
J
H
E
P
0
5
(
2
0
1
5
)
1
5
2

Published for SISSA by Springer

Received: January 6, 2015

Revised: April 10, 2015

Accepted: May 12, 2015

Published: May 29, 2015

Boundary states as holographic duals of trivial

spacetimes

Masamichi Miyaji,a Shinsei Ryu,b Tadashi Takayanagia,c and Xueda Wenb

aYukawa Institute for Theoretical Physics,

Kyoto University, Kyoto 606-8502, Japan
bDepartment of Physics, University of Illinois at Urbana-Champaign,

1110 West Green St, Urbana IL 61801, U.S.A.
cKavli Institute for the Physics and Mathematics of the Universe,

University of Tokyo, Kashiwa, Chiba 277-8582, Japan

E-mail: masamichi.miyaji@yukawa.kyoto-u.ac.jp, ryuu@illinois.edu,

takayana@yukawa.kyoto-u.ac.jp, xwen4@illinois.edu

Abstract: We study real-space quantum entanglement included in conformally invari-

ant boundary states in conformal field theories (CFTs). We argue that boundary states

essentially have no real-space entanglement, except for constant contributions from long

range topological entanglement, by computing the entanglement entropy when the system

is bipartition into two spatial regions. From the viewpoint of classical gravity duals in

holography, this shows that boundary states are dual to trivial spacetimes of zero space-

time volume. We also point out that a continuous multiscale entanglement renormalization

ansatz (cMERA) for any CFTs can be formulated by employing a boundary state as its

infrared unentangled state with an appropriate regularization. Exploiting this idea, we

propose an approximation scheme of cMERA construction for general CFTs.

Keywords: AdS-CFT Correspondence, Boundary Quantum Field Theory, Holography

and condensed matter physics (AdS/CMT), Renormalization Group

ArXiv ePrint: 1412.6226

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2015)152

mailto:masamichi.miyaji@yukawa.kyoto-u.ac.jp
mailto:ryuu@illinois.edu
mailto:takayana@yukawa.kyoto-u.ac.jp
mailto:xwen4@illinois.edu
http://arxiv.org/abs/1412.6226
http://dx.doi.org/10.1007/JHEP05(2015)152


J
H
E
P
0
5
(
2
0
1
5
)
1
5
2

Contents

1 Introduction 1

2 Boundary states as maximally entangled states 3

3 No real-space entanglement in boundary states 5

3.1 Boundary states from relevant perturbations 5

3.2 Correlation functions 6

3.3 A free field calculation of entanglement entropy of boundary states 7

4 Boundary states as holographic duals of trivial spacetimes 9

4.1 AdS/CFT and holographic entanglement entropy 9

4.2 An explicit construction in AdS/BCFT 10

5 cMERA for general CFTs and boundary states 11

5.1 MERA and cMERA 12

5.2 IR states for general CFTs 15

5.3 A general ansatz for cMERA 16

5.3.1 Free massless scalar CFTs 16

5.3.2 Free massless fermion CFT in two dimensions 17

5.3.3 cMERA for general 2d CFTs 18

6 Conclusions and discussion 18

A A lattice model calculation of entanglement entropy of boundary states 20

B Example: cMERA for free scalar field theory 23

B.1 Construction of cMERA 23

B.2 Scale transformation in massless scalar 24

B.3 Massive scalar case 25

B.4 Circle compactification 26

1 Introduction

Recently, there have been important progresses in understanding the structures of space-

times in gravitational theories. The holographic principle predicts that spacetimes in a

gravitational theory are emergent from more fundamental degrees of freedom [1–3], as ex-

plicitly realized in the AdS/CFT correspondence [4]. Moreover, latest studies strongly

suggest that these fundamental degrees of freedom are given by quantum entanglement

in quantum many-body systems. The holographic formula of the entanglement entropy
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offers one manifestation of this connection between structures of spacetimes and quantum

entanglement [5–11]. Furthermore, an explicit map between the structure of quantum

entanglement and geometries of gravitational theories may be established by using the ten-

sor network construction of many-body quantum state, in particular MERA (multi-scale

entanglement renormalization ansatz) [12–14], as noted in [15]. A continuum version of

MERA, called cMERA is available [16] and its connection to the AdS/CFT correspondence

has been studied in [17]. Another interesting network construction was argued to be dual

to gravity in [18]. Refer to, e.g., [19–26] for more progresses in this subject.

In this paper, we consider a holographic counterpart of the most fundamental space-

time: a trivial spacetime with vanishing spacetime volume, or in other words just a point-

like universe. As the holographic entanglement entropy shows, the area of spacetime is

proportional to the entanglement entropy. Therefore, a trivial spacetime corresponds to a

quantum state with no real-space entanglement, at least in the classical gravity limit. Once

quantum fluctutions are taken into account, a quantum state with no real-space entangle-

ment would be dual to spacetime of planck size volume. Indeed, the area law formula of

holographic entanglement entropy [5–9] and its generalization to higher derivative gravi-

ties [27–30] can only be applied to spacetimes in classical gravity, which are much larger

than the planck size.

From the viewpoint of its dual conformal field theory (CFT) in the setup of AdS/CFT,

such a quantum state with no entanglement is rather non-trivial, since for typical states in

CFTs, such as the CFT vacuum states, the real-space entanglement entropy scales with the

size of the subregion of our interest and thus is far from vanishing [5–9, 31, 32]. One of the

main purposes of this paper is to point out that such an unentangled quantum state can

be obtained as the conformally invariant boundary states in CFTs. The boundary states

play an important role in CFTs because they provide general descriptions of boundary

conformal field theories (BCFTs). In 2d CFT, the Cardy states [33] involve maximally

entangled states of the holomorphic and antiholomorphic sectors of the CFTs, called the

Ishibashi states. While this entanglement between holomorphic and antiholomorphi sectors

has been commonly discussed, in this paper, we discuss real space entanglement included

in boundary states by bipartitioning the total system into two spatial regions.

Identification of boundary states as a holographic dual to empty spacetimes also helps

us to find a construction of cMERA for generic CFTs. In cMERA, target states (e.g.,

ground states) are constructed from a reference state (called IR state) without any real

space entanglement by adding quantum entanglement. Based on the above considerations,

we claim that for generic CFTs boundary states can be taken as IR states in cMERA.

The IR state corresponds to a trivial spacetime. Starting from such an empty spacetime,

emergent spacetimes can be constructed by adding quantum entanglement. Identification

of the IR states is an important technical step toward the cMERA construction of the

ground states of generic CFT. By using the new cMERA ansatz using a CFT boundary

state as its IR state, we will show that we can improve the previous result for the (1+1)d

free fermion in [16]. The cMERA state in the latter correctly reproduces the true ground

state only at low energies, while the cMERA state in our new construction is valid for

arbitrary energy scale. Furthermore, using boundary states as IR states, we propose an
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ansatz of cMERA type for ground states of general 2d CFTs. Using the Cardy formula,

we can then derive the information metric of the ansatz [17], which is consistent with the

previous free field calculations, and with the holographic interpretation.

This paper is organized as follows: in section 2, we give a quick overview of the

construction of boundary states in CFTs and interpret them as the maximally entangled

states. In section 3, we show that the boundary states have no real-space entanglement

except for possible topological entanglement. In section 4, we argue that boundary states

are holographically dual to trivial spacetimes. In section 5, we will start with a review

of (c)MERA. Later we will argue that a general construction of cMERA for CFTs can

be obtained by using the boundary states. In section 6, we summarize our conclusions

and discuss future problems. In the appendix A, we present a lattice model calculation of

entanglement entropy of boundary states. In the appendix B, we show some useful details

of cMERA for a free scalar field theory.

2 Boundary states as maximally entangled states

In this section, we will review the definition of boundary states in CFTs, mainly on two-

dimensional (2d) CFTs for illustrative purposes. We will then explain an interpretation of

boundary states as maximally entangled states.

