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1 Introduction

Matrix models are useful toy models of gauge theories and holography. Strongly coupled

quantum field theories are difficult to understand directly, having a prohibitively large set

of Feynman diagrams that must be summed. A good model should have a sufficiently small

and well-organized set of diagrams, allowing for the computation of the full planar corre-

lation functions. The diagrammatic structure should, however, be sufficiently nontrivial so

as to capture the essential features of the bulk.

The IP model [1] is a simple large-N system of a harmonic oscillator in the U(N)

adjoint representation plus a harmonic oscillator in the U(N) fundamental representation,

coupled through a trilinear interaction. It has the same graphical structure as the ’t Hooft

model of two-dimensional QCD [2]. The IOP model [3] is a more tractable variant of the

IP model. It possesses the same degrees of freedom, but the trilinear interaction is replaced

by one that is quartic in the oscillators but quadratic in the U(N) charges. Building on

ideas of [4], the IP and IOP models were introduced in [1, 3] as toy models of the gauge

theory dual of an AdS black hole. These models capture a key property of black holes: the

long time decay of the two-point function at infinite N , but not at finite N [5].
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In this paper we compute the thermal four-point function in the IOP model in the

planar limit. The motivation for studying the four-point function comes from recent work

in quantum chaos and holography [6–22]. A signature of quantum chaos in a large-N

theory is the exponential growth in time of the connected out-of-time-order four-point

function [23]. The growth rate is identified as a Lyapunov exponent. A black hole has a

Lyapunov exponent of 2πT [7, 9], which is the maximal possible Lyapunov exponent [8].

The significance of the out-of-time-order four-point function as a diagnostic for the viability

of a model of holography was recognized in [6].

In section 2.1 we review the role of the two-point function as a diagnostic of thermal-

ization. In section 2.2 we review the role of the out-of-time-order four-point function as a

diagnostic of chaos. In section 2.3 we briefly mention the Sachdev-Ye-Kitaev model [7, 24],

which was recently recognized to be maximally chaotic [7]. We point out that the random

coupling can, to leading order in 1/N , be replaced by a quantum variable.

In section 3.1 we review the calculation of the planar two-point function in the IP

model. In section 3.2 we compute the planar four-point function. This involves summing

ladder diagrams, which can only be done analytically in the limit of small adjoint mass, to

which we restrict ourselves.

In section 4.1 we review the planar two-point function in the IOP model. In section 4.2

we compute the planar four-point function. Diagrammatically, the IOP model is more in-

volved than the IP model. However, it has the advantage of allowing analytic computations

for any adjoint mass. For both the IP and IOP models, we work in the limit that the mass

of the fundamental is heavy, as compared to the temperature.

In the regimes considered, we find that the IP and IOP models are not chaotic. Some

speculations on why this is so, and possible modifications of the models, are mentioned in

section 5.

2 Thermalization, chaos, and large N

2.1 Thermalization

Holography has provided useful insights into both strongly coupled field theories, as well as

their gravity duals. A well-studied property of a black hole is its approach to equilibrium

after a perturbation. A two-point function computed in a black hole background exhibits

late time decay of the form [25, 26],

〈φ(t)φ(0)〉 ∼ e−ct/β , (2.1)

where c is an order-one constant and β is the inverse temperature. The late time decay of

the two-point function has a clear interpretation in the bulk: matter falls into the black

hole, but classically nothing escapes. Computing subleading corrections in GN to (2.1)

does not prevent the late time decay.

As recognized in [5], the late time decay to zero of a two-point function is inconsistent

with the properties of a finite entropy quantum mechanical system. On the field theory

side, one thus has the statement that, to all orders in 1/N , the two-point function decays to
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Figure 1. The basic graphical unit of the Hamiltonian (2.2) studied in [4].

i ij

Figure 2. The basic graphical unit of the IP model (2.3) studied in [1]. It is like the diagram in

figure 1, but cut in half. A single line is a fundamental, a double line is an adjoint.

zero at late times, even though this property does not hold nonperturbatively in 1/N . The

two-point function 〈φ(t)φ(0)〉β can be regarded as the overlap between the states φ(0)|β〉
and φ(t)|β〉; its decay is a probe of thermalization. Therefore, the large N limit acts like a

thermodynamic limit [4].

This late time breakdown of perturbation theory was studied in the context of matrix

quantum mechanics in [4]. Reducing Yang-Mills on a sphere in terms of spherical harmon-

ics, one obtains a Hamiltonian whose essential features can be captured by considering just

two interacting matrices. For instance, [4] considers two large N matrices M1,M2 with a

Hamiltonian,

H =

2∑
i=1

1

2
Tr(Ṁi

2
+ ω2

iM
2
i ) + λTr(M1M2M1M2) . (2.2)

The relevant diagrams for the decay of the two-point function are the sunset diagrams

shown in figure 1.

The model (2.2) has the drawback of still being too complicated to allow the summation

of all planar Feynman diagrams. The goal of [1] was to find a matrix model that is more

tractable, while still exhibiting the late time decay of the planar two-point function. The

IP model [1] is given by the Hamiltonian,

HIP = mTr(A†A) +Ma†a+ ga†Xa , (2.3)

where ai is the annihilation operator for a harmonic oscillator in the fundamental of U(N),

while Aij is the annihilation operator for an oscillator in the adjoint, and Xij = (Aij +

A†ji)/
√

2m.1 As we review in section 3, the planar two-point function can be found if one

takes the mass of the fundamental to be large compared to the temperature, M � T . For

a general mass m for the adjoint, the planar Schwinger-Dyson equation for the two-point

1Since the highest term in the Hamiltonian (2.3) is cubic, there is no ground state. This is cured by

adding a stabilizing term, a†a(a†a− 1), which vanishes in the relevant sectors a†a = 0, 1 [1].
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function can be solved numerically, exhibiting the desired late time exponential decay.

In the limit of small mass for the adjoint, m → 0, the two-point function can be found

analytically, giving late time power law decay.

A variant of the IP model, the IOP model, was introduced in [3],

HIOP = mTr(A†A) +Ma†a+ ha†ialA
†
ijAjl . (2.4)

This model has the feature that analytic computations are possible for any mass m. It

again exhibits power law decay of the two-point function at long times.

