Φ|2

(
1 +

8c1

Λ4
∂µΦ∂µΦ̄

)
+

(∫
dθ2W (Φ) + h.c.

)
. (3.18)

Note that, once coupled to N = 1 supergravity, the auxiliary field F̃ should be replaced

by the corresponding chiral multiplet auxiliary field of supergravity. In (3.16) this implies

that one should replace field derivatives by Kähler-covariant derivatives, ∂φW → DφW .

Before describe the coupling to supergravity in more detail, one more comment regarding

D-terms is in order.

While studying the Dp-brane DBI actions in section 2 we noticed that the D-term

potential multiplies kinetic terms as well. We set all D-terms to zero so that supersym-

metry is preserved and concentrated on the analysis of the more interesting F-term scalar

potential. However, it is interesting to find the corresponding higher-derivative operator

including D-terms as well. In the simple example above there is a single adjoint multiplet

with the standard gauge transformations

Φ→ e−iΛ(x)Φ , eV → e−iΛ̄(x)eV eiΛ(x) , (3.19)
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1

⇤2

mF̃

mF̃

Figure 1. Feynman diagram that leads to the presence of (3.15) in the effective action.

where V = T aVa denotes the vector multiplet and Λ = T aΛa. T a are the gauge group

generators and Λa(x) the gauge parameter superfields. Then the operator O3 can be

generalized to the gauge-invariant operator

Õ3 = (Φ̄eV Φ)(DD̄Φ̄eV )(D̄DeV Φ) . (3.20)

Expanding the θ2θ̄2 component of this operator one obtains a coupling of the form

8

Λ4
(φ̄DaT

aφ)DµφD̄µφ̄ , (3.21)

where D is the auxiliary field D = T aDa, and D is the standard gauge-covariant derivative.

Using the equations of motion for D one obtains Da = −φ̄T aφ. In the above expression

this yields the familiar structure

− 8

Λ4
VDDµφD̄µφ̄ , (3.22)

where VD is the standard D-term scalar potential. These formulae apply, for example, to

the toroidal D7 case discussed above, which has a single adjoint position modulus. The

generalization to the case of multiple chiral superfields is once more straightforward.

Note that in the D7-brane example there are still more adjoint scalars from the Wilson

lines. These would give rise to additional pieces in the D-term potential which do not

depend on the position moduli. Finally, let us note that the DBI action contains terms

which rescale the inverse gauge coupling constant, i.e., terms proportional to V (φ)FµνF
µν ,

as the reader can easily check. Those can be described by the supersymmetric operators

1

Λ4
(Φ̄eV Φ)D2WαWα + h.c. , (3.23)

where Wα is the spinorial gauge field-strength which admits an expansion Wα = λα +

(σµσ̄νθ)αFµν + . . . . The D-term component of such an operator defines the non-trivial

kinetic term of the gauge bosons. This behavior is expected because if the potential in-

creases, so does the tension of the brane, which in turn implies a smaller gauge coupling.

Thus, for example in large-field inflation models from D-branes the corresponding gauge

coupling decreases with increasing inflaton field value.
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The operators found in this section are interesting since they tells us how to embed the

non-canonical kinetic terms of the string theory DBI action into a supersymmetry or su-

pergravity action. As emphasized before, it can be easily generalized to the case of multiple

scalar fields which may appear in Dp-brane configurations in different compactifications.

Moreover, an important conclusion is that the higher-derivative corrections implied by the

DBI action do not include terms proportional to |F |4, which can lead to multiple vacuum

configurations. They instead imply a non-canonical redefinition of the kinetic terms pro-

portional to the scalar potential and higher-derivative kinetic terms. In the next section

we discuss how these corrections appear in a supergravity setting.

3.2 N = 1 supergravity description

The generalization of the previous findings to local supersymmetry can be done along the

lines of [5]. Indeed, it can be shown that the Kähler potential in (3.18) produces the same

effective scalar field theory when coupled to gravity, after the supergravity auxiliary fields

have been put on-shell. This has a number of important implications for the study of

inflationary models involving D-brane position moduli.