Consider a 2d CFT defined on a spatial cylinder described by the coordinate (t, x),

where t is the time coordinate and x is the space coordinate with the periodicity 2π. We

consider a quantum state at t = 0 defined by the path-integral during the time period

−ε < t < 0. At the time t = −ε, we assume that there is a space-like boundary extending

for all values of x. Finally we take the limit ε→ 0. The state defined in this way is called

the boundary state |B〉, and depends on the choice of the boundary conditions. Especially

we are interested in the boundary conditions which preserve a half of original Virasoro

symmetries — such theories are called boundary conformal field theories (BCFTs). More

explicitly, boundary states in BCFTs are defined by the condition

(Ln − L̃−n)|B〉 = 0. (2.1)

where {Ln}n∈Z and {L̃n}n∈Z are two sets of Virasoro generators, for the left- and right-

moving sector, respectively. A simple solution to this condition is given by

|Ih〉 ≡
∑
~k

|~k, h〉L ⊗ |~k, h〉R, (2.2)

where |~k, h〉L is an orthonormal basis of the left-moving Verma module constructed from a

primary state |h〉L as ···(L−n)kn(L−(n−1))
kn−1 ···(L−1)k1 |h〉L. The same construction applies

to the right-moving Virasoro algebra, and gives an orthonormal basis |~k, h〉R. This state

|Ih〉 is called the Ishibashi state for the primary state |h〉 [34]. The boundary states which

correspond to physical boundary conditions are the so-called Cardy states [33], denoted

by |Cα〉. The Cardy states satisfy a consistency condition, so-called Cardy’s condition or

open-closed duality for partition functions on cylinders, which requires that the same results
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should be obtained both in open and closed string calculations. In general, the Cardy states

(labeled by the index α) are given by special linear combinations of Ishibashi states:

|Cα〉 =
∑
h

Bα,h|Ih〉, (2.3)

where h runs over all primaries.

From the form (2.2), it is clear that the Ishibashi states are maximally entangled states

of the left- and right-moving sectors of the CFT. The boundary states are singular in that

their norms are infinite, and hence it is useful to introduce a regularization. A simple

way to regularize the norms is to perform the Euclidean time evolution by e−εH , where

H = L0 + L̃0 − c
12 . Then the Ishibashi states look like

1√
Z(ε)

∑
~k

e−εE(~k)|~k, h〉L ⊗ |~k, h〉R, (2.4)

where E(~k) is the eigenvalue of H and we defined Z(ε) =
∑

~k
e−2εE(~k). If we trace out the

right-moving part we find that the reduced density matrix looks like

ρ(h, ε) =
1

Z(ε)

∑
~k

e−2εE(~k)|~k, h〉LL〈~k, h|. (2.5)

This is regarded as the thermal distribution at temperature T = 1/2ε of left-moving modes.

Therefore the entanglement entropy between the left- and right-moving sectors coincides

with the thermal entropy Sth(h, ε) of the either sector. These facts were noted earlier in [26,

35] for free field theories. If we turn to the Cardy states with the same ε regularization,

the reduced density matrix after tracing out the right-moving part is given by

1∑
h(Bα,h)2

∑
h

(Bα,h)2ρ(h, ε). (2.6)

A few comments are in order. First, it is straightforward to generalize the above

construction of the Ishibashi states to those in the presence of current algebras. While we

omit details, it may be useful to remember that for the U(1) current algebra we can have

a compact expression of the Ishibashi states:

|Ih(±)〉 = exp

(
± 1√

k

∞∑
n=1

1

n
J−nJ̃−n

)
|h〉, (2.7)

where the “level” k is a positive integer, and (Jn, J̃n) are the generators of left- and right-

moving U(1) current algebras which satisfy [Jn, Jm] = [J̃n, J̃m] = knδn+m. This Ishibashi

state satisfies the boundary conditions (Jn ∓ J̃−n)|B〉 = 0.

Second, it is straightforward to generalize the definition of boundary states in higher-

dimensional CFTs, though we have less analytical control compared with those in 2d CFTs.

For example, for a free massless scalar in (d+1)-dimensional flat spacetime, boundary states
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which correspond to the Neumann (+) and Dirichlet (−) boundary conditions are explicitly

given by

|B(±)〉 = exp

[
±1

2

∫
ddk a†~k

a†
−~k

]
|0〉, (2.8)

where a†~k
is the creation operator of a momentum ~k scalar particle (see also the appendix

A in this paper). This state again can be viewed as the maximally entangled state:

|B(±)〉 =
∏

~k,k1>0

∞∑
n~k=0

(±1)n~k |n~k〉L ⊗ |n~k〉R, (2.9)

where we decomposed the Hilbert space into those with k1 > 0 (right-moving) and those

with k1 < 0 (left-moving), where k1 is a component of the d-dimensional vector ~k. We also

define the number states |n~k〉L,R as usual: |n~k〉L = 1√
n!

(a†
−~k

)n~k |0〉 and |n~k〉R = 1√
n!

(a†~k
)n~k |0〉.

We will not get into details of boundary states in more general CFTs in this paper.

3 No real-space entanglement in boundary states

We will now study the real-space entanglement of the quantum states defined by boundary

states. Although boundary states are maximally entangled when the total Hilbert space is

bipartitioned into the left and right-moving parts, as noted in the previous section, we will

argue that boundary states have no real-space entanglement other than possible topological

contribution.

3.1 Boundary states from relevant perturbations

Let us consider a relevant perturbation to a given 2d CFT Hamiltonian H:

HM = H +M2−∆O

∫
dxO(x), (3.1)

where O(x) is a relevant operator with the conformal dimension ∆O and M represents the

mass scale of this massive deformation. We assume that under the renormalization group

(RG) flow, the theory flows into a trivial IR theory which has no propagating degrees of

freedom. We consider a quantum state |ΩM 〉 defined as the ground state of the massive

Hamiltonian HM . In particular, we take M ≡ 1/ε to be as large as the order of the UV

cut off Λ, in which case the infinitesimally small quantity ε ∼ 1/Λ can be regarded as the

lattice constant in a discretized lattice regularization. In this case, it is intuitively clear

that real-space entanglement essentially vanishes for the scale much larger than ε since

the Hamiltonian HM , after a discretization, is approximated by the one with infinitely

many disentangled points with the lattice constant ε. Strictly speaking, there can still

be finite quantum entanglement remained, which comes from topological order (including

symmetry-protected topological phases — see below) as typical in the topological entan-

glement entropy [36, 37]. However this contribution is much smaller than the quantum

entanglement which comes from the dynamics of CFTs. We will confirm this later explic-

itly in sections 3.3 for specific examples. Refer also to appendix A for calculations in a
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lattice fermion model. However, such finite contributions do not play any important role in

our main arguments on classical gravity duals. (Indeed, such topological finite contribution

is invisible in our holographic analysis in section 4.2.)

The above procedure of adding a massive perturbation to CFTs is closely related to

the (global) quantum quenches, where the massive deformation is suddenly turned off at a

given (initial) time [38]. Following the standard argument in this context, we then expect

that the quantum state |ΩM 〉 is given by a regularized boundary state:

|ΩM 〉 = F̂ (ε) · |B〉, (3.2)

where F̂ (ε) is a regularization operation such that F̂ (0) = 1. As in [38], for example, we

can approximately choose this to be, F̂ (ε) ∝ e−εH . Then the state (3.2) is described by a

path-integral starting from the boundary for a (Euclidean) time period ε as in the upper

picture in figure 1. This claim (3.2) can be understood by noting that the infinitely large

massive deformation kills all dynamics, ending up with an empty theory and hence the

massive deformation introduces a boundary beyond which there is no degree of freedom.

As a simple example, let us consider a free massive Dirac fermion in (1+1)d [39]:

HM =

∫
dx
[
−iψ†σz∂xψ +mψ†σxψ

]
, (3.3)

where ψ = (ψL, ψR)T is a two-component fermion field, and m represents the mass term.

The ground state of this Hamiltonian is given by

|ΩM 〉 = exp

[ ∑
k>0

m√
m2 + k2 + k

(
ψ†LkψRk + ψ†R−kψL−k

)]
|GL〉 ⊗ |GR〉 (3.4)

where ψL,Rk is the Fourier component of ψL,R(x), and |GL,R〉 is the Fock vacuum of the

left- and right-moving sector in the massless limit, respectively. As we take m → ∞
(m/(vFk)→∞), |ΩM 〉 reduces to the boundary states of the free massless fermion theory.

In summary, we obtained from the above argument the first explanation that boundary

states do not have real entanglement by taking the cut off ε to zero. Obviously we can

generalize this result to higher dimensions.

Note also that the boundary states we constructed in the above massive deformation

should be the Cardy states |Cα〉 as they describe physical boundaries. For example if we

take O(x) = φ(x)2 in a free scalar field theory (i.e., the U(1) current algebra), it is clear

that we get the Cardy state corresponding to the Dirichet boundary condition. It is a

interesting future problem to find a general rule telling us which relevant perturbation in

a bulk CFT leads to which boundary states.

