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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV and properties com-

patible with those of the Standard Model (SM) Higgs boson at the Large Hadron Collider

(LHC) [1, 2] has completed the search for the particles foreseen in the SM. The first run

of the LHC has delivered two important messages: i) no signal of physics beyond the SM

(BSM) was observed. ii) The Higgs boson was found exactly in the mass range 110-160 GeV

predicted by the SM. This indicates that BSM physics, if it exists, is likely to be at a high

scale, and possibly out of the reach of direct LHC searches, in which case BSM physics

could be constrained only indirectly using high precision measurements. To this end, the

precision of the SM predictions should match the experimental one and the theoretical

uncertainties should be reliably estimated.

Among the various precision observables the W boson mass, mW , has always played a

very important role. Historically, the inclusion of the radiative corrections in the prediction

of mW in the SM from the electromagnetic coupling, α, the Fermi constant, Gµ, and the

weak mixing angle, θW , as extracted from deep inelastic neutrino scattering [3], was the

main motivation to develop the On-Shell (OS) renormalization scheme [4]. In the OS

scheme θW is defined in terms of the pole masses of the W and Z bosons, sin2θW ≡ s2 =

1−m2
W/m

2
Z , and the tree level relation between Gµ and mW is corrected by the radiative

parameter ∆r via
Gµ√

2
=

πα

2m2
Ws

2 [1 + ∆r] (1.1)
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that gives rise to an mW −mZ interdependence expressed by

m2
W =

m2
Z

2

{
1 +

[
1− 4A2

m2
Z

(1 + ∆r)

]1/2}
, (1.2)

where A = (πα/(
√

2Gµ))1/2 = 37.2804(3) GeV.

Since the pioneering one-loop computation of ∆r reported in ref. [4] many studies

have been devoted to the calculation of higher-order (two or more loops) effects in ∆r.

First, the higher-order contribution related to the iteration of the large one-loop term of

O(α ln(mZ/mf )), where mf is a generic light fermion mass was investigated [5]. Then,

strong and electroweak (EW) corrections to the one-loop δρ contribution, and in particular

the effects proportional to powers of the top mass, were investigated in detail for vanishing

bottom mass. The O(ααs) contribution to δρ was obtained in ref. [6], and later the three-

loop calculation O(αα2
s) was also accomplished [7–9]. Concerning the EW corrections, the

leading two-loop contribution O(α2M4
t /m

4
W ) to δρ was first obtained in the large top-mass

limit [10], neglecting all the other masses including the Higgs mass, and then in the so-

called gaugeless limit of the SM, i.e. in the limit g, g′ → 0 where g (g′) is the SU(2) (U(1)Y)

gauge coupling [11–13]. The incorporation of these effects in ∆r was addressed in ref. [14].

Needless to say, these calculations were instrumental in the successful prediction of the

top mass before its actual discovery. The two-loop knowledge of ∆r was later improved

with the evaluation of the next-to-leading effects in the heavy top expansion, namely the

O(α2M2
t /m

2
W ) contributions [15, 16]. The latter turned out to be comparatively large and

allowed for a drastic reduction of the scheme dependence. Leading three and four-loop

effects related to δρ, in particular the O(α3M6
t /m

6
W ), O(α2αsM

4
t /m

4
W ) [17, 18] and the

O(αα3
sM

2
t /m

2
W ) [19, 20] contributions, were also investigated.

The complete calculation of ∆r at the two-loop level was accomplished in several

steps. First, the O(ααs) corrections were obtained from the full QCD corrections to the

gauge bosons self-energies [21–24]. Then the two-loop fermionic contribution, i.e. two-loop

diagrams with at least one closed fermion loop, was derived [25–27], and finally the purely

bosonic contribution was also obtained [28–30], completing the two-loop computation of

∆r. The prediction of mW from eq. (1.2) at the two-loop accuracy, including also known

three-loop effects, was summarized in ref. [31] by a simple formula that parameterizes the

result in term of the relevant input quantities, used by several groups in their fits to the

EW precision observables [32–35]. Ref. [31] also estimated the uncertainty due to unknown

higher-order effects, δmth
W ≈ 4 MeV, from the size of the computed three-loop corrections.

The present experimental world average mexp
W = 80.385 ± 0.015 GeV agrees well with

the indirect determination of mW via a full fit to EW precision observables (except mW ):

ref. [34] reports mfit
W = 80.359 ± 0.011, consistent with the result of ref. [35], mfit

W =

80.362± 0.007. The difference between mexp
W and mfit

W is slightly more than one standard

deviation. In view of possible future improvements in the experimental accuracy at the

LHC, it is therefore worthwhile to reconsider the indirect determination of mW and in

particular its theoretical uncertainty. In this paper we study the mW−mZ interdependence

at the two-loop level following a path different from the one employed so far, i.e. the
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two-loop determination of ∆r in the OS scheme, and we critically re-examine the overall

theoretical uncertainty of the SM prediction of mW .

The MS formulation of the radiative corrections in the SM developed in refs. [36–38]

provides an alternative way to address the mW −mZ interdependence. In this framework

the gauge coupling constants are defined as MS quantities, while all the masses are in-

terpreted as pole quantities.1 All gauge couplings are then reexpressed in terms of the

MS weak mixing angle θ̂W (µ) and the MS electromagnetic coupling α̂(µ), defined at the

’t-Hooft mass scale µ, usually chosen to be equal to mZ . The important feature of these

two MS parameters is that they are constructed to include all reducible contributions, i.e.

the iteration of lowest order terms. In particular, α̂(mZ) automatically incorporates the

O(αn lnnmZ/mf ) contributions, while sin2θ̂W ≡ ŝ2 is free of the O((αM2
t /m

2
W )n) contri-

butions that in the OS scheme are induced by the renormalization of the OS θW angle.

