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1 Introduction

Collision of particles frequently take place in the accretion disks around black holes. The

phenomenon of arbitrary high CME is a purly relativistic phenomenon and they serves as

an excellent tool to study high energy astrophysics. Bañados, Silk and West (BSW) [1]

studied the collision for two particles around a Kerr black hole and determined the center

of mass energy (CME) in the equatorial plane. Subsequently, in [2, 3], the authors further

elucidated the BSW mechanism. They pointed out that the arbitrarily high CME might

not be achievable in nature due to the astrophysical limitations i.e., the maximal spin and

gravitational radiation. Lake [4, 5] demonstrated that the CME for two colliding particles

is divergent at the inner horizon of a non-extremal Kerr black hole. Grib and Pavlov [6]–[8]

showed that very large values of the scattering energy of particles in the centre of mass

frame can be obtained for an extremal and non-extremal Kerr black hole. The collision

in the innermost stable circular orbit for a Kerr black hole was discussed in [9]. In [10],

the author considered the collision for two neutral particles within the context of the

near-horizon extremal Kerr black hole and demonstrated that the CME is finite for any

admissible value of the particle parameters. In [11], the authors showed that the particle

acceleration to arbitrary high energy is one of the universal properties of an extremal

Kerr black hole not only in astrophysics but also in more general context. An explicit

expression of the CME for two colliding general geodesic massive and massless particles

at any spacetime point around a Kerr black hole was obtained in [12]. They found that,

in the direct collision scenario, an arbitrarily high CME can arise near the horizon of an

extremal Kerr black hole not only at the equator but also on a belt centered at the equator.
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This belt lies between latitudes ±a cos(
√

3− 1) ' ±42.94◦. In [13], the author argued the

possibility of having infinite CME in the centre of mass frame of colliding particles is a

generic feature of a Kerr black hole.

In [14], the authors investigated the CME in the background of a Kerr-Newman black

hole. They pointed out that the unlimited CME requires three conditions: (1) the collision

takes place at the horizon of an extremal black hole, (2) one of the colliding particles has

critical angular momentum, and (3) the spin parameter a satisfies 1√
3
≤ a ≤ 1. In [15], the

author studied the collision of two general geodesic particles around a Kerr-Newman black

hole and get the CME of the non-marginally and marginally bound critical particles. The

collision for a freely falling neutral particle with a charged particle revolving in the circular

orbit around a Schwarzschild black hole was considered in [16]. In [17], the authors studied

the collision for two particles with different rest masses moving in the equatorial plane

of a Kerr-Taub-NUT black hole. They demonstrated that the CME depends on the spin

parameter a and NUT (Newman-Unti-Tamburino) charge n. Exact Lense-Thirring (LT)

precession and causal geodesics in the inner-most stable circular orbit (ISCO) in a Kerr-

Taub-NUT black hole was studied in [18–20]. The CME of the collision for two uncharged

particles falling freely from rest at infinity in the background of a charged, rotating and

accelerating black hole was investigated in [21].

In [22], the authors discussed the collision for two particles in the background of a

stringy black hole. They found that the CME is arbitrarily high under two conditions: (1)

the spin parameter a 6= 0, and (2) one of the colliding particles should have critical angular

momentum. The collision for two particles in the background of a charged black string was

discussed in [23]. It was shown that the CME is arbitrarily high at the outer horizon if

one of the colliding particles has critical charge. The particle acceleration mechanism five-

dimensional compact black string, has been studied in [24]. They found that the scattering

energy of particles in the center of mass frame can take arbitrarily large values not only for

an extremal black string but also for a non-extremal black string. The CME in the absence

and presence of a magnetic field around a Schwarzschild-like black hole was investigated

in [25]. In [26], the authors discussed the CME for two colliding neutral particles at the

horizon of a slowly rotating black hole in the Horava-Lifshitz theory of gravity and a

topological Lifshitz black hole remains finite. The collision for test charged particles in the

vicinity of the event horizon of a weakly magnetized static black hole with gravitomagnetic

charge studied in [27]. In [28], the author argued that the BSW effect exists for a non-

rotating but charged black hole even for the simplest case of radial motion of particles in

a Reissner-Nordström black hole. In [29], the author gave simple and general explanation

to the effect of unbound acceleration of particles for Reissner-Nordström and Kerr black

holes. The CME of the collision for charged particles in a Bardeen black hole was studied

in [30]. In [31], the authors investigated the CME near the horizon of a non-extremal

Plebanski-Demianski black hole without NUT parameter. The CME in the background

of Ayòn-Beato-Garc̀ıa-Bronnikov (ABGB), Einstein-Maxwell-dilaton-axion (EMDA) and

Bañados-Teitelboim-Zanelli (BTZ) black holes was investigated in [32].

A non-vacuum solution of the Einstein field equations is a Kerr-Newman-Taub-NUT

(KNTN) black hole, which besides the spin parameter a and electric charge Q carries the
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NUT charge n, the later one plays the role of a magnetic charge. We adopt the Hamilton-

Jacobi approach to study the dynamics of a neutral particle in the background of a KNTN

black hole. We do not restrict the dynamics and collision to the equatorial plane alone.