3.2 Correlation functions

It is also helpful to study correlation functions for quantum states given by the boundary

states. For this purpose consider the following n-point function of local operators at a

particular time in arbitrary dimensions:

〈O(x1)O(x2) · · ·O(xn)〉Strip =
〈B|e−εHO(x1)O(x2) · · ·O(xn)e−εH |B〉

〈B|e−2εH |B〉
, (3.5)
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Figure 1. Sketches of path-integral representation of the regularized unentangled state |ΩM 〉 and

n point functions 〈O(x1)O(x2) · · ·O(xn)〉Strip.

where x1, x2, · · ·, xn describe n different spacial positions. In the path-integral formalism

with the regularization ε, this is evaluated as the path-integral over field configurations on

the strip shape spacetime defined by the region 0 ≤ t ≤ 2ε with the n operators inserted

at the time t = ε, as depicted in the lower picture of figure 1. There are two spacelike

boundaries at t = 0 and t = 2ε which correspond to the boundary states.

In this setup it is obvious that in the limit ε → 0 with xi 6= xj for all pairs i 6= j, the

correlation function (3.5) is factorized into n one point functions and does not depend on

xi−xj . This argument again shows that boundary states do not essentially have real-space

correlations.1

3.3 A free field calculation of entanglement entropy of boundary states

We now give an explicit estimate of the entanglement entropy SA for, as one of the simplest

examples, a free massless Dirac fermion theory when A is an interval. We employ the

results obtained in [40] where the entanglement entropy under quantum quenches has been

computed on a compact space. We assume the free Dirac fermion theory on a cylinder

(t, x) with the periodicity x ∼ x + 2π. We choose the boundary state |B〉 to be either

the Dirichlet or Neumann boundary condition (in terms of the scalar obtained from the

bosonization of the 2d massless Dirac fermion).

From the result in [40], we find the following entanglement entropy SA for the interval

A of length l for both the Neumann and Dirichlet boundary conditions:

SA =
1

6
log

|θ1

(
l

2π |
2iε
π

)
|2|θ1

(
ε
πi |

2iε
π

)
|2

η
(

2iε
π

)6 · |θ1

(
ε
πi −

l
2π |

2iε
π

)
|2|θ1

(
ε
πi + l

2π |
2iε
π

)
|2 · a2

, (3.6)

where a = 1/Λ is the UV cut off (lattice spacing) of the free fermion theory. Note that in the

continuum limit a→ 0 with ε kept finite, SA is logarithmically divergent, SA ∼ 1
3 log a−1,

1Notice that this argument, which is based on the correlation functions of local operators, can miss

non-local correlation as typical in topological orders, mentioned in section 3.1. Such contribution, however,

is not our main focus in this paper for our purpose of understanding holography.
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which is the well-known result in 2d CFTs [31] (remember the central charge is c = 1 for

the Dirac fermion). If we assume the parameter regime of our interest, ε � l and ε � 1,

the above entropy is simplified as

SA =
1

3
log

4ε

πa
. (3.7)

Therefore we learned that if we take ε is of order of the UV cut off a, the logarithmically

divergent term in SA disappears and thus SA is finite, i.e., SA ∼ O(1). This shows that

there is essentially no real-space entanglement in these boundary states.

It is also interesting to extend the above argument to the evaluation of SA for the

Cardy states in general 2d CFTs. Again we assume that the subsystem A is given by an

interval of length l. By using the replica trick, we can represent Tr [ρnA] as the path-integral

on 0 ≤ x ≤ 2π and 0 ≤ t ≤ 2ε with two twisted vertex operators at the ends of the

interval A [38]. In the limit l � ε, these two vertex operators are far apart and thus are

decoupled. The path-integral is then factorized into the two identical partition functions

with single twisted operator, each of which can be conformally mapped to a disk partition

function with the boundary condition specified by the Cardy state we consider. Since

the disk partition function is proportional to the g-function [41], we obtain the following

general result:

SA =
c

3
log

ε

a
+ 2 log g + c1, (3.8)

where c1 denotes an undetermined numerical constant, which does not depend on the

boundary condition. Again this shows SA ∼ O(1). It should be noted, however, that the

above result (3.8) is quantitatively correct only when ε� a. On the contrary, here we are

interested in the case ε ∼ a and therefore we cannot trust the precise value of the finite

term in (3.8). Nevertheless, it is at least clear that the logarithmically divergent term of

the entanglement entropy is absent for any boundary state, and this is enough to argue

that boundary states essentially have no real-space entanglement.

On the other hand, boundary states in the limit ε→ 0 can still have finite amount of

the entanglement entropy, which deserves a further comment (although it does not affect

our main arguments in this paper): while this constant term is non-universal in general,

it has an important implication in the context of symmetry-protected topological phases

in (1+1)d. (For an overview of symmetry-protected topological phases, see [42–45]). It

is known that all gapped phases in (1+1)d can be continuously deformable (adiabatically

connected) to each other. However, if some symmetry condition is imposed, two gapped

phases may not be adiabatically connected, i.e., they are separated by a quantum phase

transition. In particular, there may be a gapped phase which can be sharply (or “topologi-

cally”) distinct from trivial gapped states (such as an atomic insulator). Such gapped phase

is called a symmetry-protected phase. Examples of symmetry-protected topological phases

in (1+1)d include topological insulators, and the Haldane phase in integer spin chains [46–

50]. It has been argued that different SPT phases (respecting the same symmetry) can be

distinguished by their entanglement spectrum, and, more precisely, by degeneracy in their

entanglement spectrum [51]. For example, in the Haldane phase, the entanglement spec-

trum shows a characteristic double degeneracy for each entanglement eigenvalue, resulting
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in a log 2 contribution to the entanglement entropy, whereas there is no such degeneracy in

trivial phases. Thus, while there is no universal meaning in the constant entanglement en-

tropy, if there is some symmetry condition, it may limit the minimal possible entanglement

entropy, or the degeneracy of the entanglement spectrum. In appendix A, these points are

illustrated by evaluating the finite entanglement entropy explicitly for a specific fermion

model.

4 Boundary states as holographic duals of trivial spacetimes

In this section, as a main claim of this paper, we argue that boundary states in CFTs are

dual to trivial spacetimes. By trivial spacetimes we mean those whose volume are of order

of planck size, which vanishes upon taking the classical gravity limit.

4.1 AdS/CFT and holographic entanglement entropy

The AdS/CFT argues that the gravity on a pure AdS is equivalent to the ground state of

a CFT defined on its boundary. This correspondence can be generalized to more general

states in the CFT. If we pick up an arbitrary state in the CFT Hilbert space, it is dual to

a gravity on a certain spacetime. The main question that we address below is what kind

of gravitational spacetime is dual to CFT boundary states, for which we showed in the

previous section that the real space entanglement essentially vanishes. As clear from our

construction via relevant perturbations in section 3.1, a boundary state is a ground state

of a Hamiltonian with an infinite mass. Therefore each (lattice) point in space where the

CFT is defined is independent from the others, which leads no real space entanglement.

A hint on the nature of possible gravity dual of boundary states can be obtained from

the tensor network construction of many-body wave functions. In the MERA descrip-

tion [12–15], a completely disentangled state is described by a trivial tensor network just

consisting of one layer of lattice points of the original state. This is simply because we do

not need to add any quantum entanglement. This should be contrasted with the MERA

network for CFT ground states, where infinitely many layers of lattice points (tensors) are

necessary, in order to reproduce quantum entanglement included in the ground state (for

a brief review of MERA refer to section 5). By invoking the conjectured interpretation of

AdS/CFT in terms of MERA [15], the MERA construction then tells us that boundary

states are dual to trivial spacetimes.

We can also obtain this conclusion by looking at the entanglement entropy. In Einstein

gravity, the holographic entanglement entropy [5–9] is given by

SA =
Area(γA)

4GN
, (4.1)

where γA is the minimal area surface which ends on the boundary of subsystem A (i.e.

∂γA = ∂A). In the presence of higher derivative corrections in string theory, the correct

entropy is obtained by replacing the area term with curvature terms as

SA =
1

4GN

∫
γA

√
g(1 + λ1α

′R+ . . .), (4.2)
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where λ1 is a parameter of the higher derivative correction [27–30]. Therefore, if we impose

that the holographic entanglement entropy vanishes, γA should be of zero size. Since

for boundary states, we expect this for any choice of A, we can conclude that the total

spacetime is vanishing.

Since we are considering spacetimes of zero size, we need to take into account quantum

gravity corrections. For this we expect that the area and higher curvature terms are

replaced with some quantum averages thereof, although there is no known precise formula

which computes quantum corrections to the holographic entanglement entropy, except one

loop corrections [52]. In this sense, it is possible that the spacetimes dual to boundary states

have planck size volume, which can be regarded as trivial spacetimes from the viewpoint

of classical gravity.

4.2 An explicit construction in AdS/BCFT

We can also study the gravity dual of boundary states by using the AdS/BCFT corre-

spondence introduced in [53, 54]. This is a construction of gravity dual of a CFT defined

on a manifold with a boundary (BCFT). This formulation passes many non-trivial checks

such as a holographic derivation of the g-theorem and computations of the entanglement

entropy in BCFTs [53, 54].