Similarly, the on-shell masses of the vector bosons automatically absorb the non-decoupling

contributions of heavy particles to their self-energies. It follows that in this hybrid scheme

higher order effects are expected to be better under control with respect to the OS or a

pure MS schemes.

In the MS formulation the mW −mZ interdependence is expressed in terms of three

parameters ∆r̂W , ∆α̂ and ρ̂, defined by

Gµ√
2

=
πα̂(mZ)

2m2
W ŝ

2 [1 + ∆r̂W ] , α̂(mZ) =
α

1−∆α̂(mZ)
,

ρ̂ =
m2
W

m2
Z ĉ

2 =
c2

ĉ2
(1.3)

where ĉ2 = 1− ŝ2. Eqs. (1.3) allow for an iterative evaluation of ŝ2 from mZ , α,Gµ:

ŝ2 =
1

2

1−

[
1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2 , (1.4)

where Â = (πα̂(mZ)/(
√

2Gµ))1/2. The analogue for mW reads

m2
W =

ρ̂m2
Z

2

1 +

[
1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2 . (1.5)

The present knowledge of α̂(mZ), ∆r̂W , ρ̂ can be summarized as follows: a complete

EW two-loop calculation for α̂(mZ) was presented in ref. [39]. The other two-parameters

are not known at the same level of accuracy: they are only known at the second order in the

heavy top expansion, i.e. up to the two-loop O(α2M2
t /m

2
W ) contributions [15, 16]. In this

paper we upgrade the MS calculation at the full two-loop level presenting the complete

O(ααs) and O(α2) determination of α̂(mZ), ∆r̂W , ρ̂ augmented by the known three-loop

corrections.

A result for the two-loop bosonic contribution to ∆r in the MS scheme was presented in

ref. [30], which differs in several respects from the present work. Indeed, ref. [30] considered

1We generically refer to this approach as MS scheme, although it is actually a hybrid OS-MS scheme.

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
4

only the bosonic contribution to the two-loop corrections to ∆r in the MS scheme with all

couplings and masses identified with minimally subtracted quantities. Instead, we consider

here the complete two-loop corrections to the three radiative parameters, α̂(mZ), ∆r̂W , ρ̂,

in the hybrid MS framework discussed above, where on-shell masses are employed.

The precise knowledge of mW in the MS framework allows us to estimate the uncer-

tainty of the mW prediction in two different ways: i) from the scale dependence of our MS

result by varying the ’t Hooft mass scale in a large interval between 50 and 500 GeV. ii)

From the scheme dependence by comparing our result in the MS scheme with the known

result in the OS scheme present in the literature.

As a byproduct of our MS calculation, we also obtain the values of the MS gauge

couplings at the weak scale with a two-loop precision. The latter can be used as initial

conditions for studies of the renormalization group evolution.

The paper is organized as follows: in the next section we outline our computation.

Section 3 discusses the two-loop determination of α̂(mZ), ∆r̂W , ρ̂. Section 4 contains our

results for α̂(µ), sin2θ̂W (µ) and mW . In the last section we discuss the uncertainty on the

theoretical determination of mW and present our conclusions.

2 Outline of the computation

In this section we first extend at the two-loop level the MS framework developed at one-

loop in refs. [36–38]. Then some technical details concerning our computation are outlined.

The parameters that in our computation require a two-loop renormalization are the

two gauge couplings, g, g′, and the masses of the gauge bosons. Actually, as the gauge

sector of the SM is described by only 3 parameters, g, g′ and v, the vacuum expectation

value (vev) of the Higgs field, once the two gauge couplings are defined as MS-subtracted

quantities, one needs to define the mass of only one gauge boson, either the W or the

Z, while the renormalized mass of the other boson is obtained using the bare relation

mZ0
= mW0

/ cosθW0 . We first identify our vev as the minimum of the radiatively corrected

scalar potential. The latter implies that all tadpole contributions are cancelled by a tadpole

counterterm and that tadpole diagrams do not enter in our computation. We choose to

define our renormalized W mass, mW , as a pole quantity fixing our third renormalization

condition. Our renormalized Z mass, m̂Z , is a derived quantity identified with m̂Z ≡
mW/ĉ. The use of the experimental quantity mexp

Z as input in eqs. (1.4), (1.5) requires the

derivation, at the two-loop level, of the relation between m̂Z and mexp
Z .

According to our choice of pole mass for the W boson, at the one-loop level mW can

be directly identified with mexp
W and its the counterterm, δm2

W , is given by:

δ(1)m2
W = ReA

(1)
WW (m2

W ) (2.1)

where, in general, AXY (q2) is the term proportional to gµν in the XY self-energy and the

superscript indicates the loop order. Because of our condition on the cancellation of the

tadpoles, no tadpole term is included in eq. (2.1)

At the two-loop level the definition of a pole mass for an unstable gauge boson presents

some subtlety in its relation with the corresponding experimental quantity. Since the
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beginning of the nineties it was noticed [40–42] that, beyond one-loop order, there is a

difference between the mass defined as the pole of the real part of the propagator (labelled

m), or as the real part of the complex pole of the S matrix, M in the following. We recall

here the discussion on the Z mass developed in ref. [40–42] that can also be applied to the

W case. The former definition leads to the Z mass counterterm

δm2
Z = ReAZZ(m2

Z) (2.2)

that, at the two-loop level, depends on the gauge parameter, ξ, if the r.h.s. of eq. (2.2) is

evaluated in a gauge with ξ < (4 cos2 θW )−1, while it is independent of ξ if the evaluation

is performed with ξ ≥ (4 cos2 θW )−1. Let us now denote by s the position of the complex

pole of the Z propagator. Hence

s = M2
Z0

+AZZ(s), (2.3)

where MZ0
is the bare mass. The complex pole definition of the renormalized mass and

width of the Z boson follows immediately,

s = MZ − iMZΓZ , (2.4)

and gives rise to a two-loop mass counterterm given by

δ(2)M2
Z = ReA

(2)
ZZ(M2

Z) + ImA′ZZ(M2
Z)MZΓZ . (2.5)

