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1 Introduction

In dimensions higher than four, a Yang-Mills theory becomes strongly coupled at high

energies: this signals non-renormalizability and often means the theory is not sensible,

much like for Einstein’s gravity in dimensions higher than two. String theory constructions

provide several examples where a gauge theory is “UV-completed” by a CFT: namely, there

exists a CFT which flows at low energies to the gauge theory.

A notable supersymmetric example in six dimensions is the class of so-called “linear

quiver” theories, where one has a chain of gauge groups, coupled to (bi)fundamental hy-

permultiplets and to tensor multiplets. These can be engineered in string theory by placing

D-branes on orbifold singularities [1, 2] or more generally with an NS5–D6–D8-brane sys-

tem [3, 4]. In these theories, the inverse squared Yang-Mills couplings are promoted to

scalar fields: there is a point in the moduli space of vacua where all of them vanish, and

the theory is strongly coupled. The string theory engineering suggests that this point

should actually be a CFT.

This picture was recently strengthened by holography. A classification of type II AdS7

solutions was given in [5]; in massive IIA an infinite series of solutions was found. These
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solutions were conjectured to be dual to the CFTs described above in [6].1 Later, their

analytical expression was found [9]. The internal space M3 is an S2-fibration over an

interval, so that the topology is that of an S3; the geometry is back-reacted upon by

D8-branes. A sketch of the internal geometry evokes the shape of a “crescent roll”;2 see

figure 3(c). Up to orbifolds and orientifolds, these are the most general AdS7 solutions in

perturbative type II. (Further generalizations can be engineered in F-theory [10–12].)

In this paper, we are going to give strong evidence for the conjectural identification

of [6] between the linear quiver CFTs and the crescent roll solutions. The evidence consists

of a systematic comparison of the so-called a anomaly on both sides. This is the part of

the Weyl anomaly which is proportional to the Euler density; it is generally thought to be

a measure of the number of “degrees of freedom” of a field theory. For example, it has

been shown never to increase in RG flows in two [13] and four [14] dimensions; for a theory

with a holographic dual, this property can be argued in general [15, 16].

On the field theory side, we computed the a anomaly using the Lagrangian formula-

tion away from the CFT point in the moduli space, where conformal invariance has been

spontaneously broken and the Yang-Mills couplings are finite. One can use the relation [17]

of a to the anomalies of R-symmetry and diffeomorphisms, which are not broken and can

be reliably computed away from the CFT point. While the number of fields presumably

decreases a lot in the RG flow from the CFT to the Lagrangian theory, some of the re-

maining fields obtain non-trivial gauge transformations that make up for the loss. In this

case, this is a Green-Schwarz-West-Sagnotti (GSWS) [18, 19] mechanism; its precise con-

tribution can be determined by imposing cancelation of gauge anomalies. This method

was used in [20, 21] to compute anomalies for a vast class of six-dimensional theories; here

we apply it to the most general linear quiver, and extract the term that dominates in the

holographic limit. This turns out to involve, in this case, taking to infinity the number

N − 1 of gauge groups, rather than each of the individual ranks. If the gauge groups are

SU(ri), i = 1, . . . , N − 1, in this limit we obtain

a =
192

7

∑
C−1ij rirj , (1.1)

where C is the Cartan matrix for AN−1.

On the gravity side, a is computed as the volume of the internal space M3 in Einstein

frame, normalized in a certain way to the AdS7 radius. This particular combination actually

appears in other holographic estimates of the number of degrees of freedom, at leading

order. For example in four dimensions a and c happen to coincide [22] up to string-theory

corrections. Similarly, for the six-dimensional N = (1, 0) theories studied in this paper, it

turns out that up to string-theory corrections the coefficients ci of the three independent

Weyl-invariants are all proportional to a. The reason is that a and ci are all linear in the

four coefficients of the anomalies of the R-symmetry and diffeomorphisms [17, 23], and

only one of these anomaly coefficients determines the leading behavior in the holographic

limit. Also, the same combination appears in the thermal free energy coefficient F0, which

appears in F ∼ F0T
dVol.

1AdS solutions dual to linear quiver SCFTs in four and three dimensions were described in [7, 8].
2The first to suggest this metaphor was probably X. Yin.
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A computation of this coefficient was performed in [9] for a couple of examples. For

instance, for a symmetric solution with two D8-branes, the result in [9] is the complicated-

looking3

ahol =
16

7
k2
(
N3 − 4Nk2 +

16

5
k3
)

(1.2)

where k is another integer of order N characterizing the quiver (see figure 7 below). This

exhibits the N3 scaling typical of fivebranes [24]. Notice, however, that k ∼ N : hence this

should be thought of as a polynomial of overall degree 3 in N and k; all the terms come

from supergravity, not from string-theory corrections, which we do not consider in this

paper. Applying the field theory result (1.1) to this case, one gets exactly (1.2), matching

all the coefficients.

Encouraged by this result, we have performed this holographic computation in general,

obtaining a perfect match with the field theory result. Although the detailed comparison is

complicated, we can already sketch a heuristic argument here. The gravity solutions depend

on a certain function q(z), which in appropriate coordinates is piecewise linear. This func-

tion actually interpolates the discrete graph of (half of) the gauge ranks ri (see figure 2(b)).

The holographic computation ahol reduces to an integral of q times a second primitive of q;

schematically, ahol ∝
∫
q 1
∂2
q. But the Cartan matrix C of AN−1 can be viewed as (minus)

a discrete second derivative, as is evident from writing it as (Cr)i = −ri+1 + 2ri − ri−1.
Since the holographic limit involves taking N → ∞, we can think of it as some kind of

continuum limit, and

a =
192

7

∑
C−1ij rirj

hol. limit−→ ahol =
192

7

∫
4q(z)

1

∂2z
q(z)dz . (1.3)

While this argument might feel a little schematic, we make the continuum limit more

precise and present the calculation in full detail below, and we indeed obtain full agreement

between the field theory and gravity computations.

Turning the result on its head, we can say that at finite N the field theory gives

some kind of quantum discretization of the gravity solution, where the function q entering

the metric gets discretized by the graph of the ri. It is of course often emphasized in

holography that the field theory side provides a quantum definition of the corresponding

gravity solution, but this class of examples gives a particularly clear example of this.

The paper is organized as follows. In section 2 we review the linear quiver six-

dimensional field theories, and the AdS7 solutions conjectured in [6] to be their gravity

duals. In section 3 we perform the computation of a in field theory, and extract the term

that dominates in the holographic limit. In section 4 we compute ahol and we compare it

with a, making (1.3) more precise.

2 6d linear quivers and their holographic duals

In this section, we will review the six-dimensional linear quiver (1, 0) theories of [3, 4] and

their gravity duals, proposed in [6] to be the AdS7 solutions of [5, 9]. We will also work

out in full generality certain details of the gravity solutions, such as the explicit positions

of the D8-branes, which in [5, 9] were only computed in some examples.

3Here and in the following we will set to 1 the anomaly of an abelian (2, 0) tensor, as in [17].
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2.1 The field theories

The theories were originally inferred to exist from brane configurations involving NS5-

branes, D6-branes and D8-branes. The NS5-branes are extended along directions

0, . . . , 5; the D6-branes along 0, . . . , 6; the D8-branes along all directions except 6. See

figures 3(a), 3(b), which we will explain in detail later, for an example. (Both brane config-

urations engineer the same theory: they are related by Hanany-Witten moves [25].) When

the NS5-branes are not on top of each other, the system is described by a field theory that

can be read off [3, 4] using the strategy originally outlined in [25] for three-dimensional field

theories. When the NS5-branes are on top of each other, we lose a Lagrangian description

and we expect interesting phenomena.

