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dark matter model. We include known, standard astrophysical sources and a dark matter

component in the cosmic ray injection spectra. To predict the AMS-02 observables we use

propagation parameters extracted from observed fluxes of heavier nuclei and the low energy

part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion

coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple

channels at once. The simultaneous presence of various annihilation channels provides the

dark matter model with additional flexibility, and this enables us to simultaneously fit

all cosmic ray spectra using a simple particle physics model and coherent astrophysical

assumptions. Our results indicate that AMS-02 observations are not only consistent with

the dark matter hypothesis within the uncertainties, but adding a dark matter contribution

improves the fit to the data. Assuming, however, that dark matter is solely responsible for

this improvement of the fit, it is difficult to evade the latest CMB limits in this model.
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1 Introduction

Charged cosmic rays carry a wealth of information about galactic astrophysics and pos-

sibly about new fundamental particle physics. Deciphering this information is, however,

challenging because it requires the detailed understanding the injection and propagation

of cosmic rays within the Galaxy. Fortunately, the last decade witnessed an increasing

precision both in the experimental determination and the theoretical prediction of cosmic

ray fluxes. As observations became more and more precise a deviation between them and

prediction became apparent in the electron and positron fluxes [1–16]. The latest and most

precise measurements of the electron, positron flux, antiproton-to-proton ratio, and proton

flux came from the AMS-02 collaboration [17–22]. The increase of the positron spectral

index and the growth of the positron fraction above 100 GeV are unexpected features of

these measurements [17, 18].

The difference between these measurements and various predictions is the subject of

debate. It may originate from unsatisfactory understanding of cosmic ray propagation,

through unaccounted standard astrophysical sources (such as pulsars and/or supernova

remnants), to more exotic new physics (such as dark matter annihilation) [23–25]. Moti-

vated by the exciting possibility that the apparent excess of cosmic electrons and positrons

is due to dark matter annihilation, in this work we examine whether the AMS-02 data are

consistent with a typical particle dark matter model. First, we make a prediction for the

expected background based on the propagation parameters of heavier cosmic isotopes and

commonly used injection spectra. Then we calculate the contribution of dark matter an-

nihilation to the electron, positron and anti-proton fluxes. Adding this to the background

flux allows us to constrain the parameter space of the dark matter model.

To determine the cosmic ray background due to standard astrophysical sources we

adopt the following strategy. We assume that the relevant cosmic ray propagation pa-

rameters and injection spectra can be determined by fitting the observed fluxes and the

secondary-to-primary ratios of heavier nuclei (e.g. B/C,10 Be/9Be) and the low energy re-

gions of the e± and p̄/p spectra. Based on these fits we derive the background for the e±
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and p̄/p fluxes. Then we calculate the injection spectra of e± and p̄ due to dark matter

annihilation. Using the earlier determined diffusion parameters we propagate the dark

matter annihilation products through the Galaxy. This procedure ensures a consistent as-

trophysical treatment of cosmic rays originating from standard astrophysical sources and

from dark matter.

As particle physics description of dark matter we use the simplified model framework.

This ansatz uses minimal and general theoretical assumptions. We consider a single dark

matter particle, a Majorana fermion, that couples to standard fermions via a spin-0 me-

diator. We do not assume a specific, single annihilation final state for the dark matter

particle. Rather, more realistically and in line with minimal flavor violation [26], we allow

the dark matter particle to annihilate into the third generation quarks and the tau lepton.

The simultaneous presence of various annihilation channels provides the dark matter model

with considerable flexibility, which enables us to simultaneously fit all cosmic ray spectra

using a single particle physics model and coherent astrophysical assumptions. This is one

of the most important results of our work. Beyond this outcome we also delineate the

AMS-02 preferred region in the parameter space of the dark matter model.

This paper is organized as follows. In section 2 we describe the propagation equation

and injection spectra for cosmic ray in galaxy. The values of corresponding parameters are

also given. In section 3, we briefly describe the simplified dark matter model we use. Our

numerical results are given in section 4. Finally, in section 5 we summarize our main results.

2 Injection and propagation of cosmic rays

Cosmic rays are energetic particles propagating within the Galaxy, and are divided into

primary and secondary types [27–30]. Primary cosmic rays are likely to originate from

powerful astrophysical processes, such as supernova explosions and pulsars. By interacting

with intergalactic matter they create secondary cosmic rays [7, 8, 28, 30–32]. Propagation

of charged cosmic rays within the Galaxy can be quantified by the diffusion model [33–36].