2.2 Chaos

Chaos in deterministic systems is understood as aperiodic long-term behavior that exhibits

sensitive dependence on initial conditions. Two points in phase space, characterized by a

separation δx(0), will initially diverge at a rate,

δx(t) = δx(0) eκt, (2.5)

where κ is the Lyapunov exponent.

For a number of reasons [27], there is no straightforward extension of chaos to quantum

systems. In the semiclassical regime, [23] gave an intuitive definition of chaos. Replacing

the variation in (2.5) by a derivative, and noting that this is given by a Poisson bracket,

∂x(t)

∂x(0)
= {x(t), p(0)} , (2.6)

the generalization to quantum systems consists of replacing the Poisson bracket by a com-

mutator. The commutator is generally an operator, so seeing exponential growth requires

taking an expectation value. The expectation value of the commutator in the thermal state

will vanish, as a result of phase cancelations. A simple way to cure this is to consider the

square of the commutator [23],2

〈[x(t), p(0)]2〉 ∼ ~2e2κt . (2.7)

Alternatively, one can consider the thermal expectation value of the commutator times the

anticommutator; this will scale as ~. Either of these consist of sums of out-of-time-order

four-point functions. The important point is that a chaotic system has an out-of-time-order

four-point function that exhibits exponential growth. The exponential growth persists until

a time of order −κ−1 log ~, at which point the commutator saturates at an order one value.

For a large N field theory, 1/N plays the role of ~, and the classical limit is the

infinite N limit. For matrix models, such as the IP and IOP models, leading order in 1/N

corresponds to keeping the planar Feynman diagrams. The criteria of chaos for evaluating

the viability of a model is a powerful one, that was recognized in [6]. A good model of a

strongly coupled gauge theory should having an exponentially growing out-of-time-order

four-point function. Moreover, if it is to be dual to a black hole, the Lyapunov exponent

must match that of a black hole [7, 9].

2The expectation value in (2.7), and elsewhere, is in the thermal state. The Lyapunov exponent depends

on the temperature: this is the familiar statement from classical chaos that regions of phase space that do

not mix have different Lyapunov exponents. If we were working in the microcanonical ensemble, then the

energy would be conserved. Note also that the definition of the Lyapunov exponent that is being used is

nonstandard, in that it is a local Lyapunov exponent, rather than involving a time average.
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Figure 3. The basic graphical unit of the SYK model (2.8). The solid lines are fermions χi, the

dotted line is the coupling Jjklm.

Thermalization and chaos. There is generally an intimate connection between ther-

malization and chaos. In the context of classical systems, there is a precise version of this

statement [28], which we now review.

Letting A and B be regions of phase space, occupying phase space volumes µ(A) and

µ(B), respectively, and letting φt denote time evolution, a dynamical system is said to be

mixing if µ [φtA ∩B] → µ(A) · µ(B) as t → ∞, for all sets A and B. In the notation

of quantum mechanics, this is the statement that a system is mixing if the (connected)

two-point function of any two operators decays to zero at late time. A system is defined

to be ergodic if for every function f , the time mean of f(x) is equal to the space mean of

f(x). It is shown in [28] that mixing implies ergodicity, but ergodicity does not necessarily

imply mixing.

It is important to note that for a system to be mixing, the two-point function of

all operators must decay. In fact, the IP and IOP models do not satisfy this criteria,

as it is only the two-point functions of the fundamentals that exhibit late time decay.3

The adjoints have a two-point function of a free harmonic oscillator; they have no self-

interaction, and the interaction generated via the fundamentals is 1/N suppressed. Thus,

exponential growth of the out-of-time-order four-point function for the fundamentals is

a more refined criteria than the decay of the two-point function of the fundamentals at

long times.

2.3 SYK model

Kitaev has proposed a variant of the Sachdev-Ye model [24] as a model of holography [7].

The SYK model consists of N � 1 Majorana fermions χi with a quartic interaction with

random coupling Jjklm,

HSY K =
1

4!

N∑
j,k,l,m=1

Jjklm χjχkχlχm , (2.8)

where couplings are drawn from the distribution,

P (Jjklm) ∼ exp(−N3J2
jklm/12J2) , (2.9)

3In other words, the IP and IOP models not fully thermalizing. If they had been, the absence of chaos

in these models would have been puzzling.
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Figure 4. The dashed lines indicate Jjklm, while the sold lines are the fermions χi. Treating Jjklm
as a quantum field, the quantum corrections to the two-point function are suppressed by 1/N3.

giving a disorder average of,

J2
jklm =

3!J2

N3
, Jjklm = 0 . (2.10)

Remarkably, one can analytically compute the disorder averaged large-N correlation func-

tions in the SYK model at finite temperature and strong coupling, βJ � 1. The two-point

function exhibits exponential late time decay, see [7, 24, 29, 30]. The out-of-time-order

four-point function exhibits exponential growth [7],

〈χi(t)χj(0)χi(t)χj(0)〉 ∼ 1

N
e2πt/β . (2.11)

For studies of the four-point function, see [7, 21, 31, 32].

An important aspect of the SYK model is the quenched disorder: if the coupling Jjklm
where instead a fixed constant, there would be additional Feynman diagrams that would

contribute at leading order in 1/N . Here we simply point out that the disorder Jjklm can

be replaced by a quantum variable, as the quantum corrections are 1/N3 suppressed.

Recall that the disorder averaged expectation value of an operator O composed of the

fields χi is,

〈O〉 =

∫
DJjklm e−J

2
jklmN

3/12J2

∫
Dχi O e−

∫
dtL∫

Dχi e−
∫
dtL

. (2.12)

The interpretation of (2.12) is that one first computes the expectation value 〈O〉 with some

coupling Jjklm drawn from the distribution (2.9), and then averages over the Jjklm. If one

were to instead treat Jjklm as a static quantum variable, then the expectation value of O

would be given by,

〈O〉 = Z−1

∫
DJjklm Dχi O exp

(
−N3J2

jklm/12J2 −
∫
dt L

)
. (2.13)

In terms of Feynman diagrammatics, if Jjklm is a classical Gaussian-random parameter,

then it has a two-point that is exactly 3!J2/N3. If instead Jjklm is a quantum variable,

then its leading two-point function can be chosen to be 3!J2/N3, however this will receive

quantum corrections, as shown in figure 4. Thus, generally (2.12) and (2.13) are different.