If N is the number of NS5-branes, the quivers consist of N − 1 vector multiplets

(Aµi, λiα, Di) with gauge groups U(ri), i = 1, . . . , N − 1; hypermultiplets (hi, ψiα̇),

i = 1, . . . , N − 2, in the bifundamental ri ⊗ ri+1, and fi hypermultiplets (h̃aii , ψ̃
ai
iα̇),

i = 1, . . . , N − 1, in the fundamentals ri; tensor multiplets (Φi, χiα, Biµν), i = 1, . . . , N ,

where the two-form potentials Biµν have self-dual field-strengths Hiµνρ; and, finally, lin-

ear multiplets ((πi, Ci), ξiα̇), i = 1, . . . , N , where πi are SU(2)R triplets of noncompact

scalars while Ci are SU(2)R singlet periodic scalars, see for example [26, 27]. The real

scalars Φi in the tensor multiplets enter the kinetic terms of the gauge groups according

to (Φi+1 − Φi)Tr|Fi|2; this dictates an ordering Φi < Φi+1, and moreover, when all the Φi

coincide (Φi = Φi+1∀i) the effective gauge couplings of all gauge groups are divergent, the

theory becomes strongly coupled and contains tensionless strings. In fact the Φi realize

the positions of the NS5-branes along x6, and the strong coupling point we just mentioned

corresponds to the NS5-branes being on top of each other. When the scalars Φi in the

tensor multiplets take different expectation values, the theory is said to be on the tensor

branch. Similarly, the triplets πi realize the positions of the NS5-branes along x7,8,9; Ci
may be thought of as the positions along x10 if there is an M-theory uplift. (From the four

scalars in each hypermultiplet one can form hyper-momentum maps for the U(1)i centers

of the U(ri) gauge groups, which are equated to πi by the equations of motion.)

Given all these ingredients, at generic points on the tensor branch where Φi 6= Φi+1

one can write the equations of motion of these theories (or equivalently a “pseudo-action”

on top of which one has to impose the self-duality constraints Hi = ∗Hi by hand). This

can be done for example by specializing the “tensor hierarchy” actions [28, 29], setting

to zero their Stückelberg-like terms htI and gJs, but keeping their dIrs. (Further work on

these theories has also produced Lagrangians whose equations of motion also contain the

self-duality constraints [30].)

There is a further subtlety: the U(1) subgroup in each of the U(ri) gauge groups

actually suffers from a further anomaly, which is presumed to be canceled [4, 27, 31] by a

GSWS mechanism involving this time an anomalous transformation of the periodic scalars

Ci in the linear multiplets, which gives a mass to the U(1) factors in the gauge groups via

a Stückelberg mechanism. This effect was not included in [28, 29] and its stringy origin

has not been worked out in detail.4 Since we are interested in the low energy physics and

4We thank T. Dumitrescu for interesting discussions about this point.
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Figure 1. The general structure of a linear quiver.

in computing anomalies, we will proceed by forgetting the massive U(1)’s, and considering

SU(ki) gauge groups.

The field theory on the tensor branch can be now summarized as a quiver. Each round

node with number r represents an SU(r) gauge group; each link between two round nodes

corresponds to a bifundamental hypermultiplet, and a tensor multiplet (two more tensor

multiplets are associated to the extremal NS5-branes corresponding to I = 1, N); and fi-

nally, links from a round node to a square node with number f represents f hypermultiplets

in the fundamental representation of the gauge group (and antifundamental representation

of a U(f) flavor symmetry). See figure 1, and figure 2(a) for a particular example.

For an SU(r) vector coupled to f flavors in the fundamental or antifundamental, gauge

anomaly cancelation dictates f = 2r. (We will rederive this constraint in section 3.) For

our quiver, this implies

2ri − ri+1 − ri−1 = fi . (2.1)

Intuitively, this says that the numbers of flavors fi are a sort of minus “discrete second

derivative” of the numbers of colors ri. As in lattice QFT, one can also introduce forward

and backward discrete derivatives (∂r)i ≡ ri+1− ri, (∂∗r)i ≡ ri− ri−1, so that f = −∂∂∗r.
Since the fi are by definition non-negative, it follows that the function ri is concave. Thus,

it will increase from zero (r0 ≡ 0), possibly have a plateau in the middle, and then decrease

to zero again (rN ≡ 0). See figure 2(b).

It is also convenient to introduce the “slopes”

si = ri − ri−1 = (∂∗r)i , (2.2)

in terms of which

fi = si − si+1 = −(∂s)i . (2.3)

From what we just said, it follows that the slopes si define a decreasing function. Its

plot defines visually two Young diagrams, made from the positive si on the left and the

negative si on the right, possibly separated by a zero region (which corresponds to the

plateau we mentioned earlier). See figure 2(c). These two Young diagrams ρL and ρR
provide a convenient way of parameterizing the theories we are considering, in the sense

that the data of the ranks ri and fi can be completely reconstructed from them and from

the number N .5 In other words, the CFT6’s we are considering in this paper can be

5In the brane construction of the linear quivers, the Young diagrams ρL and ρR encode the boundary

conditions of a stack of k D6-branes ending on two stacks of D8-branes [6], in the spirit of [32].
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Figure 2. In (a), an example of linear quiver. As described in the text, round nodes represent gauge

groups, square nodes flavor symmetries. Links represent hypermultiplets; horizontal links also have

tensor multiplets associated to them. In (b) we plot the numbers of colors ri, as a function of the

position i in the quiver. We added a linear interpolation to guide the eye. The bigger dots indicate

points where the slope changes; these are the positions where flavors are present, and the change

in slope equals the number of flavors. In (c) we plot the si = ri − ri−1; this can be thought of as

the derivative of the linear interpolation in (b). We have filled in the plot with boxes, that define

two Young diagrams ρL, ρR.

parameterized as

T NρL,ρR . (2.4)

By construction, the two Young diagrams have the same number of boxes. Indeed, let

us call L the depth of the left Young diagram, R the depth of the right one, and k the

maximum rank, that is the height of the plateau when it is present. From (2.2) we see that

k =

L∑
i=1

si = −
R∑

j=N−1
si . (2.5)
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(a)

(b)

(c)

Figure 3. In (a) and (b) we see two versions of the brane system that engineers the particular

quiver in figure 2(a), related by Hanany-Witten moves. In both cases, round dots represent NS5-

branes; horizontal lines represent D6’s; vertical lines represent D8’s. In (a) we see the system in a

configuration where the quiver can be read off easily: the segment between the i-th and (i+ 1)-th

NS5-branes contains ri D6-branes, and fi D8-branes intersecting them. The two Young diagrams

can be read off intuitively from both pictures (a) and (b). Focusing for example on ρL, in (a) we

see that there are 1 D8 in the first segment, 2 in the second, 1 in the fifth: these represent the

drops si − si+1 = fi in the Young diagram. In (b) we see even more directly that there are 1 D8

with µ = 1 D6-branes ending on it, 2 D8’s with µ = 2 D6’s ending on them, 0 D8’s with µ = 3, 0

D8’s with µ = 4, 1 D8’s with µ = 5; these are the fi = si − si+1 associated to ρL. Finally in (c)

we see an artist’s impression of the shape of the internal M3 in the AdS7 solution. The D8’s are

represented by the black lines. There are as many D8-brane stacks as in the brane pictures (the

two D8’s with µ = 2 are on top of each other). These D8 stacks are in correspondence with the

flavors in figure 2(a).