This model provides a mechanism to explain the retention and isotropic distribution of high

energy charged particles within the Galaxy, by describing particle scattering on Galactic

media, such as magnetic fields [27, 30, 36, 37]. The spectrum of cosmic rays is modified

by various energy loss mechanisms (due to interaction with the interstellar medium) and

re-acceleration (due to interstellar shocks) [36, 38, 39].

Cosmic ray propagation within the galactic halo is described by the transport equa-

tion [36]

∂ψ

∂t
= Q(~r, p) + ~∇ ·

(
Dxx

~∇ψ − ~V ψ
)

+
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ

− ∂

∂p

[
ṗψ − p

3

(
~∇ · ~V

)
ψ

]
− ψ

τf
− ψ

τr
. (2.1)

Here ψ(~r, t, p) is the density of cosmic rays per unit of total particle momentum p, ~V is

the convection velocity, and τf (τr) is the time scale for fragmentation (radioactive decay).
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The spatial diffusion coefficient is written in the form

Dxx = βD0(R/R0)δ, (2.2)

with R and β being the rigidity and particle velocity divided by light speed respectively.

The diffusion coefficient in momentum space, i.e. Dpp, is proportional to the square of

the Alfven velocity vA. The height of the cylindrical diffusion halo is z0. The above key

propagation parameters can be constrained by fitting the secondary-to-primary ratios of

nuclei, that is the Boron-to-Carbon ratio (B/C) and the Beryllium ratio (10Be/9Be). We

adopt the diffusion re-acceleration model and the values of propagation parameters shown

in table 1, determined by the B/C and 10Be/9Be data [40].

Each cosmic ray species is described by an equation as eq. (2.1), with species specific

parameters. The source term of cosmic ray species i can be generally described by the

product of spatial distribution and injection spectrum functions

Qi(~r, p) = f(r, z)qi(p). (2.3)

For the spatial distribution of the injected primary cosmic rays we use the following super-

nova remnants distribution

f(r, z) = f0

(
r

r�

)a
exp

(
−b r − r�

r�

)
exp

(
−|z|
zs

)
, (2.4)

where the distance between the Sun and the Galactic center is r� = 8.5 kpc, the height of

the Galactic disk is zs = 0.2 kpc, and the two parameters a and b are taken to be 1.25 and

3.56, respectively. The normalization parameter f0 is determined by the EGRET gamma

ray data [41]. We assume the following power law with one break for the injection spectra

of various nuclei

qi ∝


(
R/Rpbr

)−ν1 , R ≤ Rpbr(
R/Rpbr

)−ν2 , R > Rpbr

nuclei, (2.5)

and two breaks for primary electrons, i.e. Rebr1, R
e
br2 with γ1, γ2, γ3 being the power

law indexs.

Following the approach in ref. [40] we adopt a scale factor ce+ = 3.1 to take into account

the uncertainty in the calculation of the secondary fluxes from proton-proton collision

cross section and enhancement factor from heavier nuclei. It is introduced to rescale the

calculated secondary flux to fit the data. The corresponding injection parameters can be

determined by fitting the AMS-02 proton, electron, and positron data. We adopt injection

parameters obtained by such a fit in ref. [40]. The values of these injection parameters are

shown in table 1.

We use the Fisk potential φi (i = e−, e+, p, p̄), relating the local interstellar fluxes to the

one measured at the top of the atmosphere, to account for the solar modulation effect. We

treat φi as species specific nuisance parameters. Their best fit values are shown in table 1.

Since solar modulation affects the observed fluxes only below 10 GeV, the values of these

parameters have no effect on our conclusions drawn about the dark matter contribution.
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propagation value nucleon injection value electron injection value solar modulation value

D0 (1028 cm2 s−1) 6.58 ν1 1.811 γ1 1.463 φe− (MV) 1550

δ 0.33 ν2 2.402 γ2 2.977 φe+ (MV) 1800

R0 (GV) 4 Rpbr (GV) 12.88 γ3 2.604 φp (MV) 518

vA (km s−1) 37.8 Ap (see caption) 4.613 Rebr1 (GV) 2.858 φp̄ (MV) 0

z0 (kpc) 4.7 − − Rebr2 (GV) 68.865 − −

− − − − Ae (see caption) 1.585 − −

Table 1. Parameters of propagation, nucleon/electron injection and solar modulation and their

values adopted in our numerical analysis. The proton (electron) flux is normalized to Ap (Ae) at

100 (25) GeV in the units of 10−9 cm−2 s−1 sr−1 MeV−1.