The Z boson mass defined according to the real part of the complex pole of the S

matrix generates a fixed-width Breit-Wigner behavior of the total cross section while mexp
Z

is extracted using a Breit-Wigner parametrization with an energy dependent width. This

introduces a mismatch among the parameters entering the r.h.s. of eq. (2.4) and their

experimental counterparts that is corrected by [40–43]:

MZ = mexp
Z

[
1 +

(
Γexp
Z

mexp
Z

)2
]−1/2

, ΓZ = Γexp
Z

[
1 +

(
Γexp
Z

mexp
Z

)2
]−1/2

. (2.6)

On the other hand, mZ defined as the pole of the real part of the propagator can be directly

identified with mexp
Z if one works at the two-loop level evaluating eq. (2.2) in a gauge with

ξ ≥ (4 cos2 θW )−1.

We decided to identify our renormalized W mass directly with the quantity extracted

experimentally. According to the above discussion this fixes δ(2)m2
W to be

δ(2)m2
W = ReA

(2)
WW (m2

W ) (2.7)

with the understanding that the r.h.s. of eq. (2.7) has to be evaluated in a gauge where

spurious gauge-dependent terms do not arise. The same condition applies to the relation

between m̂Z and mZ , which is identified with mexp
Z . We fulfill it by evaluating ReA

(2)
WW (m2

W )

and ReA
(2)
ZZ(m2

Z) in the ξ = 1 Feynman gauge. We stress that with our choice the mW

prediction of eq. (1.5) can be directly compared with mexp
W . The other possible definition

– 5 –
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of the W mass, MW , requires instead the correction factor of eq. (2.6) before it can be

compared with mexp
W .

The other mass parameters that enter our computation require only a one-loop defi-

nition. We define the Higgs, top and bottom masses as pole quantities. The bottom mass

is set different from zero only in the one-loop contribution and in the O(ααs) corrections.

All other quarks are taken massless. The leptons are also taken massless except for the

evaluation of α̂ where the experimental values in the Particle Data Group [44] have been

used.

We conclude this section outlining some technical details concerning our computation.

All the diagrams entering the calculation of α̂(mZ), ∆r̂W , ρ̂ were generated using the Math-

ematica package Feynarts [45]. The reduction of the two-loop diagrams to scalar integrals

was done using the code Tarcer [46] which uses the algorithm by Tarasov [47] and is now

part of the Feyncalc [48] package. In order to extract the vertex and box contributions

in ∆r̂W from the relevant diagrams, we used the projector presented in ref. [28, 29]. Af-

ter the reduction to scalar integrals we were left with the evaluation of two-loop vacuum

integrals and two-loop self-energy diagrams at external momenta different from zero. The

former integrals were evaluated analytically using the results of ref. [49]. The latter ones

were instead reduced to the set of loop-integral basis functions introduced in ref. [50]. The

evaluation of the basis functions was done numerically using the code TSIL [51] that, ac-

cording to the authors, reaches a relative accuracy better than 10−10 in the evaluation of

integrals without large hierarchies in the masses.

All our results were obtained in the Rξ gauge with ξ = 1 and cross-checked in the

ξ = 1 background field method (BFM) gauge. The two-point function of a particle, i.e.

the sum of the self-energy and of the tadpole diagrams, when evaluated on-shell represent

a physical amplitude and must be gauge-invariant. Enforcing the cancellation of the tad-

poles, we verified that the sum of the one-particle-irreducible and counterterms diagrams

in ReA
(2)
WW (m2

W ) and ReA
(2)
ZZ(m2

Z) gives the same result in the two gauges.

3 Two-loop determination of α̂(mZ), ∆r̂W , ρ̂

In this section we present the two-loop contributions to the three radiative parameters of

the MS scheme. To properly identify the two-loop contribution to these parameters the

exact specification of the corresponding one-loop result is needed. In the appendix we

report the one-loop expressions for α̂(mZ), ∆r̂W , ρ̂ that we employed in our computation.

3.1 α̂(mZ)

The evaluation of the electromagnetic coupling in the MS scheme at the two-loop level

was discussed in ref. [39]. Here we just recall the main features of that analysis and update

the QCD corrections.

The analysis starts from the observation that in the Feynman BFM gauge the renor-

malization of the electric charge is given only by self-energy diagrams making manifest the

possibility of a Dyson summation. From the relation between the bare and the renormalized

– 6 –
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mZ = 91.1876± 0.0021 GeV

mH = 125.15± 0.24 GeV

Mt = 173.34± 0.76exp ± 0.3th GeV

me = 0.510998928± 0.000000011 MeV

mµ = 105.6583715± 0.0000035 MeV

mτ = 1776.82± 0.16 MeV

mb = 4.8± 0.3 GeV

Gµ = 1.1663781± 0.0000006× 10−5 GeV−2

αs(mZ) = 0.1184± 0.0007

∆α
(5)
had(m2

Z) = 0.02750± 0.00033

Table 1. Experimental input values used in our analysis

electric charge defined at zero momentum transfer

e2 =
e20

1− e20 Πγγ(0)
, (3.1)

where Πγγ is related to the transverse part of the photon self-energy Aγγ(q2) by

Aγγ(q2) = q2 e20 Πγγ(q2) (3.2)

it is easy to derive the relation between α = (137.035999074)−1 and the electromagnetic

coupling in the MS scheme at the scale µ

α̂(µ) =
α

1−∆α̂(µ)
(3.3)

with

∆α̂(µ) = −4π αΠγγ(0)|MS (3.4)

where MS is denoting the MS renormalization. As we are interested in the evaluation

of α̂(µ) in the SM at a scale below µ = Mt we do not apply the decoupling of the top

contribution from Πγγ(0).