As an illustration, we will concentrate on the two dimensional case. The generalization

to higher dimensions is straightforward. According to the AdS/BCFT, the gravity dual of

the state

ρ ∝ e−εH |B〉〈B|e−εH , (4.3)

which is equivalent to a 2d CFT on a strip of width 2ε, is given by a part of the Euclidean

BTZ back hole. The metric of this (Euclidean) BTZ black hole is

ds2 = R2

(
h(z)dt2

z2
+

dz2

h(z)z2
+
dx2

z2

)
, h(z) ≡ 1− π2z2

4ε2
, (4.4)

where R is the AdS radius and the coordinates (t, z, x) take values in the range −2ε ≤ t ≤
2ε, 0 < z ≤ 2ε/π, −∞ < x <∞. Note also that t has the periodicity 4ε. Then let us divide

this spacetime described by (4.4) into two halves by a certain two-dimensional surface Q

which connects the two lines (extending in the x direction) defined by (t, z) = (0, 0) and

(t, z) = (2ε, 0). Our gravity dual of the CFT on the strip is given by the spacetime which is

surrounded both by Q and by the boundary half circle (defined by z = 0 and 0 < t < 2ε).

In other words, the gravity dual is given by cutting out the BTZ black hole along the

surface Q.

As argued in [53, 54], this surface Q can be found by solving the boundary equation of

motion, which involves the extrinsic curvature. The shape of Q is related to the g-function

of the CFT. The symmetric case where Q is simply given by the middle half circle t = 0

and t = 2ε is equivalent to the construction by Hartman and Maldacena in [25], where the

gravity dual of quantum quench is discussed.

Now if we consider n point functions (3.5) in the gravity dual of a 2d CFT on the strip,

it is obvious there is no geodesic which connects xi and xj (i 6= j) because of the presence
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of the boundary Q. Therefore there will be no correlations as long as |xi − xj | � ε in the

approximation that the conformal dimensions of the local operators are very large.

We can also study the entanglement entropy. The holographic entanglement entropy

is given by the area of minimal area surface divided by 4GN [5–9]. In the presence of

spacetime boundary Q, the minimal surface can end on Q. Therefore if the subsystem

A is given by an interval with the length l, then the minimal surface is divided into two

disconnected segments both of which connect the end points of A to Q. When ε � a, we

can approximate the metric (4.4) by the pure AdS3, i.e., h(z) = 1 and the surface Q by

two planes t/z = const. and (t− 2ε)/z = const. By employing the holographic calculation

of the g-function in [53, 54], we finally find

SA '
c

3
log

2ε

a
+ 2 log g, (4.5)

which agrees with (3.8). Here a is the UV cut off of the CFT and this corresponds to the

UV cut off z > a in the gravity dual.

On the other hand, if we take ε to be of the same order as a, especially ε ≤ π
2a, then

the gravity dual itself becomes empty after we impose the UV cut off z > a. Even if we

assume ε > π
2a, the whole spacetime disappear in the limit ε → 0, where the state (4.3)

precisely coincides with the boundary state. Thus, we again reach our conclusion that

boundary states are dual to trivial spacetimes. Note that our argument of AdS/BCFT is

valid for classical gravity and neglects quantum gravity effects. Thus again it is possible

that such spacetimes can have planck size volume.

It is useful to note that this holographic analysis shows SA = 0 for any A, though our

general argument in the previous section shows that there can be a finite entanglement

entropy if there is any topological order. This is consistent with holography as we do not

expect any topological order in our classical gravity construction of AdS/BCFT. Indeed,

it is shown in explicit examples that topological effects does not appear in the large N

limit [55].

5 cMERA for general CFTs and boundary states

In this section, by making use of our observation that boundary states in CFTs do not

have real space entanglement, we propose a formulation of cMERA for general CFTs. We

will first go through necessary ingredients of MERA [12–14] and its continuous formula-

tion, cMERA [16], paying a special attention to a precise relation between coase-graining

procedure in MERA and cMERA. We will also give a brief overview on the conjectured

relation between MERA/cMERA and the AdS/CFT correspondence [15, 17]. For a re-

view on MERA and tensor-network methods for many-body systems in general, refer to,

e.g., [56]. The new cMERA construction using boundary states is applied to free massless

scalar and free massless fermion theories in section 5.3, and produces valid results. In

particular, for free massless fermion theories, the new cMERA construction improves upon

the previous cMERA construction and reproduces the correct ground state for any energy

scale. We also discuss the cMERA construction for generic 2d CFTs, which is consistent

with the holographic interpretation.
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5.1 MERA and cMERA

MERA. MERA is a scheme for the real-space RG formulated in terms of wave functions.

This should be contrasted to the more familiar method of the Wilsonian RG, where we

consider the RG in terms of effective actions in momentum space. Suppose we aim to

find the ground state of a complicated Hamiltonian, such as the one for a one-dimensional

quantum spin system (spin chain). Following the spirit of the real-space RG in classical

statistical systems, we consider to iteratively coarse-grain the spin chain by combining two

quantum spins into one. Let us define a non-positive integer u which counts the iterative

steps of this coarse-graining. We describe the initial spin chain by u = 0 and the first step

of coarse-graining is denoted by u = −1. If we start with a spin chain with N spins, after

|u| steps of coarse-graining the number of spins becomes N · 2u. In the end, it is reduced

to a single spin after log2N steps.

This coarse-graining procedure alone, however, does not give a good approximation

to the correct ground state, in particular when the quantum spin chain does not have a

mass gap; the amount of quantum entanglement included in the resulting wave function is

much smaller than we wish, in that its entanglement entropy SA has a finite upper bound.

On the other hand, SA in 2d CFTs increases logarithmically with respect to the size of

A [31]. To circumvent this problem in MERA, a special type of tensor, called disentanglers,

are introduced. A disentangler is a unitary transformation which acts on nearest neighbor

spins at each coarse-graining step, and, as we go through the coarse-graining procedure, it

reduces bits of quantum entanglement of the original, highly entangled, ground state.

This MERA evolution, consisting of coarse-graining followed by disentanglers, can

be run backward; starting from a single spin, we iteratively double the number of spins

and, at each step, introduce quantum entanglement between adjacent spins by a unitary

transformation, which is the (dis)entanglers. After many iterations, the MERA evolution

reproduces the correct ground state. These steps are the basic construction of MERA.

This formulation of (1 + 1)-d MERA can be generalized to higher dimensions in a straight-

forward way.

In [15], it was conjectured that the MERA formulation of CFTs is equivalent to the

AdS/CFT correspondence by identifying the extra coordinate u as the extra dimension.

The coordinate u, which counts MERA steps, is expected to be related to z, the standard

radial coordinate of Poincaré AdS, as z = ε · 2−u, where the metric of Poincaré AdS

is given by ds2 = R2
(
dz2 + dx2

)
/z2, and ε is the UV cut off in the AdS/CFT. One

important qualitative evidence for this conjecture comes from the fact that the estimation

of the entanglement entropy in the MERA representation of quantum ground states is

given by minimizing the intersections between bulk surfaces and entangling bonds, which

looks analogous to the holographic entanglement entropy formula.

cMERA. In order to apply MERA to continuum field theories, the continuous MERA

(cMERA) has been formulated [16]. We will consider cMERA for a (d+1)-d QFT and follow

the convention in [17]. In cMERA, we start from the unentangled state |Ω〉 (called the IR

state) and introduce the entanglement at each length scale so that we can reproduce the

correct state |ΨUV 〉 (the UV state), which is typically a ground state of a given Hamiltonian.
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This construction is naturally understood as a continuous limit of MERA. Only apparent

difference is that in cMERA the dimension of the Hilbert space (or the number of spins)

does not change at each coarse-graining step. In other words all procedures in cMERA such

as coarse-graining and disentangling are described by unitary transformations. It should be

noted, however, that even in MERA, by adding dummy states at each coarse-graining step,

one can keep the total number of spins. Refer to appendix B for an example of cMERA

applied to free scalar fields.

We define a state |Ψ(u)〉 parameterized by the scale u. This state |Ψ(u)〉 is obtained

by adding the entanglement for the momentum scale k ≤ Λeu to the unentangled state

|Ω〉.2 The unentangled state (the IR state) |Ω〉 is defined as a state without any real-space

entanglement.3 As will be argued in a later subsection, the IR state is closely related to the

boundary states of CFTs. We choose Λ = 1/ε to be the original UV cut off scale, where ε

represents the lattice spacing. When u = 0, the state |Ψ(0)〉 includes all the entanglement

and coincides with the UV state of our interest (e.g. the ground state |0〉 of a given QFT).