The Young diagrams can also be read off easily from the brane configurations: see again

figures 3(a), 3(b), and cf. figure 2.

2.2 The gravity duals

We will now describe the AdS backgrounds in massive type IIA supergravity which have

been proposed [6] as gravity duals to the field theories we just described. Originally the

problem of finding AdS7 ×M3 solutions in type II supergravity was reduced to a certain

– 7 –
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ODE system in [5], where some solutions were found numerically. More recently their

analytical form was found [9]. The metrics have a certain local expression that depends on

a single parameter; one can then glue several “pieces” of this local metric along D8-branes.

This gluing was illustrated in [9] in a couple of examples; here we will also complete the

exercise of working this gluing out along an arbitrary number of D8’s. This will be needed

for the holographic computation of the anomaly in section 4.

2.2.1 Solutions

The metric in string frame reads

ds210 = e2A
(
ds2AdS7 −

1

16

β′dy2

βy
+

β/4

4β − yβ′
ds2S2

)
, e2A ≡ 4

9

√
−β
′

y
(2.6)

and the dilaton is

eφ =
(−β′/y)5/4

12
√

4β − yβ′
. (2.7)

Here β is a function of y such that q ≡ −4y
√
β
β′ obeys

∂y(q
2) =

2

9
F0 , (2.8)

with F0 the Romans mass. There are also the fluxes

F2 = y

√
β

β′

(
4− F0

18y

(β′)2

4β − yβ′

)
volS2 ,

H = −9

(
− y
β′

)1/4(
1 +

F0

108y

(β′)2

4β − yβ′

)
volM3 .

(2.9)

The simplest solution has F0 = 0. From (2.8) we get√
β =

2

k
(R2

0 − y2) (F0 = 0) . (2.10)

This is a reduction of the AdS7×S4/Zk solution of eleven-dimensional supergravity (see [5,

section 5.1] for a discussion in slightly different coordinates). It has k D6-branes at the

north pole y = −R0 and k anti-D6-branes at the south pole y = R0.

It is more interesting to consider solutions with F0 6= 0. From (2.8), we see that q2

must be a linear function 2
9F0(y − y0), and thus we find [9]

√
β = −2

∫
ydy√

2
9F0(y − y0)

=

√
8

F0

√
y − y0(−2y0 − y) +

√
β0 . (2.11)

(We have assumed here y0 < 0, F0 > 0, which will be convenient later.) The easiest case

is when β0 = 0. Under this assumption, plugging β in (2.6), we find that the S2 shrinks

at y = y0 and y = −2y0, so that the internal space is topologically an S3. At y = y0, the

S2 shrinks in a regular way; at y = −2y0, there is a singularity, which can fortunately be

interpreted physically as due to a stack of anti-D6-branes.

– 8 –
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If one varies the integration constant β0 in (2.11), one can obtain more general solutions

with a variety of sources [33, section 5.6]. In this paper, however, we will be more interested

in another type of generalization, namely introducing D8-branes. These have the effect of

changing F0 as they are crossed; thus q2 is no longer linear, but only piecewise linear in y.

The effect on β is that, in each region between two D8-branes, one gets an expression of

the type (2.11), but with different values for the integration constants y0 and β0 (as well as

F0, as we just mentioned). The exception is a possible region where F0 = 0, where (2.10)

should be used.

We will also switch on D6-brane charge on the D8’s, by having a non-trivial gauge

bundle on the internal S2 that they are wrapping. We will call this integer charge µ. To

completely determine the solution, we should know where the D8-branes are located. This

is fixed by supersymmetry, by the formula

q|D8 =
1

2
(−n2 + µn0) , (2.12)

where

n0 ≡ 2πF0 , n2 =
1

2π

∫
S2

(F2 −BF0) (2.13)

are the flux integers. They both jump across the D8, but (2.12) remains invariant.

(2.12) comes about in several related fashions. Supersymmetry fixes the fluxes as

in (2.9). From these one can obtain a local formula for the B field; imposing its continuity

across a D8 leads to (2.12). One finds (2.12) again by imposing the Bianchi identity for F2,

with the correct source terms. Finally, one also recovers (2.12) with a probe calculation

using calibrations. For more details, see [5, section 4.8].

Note that µ and n2 are not invariant under large gauge transformations, but (2.12) is.

For definiteness, in the remainder of the paper we make the following gauge choice. The B-

field potential is chosen to vanish at the North and South poles of M3. Since its flux through

M3 is N , this requires that we make a total of N units of large gauge transformations

between the poles. To keep n2 invariant, we perform these large gauge transformations in

the massless region. We will therefore distinguish between D8-branes in the region to the

North and D8-branes in the region to the South of the massless region where large gauge

transformations are performed. In the NS5–D6–D8 brane configuration, our gauge choice

corresponds to keeping all the N NS5-branes together in the massless region, partitioning

the D8-branes in two subsets, to the left and to the right of the NS5-branes, as depicted

in figure 3(b). (Different choices are related by Hanany-Witten moves [25], which lead to

the creation of D6-branes.)

Let us now state the identification proposed in [6] between these solutions and the

quivers of section 2.1. A quiver characterized by a sequence of N − 1 SU(ri) gauge groups

with U(fi) flavor groups attached is dual to an AdS7 solution of the type discussed in this

subsection, with N = − 1
4π2

∫
H, and

fi D8-branes of D6-charge µ =

{
i (North)

i−N (South)
(2.14)

– 9 –
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so that µ is positive (negative) for D8-branes in the region North (South) of the massless

region where the large gauge transformations are performed.6 The k in (2.10) turns out

to be the same as the k we defined in field theory, namely the maximum rank.7 This

correspondence was originally motivated by the similarity of the data of the brane dia-

grams and of the AdS7 solutions (see figure 3). In the language of brane diagrams, the

correspondence also says that a D8-brane on which µ D6-branes end (in the configuration

where all the D8’s are on the outside, as in figure 3(b)) becomes in the AdS7 solution a D8

with D6-charge µ.

2.2.2 D8-branes

Let us now work out the details of such a solution. First, let us spell out what (2.12) means

in terms of the quiver data. A point of notation: we will consider “the i-th D8 stack” to

be the one which contains D8-branes with D6-charge µ = i or µ = i − N , depending on

the region; as we just saw in (2.14), this stack consists of fi D8’s. We will keep saying this

even if some fi might be zero. (For example, in the example of figure 2 and 3, we first have

a stack of f1 = 1 D8’s, then a stack of f2 = 2 D8’s; then it might be more intuitive to say

that the third stack is the third non-trivial stack, consisting of one D8 with charge µ = 5,

but we will say instead that this is the fifth stack, while the third and fourth stacks will be

“empty” stacks with f3 = 0 and f4 = 0 D8-branes in them.) This slight abuse of notation

will be convenient.