The vacuum polarization function in eq. (3.4) can be organized into the sum of a

bosonic and a fermionic contribution, the latter defined as arising from diagrams where

both the external photons couple to fermions,

Πγγ(0) = Π
(f)
γγ (0) + Π

(b)
γγ (0) . (3.5)

The fermionic contribution can be further split into a leptonic part, Π
(l)
γγ , a perturbative

quark contribution, Π
(p)
γγ , and a non-perturbative one, Π

(5)
γγ (0). The latter, associated to

diagrams in which a light quark couples to the external photons with no heavy masses circu-

lating in the loops, can be related to the hadronic contribution to the vacuum polarization

∆α
(5)
had(m2

Z) ≡ 4πα
(

Re Π
(5)
γγ (m2

Z)−Π
(5)
γγ (0)

)
so that

Π
(f)
γγ (0) = Π

(l)
γγ(0) + Π

(p)
γγ (0) + Π

(5)
γγ (0)

= Π
(l)
γγ(0) + Π

(p)
γγ (0) +

(
Π

(5)
γγ (0)− Re Π

(5)
γγ (m2

Z)
)

+ Re Π
(5)
γγ (m2

Z) . (3.6)
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The hadronic contribution can be obtained from the experimental data on the cross section

in e+e− → hadrons by using a dispersion relation. Two recent evaluations of ∆α
(5)
had(m2

Z)

report very consistent results: ∆α
(5)
had(m2

Z) = (275.7 ± 1.0) × 10−4 [52], ∆α
(5)
had(m2

Z) =

(275.0 ± 3.3) × 10−4 [53]. We use the latter as reference value in our calculation. The

Π
(p)
γγ term in eq. (3.6) includes the top contribution to the vacuum polarization plus the

two-loop diagrams in which a light quark couples internally to the W and Z bosons. This

contribution, as well as Re Π
(5)
γγ (m2

Z), can be safely analyzed perturbatively.

The one-loop contribution to ∆α̂p(mZ) ≡ ∆α̂(mZ)−∆α
(5)
had(m2

Z) is reported in eq. (A.3)

of the appendix. The higher order contributions to ∆α̂p(mZ) are presented here as a sim-

ple formula that parametrizes the full result in terms of the top and the Higgs masses, the

strong coupling, and ŝ2:

∆α̂p, h.o.(mZ) = 10−4 (b0 + b1ds+ b2dT + b3dH + b4das) (3.7)

where

ds =

(
ŝ2

0.231
− 1

)
, dT = ln

(
Mt

173.34 GeV

)
,

dH = ln
( mH

125.15 GeV

)
, das =

(
αs(mZ)

0.1184
− 1

)
(3.8)

with

b0 = 1.751181 b1 = −0.523813, b2 = −0.662710, b3 = −0.000962, b4 = 0.252884 .

(3.9)

Eq. (3.7) includes the O(α) contribution2 to Π
(b)
γγ (0) + Π

(l)
γγ(0) + Π

(p)
γγ (0) plus the O(αs)

corrections to Π
(p)
γγ (0) and the O(αs, α

2
s) corrections to Re Π

(5)
γγ (m2

Z) [54]. It approximates

the exact result to better than 0.045% for ŝ2 in the interval (0.23− 0.232) when the other

parameters in eq. (3.7) are varied simultaneously within a 3σ interval around their central

values, given in table 1.

3.2 ∆r̂W

The radiative parameter ∆r̂W enters the relation between the Fermi constant and the

W mass. We recall that the Fermi constant is defined in terms of the muon lifetime τµ as

computed in an effective 4-fermion V −A Fermi theory supplemented by QED interactions:

1

τµ
=
G2
µm

5
µ

192π3
F

(
m2
e

m2
µ

)
(1 + ∆q)

(
1 +

3m2
µ

5m2
W

)
, (3.10)

where F (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ = 0.9981295 (for ρ = m2
e/m

2
µ) is the phase

space factor and ∆q = ∆q(1) + ∆q(2) = (−4.234 + 0.036) × 10−3 are the QED corrections

computed at one [55] and two loops [56]. The calculation of ∆r̂W requires the subtraction

of the QED corrections, matching the result in the SM with that in the Fermi theory

2We alert the reader that our Πγγ is defined with the e20 coupling extracted, see eqs. (3.1), (3.2); therefore

the O(α) contribution is actually due to two-loop diagrams.
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which is renormalizable to all orders in the electromagnetic interaction but to lowest order

in Gµ. As discussed in detail in ref. [30], the contribution of the Fermi effective theory

vanishes in the limit of vanishing fermion masses and external momenta. Therefore the

matching is automatically obtained just computing the SM contribution in this limit. We

explicitly verified that the contribution of the Fermi effective theory vanishes when the

fermion masses and external momenta are set equal to zero.

The muon-decay amplitude at the two-loop level can be written as

Gµ√
2

=
g20

8m2
W0

{
1− AWW

m2
W0

+ VW +m2
W0
BW +

(
AWW

m2
W

)2

− AWWVW
m2
W

}
(3.11)

where g0 is the unrenormalized SU(2) coupling, mW0
is the unrenormalized W mass,

AWW ≡ AWW (0), and VW and BW are the relevant vertex and box contributions to µ-

decay. Performing the shift m2
W0
→ m2

W − δm2
W , and working at the two-loop order we

arrive at

Gµ√
2

=
g20

8m2
W

[
1 +

δ(1)m2
W

m2
W

− A
(1)
WW

m2
W

+ E(1) +
δ(2)m2

W

m2
W

− A
(2)
WW

m2
W

+ E(2)

+A
(1)
WWB

(1)
W +

(
δ(1)m2

W

m2
W

− A
(1)
WW

m2
W

)(
δ(1)m2

W

m2
W

− A
(1)
WW

m2
W

+ E(1)