3 The dark matter model

In this section, we describe the particle physics model we use to demonstrate that the

AMS-02 data can be explained by dark matter annihilation. In the recent literature it was

shown that Majorana fermions are one of the most plausible dark matter candidates [42–49].

Inspired by this, we assume that dark matter is composed of Majorana fermion particles,

which we denote by χ. Motivated by the Higgs portal mechanism, we assume that the

dark matter particle couples to standard fermions via a spin-0 mediator, that we denote

by S [50, 51]. We cast the dark matter to mediator coupling in the form

Lχ ⊃
iλχ
2
χ̄γ5χS. (3.1)

Coupling between the dark matter and mediator is fixed to λχ = 1. (This choice effectively

absorbs λχ into the mediator-standard model couplings.) Coupling between the mediator

and standard model fermions f is given by

LS ⊃ λf f̄fS. (3.2)

We assume that S only couples to third generation fermions, consistently with minimal fla-

vor violation, i.e. f = b, t, τ [26]. For simplicity we do not consider dark matter annihilation

into a pair of S particles. With the interactions defined by eqs. (3.1) and (3.2) dark matter

annihilation is not velocity suppressed [52]. At the same time the dark matter-nucleon

elastic scattering cross section is spin-independent (SI) and momentum suppressed.

Under the above assumptions the dark matter model is described by the following

parameters:

P = {mχ,mS , λb, λt, λτ} . (3.3)

The scan ranges for these parameters are

1 TeV < mχ < 10 TeV, 1 GeV < mS < 1 TeV, 10−4 < λb, λτ , λt < 105. (3.4)

The potentially large values of the above effective couplings can only be understood in

an underlying theory. They may include the effect of large but renormalizable perturba-

tive couplings, large loop contributions from vector-like matter, resonant or Sommerfeld

enhancements, or the combination of more than one such a factor [53].
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The source term arising from dark matter annihilation contributing to the cosmic ray

species i is given by

Qχi (r, p) =
ρ2
χ(r)〈σv〉

2m2
χ

∑
f

Bf
dNf

i

dE

 , (3.5)

where 〈σv〉 is the velocity averaged dark matter annihilation cross section, Bf = 〈σv〉f/〈σv〉
is the annihilation fraction into the ff̄ final state, and dNf

i /dE is the energy spectrum of

cosmic ray particle i produced in the annihilation channel into ff̄ . In the parenthesis on the

right hand side the total differential yield is the Bf weighted sum of the partial differential

yields into specific final states. The sum includes contributions from all the third generation

charged fermions (b, t, τ). AMS-02 plays an important role in constraining the coupling of

the mediator to these fermions since Bf directly depends on these couplings.

We use a generalized Navarro-Frenk-White (NFW) profile to describe dark matter

spatial distribution within the Galaxy [54, 55]

ρχ(r) = ρ0
(r/rs)

−γ

(1 + r/rs)3−γ . (3.6)

Here the normalization coefficient is ρ0 = 0.26 GeV/cm3 and the radius of the galactic

diffusion disk is rs = 20 kpc. We fix the inner slope of the halo profile to γ = 1.

4 Results

As discussed in section 2, the propagation and injection parameters of cosmic rays are deter-

mined by fitting the B/C and 10Be/9Be data and recent charged cosmic ray data from AMS-

02, respectively [40]. The parameters in table 1 thus imply prediction for cosmic ray mea-

surements inferred from standard astrophysical sources. One can investigate the constraint

on extra sources, such as dark matter, based on this fiducial astrophysical background.

To this end the Lagrangian of the dark matter model described in the previous section

was coded in FeynRules [56]. Using model files generated by FeynRules, the annihilation

fraction Bf and differential yields dNf
i /dE in eq. (3.5) were calculated by a modified version

of micrOmegas 3.6.9 [57]. These dark matter model dependent variables were then input

into the public code Galprop v54 [35, 38, 58–60] to ensure that near Earth cosmic ray fluxes

from dark matter annihilation and background spectra obtained in a consistent way.