On the other hand, when u = uIR(= −∞), the state does not include any entanglement

and is given by the IR state |Ψ(uIR)〉 = |Ω〉.
This procedure can explicitly be written as

|Ψ(u)〉 = Pe
−i

∫ u
uIR

(K(s)+L)ds|Ω〉, (5.1)

where the symbol P represents the path-ordering which puts all operators with smaller

u to the right. The operator K(s) describes (dis)entangler which introduces necessary

entanglement along the MERA evolution from u = −∞ to u = 0. The entangler K(s)

acts only on the momentum modes with k ≤ Λ. For this purpose we introduce the cut

off function Γ(k/Λ) so that Γ(x) = 1 for 0 < x < 1 and Γ(x) = 0 in other cases [16].

Schematically, we have

K(u) =

∫
ddk Γ(k/Λ) · g(u, k) ·Ok, (5.2)

for any u, where Ok is a suitable operator with the energy scale k. We expect
∫
ddk Ok =∫

ddxO(x), where O(x) is a certain local operator in the CFT we consider.4 The function

g(u, k) depends on the theory and state of our interest and describes the strength of dis-

entangling procedure. The operator L in (5.1) is the non-relativistic scale transformation

such that

L|Ω〉 = 0. (5.3)

In the MERA language, this operator L corresponds to the corase-graining procedure.

2We need to be careful for this interpretation. This bound k ≤ Λeu is based on the viewpoint from the

UV state at u = 0. From the viewpoint from the state |Ψ(u)〉, the cut off is always k ≤ Λ. Refer to our

explanations later.
3In massless theories (CFTs) we need to be careful. The IR state |Ω〉 coincides with the unentangled

state only if k > Λ. For k < Λ we find |Ω〉 is equal to the CFT vacuum |0〉. For more details see the

example in appendix B.2 and (B.11).
4Note that Ok is not a Fourier transformation of O(x). Refer to an explicit example in appendix B.
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To establish a connection between cMERA and MERA for discrete lattice models more

closely, we note, in the MERA picture, the effective lattice spacing is given by ε · e−u at

the (−u)-th step. Therefore the effective momentum cut off is given by Λeu. However, in

the description of cMERA (5.1) using |Ψ(u)〉, we rescale the length scale at each step such

that the momentum cut off is always given by k ≤ Λ for any values of u. In other words,

we always rescale the effective lattice spacing to be ε for any u in the description by |Ψ(u)〉.
In the holographic dual language, we are looking at the co-moving coordinate x in the AdS

space. This situation is depicted in the upper picture of figure 2.

When applying cMERA for a CFT vacuum state |0〉, there is a relativistic scale trans-

formation L′ (i.e. the dilatation operator in the CFT). It should be noted that L and L′ are

different because L describes the spacial coarse-graining or the space-like scale transforma-

tion. The CFT vacuum |0〉 satisfies L′|0〉 = 0 but L|0〉 is non-vanishing. For a cMERA for

a CFT vacuum, we can find the relation

K(u) + L = L′ for k ≤ Λ. (5.4)

This means that the IR state |Ω〉 is actually given by the vacuum |0〉 for k ≤ Λ, which is

a highly entangled state. While this may sound puzzling at first sight, this is simply an

artifact of our rescaling procedure and nothing strange. In our construction of |Ψ(u)〉, the

non-relativistic scale transformation L is performed at each step and thus we disentangle

degrees of freedom only for k > Λ for any value of u. (On the other hand, if we consider

mass gapped theories rather than CFTs, then this seemingly singular behavior will not

arise. For more details of this issue, refer to (B.11) in the explicit construction of cMERA

for free scalars in appendix B.)

Reformulated cMERA. In order to make a clearer connection to the MERA process,

it is useful to define a rescaled state |Φ(u)〉, which is defined by

|Φ(u)〉 ≡ eiuL|Ψ(u)〉 = Pe
−i

∫ u
uIR

K̂(s)ds|Ω〉. (5.5)

Here K̂(s) is defined by the disentangler in the interaction picture

K̂(u) = eiuLK(u)e−iuL. (5.6)

Therefore we have the representation

K̂(u) =

∫
ddk Γ(ke−u/Λ) · g(u, ke−u) · Õk, (5.7)

where Õk is defined as eiuLOke
−iuL = eduÕkeu . This means that the effective lattice spacing

at the scale u behaves like ε · e−u which agrees with the discrete MERA formulation.

To have a more concrete interpretation, let us assume a vacuum state for a free con-

formal field theory, where K̂(u) is Gaussian:

K̂(u) ∝
∫
ddk Γ(ke−u/Λ)b†kb

†
−k, (5.8)
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Figure 2. Interpretations of two different cMERA states |Ψ(u)〉 and |Φ(u)〉 in terms of MERA for

discretized lattice models. In the former state, we always rescale the distance between two adjacent

lattice points to be ε, whereas in the latter state we do not rescale.

where b†k is a creation operator of free field with momentum k (see appendix B). This can

be rewritten by defining a position space creation operator b†x ∼
∫
ddkeikxb†k as

K̂(u) ∝
∫
ddxddy b†xb

†
yf(x− y),

where f(x− y) =

∫
ddk eik(x−y)Γ(ke−u/Λ). (5.9)

We find that the function f(x − y) takes non-trivial values only when |x − y| ≤ ε · e−u.5

This agrees with the discrete MERA formulation. Refer to the lower picture in figure 2.

5.2 IR states for general CFTs

In the above subsection we reviewed the idea of cMERA formulation. However, if we are

to construct cMERA for generic CFTs, we need to understand how to construct the IR

state |Ω〉. In this subsection we discuss a general construction of the IR state. We focus

on the formulation based on the state |Φ(u)〉 below. However we can always relate results

from |Φ(u)〉 to |Ψ(u)〉 via the L rescaling. Our claims in this subsection can be confirmed

explicitly in the free scalar example of appendix B.

To realize a disentangled IR state, as in (3.1) we consider a relevant deformation of

the original d+ 1 dimensional CFT Hamiltonian H:

HM = H +M (d+1)−∆O

∫
ddxO(x), (5.10)

where O(x) is a relevant operator with the conformal dimension ∆O. The infinitely large

parameter M represents the mass scale of this massive deformation, which is identified

5This observation is immediately understood by approximating the cutoff function by the gaussian

Γ(x) ∼ e−x
2

. However, the same conclusion can also be obtained for our original cutoff function Γ(x) =

1− θ(|x| − 1).
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with the UV cut off (or lattice spacing) as M = 1/ε. We need to pick up an operator O(x)

which leads to a trivial IR fixed point under the RG flow. If we consider cMERA for a

mass gapped QFT defined by a relevant perturbation of a CFT, we can choose O(x) to be

this relevant perturbation operator and our argument below still hold.

We now consider the ground state of HM , denoted by |ΩM 〉, and define it to be the

IR state of cMERA, |Ω〉. We propose that this is a general construction of IR states in

any CFTs. Even though H has the relativistic scale symmetry (dilatation) generated by

L′ such that [L′, H] = iH, the mass deformed Hamiltonian HM does not have such a

symmetry. Instead it is invariant under a non-relativistic scale transformation L such that

[HM , L] = 0. We can define L such that the IR state |Ω〉, which is the ground state of HM ,

is invariant under L as L|Ω〉 = 0.

As discussed below (3.1), the IR state |Ω〉 defined as the ground state of HM is given

by a regularized boundary state as in (3.2). Especially in the limit M → ∞ (or ε → 0),

it should precisely approach to the boundary state |B〉. Also it is useful to notice that

the boundary state has the relativistic scale symmetry such that L′|B〉 = 0. Moreover,

note that, in the case of 2d CFTs in particular, these boundary states should be regarded

as the Cardy states instead of the Ishibashi states because the infinitely large relevant

perturbation leads to a physical boundary in the time direction.

5.3 A general ansatz for cMERA

Following the above argument, one of the simplest ansatz of the IR state is

|Ω〉 = N e−εH |B〉, (5.11)

where N is a normalization constant. This is equivalent to the approximation used for

quantum quenches in [38]. Since boundary states can support topological entanglement,

we expect this ansatz is valid for a wide class of vacuum states, including those with

topological entanglement. We now apply this approximation to cMERA for CFTs. We

will employ the rescaled formalism (5.5).