However, for the SYK model, the first quantum correction is suppressed by a factor of 1/N3:

the loop diagram in figure 4 has two Jjklm propagators, giving a factor of (3!J2/N3)2 . So,

at leading order in 1/N , (2.12) and (2.13) are the same. Equivalently, the effective action

for Jjklm is

e−W [Jjklm] =

∫
Dχi exp

(
−J2

jklmN
3/12J2 −

∫
dtL

)
= e−J

2
jklmN

3/12J2

+ . . . , (2.14)

– 6 –
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at leading order in 1/N . Note that the structure of the vacuum is different depending on if

Jjklm is quenched disorder or a quantum field: the vacuum loop scales like N , and receives

a correction of the same order from interactions with χi, as there is now a summation over

the indices. This, however, is irrelevant for the purposes of connected correlation functions.

The variable Jjklm is still not yet a standard quantum variable, due to the constraint

that it be static. There are a few somewhat artificial ways to achieve this. One could add

to the action a term J̇jklmφ, where φ is some Lagrange multiplier field. A better option is

to regard Jjklm as the momenta of harmonic oscillators for which the frequency is taken

to zero. Consider a harmonic oscillator with the standard Lagrangian, (mẋ2 −mω2x2)/2.

The Euclidean two-point function for the momentum is 〈p(t)p(0)〉 = mωe−ωt/2. Now take

the limit of ω → 0, so as to remove the time dependance. Letting mω = 12J2N−3, the

momenta have the same two-point function as (2.10).

3 IP model

The IP model [1] (see also [33–35]) is a quantum mechanical system, with a harmonic

oscillator in the adjoint of U(N) and a harmonic oscillator in the fundamental of U(N),

coupled through a trilinear interaction. The Hamiltonian for the IP model is given by (2.3).

The two-point function is found by summing rainbow diagrams (see figure 5) and is reviewed

in section 3.1. The four-point function is given by a sum of ladder diagrams (see figure 6),

which we evaluate in section 3.2.

3.1 Two-point function

The bare zero temperature propagator for the fundamental is defined as,

G0(t)δij ≡ 〈Tai(t)a†j(0)〉eiMt . (3.1)

Trivially, one has that,

G0(t) = θ(t), G0(ω) =
i

ω + iε
. (3.2)

It will be assumed that fundamental has a large mass, M � T , where T is the tem-

perature. In this case, the bare finite temperature two-point function is the same as the

bare zero temperature two-point function.

The adjoints have no self-interaction, and the backreaction from interactions with the

fundamental is suppressed by 1/N . Thus, the propagator for the adjoint is that of a free

oscillator in a thermal bath,

K(ω) =
i

1− y

(
1

ω2 −m2 + iε
− y

ω2 −m2 − iε

)
, (3.3)

where we have defined y = e−m/T . It will be useful for later to note that in the limit that

the adjoints become massless, m→ 0 (y → 1), their two-point function becomes,

K(ω) =
2π

1− y
δ(ω2 −m2) . (3.4)

– 7 –
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Figure 5. The Schwinger-Dyson equation for the propagator G(ω) in the IP model, in the planar

limit. Arrows point from creation operators toward annihilation operators. A single line denotes

the free propagator G0(ω), a line with a shaded box is the dressed propagator G(ω), and a double

line is the adjoint propagator K(ω). Iterating generates a sequence of nested rainbow diagrams.

The planar two-point function for the fundamental is found by summing rainbow dia-

grams. The Schwinger-Dyson equation for the two-point function is given by (see figure 5):

G(ω) = G0(ω) + λG0(ω)G(ω)

∫
dω′

2π
G(ω′)K(ω − ω′) , (3.5)

where the ’t Hooft coupling is λ = g2N . In general, such an integral equation is difficult.

However, the assumption that M � T implies that G(t) = 0 for t < 0. As a result, G(ω)

has no poles in the upper half plane, allowing us to close the integration contour in (3.5) in

the upper half plane ω′ plane. Picking up the residues at ω′ = ω±m, the Schwinger-Dyson

equation turns into a difference equation,

G(ω) =
i

ω + iε

(
1− λ

1− y
G(ω)

2m
(G(ω −m) + yG(ω +m))

)
. (3.6)

This can be solved numerically [1], however to proceed analytically we take the limit of

small adjoint mass and small ’t Hooft coupling,

m→ 0, ν2 =
2λ

m(1− y)
= const. (3.7)

In this limit one finds [1],

G(ω) =
2i

ω +
√
ω2 − 2ν2

. (3.8)

Here the ω should really be an ω+ iε; we will generally suppress the iε, remembering that

all the poles are in the lower half complex plane. The Fourier transform of the two-point

function is a Bessel function,

G(t) =

∫
dω

2π
G(ω)e−iωt =

√
2

νt
J1(
√

2νt) θ(t) . (3.9)

We will later encounter integrals of a similar form, so we show (3.9) in some detail. For

positive times, the ω contour in (3.9) wraps around the branch cut stretching from −
√

2ν <

ω <
√

2ν.4 Using (3.8) and moving the square root to the numerator, we rewrite (3.9) as,

G(t) =
i

ν2

∫
dω

2π

(
ω −

√
ω2 − 2ν2

)
e−iωt . (3.10)

4Our ω integral was from −∞ < ω < ∞. For positive time, we close the contour in the lower half

plane. The branch cut is slightly below the real axis, and so is inside the contour. We can shrink the

contour so that it hugs the branch cut. For negative times, the ω integral is closed in the upper half plane,

and so gives zero. Also, our choice of location for the branch cut corresponds, for instance, to writing√
ω2 − 2ν2 = ω exp

(
1
2

log(1− 2ν2/ω2)
)

and taking the principal branch for the logarithm.

– 8 –
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The integral of the first term vanishes, while the second is twice a line integral,

G(t) =
1

ν2
(1− eiπ)

∫ √2ν

−
√

2ν

dω

2π

√
2ν2 − ω2 e−iωt , (3.11)

which gives (3.9). Now let us redo the calculation for the Fourier transform (3.9) slightly

differently. Taking G(ω) in the form (3.8) and changing variable to,

x = ω +
√
ω2 − 2ν2, ω =

x2 + 2ν2

2x
, (3.12)

gives,

G(t) =

∫
dx

2π

i

x

(
1− 2ν2

x2

)
e
− i

2

(
x+ 2ν2

x

)
t
. (3.13)

The ω contour in (3.9) that hugs the branch cut maps into an x contour that is a circle of

radius
√

2ν and centered around the essential singularity at the origin. Using the integral

representation of the Bessel function,

Jn(t) =
i

2π

∫
dx x−n−1e

1
2
t(x−x−1) , (3.14)

where the contour circles clockwise around the origin, we have,

G(t) =
(
J0(
√

2νt) + J2(
√

2νt)
)
θ(t) , (3.15)

which is equal to (3.9). At late time, νt� 1, the propagator decays as G(t) ∼ t−3/2.