The calculated cosmic ray fluxes, together with the measured spectral data points,

were entered in a composite likelihood function, defined as

−2 lnL =
∑
i

(f th
i − f

exp
i )2

σ2
i

. (4.1)

Here f th
i are the theoretical predictions and f exp

i are the corresponding central value of

the experimental data. The uncertainty σi combines the theoretical and experimental

uncertainties in quadrature. We stipulate a 50% uncertainty of the theoretical prediction

of electron flux, positron flux and antiproton-proton ratio according to the estimates of
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refs. [61–64]. This uncertainty takes into account, amongst other, the uncertainty related

to the fixed propagation parameters. The sum in eq. (4.1) runs over all the AMS cosmic ray

spectral data points: the electron flux (73 points), positron flux (72 points) and antiproton-

proton ratio (30 points). We do not include the AMS-02 positron fraction data in the

likelihood function; consequently the theoretical positron fraction flux is a prediction in

our framework.

Including observables from dark matter abundance, direct detection, or collider pro-

duction in the likelihood function would not change its value significantly. We found that

in the parameter region that dark matter annihilation can appreciably contribute to the

charged cosmic ray fluxes the self-annihilation rate is high enough to decrease dark matter

abundance below the observed level. In this case, assuming that χ is just a component

of dark matter, the likelihood is not affected by abundance. Dark matter direct detec-

tion is impaired by momentum suppressed χ-nucleon elastic scattering cross section and

the very high mass of χ. As for the Large Hadron Collider (LHC), in the relevant pa-

rameter region χ particles are too heavy to produce in significant numbers via 14 TeV

proton-proton collisions.

figure 1 shows our main results: AMS-02 cosmic ray flux observations are consistent

with the dark matter hypothesis within the uncertainties. The four frames display the

various cosmic ray fluxes AMS-02 observed: electron flux, positron flux, positron fraction,

and antiproton-to-proton ratio. AMS-02 central value measurements are shown by red

dots and dark error bars indicate their uncertainty. The green solid line, on each frame, is

obtained using the parameters shown in table 1 and displays the predicted background flux

originating from standard astrophysical sources. The blue solid line shows the prediction

of the total cosmic ray flux with dark matter parameter values that best fit the AMS-02

data. The blue curve is the sum of the background flux (green curve) and the dark matter

contribution at the best fit point (magenta curve). A series of orange colored dots (forming

vertical bars) indicate the theoretical uncertainty of the dark matter prediction given by

the 95% confidence region of dark matter model parameters.

As the plots show adding a dark matter contribution to the background flux yields a

better fit to the AMS-02 data. As expected, the electron flux is hardly changed by the

dark matter contribution, while the latter somewhat improves the agreement between the

theoretical prediction and the antiproton-to-proton ratio data. This indicates that the

dark matter model is consistent with these data. The fit to the positron data is noticeably

improved that justifies the addition of the dark matter component. Our likelihood function

used to extract the best-fit dark matter parameters does not include the positron fraction

data, that is the dark matter model parameters are not fit to the e+/(e+ + e−) fraction.

Rather, after we extract the best fit dark matter model parameters, we calculate the

positron fraction using the best fit parameters. As shown by the blue curve the e+/(e+ +

e−) fraction data and the best fit (obtained without this data) agree very well. This is

an important cross check of the internal consistency of the dark matter model and our

parameter extraction procedure.

The top frames of figure 2 show the regions of the dark matter parameter space pre-

ferred by the AMS-02 data. Solid circles and squares denote the estimated 68% and 95%
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Figure 1. Electron flux, positron flux, positron fraction, and antiproton-to-proton ratio observed by

AMS-02 (red dots and dark error bars). The blue solid line shows the prediction of the total cosmic

ray flux with dark matter parameter values that best fit the AMS-02 data. The total predicted

flux is the sum of the background flux (green solid line) and the dark matter contribution. Orange

dots indicate the 95% confidence region of the prediction. The magenta line is the flux from dark

matter at the best fit point.

confidence regions, respectively. The favored mass of the dark matter particle is heavier

than 2 TeV (at about 68% C.L.) with best fit point indicating an 9.3 TeV dark matter

mass. The AMS-02 data favor a spin-0 mediator mass in the region of 1–700 GeV (at

about 68% C.L.).