For this purpose, it is convenient to regard the UV cutoff Λ in the disentangler as an

artificial cutoff for calculations which we can make much larger than the lattice spacing,

Λ � M = 1/ε: by making Λ arbitrarily large, we can make the MERA wave function

for k < 1/ε as close as possible to the true (ground) state. (We are interested only in

physics below the energy scale M .) Finally we can determine the disentangler K̂(u) from

the relation (5.5). In order to get a simple analytical control, we study the free scalar CFTs

and the free fermion CFT in 2d below.

5.3.1 Free massless scalar CFTs

As the first example of a CFT, consider a free massless scalar field in any dimension. We

choose the disentangler in the following form (see also (B.5) in appendix B)

K̂(u) =
i

2

∫
ddk Γ(ke−u/Λ)

(
g(u)a†ka

†
−k − g

∗(u)aka−k

)
. (5.12)

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
2

The strength of disentangling procedure at energy scale Λeu is estimated by |g(u)|. For

our purpose we can assume that g(u) is real-valued. From (5.5) with the ansatz (5.11), we

see that g(u) must satisfies

2

∫ 0

−∞
duΓ(|k|e−u/Λ)g(u) = log(1 + e−2ε|k|)− log(1− e−2ε|k|). (5.13)

This relation is obtained from the Bogoliubov transformation description generally formu-

lated in section 3.2 of [17]. Assuming Λε� 1, we can solve this as follows

g(u) =
eũ

sinh(2eũ)
, (5.14)

where we defined ũ by shifting u as follows

ũ = log(Λε) + u. (5.15)

Note that in the physically interesting range −∞ < ũ < 0, the function g(u) takes O(1)

non-vanishing values. This qualitatively tells us that the disentangling procedure continues

for any u, which is consistent with the fact that we are considering a CFT.

5.3.2 Free massless fermion CFT in two dimensions

As another example, let us consider the free massless Dirac fermion in two dimensions. We

introduce the disentangler as (here we follow the notations in ref. [17].)

K̂(u) = i

∫
dk
[
gk(u)ψ†1(k)ψ2(k) + g∗k(u)ψ1(k)ψ†2(k)

]
, (5.16)

where we defined

gk(u) = g(u)Γ(|k|e−u/Λ)
ke−u

Λ
. (5.17)

Again we can assume g(u) is real-valued. With the IR state (5.11), the relation (5.5) leads

to the condition

cos

[
ke−u

Λ

∫ 0

−∞
duΓ(ke−u/Λ)g(u)

]
=

1√
1 + e−4|k|ε

. (5.18)

Solving this equation, we obtain

g(u) =
eũ

cosh(2eũ)
+ arccos

(
1√

1 + e−4eũ

)
, (5.19)

where ũ is defined as before (5.15). Again, in the physically interesting range −∞ <

ũ < 0, the function g(u) takes O(1) non-vanishing values. This approximated solution

improves the construction of cMERA for the free fermion in [16]. The difference between

our construction and the one in [16] is the choice of the IR state. As compared to our

choice 5.11, the IR state in ref. [16] is similar, but without the regularization factor e−εH ,

and hence the construction in ref. [16] can only be applied to the low energy region kε� 1.
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5.3.3 cMERA for general 2d CFTs

To demonstrate further the use of boundary states as IR states in cMERA, let us now

consider generic 2d CFTs. We argue that a good cMERA ansatz is given by

|Φ(u)〉 = Nu · e−β(u)H |B〉, β(u) ≡ ε

(eu/2 − 1)2
, (5.20)

where Nu is the normalization constant such that 〈Φ(u)|Φ(u)〉 = 1. Indeed this repro-

duces our IR state (5.11) in the IR limit u → −∞. On the other hand, in the UV limit

u → 0 we find that the state (5.20) approaches to the vacuum |0〉 because β(u) gets

positively divergent.

While (5.20) correctly interpolates the IR state (boundary state) and the UV state

(the ground state), it is not written in the form compliant to (5.5), and hence, it is rather

cumbersome to extract the form of disentangler from (5.20). Nevertheless, we can estimate

the strength of the disentangler by computing quantum information metric, which also

has a close connection to the metric of the gravity dual in the extra dimension [17]. The

information metric is defined from the inner product between two states with infinitesimally

different values of u:

1− |〈Φ(u)|Φ(u+ du)〉| = Guudu
2. (5.21)

For our state (5.20) we can estimate the inner product as follows

|〈Φ(u)|Φ(u+ du)〉| ∝
∫ ∞

0
dE e

2π
√

cE
12L · e−

(β(u)+β(u+du))E
L ' e

π2cL
6(β(u)+β(u+du)) , (5.22)

where L is the total size of space where the 2d CFT is defined. E is the dimensionless

energy defined by the eigenvalues of H/L. We employed an approximation using the Cardy

formula [57] of the degeneracy of states in the chiral CFT, which is justified as we take ε to

be infinitesimally small. Here, in applying the Cardy formula, note that in BCFTs the state

degeneracy is the same as chiral CFTs with the energy divided by half. The overall nor-

malization in (5.22) is fixed simply by requiring 〈Φ(u)|Φ(u)〉 = 〈Φ(u+ du)|Φ(u+ du)〉 = 1.

From (5.22) the information metric in the cMERA for general 2d CFTs is evaluated as

Guu =
π2cL

24ε
· (∂uβ(u))2

β(u)3
=
π2cL

24ε
eu. (5.23)

This agrees with the free theory calculation in [17], where Guu for a (d + 1)-d free field

theory is given by Vd
εd
edu times a constant proportional to the number of free fields (Vd is

the volume of the d dimensional space). This form (5.23) also agrees with the AdS metric

using the holographic dictionary in [17]. Summarizing, by identifying the IR state as a

boundary state, we have obtained the general construction cMERA for any 2d CFTs in a

way consistent with the holographic interpretation.

6 Conclusions and discussion

In this paper, we have studied quantum entanglement included in boundary states in CFTs.

Boundary states have been playing an important role in boundary critical phenomena in
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condensed matter physics, and also in describing D-branes in string theory. Our find-

ings in this paper add more importance to boundary states from a quantum information

theoretic viewpoint.

In particular, we studied real-space entanglement of boundary states, which can be

measured by the entanglement entropy when we spatially divide the system into two sub-

systems. We gave several independent field theoretic as well as holographic arguments, all

of which show that there is no real-space entanglement coming from local degrees of free-

dom in boundary states. While this may sound counterintuitive, given that the left- and

right-moving sectors are maximally entanglement in boundary states, (almost) vanishing

entanglement in boundary states may be understood from entanglement monogamy, one

of the basic properties of quantum entanglement; if two qubits A and B are maximally

entangled, they cannot be entangled at all with a third qubit C.

From the holographic point of view, the above result suggests that boundary states

are dual to trivial spacetimes of zero spacetime volume, as follows from the holographic

entanglement entropy. (We should however keep in mind that in such a situation, we have

substantial quantum gravity effects.)

The vanishing entanglement in boundary states also has an implication and applica-

tion in MERA which we believe captures fundamental aspects of the mechanism of the

AdS/CFT correspondence. In the MERA construction, starting from a unentangled state

(IR state), quantum entanglement is added at each length scale from IR to UV to reproduce

a highly entangled state of our interest, such as the ground state of a complex many-body

Hamiltonian. This procedure has a holographic interpretation in which, starting from a

trivial spacetime, gradually adding pieces of spacetime eventually leads to a gravitational

theory in an extended spacetime. By using a continuum limit of MERA (cMERA), we

found that the IR unentangled state is given by a (regularized) boundary state. Owing

to this identification, we have obtained the general construction cMERA for any 2d CFTs

in a way consistent with the holographic interpretation. We also confirmed that this new

construction leads to sensible results for free massless scalar field theories. For free massless

fermion theories our general construction improves a problem known before and gives a

complete cMERA construction valid for any energy scale.

Before closing, a few comments are in order:

(i) Strictly speaking, the real space quantum entanglement in boundary states is not

always completely vanishing, but can have topological contributions as mentioned in

section 3 and explicitly demonstrated in appendix A. However these contributions are

much smaller than the dynamical contributions in the ground state of CFTs because

the latter are UV divergent quantities, while the former are O(1) finite quantities.

In this paper we neglected such topological contributions as they do not play an

important role in the holography with the classical gravity limit. Indeed, such a

small entanglement entropy corresponds to a planck unit surface area and cannot be

distinguished from a trivial point within the Einstein gravity. Nevertheless, we can

still speculate that a boundary state with topological order can be dual to a point-

like object with a brane source, motivated by the holographic setup of the fractional

quantum Hall effect discussed in [55].
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(ii) For a given CFT, there are various choices of boundary states. In our formulation they

correspond to various choices of the relevant deformation (5.10). This means, in fact,

that the choice of the IR state |Ω〉 is not unique. It is an important future problem to

find a general rule as to which relevant deformation leads to which boundary state.