An N = 1 supergravity description of the effective theory for a D-brane position mod-

ulus is desirable in order to study the consequences of closed string moduli stabilization.

The interaction between the dynamical closed string modes and the open string inflationary

sector is not captured by the DBI and CS actions. However, as of now such a supergravity

formulation would miss the flattening effect of the non-canonical kinetic term of Φ, due to

α′ corrections in the DBI action which are not visible in standard two-derivative super-

gravity. With the results of section 3.1, in particular (3.18), we can now capture this effect

in supergravity.

For concreteness, let us focus again on a single chiral superfield corresponding to the

position modulus of a D7-brane in a toroidal setting, as in the Higgs-otic example discussed

in [18]. The relevant piece of the Kähler potential in this class of Type IIB orientifold

compactifications with D7-branes is, at leading order in α′, given by [18, 44–47]

K = − log

[
(S + S̄)(U + Ū)− 1

2
(Φ + Φ̄)2

]
− 3 log[T + T̄ ] , (3.24)

W = W0 + µΦ2 , (3.25)

where S, T , and U denote the axio-dilaton, an overall Kähler modulus, and a complex

structure modulus of the third torus, respectively. Notice the shift-symmetric structure of

the Kähler potential for the position modulus contained in Φ, which leads to an approximate

continuous shift symmetry in the scalar potential broken by fluxes. This flat direction in

the Kähler potential is not only present in toroidal compactifications, but also in generic

Calabi-Yau compactifications in the large complex structure limit, and it is expected to be

preserved by all perturbative corrections to K. Assuming that the potential is minimized

when DSW = DUW = 0, the dominant source of supersymmetry breaking is the auxiliary

field of T , which leads to a soft mass for the D7 matter field Φ. Both contributions W0 and

µ in the superpotential are required to match the DBI result (2.13) with non-vanishing G
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and S fluxes. The precise matching at leading order in α′ was worked out in [18]. The

novel feature here is the addition of the higher-derivative piece, which can be written as a

correction of the Kähler potential given by

∆K =
1

(S + S̄)(U + Ū)

8c1

Λ4

[
(Φ + Φ̄)2∂µΦ∂µΦ̄

]
. (3.26)

We have used a variation of the result in (3.18) to keep the shift symmetry manifest in

the Kähler potential. The same higher-derivative operator was previously studied in [5].

After integrating out the auxiliary field and ignoring the quartic kinetic terms the result is

equivalent to (3.16). The scaling with the axio-dilaton and the complex structure moduli

is required by modular invariance of K. This extra piece leads to the correction of the

kinetic term as in (2.9) after identifying a = 8c1/Λ
4. Using the result for a derived from

the DBI D7-brane action, we find

c1

Λ4
= (8V4µ7gs)

−1 ' παG
2gsM4

s

, (3.27)

where αG is the gauge coupling and Ms = σ−1/2 the string scale. This makes the stringy

nature of the higher-derivative correction manifest. In terms of the Planck mass we ob-

tain c1/Λ
4 = 16π3/(α2

GM
4
p). For the last two expressions we have used the typical IIB

identities [21]

8πM2
p =

8M8
s V6

(2π)6gs
, MKK = Ms

(
2αG
gs

)1/4

, (3.28)

where V6 denotes the volume of the internal space and MKK = V
−1/6

6 the compactifi-

cation scale.

As a consequence, the above analysis is a step towards a complete supergravity formu-

lation of the DBI action. It permits us to study the interplay between open string modulus

dynamics and moduli stabilization while taking into account the flattening of the quadratic

flux potential by the non-canonical kinetic term. This is of particular interest for inflation

models in which the inflaton is a D-brane position modulus like in Higgs-otic inflation [18].

While this is very appealing, great care is needed when analyzing such setups. On the

one hand, the interaction between closed-open string moduli and the resulting coupling

terms in the superpotential are model-dependent and not completely known in general.

On the other hand, as discussed in [48, 49], the interaction of supersymmetry-breaking

closed string moduli with inflation is non-trivial and can cause numerous types of trouble.

Hence we leave the details of the study of moduli stabilization for future work.