Instead we choose arbitrary θ and fix θ = π
2 only as a special case. We discuss the detailed

behavior of the CME for two neutral particles with different rest masses m1 and m2 falling

freely from rest at infinity in the background of a KNTN black hole. We derive the CME

when the collision occurs at some radial coordinate r and angle θ close to the horizon. We

show that the CME near the horizon(s) of an extremal and non-extremal KNTN black hole

is arbitrarily high when the specific angular momentum of one of the colliding particles is

equal to the critical angular momentum and non-vanishing spin parameter a.

The paper is organized as follows. In section 2, we will discuss the equations of motion

for a neutral particle in the background of a KNTN black hole. In section 3, we will obtain

the CME of the collision for two neutral particles and discuss the properties. In section 4, we

will give a brief conclusion. We use the system of units c = G = 1 throughtout this paper.

2 Equations of motion in the background of a Kerr-Newman-Taub-NUT

black hole

In this section, we will study the equations of motion for a neutral particle in the background

of a KNTN black hole. Let us first give a brief review of a KNTN black hole. The KNTN

black hole is a geometrically stationary and axisymmetric non-vacuum object, which is an

important solution of the Einstein field equations. The KNTN black hole is determined by

the following parameters i.e., the mass M , spin parameter a, NUT parameter n and electric

charge Q. The KNTN black hole can be described by the metric in the Boyer-Lindquist

coordinates (t, r, θ, φ) as in [33–35]

ds2 = − 1

Σ
(∆−a2 sin2 θ)dt2+

2

Σ

(
χ∆−a(Σ+aχ) sin2 θ

)
dtdφ+

1

Σ

(
(Σ+aχ)2 sin2 θ−χ2∆

)
dφ2

+
Σ

∆
dr2 + Σdθ2, (2.1)

where Σ, ∆ and χ are respectively defined by

Σ = r2 + (n+ a cos θ)2,

∆ = r2 − 2Mr − n2 + a2 +Q2, (2.2)

χ = a sin2 θ − 2n cos θ.

The KNTN metric contains the following metrics as special cases: Kerr-Taub-NUT (Q = 0),

Taub-NUT (a = Q = 0), Kerr-Newman (n = 0), Reissner-Nordström (a = n = 0), Kerr

(n = Q = 0) and Schwarzschild (a = n = Q = 0).

The metric (2.1) becomes singular if Σ = 0 or ∆ = 0, whereas Σ = 0 is the curvature

singularity and ∆ = 0 is the coordinate singularity.1 Here, Σ = 0 implies r = 0 and cos θ =

−n
a . The horizon(s) of the KNTN black hole occur at r± = M ±

√
M2 + n2 − a2 −Q2,

1The curvature invariants are given in appendix.
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where r+ and r− define the outer and inner horizons, respectively, which are roots of the

equation ∆ = 0. The existence of the horizons require n2 ≥ a2 +Q2−M2, where “=” and

“>” correspond to the extremal and non-extremal KNTN black holes, respectively.

Now, let us discuss the equations of motion for a neutral particle of mass m in the

background of a KNTN black hole. The motion of the particle can be determined by the

Lagrangian

L =
1

2
gµν ẋ

µẋν , (2.3)

where the overdot denotes differentiation with respect to an affine parameter λ related to

the proper time τ by τ = mλ. The normalization condition is 1
m2 gµν ẋ

µẋν = κ, where

κ = −1 for timelike geodesics, κ = 0 for null geodesics and κ = 1 for spacelike geodesics.

For the massive particle, we have κ = −1. The 4-momentum of the particle is

Pµ =
∂L
∂ẋµ

= gµν ẋ
ν , (2.4)

which is related to the 4-velocity by

uµ =
Pµ
m
, (2.5)

where uν = dxν

dτ , τ is the proper time for timelike geodesics. Using eq. (2.4), we can express

ẋµ in terms of the 4-momentum as ẋµ = gµνPν . The Hamiltonian is given by

H = Pµẋ
µ − L =

1

2
gµνPµPν , (2.6)

which satisfies the Hamilton equations

ẋµ =
∂H
∂Pµ

, Ṗµ = − ∂H
∂xµ

. (2.7)

Moreover, the Hamilton-Jacobi equation is given by

H = −∂S
∂λ

=
1

2
gµν

∂S

∂xµ
∂S

∂xν
, (2.8)

where S is the Jacobi action and
∂S

∂xµ
= Pµ. (2.9)

The Hamilton-Jacobi equation allows separation of variables in the form

S(t, r, θ, φ) =
1

2
m2λ− Et+ hφ+ Sr(r) + Sθ(θ), (2.10)

where E and h are respectively the energy and angular momentum of the particle, Sr and

Sθ are arbitrary functions of r and θ, respectively. Here, 1
m
∂S
∂t = −E and 1

m
∂S
∂φ = L, where

E and L are the specific energy and specific angular momentum of the particle defined by