)]
(3.12)

where the superscript indicated the loop order and E(i) ≡ V
(i)
W +m2

W0
B

(i)
W . Performing an

MS renormalization of the SU(2) and U(1) couplings we write

Gµ√
2

=
πα̂(mZ)

2m2
W ŝ

2 [1 + ∆r̂W ] (3.13)

with

∆r̂W = ∆r̂
(1)
W + ∆r̂

(2)
W , (3.14)

∆r̂
(1)
W =

ReA
(1)
WW (m2

W )

m2
W

− A
(1)
WW

m2
W

+ E(1)

∣∣∣∣∣
MS

, (3.15)

∆r̂
(2)
W =

ReA
(2)
WW (m2

W )

m2
W

− A
(2)
WW

m2
W

+ E(2) + δε∆r̂
(1)
W +A

(1)
WWB

(1)
W

+

(
ReA

(1)
WW (m2

W )

m2
W

− A
(1)
WW

m2
W

)(
ReA

(1)
WW (m2

W )

m2
W

− A
(1)
WW

m2
W

+ E(1)

)∣∣∣∣∣
MS

. (3.16)

where MS in this case denotes both the MS renormalization and the choice µ = mZ for

the ’t Hooft mass scale; δε∆r̂
(1)
W is the finite contribution proportional to the coefficient of

the O(ε) part of the one-loop contribution (ε = (4− d)/2 where d is the dimension of the

space-time) induced by the renormalization of g20 in eq. (3.12).

We note that the definition of ∆r̂W in eq. (3.13) differs from the original proposal in

ref. [37],
Gµ√

2
=

πα

2m2
W ŝ

2

1

1−∆r̂W
. (3.17)
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In eq. (3.17) the relation between Gµ and mW is expressed in terms of α and the mass

singularity corrections are directly included in ∆r̂W and their resummation is achieved via

the replacement

1 + ∆r̂W →
1

1−∆r̂W
. (3.18)

This is clearly different from eq. (3.13) where they are absorbed in α̂(mZ). The replace-

ment (3.18) used in eq. (3.17) introduces spurious two-loop and higher-order contributions,

numerically quite small. The use of eq. (3.13) allows us instead to control directly the re-

summation of the various contributions.

An explicit expression for ∆r̂
(1)
W is reported in eq. (A.3) of the appendix where the

distinction between ĉ2 and c2 is kept. The higher order contributions to ∆r̂W are presented

again in a simple formula that approximates the exact result to better than 0.035% for ŝ2

on the interval (0.23− 0.232) when the other parameters are varied simultaneously within

a 3σ interval around their central values. We find

∆r̂W
h.o.(mZ) = 10−4 (r0 + r1ds+ r2 dT + r3 dH + r4 das) (3.19)

with

r0 = −2.8472779, r1 = 1.620742, r2 = 1.773226, r3 = −0.364310, r4 = 1.137797 .

(3.20)

Eq. (3.19) includes, besides the ∆r̂
(2)
W contribution from eq. (3.16), the complete O(ααs)

corrections and the first two subleading terms in the heavy top expansion of the three-loop

O(αα2
s) corrections.

3.3 ρ̂

The relation between the weak mixing angle in the MS formulation and its OS counterpart

is encoded in the parameter ρ̂ defined as

ρ̂ =
c2

ĉ2
=

m2
W

m2
Z ĉ

2 (3.21)

whose tree-level value is equal to 1. From the relation

mW0

mZ0

≡ c20 = c2 − c2 δm
2
W

m2
W

+ c20
δm2

Z

m2
Z

= ĉ2 − δĉ2 (3.22)

with δmZ given by eq. (2.2) and δĉ2 the counterterms for ĉ2, it is easy to derive

ρ̂ =
1

(1− YMS)
. (3.23)

with

Y =
δm2

W

m2
W

− c20
δm2

Z

m2
W

. (3.24)

In eq. (3.23) MS denotes both the MS renormalization and the choice µ = mZ for the ’t

Hooft mass scale. Indeed the structure of the 1/ε poles in δĉ2 is identical to that of the

– 10 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
4

combination of the W and Z mass counterterms in eq. (3.22) once the 1/ε poles in δ(1)m2
W

and δ(1)m2
Z are expressed in terms of MS quantities.

The two-loop counterterm δ(2)m2
Z includes also the contribution from the mixed γ Z

self-energy or

δ(2)m2
Z = Re

A(1)
ZZ(m2

Z) +A
(2)
ZZ(m2

Z) +

(
A

(1)
γZ (m2

Z)

m2
Z

)2
 (3.25)

so that YMS up to the two-loop level reads

YMS = Y
(1)

MS
+ Y

(2)

MS
, (3.26)

Y
(1)

MS
= Re

[
A

(1)
WW (m2

W )

m2
W

− ĉ2A
(1)
ZZ(m2

Z)

m2
W

]
MS

, (3.27)

Y
(2)

MS
= Re

A(2)
WW (m2

W )

m2
W

− A
(2)
ZZ(m2

Z)

m2
Z

+

(
A

(1)
γZ

m2
Z

)2

MS

. (3.28)

The one-loop contribution to YMS is reported in eq. (A.4) of the appendix. As before

we give the higher order terms via a simple formula:

Y h.o.
MS

(mZ) = 10−4 (y0 + y1ds+ y2dt+ y3dH + y4das) (3.29)

where dt = [(Mt/173.34 GeV)2 − 1] and

y0 = −18.616753 y1 = 15.972019, y2 = −16.216781, y3 = 0.0152367, y4 = −13.633472 .

(3.30)

Eq. (3.29) includes, besides the Y
(2)

MS
contribution from eq. (3.28), the complete O(α̂αs)

corrections, the leading three-loop O(α̂α2
sM

2
t /m

2
W ) contribution [7, 8] and the subleading

O(α̂3M6
t /m

6
W ) and O(α̂2αsM

4
t /m

4
W ) [17, 18], and the four-loop O(α̂α3

sM
2
t /m

2
W ) contribu-

tion [19, 20]. It approximates the exact result to better than 0.075% for ŝ2 on the interval

(0.23− 0.232) when the other parameters in eq. (3.29) are varied simultaneously within a

3σ interval around their central values.