4 Flattening of inflationary potentials

In this section we analyze the effect of the DBI non-canonical kinetic term on inflationary

observables. We assume that one of the real components of φ is the inflaton field which

has a potential suitable for slow-roll. Moreover, we work in the slow-roll regime and thus

neglect the fourth-order derivative term of φ in (3.1). What we study is therefore a version
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of the Lagrangian (2.9) with a single real scalar field ϕ,

L = −1

2
f(ϕ)∂µϕ∂

µϕ− V (ϕ) , (4.1)

where

f(ϕ) = 1 + aV (ϕ) . (4.2)

The effect of taking both degrees of freedom of the complex field φ into account was studied

in [19] for the case of D7-branes. In section 2 we found that the parameter a for the case

of a Dp-brane is a ∼ (µpVp−3)−1. This implies that a is of the order M−4
s , encoding the

stringy nature of the correction.

As emphasized above, the DBI action yields a non-canonical kinetic term for the in-

flaton. However, in single-field inflation models one can always recast the Lagrangian into

a canonical form via a field redefinition. The proper redefinition is determined by the

differential equation
dϕ

dψ
=

1

f1/2(ϕ)
=

1√
1 + aV (ϕ)

, (4.3)

which yields

ψ = g(ϕ) =

∫
dϕf1/2(ϕ) . (4.4)

The Lagrangian, when written in terms of the canonically normalized field ψ, reads

L = −1

2
∂µψ∂

µψ − V (g−1(ψ)) , (4.5)

so that V implicitly depends on a. Interestingly, this process leads to a flatter potential.

Specifically,
∂V

∂ψ
=

1

f1/2

∂V

∂ϕ
. (4.6)

Since f > 1 if a > 0 the potential in canonical variables has a smaller first derivative, i.e.,

a flattened slope. A similar flattening from non-canonical kinetic terms has been discussed

in the past in the context of string cosmology, for example in [22].

Provided f > 0, i.e., the scalar field is not a ghost, the study of the vacua can be

performed by analyzing V (ϕ) and neglecting the non-canonical nature of the field. The

dynamics of the theory, however, crucially depend on the redefinition of the kinetic term. To

quantify this effect we compute the CMB observables in terms of the canonically normalised

field, first as general as possible and later applied to monomial potentials. We define the

potential slow-roll parameters as usual,

ε =
1

2

(
Vψ
V

)2

, η =
Vψψ
V

, (4.7)

where subscripts denote derivatives. These can be rewritten in terms of ϕ as follows,

ε =
1

2f

(
Vϕ
V

)2

, η =
1

f

Vϕϕ
V
− aV

f
ε . (4.8)
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Evidently, the effect of the non-canonical kinetic terms is to reduce the slow-roll parameters.

The scalar spectral index of the curvature perturbations is

ns = 1− 6ε+ 2η ,

= 1− 3

f

(
Vϕ
V

)2

+
2

f

Vϕϕ
V
− aV

f2

(
Vϕ
V

)2

,

=
1

f
(1− 6ε|a=0 + 2η|a=0) +

aV

f
(1− 2ε) , (4.9)

where in the last line only the second piece depends on a. The tensor-to-scalar ratio

becomes

r = 16 ε =
8

f

(
Vϕ
V

)2

. (4.10)

Both ns and r are to be evaluated at horizon exit, with field values denoted by ψ∗ and ϕ∗.

For Ne e-folds of exponential expansion one has

Ne =

∫ ψ∗

ψend

1√
2ε
dψ =

∫ ϕ∗

ϕend

f
V

Vϕ
dϕ , (4.11)

which defines ϕ∗ and ψ∗. The difference between ϕ∗ and ψ∗ and ϕend and ψend, respectively,

is model-dependent. Therefore, in the following, we study simple examples and quantify

the effect of the non-canonical normalization numerically. As discussed in section 2, world-

volume and background fluxes generate monomial potentials for D-brane position moduli.