We can now compute easily the flux integer n0,i (the D8-brane charge) between the

(i− 1)-th and the i-th stack. Thinking about the generic case where there is a region with

F0 = 0, we can start from there and go towards the North Pole y = y0: to get there we

have crossed fL + fL−1 + . . . + f1 = s1 D8’s, so the value of the flux integer n0 there is

s1. (This now explains footnote 7.) Going backwards towards F0 = 0, we cross the second

stack with f1 D8-branes, and the flux integer n0 now is fL+fL−1+ . . .+f2 = s2. In general

we find

n0,i = si . (2.15)

Along similar lines we find

n2,i = −
i−1∑
j=1

jfj . (2.16)

This can be checked visually in figure 3(b), if we recall that in such a diagram µ is the

number of D6’s ending on the given D8. (For example, on the left we have first a region

without D6’s; then after the first stack a region with only one D6; then after the second

stack a region with 5 D6’s; and finally the central region with 10 D6’s. Looking back at ρL
in figure 2(c), we have f1 = 1, f1 + 2f2 = 5, f1 + 2f2 + 3f3 + 4f4 + 5f5 = 10.)

6If the large gauge transformations were performed south of all D8-branes — or equivalently all NS5-

branes were to the right of the D8-branes in the brane diagram, as in figure 7 of [11] — there would instead

be fi D8-branes of D6-charge µ = i for all i.
7In the limit case N − L − R = 0, there is no such massless region; these are the cases discussed in [6,

section 4.2]. In such a case, we can alternatively characterize the gravity solution as having F0 = s1 near

the “North Pole” y = y0. The wisdom of this choice will be apparent soon.
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It is now interesting to compute the value qi of q at the i-th stack, applying (2.12).

Given (2.15), the first value is simply q1 = s1
2 , which recalling (2.2) is also equal to r1

2 .

More generally we have qi = 1
2(isi+

∑i−1
j=1 jfj). Then using (2.3) 2(qi− qi−1) = (i−1)(si−

si−1) + si + (i− 1)fi−1 = si. By induction and using (2.2) we have

qi =
1

2
ri . (2.17)

Note that, according to (2.12), 2q|D8 equals a D6-brane charge which is both integer quan-

tized and invariant under large gauge transformations. (This is only possible because the

D6-charge is computed on the worldvolume of D8-branes.) It was perhaps to be expected

that it corresponds to the number of colors r in the quiver.

Recall now from (2.8) that q2 is piecewise linear in y, and that its slope is 2
9F0; collecting

the definition (2.13) of flux integer, (2.15), and (2.17), we have

q2(y) =
1

9π
si+1(y − yi) +

1

4
r2i , yi ≤ y ≤ yi+1 (2.18)

where yi is the position of the i-th D8 stack (and, as previously defined, y0 is the position

of the “North Pole”, where the S2 shrinks to zero). By evaluating this at y = yi+1 and

using (2.2), we also get

∆yi+1 ≡ yi+1 − yi =
9

4
π(ri+1 + ri) . (2.19)

This manipulation is actually not warranted in the massless region, where F0 = 0 (since

we divided by si). In the massless region, we have another equation:

yR − yL =
9

4
kπ(N − L−R) , (2.20)

which is obtained using [33, eq. (5.42)] and some consequences of (2.10). Recall that

k ≡ ρL = ρR is the maximum rank (for example, k = 10 in figure 2(b)).

As we will see, this almost fixes the positions of all D8-branes. Before we do so,

however, it proves convenient to introduce a different coordinate, which will also help a

great deal in comparing the supergravity data with the field theory ones.

2.2.3 The coordinate z

We have seen that the value of q at the i-th stack is given by the i-th rank, (2.17). This

might suggest some resemblance between 2q and the piecewise linear function that inter-

polates between the ranks in figure 2(b). However, this fails for two reasons. First, (2.18)

shows that it is q2 which is piecewise linear, not 2q. Second, when one works out the yi
values of the D8’s (as we will do shortly), they are not linearly spaced.8

To fix the first discrepancy, one might simply want to define a new coordinate z

such that 2dq = n0dz — so that 2q will be piecewise linear, with slope given by the si
(recalling (2.15)). Together with (2.8), this gives

dz =
1

9πq
dy . (2.21)

8One might think of using q itself as a coordinate in which the D8-brane positions are linearly spaced.

Unfortunately, q is constant in the massless region.
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Let us see what happens to the positions of D8-stacks in this coordinate. In the massive

region, using (2.21) and (2.18) we have

∫ yi

yi−1

dz =
2

3
√
πsl

√y − yi−1 +
9

4
π
r2i−1
si

yi
yi−1

=
2

3
√
πsl

[(
∆yi +

9

4
π
r2i−1
si

)1/2

−
(

9

4
π
r2i−1
si

)1/2
]

=
ri − ri−1

si
= 1 .

(2.22)

In the massless region, q is constant, and z is proportional to y; thus it is even simpler to

compute, using (2.20):

zR − zL = N − L−R . (2.23)

Altogether, (2.22) and (2.23) show that 2q(z) is a piecewise linear function of z ∈
[0, N ], whose graph interpolates the discrete graph of the ranks, just like the solid plot in

figure 2(b). In other words:

2q(z) = ri + si+1(z − i) , z ∈ [i, i+ 1] . (2.24)

(recall that si+1 = ri+1 − ri and r0 = rN ≡ 0). Now, (2.21) can be read as y being

a primitive of q(z); moreover, from the definition q ≡ −4y
√
β
β′ we obtain that

√
β is a

primitive of y:

q =
1

9π
∂zy , y = − 1

18π
∂z
√
β . (2.25)

These facts will be important in the holographic match in section 4. Integrating (2.24)

we find

2

9π
(y − yi) = ri(z−i) +

1

2
si+1(z−i)2,

− 1

(9π)2

(√
β −

√
βi

)
=

2

9π
yi(z−i) +

1

2
ri(z−i)2 +

1

6
si+1(z−i)3,

z ∈ [i, i+ 1] . (2.26)

We determine the integration constants yi and βi in appendix A. As a cross-check, no-

tice that in the massless region si+1 = 0, and
√
β becomes quadratic; this is consistent

with (2.10), recalling that z is proportional to y in the massless region.

Let us also show how the metric looks like in the coordinate z we just introduced:9

ds2 = π
√

2

(
8

√
−α
α̈
ds2AdS7 +

√
− α̈
α
dz2 +

α3/2(−α̈)1/2√
2αα̈− α̇2

ds2S2

)
, α ≡

√
β . (2.27)

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have small

curvature and string coupling. Usually one tends to take large ranks. However, in our

case it seems more appropriate to scale the number of gauge groups. Intuitively, the idea

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be interesting

to explore this relationship further.
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Figure 4. The effect of the map (2.29) on the plot in figure 2(c), for n = 2.

is that our solutions came from a near-horizon limit of NS5-branes, and the curvature is

small when the number N of fivebranes is large. This is even clearer for the massless

solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the ∆yi for i ≤ L

and i ≥ R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows that

only the massless region is expanding; the massive regions stay the same size. In terms

of figure 2(c), the central region between the two Young diagrams is expanding more and

more. A more careful analysis indeed concludes that the D8’s are becoming smaller and

smaller with respect to the internal volume: the massless region is expanding, pushing the

D8’s closer and closer to the poles. Thus in this limit we are getting back to the massless

solution (2.10) and the details of the tail of the quiver associated to the massive regions

are washed out.

So we should also rescale the massive regions at the same time as the massless one; in

other words we should take

N,L,R→∞ with
L

N
,
R

N
constant. (2.28)

We will refer to this as the holographic limit in the following.