4 Results

In this section we report our results for α̂, sin2θ̂W and mW . All results are presented as

simple parameterizations in terms of the relevant quantities whose stated validity refers

to a simultaneous variation of the various parameters within a 3σ interval around their

central values given in table 1. As a general strategy for the evaluation of the two-loop

contributions, where ĉ2 can be identified with c2, we have replaced in all the two-loop terms

mW with mZ ĉ. This choice gives rise to the weakest µ-dependence in mW .

The two-loop computation of the MS electromagnetic coupling from eq. (3.3) and of

sin2θ̂W from eq. (1.4) can be summarized by the following parameterizations

α̂(µ) = a0 + 10−3
(
a1dH + a2dT + a3das + a4da

(5)
)

(4.1)

sin2θ̂W (µ) = s0 + s1dH + s2dt+ s3dHdt+ s4das + s5da
(5) (4.2)
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µ = mZ µ = Mt

a0 (128.13385)−1 (127.73289)−1

a1 -0.00005246 -0.00005267

a2 -0.01688835 0.02087428

a3 0.00014109 0.00168550

a4 0.22909789 0.23057967

µ = mZ µ = Mt

s0 0.2314483 0.2346176

s1 0.0005001 0.0005016

s2 -0.0026004 -0.0001361

s3 0.0000279 0.0000514

s4 0.0005015 0.0004686

s5 0.0097431 0.0098710

Table 2. Coefficients for the parameterization of α̂(µ) (left table, eq. (4.1) in the text) and

sin2θ̂W (µ) (right table, eq. (4.2) in the text).

where da(5) = [∆α
(5)
had(m2

Z)/0.02750−1] and the ai and si coefficients are reported in table 2

for two different values of the scale µ. Eq. (4.1) approximates the exact result to better

than 1.1× 10−7 (1.2× 10−7) for µ = mZ (µ = Mt), while eq. (4.2) approximates the exact

result to better than 5.1× 10−6 (6.2× 10−6) for µ = mZ (µ = Mt).

From our results on α̂ and ŝ2 it is easy to obtain the values of the g and g′ coupling

constants at the weak scale, usually identified with Mt. They can be taken as starting points

in the study of the evolution of the gauge couplings via Renormalization Group Equations

(RGE) in Grand Unified Models and in the analysis of the stability of the Higgs potential

in the SM. Ref. [57] reports the values of the gauge coupling constants at the µ = Mt

scale, g(Mt) = 0.64822 and g′(Mt) = 0.35760, obtained using a complete calculation of

the two-loop threshold corrections in the SM. Here we find g(Mt) = 0.647550 ± 0.000050

and g′(Mt) = 0.358521 ± 0.000091. The difference between the two results, which should

be a three-loop effect, is more sizable than expected. However, the results of ref. [57]

were obtained using as input parameters Gµ and the experimental values of mZ and mW ,

while our result is obtained with a different set of input parameters, i.e. Gµ, α and mZ .

In our calculation mW is a derived quantity calculable from eq. (1.5). Moreover, as shown

below, our prediction for mW is not in perfect agreement with the present experimental

determination and therefore the gauge couplings extracted using the two different sets

of inputs parameters show some discrepancy. Indeed, using our prediction for mW in the

results of ref. [57] instead of the experimental result, we find that the difference between the

g (g′) computed in the two methods is one order of magnitude smaller than the two-loops

correction and two orders smaller than the one-loop correction to g (g′).

The two-loop determination of the W mass in the MS framework from eq. (1.5) can

be parameterized as follows

mW = w0 + w1dH + w2dH
2 + w3dh+ w4dt+ w5dHdt+ w6das + w7da

(5) (4.3)

with dh = [(mH/125.15 GeV)2−1]. The wi coefficients are reported in table 3 for µ = mZ .

Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450 GeV. In the
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124.42 ≤ mH ≤ 125.87 GeV 50 ≤ mH ≤ 450 GeV

w0 80.35712 80.35714

w1 -0.06017 -0.06094

w2 0.0 -0.00971

w3 0.0 0.00028

w4 0.52749 0.52655

w5 -0.00613 -0.00646

w6 -0.08178 -0.08199

w7 -0.50530 -0.50259

Table 3. Coefficients of the mW parameterization in eq. (4.3). The left column contains the

coefficients that cover a variation of mH around its central value, while the right one applies to the

case 50 ≤ mH ≤ 450 GeV .

Mt

Mz

0 100 200 300 400 500

80.3560

80.3565

80.3570

80.3575

80.3580

80.3585

80.3590

Μ in GeV

M
W

in
G

e
V

Figure 1. Dependence of the mW prediction on the electroweak scale µ in the MS framework.

two cases the formula (4.3) approximates the exact result to better than 0.11 MeV and

0.5 MeV, respectively.

The result for the W mass described by eq. (4.3) is obtained fixing µ = mZ . As a

physical quantity, the W mass must be µ-independent. Hence the numerical difference

between results obtained varying µ in a “reasonable” interval can be taken as an indication

of the size of the missing higher-order corrections. In figure 1 we plot mW vs. µ, with

the ’t-Hooft mass varying between 50 GeV and 500 GeV. The figure is obtained using as

input parameters the central values in table 1. The figure shows a maximum variation of

∼ 3 MeV in the entire range while in the restricted range 100 ≤ µ ≤ 200 GeV we find a

maximum variation of ∼ 1 MeV.
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5 Discussion and conclusions

In this paper we have discussed the mW − mZ interdependence in the SM, in the MS

framework of the radiative corrections. We have evaluated the parameters α̂,∆r̂W and

ρ̂ at the full two-loop level augmented by all the presently known three-loop strong, EW

and mixed contributions and by the four-loop strong corrections. We have presented our

results via simple formulas that parameterizes the results in terms of mH , Mt, αs and the

5-flavor hadronic contribution to the vacuum polarization.