3.2 Four-point function

We now turn to the connected four-point function. In the planar limit, it consists of a

sum of ladder diagrams, as shown in figure 6. The ingoing momenta are ω1, ω2, while

the outgoing momenta are ω3, ω4.5 As in the case of the two-point function, to proceed

analytically we must work in the limit specified in (3.7). In this limit, the propagator for

the adjoint is given by (3.4).

Consider the ladder diagram that consists of a single rung. It is given by,

(−ig)2

∫
dp

2π
G(ω1)G(ω1 − p)G(ω2)G(ω2 + p)K(p) . (3.16)

Now inserting

δ(p2 −m2) =
1

2m
[δ(p−m) + δ(p+m)] (3.17)

into (3.16), evaluating the integral, and then taking the m→ 0 limit, yields for (3.16),

(−ig)2

m(1− y)
G(ω1)2G(ω2)2 . (3.18)

5The ingoing momenta are drawn in figure 6 as coming from the upper left and lower right in order for

the diagram to look planar.
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G4    =
i

i

j

j

t1

t4

t3

t2

+

i

i

j

j

t1

t4

t3

t2

+  ...

Figure 6. The planar four-point function G4 (3.19) in the IP model. Ladders with n = 1 and

n = 2 rungs are shown.

We now sum all the ladder diagrams. As a result of the limit (3.7), all the pieces

appearing in the Feynman diagrams are on-shell. Defining G4(ω1, ω2, ω3, ω4) = δ(ω1 −
ω3)δ(ω2 − ω4)G4(ω1, ω2), and letting n denote the number of rungs, we have

NG4(ω1, ω2) =

∞∑
n=1

(
−λ

m(1− y)

)n
(G(ω1)G(ω2))n+1 =

−ν2

2 G(ω1)2G(ω2)2

1 + ν2

2 G(ω1)G(ω2)
, (3.19)

where ν was defined in (3.7).

The Fourier transform of (3.19) gives the position space four-point function,

NG4(t31, t42) = −ν
2

2

∫
dω1

2π

dω2

2π

G(ω1)G(ω2)
ν2

2 +G(ω1)−1G(ω2)−1
e−iω1t31 e−iω2t42 , (3.20)

where we have defined t31 ≡ t3−t1, t42 ≡ t4−t2. In addition, G(ω) really denotes G(ω+iε);

we suppress the iε, remembering that, if we are using G in a time-ordered correlator, all

the poles are in the lower-half complex plane.

Free propagator. The propagator entering the four-point function (3.20) is given

by (3.8). As a warmup, it is useful to study (3.20) with the free propagator (3.2), rather

than the dressed one. In this case we have,

NḠ4(t31, t42) = ν2

∫
dω1

2π

dω2

2π

1

ω1ω2

1

ν2 − 2ω1ω2
e−iω1t31 e−iω2t42 . (3.21)

Performing the ω2 integral, and closing the contour in the lower half plane, we pick up

poles at ω2 = 0 and ω2 = ν2/2ω1,

NḠ4(t31, t42) = −θ(t42)θ(t31) + θ(t42)

∫
dω1

2πi

1

ω1
e
−i
(
ω1t31+ ν2

2ω1
t42
)
. (3.22)

Using the integral representation of the Bessel function (3.14), we get,

NḠ4(t31, t42) =
(
J0(
√

2t31t42ν)− 1
)
θ(t31)θ(t42) . (3.23)

– 10 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
8

Eq. (3.23) is the time-ordered four-point function, as evidenced by the theta functions. We

can obtain the out-of-time-order four-point function by dropping the theta functions. In

particular, setting t31 = −t42 = t gives,

NC(t) = I0(
√

2νt)− 1 . (3.24)

In the limit νt� 1,

C(t)→ 1

23/4
√
πνtN

e
√

2νt . (3.25)

By summing only a subset of the Feynman diagrams: the ladder diagrams with un-

dressed propagators, we have found exponential growth in the out-of-time-order four-point

function. While intriguing, using the free propagator is certainly not legitimate, as it vio-

lates unitarity; classically it would be equivalent to violating Liouville’s theorem. However,

before evaluating (3.20) with the dressed propagator, it will be instructive to study (3.21)

a bit further.

Returning to (3.22), and taking the limit of large t31, t42, we approximate the integral

via the method of steepest descent (see appendix A). This involves deforming the contour

of integration in order for it to pass through the saddle point, at an angle so as to maintain

constant phase. The saddle point of the exponent,

f(ω1) = ω1t31 +
ν2

2ω1
t42 , (3.26)

occurs at ω̃1 = ±ν
√
t42/2t31. As we continue from a time-ordered four-point function, to

an out-of-time-order four-point function, t42 → −t42, the saddle moves off of the real axis

and onto the imaginary axis. At t31 = −t42 = t, the saddle is at ω̃1 = ±iν/
√

2. The leading

exponent in the integral in (3.22) can therefore be approximated by,

e−itf(ω̃1) = e
√

2νt , (3.27)

reproducing (3.25).

Let us also reproduce (3.23) by returning to (3.19) and computing the Fourier transform

of each term before taking the sum. From (3.19) and (3.2) we have,

Ḡ4(ω1, ω2) = −
∞∑
n=1

(
ν2

2

)n
1

(ω1ω2)n+1
. (3.28)

The Fourier transform gives,

Ḡ4(t31, t42) =
∞∑
n=1

(
ν2

2

)n
(−t31t42)n

(n!)2
θ(t31)θ(t42) =

(
J0(
√

2t31t42ν)− 1
)
θ(t31)θ(t42) ,

(3.29)

where we have made use of the series definition of the Bessel function.

The expression (3.29) is easy to see directly in time-space. Since the free two-point

function for the fundamental is simply θ(t) (3.2), a ladder diagram with n rungs will have

n+1 propagators for the fundamentals on each of the two sides. For one such side we have
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a product of theta functions, with the time insertions of the rungs integrated over. For the

top side, ∫ t3

t1

dtan . . .