A convenient way to reach this holographic limit is to use a symmetry of the system

of BPS equations of supergravity that was pointed out in [6, eq. (4.3)]. In our present

language, it reads

N → nN , µi → nµi . (2.29)

In other words, as well as rescaling N , we also rescale the D6-charges of all the D8-brane

stacks. We now see in the z coordinate that the positions of the D8-branes, and the size of

the massless region, have been simultaneously rescaled by n. It may be helpful to visualize

this with the help of the action on the si plot, shown in figure 4 for n = 2.

The map (2.29) has the effect

e2A → ne2A , e2φ → 1

n
e2φ , (2.30)

and thus can be used to make both curvature and string coupling small. However, as we

have just argued, the D8-branes are rescaled proportionally, and the overall shape of the

solution is preserved.
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In conclusion, our holographic rescaling n→∞ in (2.29) will consist in taking

N →∞ ,
µi
N

= const. (2.31)

This particular rescaling keeps finite the number of D8-branes, so that in the limit the

solution looks for example like the one in figure 3(c). This will be our main focus in

what follows. However, it is also possible to consider other limiting procedures, where the

solution ends up having infinitely many D8-branes, with a continuous distribution in the

rescaled coordinate z/N as N →∞. As it turns out, our holographic comparison will also

work in such cases, as long as (2.28) is satisfied.

Let us also quickly consider the symmetry [6, eq. (4.2)]. This corresponds to stretch-

ing the Young diagrams vertically, without stretching them horizontally nor changing the

massless region. It rescales all the ranks, ri → nri (therefore k → nk), and does not change

the number of gauge groups. This rescaling achieves eφ → 1
ne

φ; thus it can be used to make

the string coupling small, but it does not act on the curvature. More generally, large k

ensures small string coupling in IIA, but as we will see this is not necessary for our holo-

graphic match, as long as N is large. For this reason, we prefer to use the rescaling (2.31)

to reach the holographic regime.

3 Anomaly computation in field theory

We will now compute the a anomaly of the field theories described in section 2.1. In

section 3.1, a straightforward generalization of computations in [20, 21] (with a crucial

ingredient from [17]) will allow us to isolate the leading term in the holographic limit.

In section 3.2 we will then focus on how to compute that leading term for concrete

Young diagrams.

3.1 Anomaly computation

The Weyl anomaly can be expressed in any even dimensions as [34] 〈Tµµ 〉 ∼ aE +
∑

i ciIi
up to total derivatives that can be reabsorbed by local counterterms. Here E is the Euler

density, and Ii are invariants built out of the Weyl tensor; in six dimensions there are

three of them [34, 35]. a has a special role: it does not break scale invariance, and has the

“a-theorem” property of decreasing in an RG flow in two [13] and four [14, 36] dimensions.

Intuitively, it gives a measure of the “number of degrees of freedom” of a CFT. Importantly

for us, it can be identified holographically, as we will see in section 4.

The logic that allows to compute a for our class of theories is the following.10 First

of all, like in four dimensions [44], one expects it to be related by supersymmetry to the

R-symmetry anomaly. The precise formula was actually found only recently [17]:11

a =
16

7
(α− β + γ) +

6

7
δ , (3.1)

10For some theories other methods are available. One can compute the coefficients in (3.1) below using

anomaly inflow [37–41]; or, in the case of the (2, 0) theories, one can use maximal supersymmetry to

constrain higher-derivative terms that contribute to a [42, 43].
11Similar formulas for the three ci have been recently proposed in [23]. Also, [45] have used the classi-

fication in [12] to give evidence that other combinations of the coefficients in (3.1) might be monotonic in

RG flows.
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where the Greek letters refer to the coefficients in the anomaly polynomial12

I8 =
1

24

(
αc22(R) + βc2(R)p1 + γp21 + δp2

)
. (3.2)

With a common abuse of notation we denote by c2(R), pi the densities which integrated

give the Chern class of the R-symmetry bundle and the Pontryagin classes of the tangent

bundle. Thus α is an R-symmetry anomaly, γ and δ are gravitational anomalies, and β is

mixed. We will see, in any case, that the leading coefficient in (3.1) arises from α.

An anomaly should not change under RG flow. In general, however, a symmetry might

be broken along a flow, and restored only in the IR; or, it might mix with new symmetries

that emerge in the IR. However, the effective theories considered in section 2.1 are obtained

by flowing to the tensor branch, and neither the SU(2) R-symmetry nor diffeomorphisms

are broken along the flow. So we know that the anomaly polynomial of the effective theories

should in fact be the same as the anomaly polynomial of the CFT in the UV.

One might be puzzled by this conclusion, given that we described a as a measure of

the number of degrees of freedom. When N NS5’s coincide one expects a Weyl anomaly

scaling with N3 (just like for M5’s), while the fields in the effective action are only ∼ N in

number. However, for these theories the GSWS mechanism that cancels gauge anomalies

also gives a large contribution to the anomaly polynomial I8 for global symmetries; it is

this contribution that gives the expected N3 behavior.

Let us see this more concretely, generalizing straightforwardly a computation in [21].

Before taking into account the GSWS terms, the contributions of vector, hyper and tensor

multiplets are

Ivec = − 1

24

N−1∑
i=1

[
2ritrF

4
i + 6(trF 2

i )2 + 12ric2trF
2
i + (r2i − 1)c22+

+
p1
2

(2ritrF
2
i + (r2i − 1)c2) +

r2i − 1

240
(7p21 − 4p2))

]
,

Ihyp =
1

24

N−2∑
i=1

[
ri+1trF

4
i + ritrF

4
i+1 + 6trF 2

i trF 2
i+1 +

p1
2

(ritrF
2
i+1 + ri+1trF

2
i ) (3.3)

+
riri+1

240
(7p21 − 4p2)

]
+

1

24

N−1∑
i=1

[
fitrF

4
i +

p1
2
fitrF

2
i +

firi
240

(7p21 − 4p2)

]
,

Itens =
1

24
(N − 1)

(
c22 +

1

2
c2p1 +

1

240
(23p21 − 116p2)

)
,

where c2 ≡ c2(R), Fi is the field-strength of the i-th gauge group and tr denotes the trace in

the fundamental representation. Note that we only included the N−1 tensor multiplets for

the relative positions of the NS5-branes in the x6 direction, and disregarded the free tensor

12We omit theory-dependent flavor anomalies, since they do not play a role in the following.
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multiplet for the center of mass motion, which decouples from the CFT. The total reads

Itot =
1

24

(
N−1∑
i=1

[
(−2ri + ri−1 + ri+1 + fi)

(
trF 4

i +
p1
2

trF 2
i

)
− 12ric2trF

2
i

]
− 3

∑
i,j

CijtrF
2
i trF 2

j +

(
2(N − 1)−

∑
i

r2i

)(
c22 +

1

2
c2p1

)
+
N − 1

240
(23p21 − 116p2)

+
7p21 − 4p2

240

(
N − 1 +

1

2

∑
i

ri(−2ri + ri−1 + ri+1 + 2fi)

))
. (3.4)

Here

Cij = 2δij − δi,j−1 − δi,j+1 (3.5)

is the Cartan matrix of AN−1; its appearance will be crucial later on.

The presence of Fi in (3.4) indicates that we have not yet canceled the gauge anomalies.

The terms trF 4
i and p1trF

2
i can be canceled quite simply by requiring (2.1).