We therefore consider potentials of the type

Vn(ϕ) = v0 ϕ
n , (4.12)

with n ∈ R+. In this case we can specify g(ϕ) in (4.4),

ψ =
ϕ
[
2
√

1 + av0ϕn + n 2F1(1
2 ,

1
n ; 1 + 1

n ;−av0ϕ
n)
]

2 + n
, (4.13)

where 2F1(a, b; c; d) is the ordinary hypergeometric function. Note that ψ is real only when

−av0ϕ
n < 1 which is equivalent to the no-ghost regime. We illustrate the functional de-

pendence of (4.13) in figure 2 for representative values of n. The crucial feature of this

plot is that all curves lie above the ψ = ϕ reference line, implying that one may schemat-

ically write ψ = ϕm(ϕ) for some m(ϕ) > 1, or equivalently ϕ = ψ1/m(ψ). Since m(ψ) > 1

the change to a canonically normalized inflaton results in a monomial potential with sup-

pressed power. The schematic form is V ∼ ψn/m(ψ), demonstrating that the effect of the

non-canonical coupling in (4.2) is to cause a flattening of the monomial potential. Given

the monotonicity of the scalar potentials we thus expect ns to increase while r decreases.

While a proper field redefinition exists for all n there are only a few values for which

we can use functional identities to rewrite (4.13) in a more familiar form,

n = 0 : ψ =
√

1 + av0ϕ+ C , (4.14)

n = 1 : ψ =
2

3av0

[
(1 + av0ϕ)3/2 − 1

]
+ C , (4.15)

n = 2 : ψ =
1

2
ϕ

[√
1 + av0ϕ2 +

1
√
av0ϕ

arsinh(
√
av0ϕ)

]
+ C , (4.16)
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Figure 2. ψ(ϕ) for monomial potentials of various powers n.

with C = 0 fixed by the requirement V (0) = 0, i.e., demanding the cosmological constant

to vanish in the vacuum. Notice that, as expected, in the first case of a trivial potential

the field redefinition is simply a rescaling of ϕ. But because V is constant this is also

the most uninteresting case. On the other hand, for n = 2 as in single-field Higgs-otic

inflation there is no analytical form for the inverse ϕ(ψ). This exists only for n = 1. This

means that, to study the implications in the most interesting cases, we must resort to either

approximations or numerics. In the remainder of this section we use a combination of both.

We present the results of a numerical analysis of the CMB observables in figure 3, using

n = 2, 1, 2
3 ,

2
5 as examples. We vary the value of av0 to study the strength of the flattening

effect. Remember that increasing av0 means power suppression in the monomial potential

of the canonically normalized inflaton. To better understand the numerical results let us

first consider the limit of small av0, so that aV � 1 and f ' 1 in (4.2). A first-order Taylor

expansion in av0 leads to simplified expressions for the slow-roll parameters,

ε =
1

2
(1− av0ϕ

n)
n2

ϕ2
, (4.17)

η = (1− av0ϕ
n)

(
n(n− 1)

ϕ2
− n2

2
av0ϕ

n−2

)
. (4.18)

For ϕend, defined by ε(ϕend) = 1, we find

ϕend =
n√
2

(
1− av0

2

(
n√
2

)n)
. (4.19)

Furthermore, the observable modes of the fluctuations leave the horizon at

ϕ∗ =
√
x− av0

n+ 2

(
x

n+1
2 + (n+ 1)

(
n√
2

)n√
x

)
, (4.20)
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Figure 3. CMB observables as predicted by the canonically normalized theory, with initial values

n = 2, n = 1, n = 2
3 , and n = 2

3 . Darker color means larger values of av0. For small av0 the

effect of the additional kinetic term is negligible, while for large av0 the potential V (ψ) approaches

a monomial with power 1 for n = 2, 2
3 for n = 1, 1

2 for n = 2
3 , and so on. The two distinct lines

correspond to Ne = 50 and Ne = 60, respectively.

where we have introduced x = 2nNe + 1
2n

2. Using this value in the expanded slow-roll

parameters leads to

ε∗ =
n2

2x
+ av0n

2

(
n+ 1

n+ 2

(
n√
2

)n+2

x−2 − n

2n+ 4
x

1
2
n−1

)
, (4.21)

η∗ =
n2 − n
x

+ av0n

(
2n2 + 2

n+ 2

(
n√
2

)n+2

x−2 − 3n2

2n+ 4
x

1
2
n−1

)
, (4.22)

at horizon exit. The structure is remarkably similar in both cases, which can be traced back

to the term proportional to aV/ε in the integral that determines Ne. We expect the term

proportional to x
1
2
n−1 to dominate in the brackets because x ∼ O(100). Hence, both func-

tions decrease as av0 increases. In the limit of small av0 this explains why the observables

move towards the bottom-right in the ns-r plane as the non-trivial kinetic term is amplified.