∫ ta3

t1

dta2

∫ ta2

t1

dta1 =
1

n!
tn31 , (3.30)

and similarly a factor of tn42/n! from the bottom side. Accounting for the coupling at each

vertex, −ig, as well as the sum over indices, and the factor of m−1(1− y)−1 coming from

the adjoint propagator, we recover the sum in (3.29).

If we wish to form an out-of-time-order four-point function, for instance with t42 < 0,

then on the bottom edge of the ladder diagrams, time runs backwards: we must use

a two-point function that is θ(−t) rather than θ(t). In addition, since time is running

backwards on the bottom edge, the interactions come with a factor of ig, instead of −ig.

This results in the elimination of the minus sign in the sum in (3.29), and correspondingly

gives exponential growth.

Dressed propagator. We now return to the frequency-space four-point function (3.19),

and evaluate the Fourier transform (3.20), this time using the full dressed propagator.

Inserting the propagator G(ω) (3.8) into (3.20) gives,

NG4(t31, t42) = −G(t31)G(t42)

+ 4

∫
dω1

2π

dω2

2π

1

2ν2 − (ω1 +
√
ω2

1 − 2ν2)(ω2 +
√
ω2

2 − 2ν2)
e−iω1t31 e−iω2t42 , (3.31)

where we have split off a G(ω1)G(ω2) from (3.19), giving the first term in (3.31). Changing

integration variables to xi = ωi +
√
ω2
i − 2ν2 gives,

NG4(t31, t42) = −G(t31)G(t42)

+

∫
dx1

2π

dx2

2π

(
1− 2ν2

x2
1

)(
1− 2ν2

x2
2

)
1

2ν2 − x1x2
e
− i

2

(
x1+ 2ν2

x1

)
t31 e

− i
2

(
x2+ 2ν2

x2

)
t42 .

(3.32)

Our goal is to see if (3.32) exhibits exponential growth; if this does occur, it will be

in the out-of-time-order regime, such as t31 = −t42 = t. We consider the late time limit,6

and approximate (3.32) via the saddle point method (appendix A): we seek to deform the

contours of integration of x1, x2 such that they pass through a saddle, at an angle such

that the phase is constant. If we are away from the poles of the integrand, the saddle

point occurs at xi = ±
√

2ν, which clearly only gives oscillatory behavior. Now consider

the regions at the poles of the integrand, at x1x2 = 2ν2. This a peculiar region, as

ω =
x

2
+
ν2

x
(3.33)

6Since we are working in the planar limit, late time is still before the scrambling time, which scales as

logN .
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=

+ +

+ +      . . .

ω

ω

ωω

ω

−ω1

−ω1

−ω1

ω2

ω3ω2

Figure 7. Planar Feynman graphs for the fundamental propagator G(ω) (4.4) in the IOP model.

The shaded rectangles mark the full planar propagators. Arrows point from creation operators

toward annihilation operators. The graphs for n = 0, 1, 2 are shown.

is invariant under x→ 2ν2/x. Inserting this x2 = 2ν2/x1 into the exponent in (3.32) , the

exponent becomes,

exp

(
− i

2

(
x1 +

2ν2

x1

)
(t31 + t42)

)
, (3.34)

which does not give rise to the exponential growth indicative of chaos. Moreover, for

t31 = −t42, the exponent simply vanishes.

4 IOP model

We now turn to the IOP model [3]. Like the IP model, this is a quantum mechanical

system, with a harmonic oscillator in the adjoint of U(N) and a harmonic oscillator in the

fundamental of U(N). However, the interaction is now quartic in the oscillators (2.3), and

quadratic in the U(N) charges. The latter property makes the IOP model more analytically

tractable than the IP model, although diagrammatically it is more involved. As in the IP

model, we consider the limit in which the fundamental is heavy, M � T . However, we

can now obtain analytic results at any mass m for the adjoint. We review the two-point

function in section 4.1, and compute the four-point function in section 4.2.

4.1 Two-point function

The bare propagator for the fundamental is the same as in the IP model (3.2). The

propagator for the adjoint is that of free harmonic oscillator in a thermal bath, defined by

L(t)δilδjk = 〈TAij(t)A†kl(0)〉, and giving,

L(ω) =
i

1− y

[
1

ω −m+ iε
− y

ω −m− iε

]
. (4.1)
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+
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+ + ...

=

+

ω1 ω3

ω2ω4

Figure 8. Planar diagrams contributing to a “rung” Γ in the IOP model. Diagrams with n,m =

0, 1, 2 are shown.

The Schwinger-Dyson equation for the planar two-point function for the fundamental is

(see figure 7),

G(ω) = G0(ω) +G0(ω)G(ω)

∞∑
n=0

Sn(ω) , (4.2)

Sn(ω) = (−ihN)n+1

∫
dn+1~ω

(2π)n+1
L(−ω1)

n∏
l=1

[G(ω − ωl+1 − ω1)L(ωl+1)] . (4.3)

As G only has poles in the lower-half plane, we can close the ωi integrals in the lower-half

plane and pick up residues only from L. This leads to an algebraic equation for G, with

the solution [3],

G(ω) =
2i

λ+ ω +
√

(ω − ω+)(ω − ω−)
, ω± = λ

1 + y ± 2
√
y

1− y
, (4.4)

where the ’t Hooft coupling is λ = hN . The propagator has a branch cut from ω− to ω+,

leading to late-time power law decay, t−3/2.

4.2 Four-point function

We now turn to the four-point function in the planar limit. The connected four-point

function is found by summing ladder-like diagrams, shown in figure 10, where each “rung”

of the ladder is found by summing an infinite number of diagrams, like the ones shown in

figure 8. We warm up by computing the four-point function in the limit of small adjoint

mass m, before doing the calculation for arbitrary m.