Canceling the terms CijtrF
2
i trF 2

j and ric2trF
2
i is more challenging. Completing the

square, we can rewrite those two terms as

− 1

8
CijIiIj +

1

2
C−1ij rirjc

2
2 , Ii ≡ trF 2

i + 2c2C
−1
ij rj (3.6)

where now a sum over repeated indices is understood. Of these, only the first term contains

the gauge field-strength. Its structure as an inner product strongly suggests that it should

be canceled by a GSWS mechanism, as done in [18, 19] for theories coupled to gravity;

as in [20, 21], we will assume this to be the case. So we assume that the Lagrangian

contains a term

LGS =
1

8
CijbiIj , (3.7)

where the N − 1 two-form potentials bi (i = 1, . . . , N − 1) are related to the N potentials

Bi associated to the N NS5-branes according to Bi − Bi+1 = Cijbj , the change of basis

from simple roots to fundamental weights of AN−1.
13 The two-form potentials bi transform

under gauge transformations according to δbi = I12i, where the 2-form I12i is related to the

4-form Ii by the descent mechanism:

Ii = dI3i , δI3i = dI12i . (3.8)

Explicitly, I12i = tr(λidAi) + tr(λ(R)dA(R))C−1ij rj , where Ai and λi are the connections and

parameters for the SU(ri) gauge symmetries, and similarly A(R) and λ(R) are a background

connection and parameter for the SU(2)R global symmetry, that we included to manifest

the SU(2)R anomaly.

Likewise, I8 = dI7, δI7 = dI16 ; I16 is the anomaly we want to cancel. Taking

I7 = −1
8CijI3iIj , I

1
6 = −1

8CijI
1
2iIj , we see that indeed (3.7) does the job. Thus, of the two

terms in (3.6), only the second, 1
2C
−1
ij rirjc

2
2, remains. This term will have a crucial role.

13The decoupled center of mass mode is not involved in the GSWS mechanism.
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Taking all this into account, we can now go back to (3.4) and collect the various terms

that have survived in the four coefficients of (3.2):

α = 12
∑
i,j

C−1ij rirj + 2(N − 1)−
∑
i

r2i , β = N − 1− 1

2

∑
i

r2i ,

γ =
1

240

(
7

2

∑
i

rifi + 30(N − 1)

)
, δ = − 1

120

(∑
i

rifi + 60(N − 1)

)
.

(3.9)

Notice that γ and δ are equal to those one would have with N − 1 tensor multiplets and

dH hypermultiplets, where dH = 1
2

∑
i rifi + N − 1 is the dimension of the Higgs moduli

space of the quiver theory. This can be explained by the presence of a flow to a mixed

Higgs-tensor branch [17].14 Using now (3.1), we get

a =
16

7

12
∑
i,j

C−1ij rirj −
1

2

∑
i

r2i +
11

960

∑
i

rifi +
15

16
(N − 1)

 . (3.10)

3.2 Leading behavior in the holographic limit

In preparation for our comparison with the holographic computation in section 4, we will

now isolate the leading behavior of a in (3.10) in the holographic limit (2.28).

In order to do so, we will present a few alternative expressions for the various terms

in (3.10). However, we can get some intuition by looking at the case where all ranks

are equal, ri = k. According to the general correspondence explained in section 2.2, this

should correspond to two D8 stacks of charge µ = ±1, separated by a massless region.

As described in section 2.2.4, if we keep µ fixed at ±1 while sending N → ∞, the D8-

branes become smaller and smaller,15 and the solution is actually well approximated by

the massless solution (2.10), which has a stack of D6-branes at one pole, and a stack of

anti-D6-branes at the other; see figure 5 for a summary of this case. On the field theory

side, the computation for this case was already performed in [21], where it was pointed

out that ∑
i,j

C−1ij =
1

12
(N3 −N) . (3.11)

Thus the leading term in (3.10) is given by
∑

i,j C
−1
ij rirj ∼

1
12k

2N3; the term
∑

i r
2
i =

k2(N − 1) grows less fast at large N , and the other terms even less so.

We will now evaluate these terms in general. Let us start from∑
i,j

C−1ij rirj , (3.12)

which will turn out to give the leading contribution, like in the example we just examined.

We first need an expression for C−1. We obtain

C−1ij =
1

N

{
i(N − j) , i ≤ j ,
j(N − i) , i ≥ j .

(3.13)

14dH gets naturally assembled in the terms (7p21−4p2) as
∑

#(hypers)−
∑

dim(gauge groups). We thank

N. Mekareeya for discussions about this point. See also [46].
15We will see later what happens when one instead rescales µ at the same time as N .
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Figure 5. A theory that is dual to the massless solution in the holographic limit. From the top

left, anticlockwise, we show: the Young diagrams, the quiver, a sketch of the internal space M3,

and the brane configuration; cf. the general case in figures 2(c), 2(a), 3(c), 3(b). The brane picture

is shown in the version that follows from the general correspondence reviewed in section 2.2, as

well as in an alternative version, using the equivalence of a D8-brane with one D6 attached and

a semi-infinite D6 [32]. Taking the general correspondence literally, one would see in the gravity

solution two D8 stacks with D6-charges ±1, but in the holographic limit these become so small as

to be indistinguishable from a D6 and an anti-D6 stack.

Thus (3.12) can be written as

∑
i,j

C−1ij rirj =
1

N

∑
i

i(N − i)r2i + 2
∑
i<j

i(N − j)rirj

 . (3.14)

The large N scaling of (3.14) can be quickly estimated using i ∼ N and
∑

i ∼ N (since

the quiver has length ∼ N), which implies C−1ij ∼ N using (3.12). Then (3.14) scales like

N3 due to the off-diagonal terms. Similarly, the remaining terms in (3.10) are estimated

to scale like N in the large N limit.

Next we are going to isolate the contribution of the central plateau from those of the

two lateral tails. To do so, we can break up each of the sums in (3.14) in contributions

from 1 to L, from L + 1 to R − 1, and from R to N − 1. We will describe the result at

leading order in N , L and R, since these are all large in the holographic limit (2.28):

N
∑

C−1ij rirj ∼
k2

12
(N − L−R)2

(
N2 + 2(L+R)N − 3(L−R)2

)
+
k

2
(N − L−R)

(
(N − L+R)

L∑
i=1

iri + (N + L−R)

R∑
i=1

irN−i

)

+ 2

L∑
i=1

iri

R∑
j=1

jrN−j +

L∑
i=1

i(N − i)r2i + 2
∑
i<j≤L

i(N − j)rirj (3.15)

+
R∑
i=1

i(N − i)r2N−i + 2
∑
i<j≤R

i(N − j)rN−irN−j .
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In the first line of this formula we start seeing a cubic scaling with N for
∑

i,j C
−1
ij rirj ,

generalizing (3.11). The remaining parts of this formula can be estimated to be of the same

order, but are still complicated. To obtain a formula that might be useful in particular

cases, one possibility is to reexpress everything in terms of the fi. The advantage of

doing this is that, while all the ri 6= 0, often only a few fi are non-zero, as the example in

figure 2(a) illustrates. This becomes even more true under the holographic rescaling (2.31):

the non-vanishing fi are associated with the D8-stacks, whose number stays fixed under

the rescaling. After a lengthy computation we find

L∑
i=1

iri ∼
1

6

L∑
i=1

i(3L2 − i2)fi (3.16a)

and

L∑
i=1

i(N − i)r2i + 2
∑
i<j≤L

i(N − j)rirj ∼
L∑
i=1

L∑
j=1

Mijfifj , (3.16b)

Mij ≡
N

120
(40ijL3 − 20ij(i2 + j2)L+ 3(i5 + j5)− 5ij(i3 + j3) + 10i2j2(i+ j))

+
1

360
(−90ijL4 + 30ij(i2 + j2)L2 − 4(i6 + j6) + 9ij(i4 + j4)− 20i3j3) ,

assuming i and j are also being rescaled as N , as in (2.31). Similar formulas hold for the

R ≤ i ≤ N − 1 region.