The limit of large av0 is even more illuminating, cf. the related analyses in [12, 22].

Assuming f ' aV leads to

ϕ =

(
n+ 2

2
√
av0

) 2
n+2

ψ
2

n+2 , (4.23)

as the inverse of (4.13). The corresponding scalar potential becomes

V (ψ) = v0

(
n+ 2

2
√
av0

) 2n
n+2

ψ
2n
n+2 . (4.24)

Thus, we obtain an analytic result for the canonically normalized theory for any value

of n. In particular, starting with a power of n in ϕ we obtain a power of 2n
n+2 < n in
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the canonical field ψ. This explains another feature in figure 3: in the regime of large a,

starting with n = 2 yields a monomial potential of power 1, n = 1 yields power 2
3 , n = 2

3

leads to V ∼ ψ
1
2 , and so on. This is why the curves in the figure connect.

5 Conclusions

In this paper we have studied the appearance of higher-dimensional supersymmetric op-

erators correcting the Kähler potential in string theory. More concretely, we have studied

the Kähler potential of D-brane position moduli in Type II orientifold compactifications,

which arises from the Dirac-Born-Infeld action for D-branes. We have concentrated on the

effective action for the position moduli of Type IIB Dp-branes with p = 3, 5, 7 on toroidal

settings. One of the important conclusions is that in all cases dimension-eight corrections

arise which induce non-canonical kinetic terms of the form [1 + aV (φ)] ∂µφ∂
µφ̄, where V

is the scalar potential. Upon canonical normalization this implies a flattening of the scalar

potential for large canonical field values. In specific backgrounds the potential V is just

the leading-order scalar potential V0. In particular, no higher powers of V0 appear in the

effective action. We have identified the supersymmetric dimension-eight operators describ-

ing these purely stringy corrections. They have the superfield form |Φ|2∂µΦ∂µΦ̄. Although

this contains derivatives of the auxiliary field, there are no new propagating degrees of

freedom or ghosts in the effective action once states with masses of the order of the cut-off

scale are properly integrated out. Moreover, the above operator does not include the term

|F |4 unlike the operator DΦDΦD̄Φ̄D̄Φ̄ which has been studied in the past.

The above results are interesting in themselves but also have important implications

for string inflation models. They allow for an N = 1 supergravity description of string

inflation models in which the inflaton is an open string Dp-brane modulus. For example, [18]

proposed a supergravity description of Higgs-otic inflation where the inflaton is a linear

combination of the MSSM Higgs fields, without non-minimal couplings of the Higgs fields

to gravity. In such a model the Higgs fields are D7-brane position moduli and the scalar

potential is defined in terms of a DBI action and the flux background. A flattening of the

scalar potential takes place of the type described in the present paper. The supergravity

version of the model in [18] did not include these flattening effects. Thus, the results in

this paper allows us to complete the supergravity embedding, which may allow the detailed

study of closed string moduli stabilization.

Given the pervasive presence of the non-canonical kinetic term in (1.4) we found it

interesting to explore its impact in simple single-field inflation models, like chaotic models

with monomial potentials as suggested by orientifold compactifications with fluxes. We

have studied the effect of the aforementioned flattening on the slow-roll parameters and

the scalar and tensor perturbations. As expected, we found a suppression of the tensor-

to-scalar ratio in all cases, leading to an improved agreement with present Planck and

BICEP constraints. Furthermore, we have presented simple analytic formulae explaining

how this takes place. Hopefully, forthcoming cosmological data will shed light on the

existence of large primordial tensor perturbations, which could also illuminate the role of

higher-dimensional operators in inflation models.
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