Small adjoint mass. We start with the limit m→ 0. In particular,

m→ 0, κ ≡ λ

1− y
, (4.5)
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where κ is held constant. In this limit, the two-point functions for the adjoint (4.1) and

the fundamental (4.4) become,

L(ω) =
1

1− y
2πδ(ω −m) , (4.6)

G(ω) =
2i

ω +
√
ω(ω − 4κ)

. (4.7)

To compute the four-point function, we first sum the diagrams shown in figure 8, to get

Γ(ω1, ω2, ω3, ω4) =
(2π)2

N
Γ(ω1, ω2)δ(ω13)δ(ω24) , (4.8)

where ωij ≡ ωi − ωj and,

Γ(ω1, ω2) =
∞∑

n,m=0

G(ω1)nG(ω2)m(−iκ)n+m+2 =
−κ2

(1 + iκG(ω1))(1 + iκG(ω2))
, (4.9)

where the index n/m labels the number of intermediate fundamental propagators on the

top/bottom edge. As in the IP model, as a result of the m→ 0, all intermediate propagators

are on-shell. The four-point function is given by the ladder-like sum of the Γ (see figure 10),

NG4(ω1, ω2) =
∞∑
k=1

Γ(ω1, ω2)k(G(ω1)G(ω2))k+1

=
G(ω1)G(ω2)

1− Γ(ω1, ω2)G(ω1)G(ω2)
−G(ω1)G(ω2) . (4.10)

Inserting (4.9) into (4.10) gives the frequency-space four-point function G4(ω1, ω2, ω3, ω4) =

(2π)2δ(ω13)δ(ω24)G4(ω1, ω2) where,

NG4(ω1, ω2) =
−κ2G(ω1)2G(ω2)2

1 + iκ(G(ω1) +G(ω2))
. (4.11)

Like in the IP model, we find exponential growth in the out-of-time-order four-point

function if we only sum the diagrams containing the free propagator: (4.11) with (3.2) and

t31 = −t42 = t gives a four-point function ∼ N−1 exp(2κt) for large t.

Now consider (4.11) with (4.7). The position-space four-point function is thus,

NG4(t31, t42) =

∫
dω1

2π

dω2

2π

−κ2G(ω1)G(ω2)

G(ω1)−1G(ω2)−1 + iκ(G(ω1)−1 +G(ω2)−1)
e−iω1t31e−iω2t42 .

(4.12)

Changing integration variables to xi = ωi +
√
ω(ω − 4κ), (4.12) becomes

NG4(t31, t42) =

∫
dx1

2π

dx2

2π

(x1 − 4κ)

(x1 − 2κ)2

(x2 − 4κ)

(x2 − 2κ)2
×

× −4κ2

x1x2 − 2κ(x1 + x2)
e
−i x21

2(x1−2κ)
t31e
−i x22

2(x2−2κ)
t42 . (4.13)
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 ω1

ω4

ω3

ω2

r1 r2

ω1 - p1 ω1 - p2

ω2 - q1

i

i

j

j

Figure 9. One of the diagrams entering Γ in figure 8, given by n = 2,m = 1 in (4.15).

We approximate the integral by taking the limit of large time separations, and looking

for saddle points which could give rise to exponential growth. Picking up the pole at

x1x2 = 2κ(x1 + x2), the exponent becomes,

exp

(
−i x2

1

2(x1 − 2κ)
(t31 + t42)

)
. (4.14)

Like in the IP model, there is no exponential growth.

Arbitrary adjoint mass. We now compute the four-point function, with the adjoints

taking arbitrary mass m. The Feynman diagrams contributing to “rung” Γ are shown in

figure 8. A term in this sum, having n fundamental propagators on the upper edge and m

on the lower, is given by,

(−iλ)n+m+2

∫
dn~p

(2π)n
dm~q

(2π)m
dr1

2π
L(r1)L(r2)

n∏
i=1

G(ω1−pi)L(r1+pi)

m∏
j=1

G(ω2−qj)L(r2+qj) ,

(4.15)

where the ingoing frequencies are ω1, ω2, the outgoing frequencies are ω3, ω4, and we have

defined r2 = r1 + ω1 − ω3, and suppressed an overall factor of N−1. In figure 9 the

n = 2,m = 1 diagram from figure 8 is shown in more detail. Since G(ω1 − pi) has poles in

the upper half pi plane, we close the contour in the lower half plane. Similarly for the qi
integral. This gives for (4.15),

(−iλ)n+m+2

(1− y)n+m

∫
dr1

2π
L(r1)L(r2) G(ω1 + r1 −m)nG(ω2 + r2 −m)m . (4.16)

Evaluating the integral over r1 by closing the contour in the upper half-plane, (4.16) be-

comes,7

iy(−iλ)n+m+2

(1− y)n+m+2

[
G(ω1)nG(ω4)m

(
1

ω1 − ω3 + iε1 + iε2
− y

ω1 − ω3 + iε1 − iε2

)
(4.17)

+ G(ω3)nG(ω2)m
(

1

ω3 − ω1 + iε2 + iε1
− y

ω3 − ω1 − iε1 + iε2

)]
.

7The adjoint propagator L is given by (4.1). We denote the epsilon for L(r1) by ε1, and for L(r2)

by ε2. Without loss of generality, we choose ε2 > ε1. One can equally well choose ε2 < ε1; this can be

seen by rewriting (ω1 − ω3 − i(ε2 − ε1))−1 = (ω1 − ω3 + i(ε2 − ε1))−1 + 2πiδ(ω1 − ω3), and noting that

δ(ω1 − ω3)(G(ω3)nG(ω2)m −G(ω1)nG(ω4)m) = 0.
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+ +  ...

G4   =
ω1

ω4

ω3

ω2

ω1

ω4 ω2

ω3

ωa

ωa
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j

j

j

i
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Figure 10. The planar four-point function consists of ladders formed by gluing together the

diagrams shown in figure 8.

To sum over all the diagrams contributing to Γ (see figure 8), we must sum (4.17) over

n,m from 0 to infinity. This gives Γ = yΓ̃ where,

− iΓ̃(1, 2, 3, 4) =
z(1, 4)

ω1 − ω3 + iε
− y z(1, 4) + (1− y) z(2, 3)

ω1 − ω3 − iε
, (4.18)

where we have defined,

z(j, l) =
−κ2

(1 + iκG(ωj))(1 + iκG(ωl))
, (4.19)

and have simplified notation to denote ωj by j, and recall that κ ≡ λ/(1 − y). One can

also rewrite Γ̃ in (4.18) as,

yΓ̃ = y2 z(1, 4) 2πδ(ω1 − ω3) + y(1− y)

[
i z(1, 4)

ω1 − ω3 + iε
− i z(2, 3)

ω1 − ω3 − iε

]
, (4.20)

which, recalling that ω1 + ω2 = ω3 + ω4, is manifestly symmetric under ω1 ↔ ω2, ω3 ↔ ω4.