Our calculation of the W mass in the MS framework automatically incorporates the

Dyson resummation of the lowest order large contributions, i.e. the mass singularity loga-

rithms and the effects that scale as powers of the top mass. This partial inclusion of terms

that are beyond the presently computed effects in the loop expansion is a solid ground to

estimate in a realistic way the size of the missing higher-order contributions in the mW

computation. The very weak residual µ-dependence shown in figure 1 indicates that the

uncertainty that can be assigned to our MS result due to the truncation of the perturbative

series is expected to be at most ∼ 3 MeV.

For what concerns the parametric uncertainties, after the discovery of the Higgs boson

and the precise measurement of its mass, the most important experimental errors that

affects the theoretical determination of mW are the ones on Mt and ∆α
(5)
had(m2

Z). The

left column of table 3 shows that the sensitivity of mW to Mt is more than twice that

to ∆α
(5)
had(m2

Z). In our calculation the top mass is an on-shell quantity, i.e. a pole mass,

and in table 1 we have identified it with the average of the Tevatron, CMS and ATLAS

measurements. However, at the present level of precision of the experimental determi-

nation (±0.76 GeV) this identification can be disputed in two aspects. i) The top pole

mass has an intrinsic non-perturbative ambiguity of O(ΛQCD) due to infrared renormalon

effects. ii) The top mass parameter extracted by the experiments, which we call MMC
t ,

is obtained from the comparison between the kinematical reconstruction of the top quark

decay products and the Monte Carlo simulations of the corresponding event. Therefore

MMC
t is a parameter sensitive to the on-shell region of the top quark but it cannot be

directly identified with Mt. The offset between Mt and MMC
t is difficult to quantify, and

has recently been estimated of O(0.3−0.5) GeV [58, 59]. In our numerics we have assigned

a 1 GeV uncertainty to Mt.

The mW result obtained using the central values in table 1, mW = 80.357 GeV, agrees

within one and a half standard deviations with the present experimental world average,

mW = (80.385± 0.015) GeV. However, increasing the top mass and decreasing ∆α
(5)
had(m2

Z)

by 1σ, i.e. using Mt = 174.34 GeV and ∆α
(5)
had(m2

Z) = 0.02717, we find mW = 80.370 GeV

which is much closer to the experimental world average. It is interesting to note that the

precise determination of the top mass plays a very important role also in the analysis of

the stability of the SM Higgs potential up to the Planck scale. In order to get a closer

agreement between the computed mW and the experimental result we saw that large values

of Mt are favored, while vacuum stability in the SM requires quite low values for the top

mass, Mt < 171.36± 0.46 GeV [57, 60]. Using Mt = 171.36 GeV and for the other inputs

the central values in table 1 we find mW = 80.345 GeV, which differs from the experimental

world average by more than two standard deviations.
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Our MS result for mW can be compared with the prediction of mW in the OS scheme of

ref. [31] to study the scheme dependence of the mW predictions. Both calculations include

the complete two-loop electroweak contributions, higher-order QCD corrections of O(ααs)

and O(αα2
s), the higher-order mixed EW-QCD corrections O(α2αsM

4
t ), and purely EW

O(α3M6
t ) corrections. In our result also the four-loop contribution O(αα3

sM
2
t ) is included,

but we do not take it into account in the comparison with ref. [31]. The MS and OS

calculations differ however in several aspects. While in the MS framework we exploit the

possibility of resumming lowest-order contributions, no resummation is attempted in the OS

calculation. Furthermore, our computation refers directly to mW , while in the calculation

of ref. [31] the quantity predicted is MW (see section 2), which is then translated to mW

with the introduction of a correction factor containing the W boson width. Because the

latter is not very well known (the experimental uncertainty is presently around 2%), the

theoretical result for ΓW is employed, thus introducing an additional uncertainty in the

OS result estimated to be 1-2 MeV [25, 26].

Since the mW determinations in the MS and OS scheme are equivalent at the two-

loop level but differ by the partial inclusion of higher-order contributions, their numerical

difference can be taken as a good estimate of missing higher-order effects. Taking as inputs

in our calculation those used in [31], i.e. mH = 100 GeV, Mt = 174.3 GeV ∆α
(5)
had(m2

Z) =

0.027572 and αs = 0.119, we find mW = 80.3749 GeV, which should be compared with the

value mW = 80.3800 reported in ref. [31]. If instead we take the central values in table 1 as

inputs in eq. (9) of ref. [31], we find an OS result mW = 80.3639 GeV to be compared with

an MS result mW = 80.3578 GeV. These numbers indicates that the MS determination is

always lower than the OS one, and shows a larger difference with the present experimental

world average. Furthermore, the estimate δmth
W ≈ 4 MeV of the theoretical uncertainty

from unknown higher-order corrections reported in ref. [31] seems to be slightly optimistic.

A more realistic value is probably δmth
W ≈ 6 MeV.

Another indication that δmth
W ≈ 4 MeV is probably an underestimate comes from our

MS calculation. In our hybrid scheme the masses that appear in the one-loop contributions

are identified with pole masses, and the gauge couplings with MS quantities. In this

framework once the one-loop contributions are written as we did in the appendix, the

expressions of the two-loop corrections follow. However, their evaluation has some residual

ambiguity, because one can always re-express the W mass as mZ and ĉ, or vice versa. As we

said, our choice to express mW in terms of mZ in the two-loop contributions is the one that

minimizes the µ-dependence, but other choices are allowed. Trying several possibilities, we

found a variation of δmW ≈ 4 MeV in our MS result; mW can be almost 3 MeV below our

default choice, further amplifying the difference between the MS and OS schemes.