We can evaluate the remaining terms in (3.10) using a similar strategy; it becomes

immediately clear that they are subleading. For example, at leading order
∑

i r
2
i ∼ (N −

L−R)k2 +
∑L

i=1

∑L
j=1m

L
ijfifj +

∑L
i=1

∑L
j=1m

R
ijfN−ifN−j , where mL

ij = − 1
12(i+ j)3 + ijL

and similarly for mR. This is subleading with respect to (3.15), (3.16). So in fact

a ∼ 192

7

∑
C−1ij rirj . (3.17)

The ci coefficients of the Weyl anomaly can be similarly computed using their linear

relations to the coefficients of R-symmetry and diffeomorphism anomalies [23]. Since the

coefficients β, γ and δ in the anomaly polynomial (3.2) are subleading to α, in the holo-

graphic limit the ci Weyl anomaly coefficients are all proportional to a. Specifically we get

c1 ∼ − 7
12a, c2 ∼ 1

4c1, c3 ∼ −
1
12c1. Notice that the ratios between the ci are the same as

the ones for the (2, 0) theory [47].

While these formulas are still very complicated in the most general case, they do

become relatively simple in particular examples. Let us apply it to two cases which have

already been considered in [9]. The first is shown in figure 6. In this case the general

formula gives a ∼ 16
7 ·

4
15k

5. The gravity computation in [9] was a bit different from the

one giving a, but it is proportional to it, as we will review in section 4. If one normalizes

the result against the massless theory we considered around (3.11), we see that our current

result exactly matches the one in [9]. Another case is when we have two symmetric stacks

of n0 = k/µ D8-branes of D6-charges ±µ, surrounding a massless region of D6-charge k;
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Figure 6. A theory dual to the “simple massive solution” in [5, 9]. From the Young diagram

picture one sees that there is no massless region. We show the brane picture that follows from

the general correspondence, and a simpler one that is obtained by applying Hanany-Witten rules

and the equivalence of a D8 with a D6 ending on it with a semi-infinite D6. As in figure 5, in the

holographic limit the solution is indistinguishable from one with a single D6 stack.

Figure 7. The theory dual to two symmetric D8s, of D6 charges ±µ = ±k. In this case we have

taken both µ and N to be large and of the same order, just as prescribed in (2.31).

see figure 7 for the case k = µ. In this case (3.15)–(3.17) give

a ∼ 16

7
k2
(
N3 − 4Nµ2 +

16

5
µ3
)
. (3.18)

Again, and more strikingly, this precisely agrees with [9, eq. (21)]. (Recall also that µ ∼ N ,

as in our comment after (1.2) corresponding to the case µ = k.)

4 Holographic match

In this section we will compute a from the gravity solutions reviewed in section 2.2, and

compare them with the results of section 3 in the holographic limit.
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4.1 Holographic anomaly computation

The computation of a from gravity was first described in [22] in various dimensions, after

an idea in [48]. In six dimensions, the computation is directly relevant for the (2, 0) AN or

DN theory, but it is in fact very general and can easily be adapted to our needs.

Here is a quick review of the computation. The starting point is the seven-dimensional

Einstein action 1
16πGN

∫
d7x
√
g7(R7 +Λ)+ boundary terms. The metric is written as ds2 =

l2

r2
(dr2 + r2g

(6)
ij dx

idxj + . . .); g
(6)
ij dx

idxj is the metric on the boundary. The . . . are terms

that go to zero at the boundary r = 0, which can be determined in terms of g
(6)
ij by the

equations of motion. The presence of a log(r) in one of these terms generates the Weyl

anomaly, which in the end is of the form 〈Tµµ 〉 = l5

GN
× a polynomial in the Riemann tensor

of g
(6)
ij and its derivatives.16

Now, as also remarked in [50] for the four-dimensional case, in this computation the

details of the gravity solution enter only through Newton’s constant GN. This would be

simply proportional to the inverse of the internal volume VolE(M3) in Einstein frame (the

frame used in [22]). Thus the relevant quantity would be

l5VolE(M3) , (4.1)

where l is the AdS7 radius. The solutions in section 2.2, however, are warped products: as

one can see from (2.6), the AdS7 radius is in fact the warping function eA, which depends

on the coordinates of M3. In this situation, l5 should be read as the average of e5A over M3.

Finally, we should translate our results in the string frame (which we used in section 2.2),

recalling gEMN = e−φ/2gstrMN ; that gives 5 + 3 powers of e−φ/4. This leads us to taking

the average of e5A−2φ over the internal manifold. This integral indeed scales with the

expected k2N3 in the case of the massless solution; the k = 1 case is simply the reduction

of AdS7 × S4, and one can use this case [22, 47] to fix the overall factor. All in all a reads

ahol =
3

56π4

∫
M3

e5A−2φvol3 . (4.2)

The same integral (up to an overall factor) already appeared in [6, 9] with a slightly

different interpretation, namely as the coefficient F0 in the free energy F = F0VolT 6.

This is an alternative measure of the number of degrees of freedom: although it has the

advantage of also being defined in odd dimensions, it is perhaps not surprising that in even

dimension it is proportional to the Weyl anomaly a.

Let us stress once again that (4.2) is only the supergravity contribution, without string

theory corrections. For example, in the case of AdS7 × S4, it gives the leading order

a ∼ 16
7 N

3 [22, 47] (again in the convention where a = 1 for a single (2, 0) tensor). The

full result is in fact a = 1
7(16N3 − 9N) (which indeed gives a = 1 for N = 1); the −9

7N

term comes from higher curvature corrections [51]. This linear term in N is subleading

16This dependence on l gives another argument that a should decrease in RG flows [15, 16], one that

should also hold in six dimensions, although efforts to prove this directly in field theory have so far been

inconclusive [49].
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and is not to be confused with the term linear in N in expressions such as (3.18), which is

multiplied by a further large µ2, and which originates from (4.2) [9].

In the next subsections, we will evaluate (4.2) for the solutions in 2.2, and compare it

with the results in section 3.

4.2 The match as a continuum limit

In this section we will give a first argument showing why the internal volume (4.2) agrees

with the a anomaly (3.10) in the large N limit. In section 4.3 we will present a more

detailed comparison.

Recall that we concluded in section 3.2 that a is proportional at leading order to∑
i,j C

−1
ij rirj . We also noticed C = −∂∂∗, where ∂ and ∂∗ are discrete derivative operators

defined after (2.1). In other words, C is a discrete second derivative. So schematically we

can write

a ∼ −192

7

∑
i

ri

(
1

∂∂∗
r

)
i

. (4.3)

Now let us turn to the gravity computation (4.2). Using (2.6) and (2.7), we evaluate

ahol =
128

7 · 35π3

∫ √
βdy . (4.4)

This can also be rewritten in the z coordinate using (2.25):

ahol =
128

189π2

∫ √
β q dz . (4.5)

Moreover, (2.25) also allows us to write
√
β as a second primitive of q, 1

∂2z
q, so that

ahol = −192

7

∫
2q

(
1

∂2z
2q

)
dz . (4.6)

(To be precise,
√
β(z) is the second primitive of q that vanishes at the boundary of the

interval:
√
β
∣∣
z=0,N

= 0.) But we saw in section 2.2.3 (see for example (2.17)) that 2q(z)

is a piecewise linear function that interpolates the discrete function ri, as in figure 2(b).