Attaching external propagators to (4.18) gives the first term in the sum for the four-

point function shown in figure 10. The second term requires gluing two of the Γ̃ together,

(Γ̃× Γ̃)(1, 2, 3, 4) ≡
∫
dωa
2π

G(a)G(ā) Γ̃(1, ā, a, 4) Γ̃(a, 2, 3, ā) , (4.21)

where ωā = ωa + ω4 − ω1. Performing the integral in (4.21) by closing the ωa contour in

the upper-half plane gives,

Γ̃× Γ̃ = G(2)G(3) z(2, 3) Γ̃ +
i(1− y)

ω1 − ω3 + iε
G(1)G(4) z(1, 4)

(
z(1, 4)− z(2, 3)

)
, (4.22)

where both the Γ̃× Γ̃ on the left, and the Γ̃ on the right, are functions of the external ωi.

Let us simplify notation and let (Γ̃)2 denote Γ̃× Γ̃, defined by (4.21). We define (Γ̃)n,

arising from gluing n of the Γ̃ together, in an analogous fashion,

(Γ̃)n(1, 2, 3, 4) ≡
∫
dωa
2π

G(a)G(ā) (Γ̃)n−1(1, ā, a, 4) Γ̃(a, 2, 3, ā) . (4.23)
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We compute (Γ̃)n iteratively, by gluing together (Γ̃)n−1 and Γ̃. The result is,

(Γ̃)n = G(2)G(3) z(2, 3)(Γ̃)n−1 +
i(1− y)

ω1 − ω3 + iε

(
G(1)G(4)z(1, 4)

)n−1(
z(1, 4)− z(2, 3)

)
,

(4.24)

where we have for convenience expressed (Γ̃)n in terms of (Γ̃)n−1. Next, we sum all the

(Γ̃)n. Denoting the sum by S,

S =

∞∑
n=1

(Γ)n , (4.25)

where recall that Γ = yΓ̃, and separating off the n = 1 term and using (4.24) for the rest,

we get,

S
(

1− yG(3)G(2)z(2, 3)
)

= Γ +
i

ω1 − ω3 + iε

y2(1− y)G(1)G(4)z(1, 4)
(
z(1, 4)− z(2, 3)

)
1− yG(1)G(4)z(1, 4)

.

(4.26)

The four-point function is given by S, with external propagators attached.

Thus, the connected four-point function for the IOP model in the planar limit is,

NG4(1, 2, 3, 4) =

A(1, 2, 3, 4) 2πδ(ω1 + ω2 − ω3 − ω4)

(
yz(1, 4)2πδ(ω1 − ω3) + y(1− y)

iB(1, 2, 3, 4)

ω1 − ω3 + iε

)
,

(4.27)

where

A(1, 2, 3, 4) =
G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)
, (4.28)

B(1, 2, 3, 4) =
z(1, 4)− z(2, 3)

1− yG(1)G(4)z(1, 4)
, (4.29)

where j denotes the frequency ωj , the propagator G(i) for the fundamental is given by (4.4),

the constant y is the Boltzmann factor y = e−m/T where m is the mass of the adjoint and

T is the temperature, and z(j, l) was defined in (4.19) and is a function of G(j), G(l),

and κ = λ/(1 − y), where λ is the ’t Hooft coupling. In the limit of small adjoint mass

m (y → 1), the first term in (4.27) survives and reproduces the earlier result (4.11). The

out-of-time-order four-point function does not exhibit exponential growth with time, for

reasons similar to those seen in the small adjoint mass limit (4.13), (4.14); see appendix B.

5 Discussion

The absence of exponential growth in the out-of-time-order four-point function implies that

the IOP model is not chaotic. In fact, there is a heuristic way to understand the absence of

chaos in the IOP model. The interacting part of the Hamiltonian (2.4) can be written as,

Hint = −h qliQil, qli = −a†ial, Qil = A†ikAkl . (5.1)
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As a result of the absence of self-interactions for the adjoints, combined with the assumption

of large fundamental mass M � T , the number of fundamentals is time-independent and,

ai(t) = e−ihQiltal(0) . (5.2)

Since Q is a hermitian matrix, it has real eigenvalues, and so the norm of the ai operators

does not grow.

If we relax the assumption that M � T , the above argument is no longer applicable,

though this may not be sufficient to make the model chaotic. Heuristically, chaos is associ-

ated with rapid growth. As we evolve a fundamental, it is emitting and absorbing adjoints.

Since the adjoints have no self-interaction, and conversion of an adjoint into two fundamen-

tals is suppressed by 1/N , the only way for the adjoints to continue evolving in between

emissions and absorptions is if they interact with fundamentals in the thermal bath.

It may be useful to modify the IOP model, so as to have several flavors of fundamentals.

Also, the interaction (5.1) can written in terms of the quadratic Casimirs, −hq · Q =
1
2hTr(q2 + Q2 − (q + Q)2), allowing a computation of the two-point function at finite N

through a sum over Young tableaux [3]. One could study the four-point function in this

way as well.

While the IP and IOP models were found to not be chaotic in the regimes studied, they

may in some sense be on the boundary. It would be good to make this more precise; ideally,

one would like to find a minor modification that leads to chaos while maintaining solvability.
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A Steepest descent

In this appendix, we review some aspects of evaluating integrals by the method of steepest

descent, see e.g. [36]. Consider an integral of the form,∫
dz g(z) e−itf(z) , t� 1 , (A.1)

where the integral is evaluated along some contour. For now, let g(z), f(z) be smooth

functions; we will discuss later how to relax this assumption. Since t � 1, the integrand

generically undergoes rapid oscillations which cancel out. The idea will be to deform the

contour of integration so as to follow a path for which the phase remains constant. As long
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as we do not cross any singularities, we are free deform the contour. Splitting f(z) into a

real and imaginary part,

f(z) = u(z) + iv(z) , (A.2)

we need to deform the contour to follow a path of constant u(z). The most relevant region

of the integrand is one in which the real part is maximized. Letting z = a+ ib,

∂v

∂a
=
∂v

∂b
= 0 . (A.3)

As a result of the Cauchy-Riemann equations, this amounts to finding the saddle points,

f ′(z) = 0. Therefore, the prescription for approximating (A.1) is to focus on the vicinity

of the dominant saddle point, and choose a direction for the contour that moves away from

the saddle point so as to maintain constant phase u(z).