Related to this non-uniqueness, it would be interesting to speculate upon formulating

the cMERA for the canonical examples of the AdS/CFT, so that it is dual to taking

slices in the AdS spacetime. We then need to preserve the R-symmetry, which is dual

to the symmetry of internal manifolds such as S5 in AdS×S5. In the setup of a global

AdS in dimensions higher than three, it is easy to identify the relevant deformation

in the dual CFT on the compact spacetime with the conformal mass terms of the

CFT ∼
∫
Rφ2, which manifestly preserves the R-symmetry. It is natural that for the

Poincare AdS setup, we can still employ the same form of mass terms to define the

cMERA for a CFT in a non-compact space. It will be important to understand a

systematic relation between the choices of boundary states and their gravity duals.

(iii) Finally, in order to relate the cMERA formulation to the AdS/CFT, we expect that

taking the large-N or large central charge limit of CFTs is necessary. It is therefore

an important future task to study the behavior of boundary states in this limit.

Roughly speaking, we can regard the unitary transformation of a vacuum state into

a boundary state (2.1) as a generalized version of the Bogoliubov transformation.

This is manifest and exact in the example of the U(1) current algebra in (2.7). It is

also curious to note that the Gaussian form of (2.7) is analogous to the double trace

deformations which appear in the analysis of the holographic RG [58, 59].
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A A lattice model calculation of entanglement entropy of boundary

states

In this appendix, we use an example of a (1+1)d lattice free fermion model to demonstrate:

(i) inside its gapped phases, the ground state can be expressed as a boundary state; (ii)

the entanglement entropy of the ground state is finite and constant for a subsystem of
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arbitrary size; (iii) the finite entanglement entropy is non-universal in general, but takes a

universal value when a symmetry is imposed. Consider a tight-binding Hamiltonian (the

Su-Schrieffer-Heeger (SSH) model):

H = t1
∑
i

(c†AicBi + h.c.)− t2
∑
i

(c†BicAi+1 + h.c.) + µs
∑
i

(c†AicAi − c
†
BicBi), (A.1)

where (cAi, cBi) represents two-flavors of fermion annihilation operators defined at site i on

a 1d lattice, and t1, t2, µs are real parameters. We assume t1 ≥ 0 and t2 ≥ 0 henceforth.

When µs = 0, the Hamiltonian has chiral symmetry (sublattice symmetry); there is a

matrix element connecting sites in A and B sublattice, but there is no matrix connection

sites within the same sublattice. With this symmetry, it is known that the phase with

t1 > t2 and t2 > t1 are topologically distinct and are always separated by a quantum

critical point [61–63]. (In the above model, there is a phase transition when t1 = t2.)

Ground states in the phase t1 > t2 are adiabatically connected to an atomic insulator (a

collection of decoupled lattice sites) at t1 > 0 and t2 = 0, i.e., the system is in the “chiral

topological insulator” phase. On the other hand, ground states in the phase t2 > t1 are

topologically distinct from topologically trivial, atomic insulators, once chiral symmetry

is imposed [60]. Near the critical point, the SSH model reduces to the continuum Dirac

Hamiltonian when expanded around k = 0 with t1 − t2 playing the role of the mass m.

The ground states of the SSH model can be explicitly constructed as follows. In

momentum space, the Hamiltonian is written as H =
∑

k Ψ†(k)H(k)Ψ(k), where

Ψ(k) =

[
ck
dk

]
, H(k) = ~R(k) · ~σ, ~R(k) =

 t1 − t2 cos k

−µs
t2 sin k

 , (A.2)

and −π ≤ k < π; we assume the theory is defined on a finite ring and the fermions obey

a suitable boundary conditions, e.g., antiperiodic boundary condition; we have rotated

the Pauli matrices as (σx, σy, σz) → (σx, σz,−σy) for convenience; the field operator Ψ(k)

represents the fermionic annihilation operator in this rotated basis. This Hamiltonian can

be split as H = HL +HR +HLR, where HL and HR represent lattice analogues of the left-

and right-moving parts of the continuum Dirac Hamiltonian and are given by

HL = t2
∑
k

sin(k)c†kck, HR = −t2
∑
k

sin(k)d†kdk, (A.3)

whereas HLR plays the role of the mass and is given by

HLR =
∑
k

(t1 − t2 cos k + iµs)c
†
kdk + h.c. (A.4)

By defining the Fock vacuum of HL and HR as |GL〉 and |GR〉, respectively, the (unnor-

malized) ground state of the total Hamiltonian is

|Ω〉 = exp

[∑
k>0

(
vk
uk
c†kdk +

u−k
v−k

d†−kc−k

)]
|GL〉 ⊗ |GR〉, (A.5)
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where uk and bk are given in terms of ~R(k) by(
uk
vk

)
=

R+R3√
2R(R+R3)

(
R+R3

R1 − iR2

)
, R(k) ≡ |~R(k)|. (A.6)

Setting µs = 0, we are interested in the ground states deep inside the two phases (i.e., far

away from the critical point):

|G〉 =


exp

[
−
∑
k>0

(
c†kdk + d†−kc−k

)]
|GL〉 ⊗ |GR〉, t1 > 0, t2 = 0

exp

[
+
∑
k>0

cos k

1 + sin k

(
c†kdk + d†−kc−k

)]
|GL〉 ⊗ |GR〉, t1 = 0, t2 > 0

(A.7)

The ground state for t1 > 0, t2 = 0 represents an atomic insulator where each site is

completely isolated in the lattice model, and hence SA = 0 for any bipartition of the 1d

lattice. Taking “the continuum limit”, where we regard c, d as ψL, ψR, respectively, we

reproduce the boundary state of the continuum massless Dirac theory.

The ground state for t1 = 0, t2 > 0 represents a topological insulator with ultra short

correlation length. By making the transition from the lattice fermion operator into the

continuum Dirac fields as c→ ψL and d→ ψR, and by taking the low energy limit k → 0,

the ground state is again given by the boundary state. While the correlation length of the

ground state for t1 = 0, t2 > 0 is as short as the lattice constant, the ground state has

non-zero entanglement entropy. Taking the subregion A as an interval of arbitrary size,

we obtained a finite entanglement entropy SA = 2 log 2. (See ref. [60] and the numerical

calculation below.)

The finite entanglement comes from the UV physics, in that in the IR limit k → 0

the ground states for topologically trivial and non-trivial phases show no difference (ex-

cept an overall minus sign in the exponential, which can be changed by simply reversing

the sign of the hopping parameter in the SSH model and hence is immaterial.) This fi-

nite, constant contribution to the entropy, 2 log 2, means that the entanglement spectrum

defined for the subregion A of arbitrary size is at least doubly degenerate. This double

degeneracy is “symmetry-protected” and true for any ground state as far as the system

is in the topological insulator phase. Once we break the symmetry, i.e., chiral symmetry,

by introducing non-zero µs, say, the symmetry protection is lost and the size-independent

part of the entanglement entropy can take any value depending on microscopic details.

In figure 3, a numerical calculation of the time-evolution of the entanglement entropy

SA after a quantum quench into the critical theory defined by t1 = t2 and m2 = 0 is

presented, which demonstrates, at t = 0, SA = 0 for the topologically trivial ground state

whereas SA = 2 log 2 for the topological insulator ground state. On the other hand, for

t sufficiently larger than some threshold, t∗, and for t sufficiently smaller than the length

of the region A, l, the time evolution of the entanglement entropy is the one predicted

from the CFT calculation [38, 40]. As mentioned above, the two possible values of SA at

t = 0 are quite robust, as far as chiral symmetry is preserved. For example, changing the
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Figure 3. The numerically calculated time-evolution of the entanglement entropy, SA(t) of the SSH

model, after a global quench into the critical state for different boundary states (denoted by “BS I”

and “BS II”, corresponding to the case of t1 = 0, t2 > 0 and t1 > 0, t2 = 0 in (A.7), respectively).

We choose the size of the subregion A l = 10 and the total system size L = 200 (both measured in

the lattice constant). (a) S(t) as a function of time t. (b) The velocity (v) dependence of SA(t).

velocity of the fermion mode (denoted by v in figure 3, which is controlled by the hopping

parameter t2 in the lattice model) changes the threshold value t∗, while the value of SA(0)

remains unaffected.