Hence one sees that (4.3) should become (4.6) in the N →∞ limit.

This schematic argument can be made more precise using the explicit expression for the

inverse Cartan matrix. In the large N limit, the leading term in the a Weyl anomaly (3.17)

is given by the double sum (3.14), namely

a ∼ 192

7

1

N

∑
i

i(N − i)r2i + 2
∑
i<j

i(N − j)rirj

 . (4.7)

To extract the leading order as N → ∞, we can take a continuum limit: we replace the

position in the linear quiver (normalized by N) by a continuous variable, i/N  x ∈ [0, 1],

the numbers of colors by a continuous non-negative concave function, ri  r(x), and sums

by integrals. In this continuum limit (4.7) becomes

a ∼ 384

7
N3

∫ 1

0
dy

∫ y

0
dx x(1− y)r(x)r(y) . (4.8)

– 22 –



J
H
E
P
0
5
(
2
0
1
6
)
0
3
1

Integrating repeatedly by parts, this double integral can be recast as

a ∼ 192

7
N3

[∫ 1

0
dx r(−1)(x)2 −

(∫ 1

0
dx r(−1)(x)

)2
]

=
192

7
N3

[
−
∫ 1

0
dx r(x)r(−2)(x) + r(−1)(x)r(−2)(x)

∣∣∣1
0
−
(
r(−2)(1)− r(−2)(0)

)2] (4.9)

where r(−n)(x) denotes an n-th primitive of r(x). (The result is independent of integration

constants, as the first expression involving the variance of r(−1)(x) shows.) If we fix the

two integration constants so that r(−2)(0) = r(−2)(1) = 0, (4.9) reduces to

a ∼ −192

7
N3

∫ 1

0
dx r(x)r(−2)(x) . (4.10)

This formula precisely matches the holographic result (4.5), using z = Nx and

2q(z) = r(x) (recall (2.17)). We also used (2.25) supplemented with the boundary con-

ditions
√
β
∣∣
z=0,N

= 0, that are obeyed by the massive IIA solutions and correspond to

r(−2)
∣∣
x=0,1

= 0 above.

This argument for the holographic match applies not only in the rescaling limit (2.31),

which leads to a piecewise linear concave function r(x), but also in the more general

holographic limit (2.28). This also allows the presence of infinitely many D8-branes; in this

case, using the coordinate x = z/N for N → ∞, the piecewise linear function becomes a

general concave function r(x) vanishing at the endpoints x = 0, 1.

4.3 Detailed comparison

Setting our previous argument aside, we will now present the complete computation of (4.2),

even before taking the holographic limit. We will then check that the result matches with

the field theory prediction (3.10) in the holographic limit.

We compute the integral (4.2) using the z coordinate expression in (4.5). We divide

the integral in (4.2) in several pieces, between each D8 stack and the next one. In the left

massive region, we can compute the contribution from the (l − 1)-th and l-th D8 stack

using (2.26) and (A.3):

128

189π2

∫ yl

yl−1

√
βqdz = −16

7

[
4

9π
(rl−1 + 2rl + 3(l − 1)(rl + rl−1)) (4.11)

+
1

5
(2r2l +21rlrl−1+12r2l−1)+

l−2∑
i=1

ri (2rl−1+4rl+6(l−i−1)(rl+rl−1))

]
.

Summing up all the contributions from the left massive region we get

128

189π2

∫ yL

y0

√
βqdz = −32

35

[
k2 + 7

L−1∑
l=1

r2l +
21

2
krL−1 + 5k

L−2∑
l=1

(3(L− l)− 1)rl (4.12)

+
21

2

L−1∑
l=1

rlrl−1+30
L−1∑
l=1

l−2∑
i=1

(l−i)rlri+20
L−1∑
l=1

rlrl−1+
10

9π

(
k(3L−1)+6

L−1∑
l=1

lrl

)]
.
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The contribution from the right massive region can be obtained from this by replacing

L→ R, ri → rN−i, y0 → yN . Both y0 and yN can be found in (A.5).

The contribution from the massless region can be computed by recalling (2.10). With

some manipulations one can write

128

189π2

∫ yR

yL

√
β q dz =

256

7 · 35π3

[
R6

0(yR − yL)− 1

3
(y3R − y3L)

]
=

256

7 · 36π3
(yR − yL)

[
3

2
k(
√
βL +

√
βR) + (yR − yL)2

]
.

(4.13)

yR − yL can be found in (2.20); βL can be found in (A.4), and βR can be found again by

L→ R, ri → rN−i, y0 → yN .

We now have to put together the contribution (4.12) from the left massive region, the

analogue contribution from the right massive region, and the contribution from the central

massless region (4.13). It is then tedious but straightforward to check that the total sum

reduces, in the holographic limit (2.28), to the field theory result (3.15).

This concludes our detailed check of the match between the field theory computa-

tion (3.1) and the holographic computation (4.2). It confirms our argument of section 4.2.

The match provides a strong confirmation of the holographic duality proposed in [6] and

reviewed in section 2, between the six-dimensional linear quiver theories and the “crescent

rolls” AdS7 solutions of [5, 9].
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A Integration constants

We will determine here the precise expressions for the integration constants yi and βi
appearing in (2.26).

We already know quite a bit about the yi: we have determined their differences

in (2.19), (2.20). We have

yi =

 y0 + 9
4π
(
ri + 2

∑i−1
j=1 rj

)
, i ≤ L .

yN − 9
4π
(
rN−i + 2

∑i−1
j=1 rN−j

)
, i ≥ R .

(A.1)

So all is left is to determine y0 or yN . We have not used (2.20) yet, but that is a single

equation and it cannot determine both.
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In the symmetric case, where the Young diagrams ρL and ρR are equal, we know that

L = R, and that yL = −yR. This gives an extra equation, and we obtain

y0 = −yN =
9

4
π

(
k(2L−N − 1)− 2

L−1∑
i=1

ri

)
. (Symmetric models.) (A.2)

In the general (asymmetric) case, things are slightly more complicated. We have made

sure that β is continuous up to yL starting from the left and up to yR starting from

the right, but we should impose that these two values agree upon evolution through the

massless region. In order to do so, we go back to (2.26) and evaluate the expression for β

at y = yi+1; for i ≤ L, for example, we obtain

− 1

(9π)2

√
βi =

2

9π
i y0 +

1

6
ri +

i−1∑
j=1

jri−j . (A.3)

From this one also gets

√
βL = −27

2
π2

[
k +

12

9π
Ly0 + 6

L−1∑
i=1

(L− i)ri

]
. (A.4)

In a similar way one gets an expression for βR. These values have to agree with what

one derives from the massless expression (2.10), namely
√
βR −

√
βL = 2

k (y2L − y2R) =

−9π(N − L−R)(yR + yL). This gives the desired extra equation. In the end one gets

4

9π
y0 =

k

N
(L−N−R)(N+1−L−R)−2

L−1∑
j=1

rj+
2

N

L−1∑
j=1

jrj−
R−1∑
j=1

jrN−j

 ,

4

9π
yN =

k

N
(L+N−R)(N+1−L−R)+2

L−1∑
j=1

rN−j+
2

N

L−1∑
j=1

jrj−
R−1∑
j=1

jrN−j

 .

(A.5)
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