As an example, consider the integral representation of the Bessel function,

K0(t) =
1

2

∫ ∞
−∞

dx
e−itx√
1 + x2

(A.4)

This has a branch cut, x ∈ (−i∞,−i) ∪ (i, i∞). We perform a change of variables, x =

sinhu, thereby bringing (A.4) into the form (A.1),

1

2

∫ ∞
−∞

du exp(−it sinhu) . (A.5)

Extermizing f(u) = sinhu, the saddle points are at u = ±πi/2. The line of constant phase

passing through the saddle points is one that runs along the imaginary axis. We deform

the contour so that it runs along −∞ < u < −iπ/2. Moving downward from u0 = −iπ/2
is a direction of steepest descent. In the vicinity of the saddle,

f(u) = f(u0) +
f ′′(u0)

2
(u− u0)2 + . . . . (A.6)

Defining a new variable z as u = u0 − iz, (A.5) becomes,∫ ∞
0

dz exp

(
−t− tz

2

2

)
=

√
π

2t
e−t , (A.7)

which is the correct large t expansion of K0(t).

We have so far discussed approximating (A.1) by the behavior near the saddle point.

There are several contexts in which other regions may be relevant. If the contour has

endpoints, then one must analyze the behavior near the endpoints. Additionally, if g(z)

has singularities, then one must analyze the integrand near those regions as well. In

particular, it may happen that there is no way to deform the contour into the relevant

steepest descent contour, without passing through singularities. If the singularity of g(z)

is a simple pole, then we may simply deform through it, picking up the contribution of the

pole. If, instead, g(z) has a branch cut or an essential singularity, we must analyze the

integrand in the vicinity of these regions.
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For instance, consider again approximating (A.4), but without changing variables. In

this case, g(x) = (1 + x2)−1/2 and f(x) = x. The exponential has no saddle points,

so we focus on the regions where g(x) is large: near x = ±i. We integrate along a

direction running parallel to the imaginary axis, as we still need to maintain constant

phase for the exponent. Letting x = −i− ρi, with ρ� 1 so that
√

1 + x2 ≈
√

2ρ, (A.4) is

approximated by,
e−t√

2

∫ ∞
0

dρ
e−ρt
√
ρ
, (A.8)

where we have extended the range of integration to infinite ρ, as its contribution is negli-

gible. Evaluating (A.8) gives (A.7).

B Four-point integral

The four-point function for the IOP model is,

G4(t1, t2, t3, t4) =

∫
dω1

2π

dω2

2π

dω3

2π
G4(ω1, ω2, ω3, ω4) e−iω1t41−iω2t42−iω3t34 , (B.1)

where ω4 = ω1 + ω2 − ω3 and G4(ω1, ω2, ω3, ω4) is given by (4.27).

Our eventual interest is the out-of-time-order four-point with time separations t41 = 0,

t34 = −t42 = t and large t. At large t, the exponent in (B.1) undergoes rapid oscil-

lations as ω2, ω3 are varied. Since the exponent clearly has no saddle point, the only

regions which could lead the four-point function to grow exponentially are those in which

G4(ω1, ω2, ω3, ω4) is singular. We thus hold ω1 fixed, and scan over ω2, ω3, looking for re-

gions in which the frequency-space four-point function is divergent. The relation between

ω2 and ω3 where this occurs then determines the form of the exponent in (B.1), which can

then be written just as a function of ω2. This function may have saddles, which will either

lead to an oscillatory exponent or a growing one.

There are two terms in G4(ω1, ω2, ω3, ω4) given by (4.27). Consider the first of these,

y
z(1, 4)G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)
2πδ(ω1 − ω3) , (B.2)

where, as before, G(j) denotes G(ωj). It is convenient to rewrite (B.2) as

yG(2)G(3)
1

z(2, 3)−1G(2)−1G(3)−1 − y
2πδ(ω1 − ω3) , (B.3)

where from (4.19) we have that,

z(j, l)−1G(j)−1G(l)−1 = − 1

κ2
(G(j)−1 + iκ)(G(l)−1 + iκ) . (B.4)

It is convenient to rewrite the propagator (4.4) as,

G(j) =
2i

xj
, xj = κ(1− y) + ωj +

√
ω2
j − 2(1 + y)κωj + κ2(1− y)2 . (B.5)
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Inverting the relation between ωj and xj ,

ωj =
xj
2

(
1 +

2κy

xj − 2κ

)
. (B.6)

Notice that (B.6) has a symmetry; ωj is invariant under,

xj − 2κ→ 4κ2y

xj − 2κ
. (B.7)

This is analogous to the invariance seen in the IP model, see (3.33), as well as in the IOP

model earlier, for y = 1. Now, the term (B.3) is singular when the denominator vanishes.

Substituting (B.4), (B.5), this occurs at −x2x3 + 2κ(x2 + x3)− 4κ2(1− y) = 0, which is,

x3 = 2κ

(
1 +

2κy

x2 − 2κ

)
. (B.8)

As a result of the invariance (B.7), this implies ω2 = ω3. This is the same as what was

seen for the IOP model at y = 1, see (4.14). Thus, the exponent in (B.1), as a function of

ω2, is oscillatory, and the same holds at the location of its saddle.

Now consider the second term in G4(ω1, ω2, ω3, ω4), which is,

y(1− y)
G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)

z(1, 4)− z(2, 3)

1− yG(1)G(4)z(1, 4)

i

ω1 − ω3 + iε
. (B.9)

It is convenient to rewrite (B.9) as,

y(1− y)
z(2, 3)−1 − z(1, 4)−1

(z(2, 3)−1G(2)−1G(3)−1 − y)(z(1, 4)−1G(1)−1G(4)−1 − y)

i

ω1 − ω3 + iε
. (B.10)

We regard (B.10) as a function of ω2, ω3, where recall that ω4 = ω1+ω2−ω3. The nontrivial

singularities in (B.10) arise from (z(2, 3)−1G(2)−1G(3)−1−y) = 0, which as shown in (B.8)

implies ω2 = ω3, or from (z(1, 4)−1G(1)−1G(4)−1 − y) = 0, which again gives ω2 = ω3.

Thus, there is no regime of exponential growth for the four-point function.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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