We have seen that in our MS calculation δmth
W ≈ 3 MeV, while the scheme dependence

observed in the comparison with the OS scheme is around 6 MeV. However, in our MS

computation we exploit at best all the present available information through the automatic

resummation of the known contributions. Moreover, we expect to have better control over

the unknown higher-order contributions than in the OS scheme because in MS the effects

related to δρ are not enhanced by the numerical factor c2/s2. Finally, we predict directly

mW and not MW in order to avoid correction factors that introduce additional uncertainties.
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It is therefore natural that the theoretical uncertainty estimated in the MS calculation is

smaller than the scheme dependence in the comparison between the OS and MS results.
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A Appendix

Here we give the explicit formulae for ∆α̂, ∆r̂W and YMS at the one loop order. In the

formulae below Nc = 3 is the number of colors and

ζW =
m2
H

m2
W

, ζZ =
m2
H

m2
Z

, bW =
m2
b

m2
W

, bZ =
m2
b

m2
Z

, tW =
M2
t

m2
W

, tZ =
M2
t

m2
Z

. (A.1)

∆α̂p,(1) = − α

4π

{
2

3
+

4

3

(
ln(m2

e) + ln(m2
µ) + ln(m2

τ )
)
− 7ln(m2

W ) +
16

27
Ncln(M2

t ) (A.2)

+ Nc

(
−196

81
− 4

27
(1 + 2bZ)B0(m

2
Z ,m

2
b ,m

2
b)−

8

27
bZ ln(m2

b) +
40

27
ln(m2

Z)

)}
∆r̂

(1)
W =

α̂

4πŝ2

{
1 + 8ĉ2

12c4
− 7 + 80ĉ2

24c2
+

1

ĉ2
− 8ĉ2 +

1

72

(
794− 21ζW + 6ζ2W

)
+

(
ĉ2 + 8ĉ4 + 64c2ĉ4 − 6c4(8ĉ4 − 5)

12c2ĉ2s2
+

26c2−ζ2W−18(5 + ζZ)+ζW (82 + ζZ)

12s2(1− ζW )

)
ln(m2

W )

+

(
36c6 + 24c4 + 4c2 − 1

12c4s2
− 3c2 + 2

2ĉ2s2
− ĉ2(15c4 − 11c2 + 2)

3c4s2

)
ln(m2

Z)

+
ζW (12− 4ζW + ζ2W )

12(1− ζW )
ln(m2

H)− 12− 4ζW + ζ2W
12

B0(m
2
W ,m

2
H ,m

2
W )

+

(
11ĉ2 + 1

3c2
+ 4ĉ2 − 8ĉ2 + 1

12c4
− 1

ĉ2
+ 2

)
B0(m

2
W ,m

2
Z ,m

2
W )

+Nc

[
1

12

(
4bW tW − 2b2W − 3bW − 2t2W − 3tW − 12

)
+

2

3
ln(m2

W )

+
bW
(
(bW − tW )2 + bW + 2tW

)
6(bW − tW )

ln(m2
b) +

tW
(
(tW − bW )2 + tW + 2bW

)
6(tW − bW )

ln(M2
t )

+
1

6

(
(tW − bW )2 + tW + bW − 2

)
B0(m

2
W ,M

2
t ,m

2
b)

]}
(A.3)

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
4

Y
(1)

MS
=

α̂

4πŝ2

{
1 + 8ĉ2

12c4
+

175− 416ĉ2 + 240ĉ4

36c2
+

262− 288ĉ2 + 3ζ2W − 3ζW ζZ
36

+

(
1 + 8ĉ2

12c2
+
ζW − 30 + 64ĉ2 − 48ĉ4

12

)
ln(m2

W )

−
(

1 + 8ĉ2

12c4
+
ζZ + 34− 96ĉ2 + 48ĉ4

12c2

)
ln(m2

Z)− 1

12
ζ2Ws

2ln(m2
H)

+

(
11ĉ2 + 1

3c2
+ 4ĉ2 − 8ĉ2 + 1

12c4
− 1

ĉ2
+ 2

)
B0(m

2
W ,m

2
Z ,m

2
W )

+

(
1− 4ĉ2 − 36ĉ4

12c2
+

5− 8ĉ2 − 12ĉ4

3

)
B0(m

2
Z ,m

2
W ,m

2
W )

−
(

(ζW − 4)ζW
12

+ 1

)
B0(m

2
W ,m

2
H ,m

2
W ) +

(
(ζZ − 4)ζW

12
+

1

ĉ2

)
B0(m

2
Z ,m

2
H ,m

2
Z)

+Nc

[
11− 22ĉ2 + 20ĉ4

9c2
− (tW − bW )2

6
− 1 +

2

3
ln(m2

W )− 40ĉ4 − 44ĉ2 + 22

27c2
ln(m2

Z)

+
9(bW − tW )− 8− 8ĉ2 + 16ĉ4

54
bW ln(m2

b)

+
9(tW − bW ) + 16− 80ĉ2 + 64ĉ4

54
tW ln(M2

t )

+
5− 4ĉ2 + 8ĉ4 +

(
16ĉ4 − 8ĉ2 − 17

)
bZ

54c2
B0(m

2
Z ,m

2
b ,m

2
b)

+
17− 40ĉ2 + 32ĉ4 +

(
64ĉ4 − 80ĉ2 + 7

)
tZ

54c2
B0(m

2
Z ,M

2
t ,M

2
t )

+
(tW − bW )2 + bW + tW − 2

6
B0(m

2
W ,M

2
t ,m

2
b)

]}
(A.4)

where B0 is the finite part of the Passarino-Veltman function defined as

B0(s, x, y) = −
∫ 1

0
dtln[tx+ (1− t)y − t(1− t)s] (A.5)

where ln(x) = log
(
x
µ

)
with µ the ’t Hooft mass.
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