For the mediator-SM fermion couplings the favored region indicates that the tau lepton

coupling λτ is generally larger than quark couplings λb, λt, being 1000 (10) times larger than

λb (λt) at the best fit point. This trend is governed by the electron and positron data fit:

dark matter annihilations should produce mostly leptons to explain the difference between

– 7 –
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Figure 2. The AMS-02 favored region of masses (top left, mS vs. mχ), couplings (top right, λt/λb
vs. λτ/λb), and cross sections (bottom, σv vs. mχ) in the simplified dark matter model we consider.

The solid circles and squares estimate 68% and 95% confidence regions, respectively. The best fit

point is indicated by a triangle.

the astrophysical background and the AMS-02 data at high energies. The antiproton-to-

proton ratio data, on the other hand, require the moderate presence of either bottom or

top quarks in the final state. Hence the diagonal shape of the estimated 68% and 95% C.L.

regions on the right hand frame of figure 2. The best fit point favors coupling values for

which λτ ∼ 10λt ∼ 1000λb.

The bottom frame of figure 2 shows that the AMS-02 data require an effective dark

matter annihilation cross section in the region of 1×10−23–2×10−22 (5×10−24–3×10−22)

cm3/s at about 68 (95) % C.L. An effective cross section so much higher than the standard

thermal rate could indicate the non-thermal origin of self-annihilating dark matter particles

– 8 –
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responsible for AMS-02 [65–67]. Alternatively, the positron ray flux might receive a boost

from dark matter substructure, such as over dense clumps, clouds, or disks which would

allow for a reduced annihilation rate [68–77].

According to ref. [78] a 1-10 TeV dark matter particle with an annihilation cross section

of σv ∼ 10−23−10−22 cm3/s, and dominant final state of τ+τ− or bb̄, is excluded by Planck

and by Fermi-LAT gamma ray bounds from dwarf satellite galaxies. Since the annihilation

rate at the recombination time places a (particle physics) model independent limit on

the present day annihilation rate, either of these limits are hard to evade. Sommerfeld

enhancement does not alleviate the problem, since the average relative velocity of scattering

dark matter particles at the time of CMB is lower than the present day one. Uncertainties

in the relevant astrophysical measurements, such as in the power injected into the CMB

or the Fermi-LAT statistical/systematic errors, do not seem to leave enough room for the

high dark matter annihilation cross section required to account for AMS-02. The most

straightforward way to evade the Planck and Fermi-LAT limits appears to be including

a standard, but presently unanticipated, astrophysical contribution to explain the AMS-

02 measurements. With such additional contribution the dark matter annihilation cross

section can be lowered and the model be made consistent with all data.

5 Conclusions

In this work we examined the plausibility of dark matter annihilation contributing to the

recent AMS-02 data, the electron, positron fluxes and antiproton-to-proton ratio. On

the top of the standard astrophysical cosmic ray flux prediction we included a dark matter

component. Our choice of the dark matter model was a Majorana fermion coupling to third

generation fermions via a spin-0 mediator. The initial flux from standard astrophysical

sources and dark matter annihilation were propagated through the Galaxy using the same

set of diffusion parameters. The latter were determined by fitting the cosmic ray fluxes of

heavier elements and the low energy regions of the AMS-02 data.

We have shown that not only AMS-02 observations are consistent with the dark matter

hypothesis within the uncertainties, but adding a dark matter contribution to the back-

ground flux yields a better fit to the data. We also estimated the most plausible parameter

regions of the dark matter parameter space in light of AMS-02. The observations prefer a

dark matter (mediator) mass in the 2–10 TeV (1–700 GeV) region at about 68% confidence

level. The data also favor a dominant tau lepton–dark matter coupling λτ , about ten times

larger than top quark-dark matter coupling λt at the best fit point. The antiproton-to-

proton ratio data require that dark matter annihilation to quarks is dominated by either

the top or the bottom final state with a slight preference for the latter.

At the meantime we found it to be difficult to evade the CMB and Fermi-LAT gamma

ray limits in this model due to the high annihilation cross section. With additional contri-

bution to the positron spectrum from standard, but presently unknown, astrophysics this

cross section can be lowered and the model be made consistent with all data.
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