B Example: cMERA for free scalar field theory

Consider the free scalar field theory in d + 1 dimensions (with mass m), which is one of

the simplest examples of cMERA [16, 17]. The time and space coordinates are denoted

by t and x. The energy and the momentum are written as ε and k, respectively, and the

dispersion relation is given by εk =
√
k2 +m2. The Hamiltonian of this theory is defined

by

H =
1

2

∫
ddk

[
π(k)π(−k) + ε2kφ(k)φ(−k)

]
. (B.1)

The creation and annihilation operators, a†k and ak, can be introduced as follows

φ(k) =
ak + a†−k√

2εk
, π(k) =

√
2εk

(
ak − a†−k

2i

)
. (B.2)

They satisfy the canonical commutation relation [ak, a
†
k′ ] = δd(k − k′).

B.1 Construction of cMERA

In the IR limit, the Hamiltonian becomes infinitely many copies of decoupled harmonic

oscillators located at each lattice point. We can define an unentangled state |ΩMm〉 as

the ground state for this harmonic oscillators, i.e., ax|ΩMm〉 = 0. Here ax =
√
Mmφ(x) +

iπ(x)/
√
Mm is the annihilation operator in real-space, and Mm is the energy scale below

which the disentanglement takes place. In other words, we assume the system is discretized

into a lattice with lattice constant ∼ 1/Mm. In momentum space, this condition is equiv-

alent to

(αkak + βka
†
−k)|ΩMm〉 = 0, (B.3)
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where

αk =
1

2

(√
Mm

εk
+

√
εk
Mm

)
, βk =

1

2

(√
Mm

εk
−
√

εk
Mm

)
,

Mm =
√

Λ2 +m2. (B.4)

Since we are dealing with a non-interacting theory, we assume the disentangler K̂ (5.7)

is “Gaussian” and takes the following form

K̂(u) =
i

2

∫
ddk Γ(ke−u/Λ)

(
g(u)a†ka

†
−k − g

∗(u)aka−k

)
, (B.5)

where Γ(x) is a cut off function such that Γ(x) = 1 when x ≤ 1 and Γ(x) = 0 for x > 1.

Indeed, by requiring that the UV state to be the CFT vacuum

|Φ(0)〉 = |0〉, (B.6)

(or equally |Ψ(0)〉 = |0〉), we find the disentangler which reproduces the exact ground state

as [16]

g(u) = g∗(u) =
1

2
· e2u

e2u +m2/Λ2
. (B.7)

B.2 Scale transformation in massless scalar

The non-relativistic and relativistic scale transformation in the free boson theory are defined

as follows [16]

L = −1

2

∫
ddx

[
π(x)~x · ~∇xφ(x) + ~x · ~∇xφ(x)π(x) +

d

2
φ(x)π(x) +

d

2
π(x)φ(x)

]
,

L′ = −1

2

∫
ddx

[
π(x)~x · ~∇xφ(x) + ~x · ~∇xφ(x)π(x) +

d− 1

2
φ(x)π(x) +

d− 1

2
π(x)φ(x)

]
.

Note that the latter is the same as the dilatation operator in the CFT. It is easy to see that

the massive Hamiltonian HM = 1
2

∫
ddx[π(x)2 +M2φ(x)2] and the IR state |Ω〉 is invariant

under the transformation by L. Their actions on the creation/annihilation operators are

given by

e−iuL
′
ake

iuL′ = e−
d
2
uake−u ,

e−iuLake
iuL = e−

d
2
u(cosh(u/2)ake−u + sinh(u/2)a†−ke−u). (B.8)

From the analysis of [17], we find
[

cosh
u

2
ak − sinh

u

2
a†−k

]
|Φ(u)〉 = 0, for k ≤ Λeu,[

αk · ak + βk · a†−k
]
|Φ(u)〉 = 0, for k ≥ Λeu.

(B.9)
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By performing the L transformation, we can rewrite these into ake−u |Ψ(u)〉 = 0, for k ≤ Λeu,[
αke−uake−u + βke−ua

†
−ke−u

]
|Ψ(u)〉 = 0, for k ≥ Λeu.

(B.10)

Therefore, in the massless scalar field example, we can explicitly find (when we decompose

the state into momentum basis)

|Φ(u)〉 ∝
∏

k<Λeu

exp

(
tanh

u

2
a†ka
†
−k

)
|0〉 ·

∏
k>Λeu

|ΩΛ〉,

|Ψ(u)〉 ∝
∏
k<Λ

|0〉 ·
∏
k>Λ

|ΩΛ〉, (B.11)

where we recall that |ΩΛ〉 is defined in (B.3).

It is important to note that the cMERA state |Ψ(u)〉 in the CFT is given by the

unentangled state |ΩΛ〉 only for k > Λ. However, for k < Λ we find that |Ψ(u)〉 is given by

the CFT vacuum |0〉. This looks at first confusing if we take the IR limit u = uIR → −∞
because |Ψ(uIR)〉 should be the unentangled state. However, in the definition of |Ψ(u)〉
we always perform the non-relativistic scale transformation L under the coarse-graining

procedure and thus we only have the disentangled state for the short wave length k > Λ

for any u (refer to figure 2). Moreover, we should have |Ψ(u)〉 = |0〉 for k < Λ so that

K(u) + L becomes identical to the relativistic scale transformation L′. As we will see in

the next subsection, we will not have this issue for the massive scalar example.

On the other hand, if we take the IR limit u = uIR → −∞, then we find |Φ(uIR)〉 =

|ΩΛ〉 for any k. This is because we did not perform any scale transformation to define

|Φ(u)〉. Notice also these facts are consistent with the fact that |Ψ(0)〉 = eiuL
′ |Ψ(u)〉 for

k ≤ Λ, where L′ is the CFT scale transformation.

Finally, note that from the above definition of L′, it is clear that L′ annihilates both

the vacuum |0〉 and boundary state |B〉:

L′|0〉 = L′|B〉 = 0, (B.12)

where the boundary state (for Dirichlet boundary condition) is given up to the overall

normalization constant by:

|B〉 ∝
∏
k

exp
(
−a†ka

†
−k

)
|0〉. (B.13)

B.3 Massive scalar case

Here we generalize the massless results in the previous subsection into those in the massive

scalar case. The scale transformations are given by

e−iuLake
iuL = e−

du
2

[√
εk

εke−u
(ake−u + a†−ke−u) +

√
εke−u

εk
(ake−u − a

†
−ke−u)

]
,

e−iuL
′
ake

iuL′ = e−
du
2

[
e−

u
2

√
εk

εke−u
(ake−u + a†−ke−u) + e

u
2

√
εke−u

εk
(ake−u − a

†
−ke−u)

]
.

(B.14)
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The state |Φ(u)〉 satisfies

[(√
εΛ/εΛeu +

√
εΛeu/εΛ

)
ak −

(√
εΛ/εΛeu −

√
εΛeu/εΛ

)
a†−k

]
|Φ(u)〉 = 0

for k ≤ Λeu,[
αk · ak + βk · a†−k

]
|Φ(u)〉 = 0 for k ≥ Λeu.

(B.15)

On the other hand, the state |Ψ(u)〉 is found to be

[(√
εΛεk

εΛeuεke−u
+

√
εΛeuεke−u

εΛεk

)
ake−u−

(√
εΛεk

εΛeuεke−u
−
√
εΛeuεke−u

εΛεk

)
a†−ke−u

]
|Ψ(u)〉= 0

for k ≤ Λeu,[
αke−u · ake−u + βke−u · a

†
−ke−u

]
|Ψ(u)〉 = 0 for k ≥ Λeu.

Thus we find for k ≤ Λ

|Φ(0)〉 = |0〉, |Φ(uIR)〉 = |ΩMm〉,
|Ψ(0)〉 = |0〉, |Ψ(uIR)〉 = |ΩMm〉, (B.16)

where we employed the properties in the IR limit u = uIR → −∞:

Λ · euIR = 0, k · euIR = 0. (B.17)

Note also that for k > Λeu, we simply get |Φ(u)〉 = |ΩMm〉 for any u. And for k > Λ we

have |Ψ(u)〉 = |ΩMm〉 for any u. In this way, for massive theories, for any momentum we

obtain |Ψ(u)〉 = |ΩMm〉 as opposed to the massless case.

B.4 Circle compactification

We can equally analyze the cMERA when the scalar field theory is defined on the spacetime

cylinder R× S1 (for the case of (1 + 1)d). The creation and annihilation operators in the

UV theory are denoted by a†n/R and an/R, where n is an arbitrary integer and R is the

radius of the cylinder. From the viewpoint of the state |Ψ(u)〉, at the scale u the radius of

the cylinder effectively changes into Reu. Therefore the creation and annihilation operators

look like a†
ne−u/R and ane−u/R. Thus the state |Ψ(u)〉 is simply given by replacing k with

n/R in (B.10). On the other hand, in the description by the state |Φ(u)〉, the radius of

the cylinder is always R for any u. Thus we just need to replace k with n/R in (B.9)

and (B.11).
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