E = E
m and L = h

m . Using these relations and eq. (2.9), we get

E = −Pt
m

=
∆− a2 sin2 θ

Σ
ut − χ∆− a(Σ + aχ) sin2 θ

Σ
uφ, (2.11)

L =
Pφ
m

=
χ∆− a(Σ + aχ) sin2 θ

Σ
ut +

(Σ + aχ)2 sin2 θ − χ2∆

Σ
uφ. (2.12)
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Solving eqs. (2.11) and (2.12), we obtain

ut =
χ(L− χE)

Σ sin2 θ
+

(Σ + aχ)
[
E(Σ + aχ)− aL

]
∆Σ

, (2.13)

uφ =
L− χE
Σ sin2 θ

+
a
[
(Σ + aχ)E − aL

]
∆Σ

. (2.14)

By eqs. (2.8) and (2.10), we obtain

1

m2

(
∂Sθ
∂θ

)2

+cos2 θ

((
1−E2

)
a2+

L2

sin2 θ

)
+ 2an cos θ

(
1−2E2

)
+

4n cos θE

sin2 θ

(
n cos θE + L

)
= − ∆

m2

(
∂Sr
∂r

)2

− r2 − n2 −
(
L− aE

)2
+

1

∆

((
r2 + n2 + a2

)
E − aL

)2
. (2.15)

The left-hand side of eq. (2.15) does not depend on r while the right-hand side does not

depend on θ, hence each side must be a constant. This constant is termed as the Carter

constant denoted by K and is a conserved quantity. Therefore

1

m2

(
∂Sθ
∂θ

)2

+cos2 θ

((
1−E2

)
a2+

L2

sin2 θ

)
+2an cos θ

(
1−2E2

)
+

4n cos θE

sin2 θ
(n cos θE+L)=K,

(2.16)

∆

m2

(
∂Sr
∂r

)2

+ r2 + n2 +
(
L− aE

)2 − 1

∆

((
r2 + n2 + a2

)
E − aL

)2
= −K. (2.17)

Using the relations ur = 1
m
∂Sr
∂r and uθ = 1

m
∂Sθ
∂θ , the remaining 4-velocity components are

Σuθ = ±
√

Θ, (2.18)

Σur = ±
√
R, (2.19)

with

Θ = Θ(θ) = K − cos2 θ

(
(1− E2)a2 +

L2

sin2 θ

)
− 2an cos θ

(
1− 2E2

)
− 4n cos θE

sin2 θ

(
n cos θE + L

)
, (2.20)

R = R(r) =
(
E(aχ+ Σ)− aL

)2 −∆
(
K + r2 + n2 + (L− aE)2

)
. (2.21)

The ± signs are independent from each other, but one must be consistent in that choice.

The +(−) sign corresponds to the outgoing(ingoing) geodesics. Clearly, the Carter constant

K vanishes for the equations of motion in the equatorial plane
(
θ = π

2

)
. The radial equation

of motion (2.19) can also be written as

1

2
(ur)2 + Veff(r, θ) =

1

2

(
E2 − 1

)
, (2.22)
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with the effective potential

Veff(r, θ) = −2Mr + 2n2 − a2 sin2 θ −Q2 + 2an cos θ

2
(
r2 + (n+ a cos2 θ)2

) +
1

2
(
r2 + (n+ a cos2 θ)2

)2
×
(
L2
(
r2−2Mr−n2+Q2

)
+
(
r2−2Mr−n2+a2+Q2

)(
K−a cos θ(a cos θ+2n)

)
+
(
a cos θ

(
a3 cos3 θ + 2a cos θ

(
r2 + 3n2 − 2an cos θ

)
+ 4n

(
r2 + n2

))
− a2

(
3n2 + r2 + 2Mr −Q2

))
E2 + 2aLE

(
2Mr + 2n2 −Q2

))
. (2.23)

From eqs. (2.19) and (2.22), we conclude that Veff(r, θ) = 1
2(E2−1)− R(r)

2Σ2 . Note that from

eqs. (2.18) and (2.19), for the allowed motion Θ ≥ 0 and R ≥ 0 must be satisfied. Hence, the

allowed and prohibited regions for the effective potential are given by Veff(r, θ) ≤ 1
2(E2−1)

and Veff(r, θ) > 1
2 × (E2 − 1), respectively. Also, Veff(r, θ)→ 0 as r →∞.

In the equatorial plane, the effective potential is given by

Veff

(
r,
π

2

)
= −2Mr + 2n2 − a2 −Q2

2
(
r2 + n2

) +
1

2
(
r2 + n2

)2(L2
(
r2 − 2Mr − n2 +Q2

)
− a2

(
3n2 + r2 + 2Mr −Q2

)
E2 + 2aLE

(
2Mr + 2n2 −Q2

))
. (2.24)

The function R(r) can also be written in the form

R(r) =
(
E2−1

)
r4+2Mr3+

[ (
E2−1

)
a2−L2+2E2n2−Q2−K

]
r2+2M

[
(L−aE)2+n2

+K
]
r+E2

(
3a2n2+n4−a2Q2

)
+L2

(
n2 −Q2

)
+ 2aLE

(
−2n2 +Q2

)
− (n2 +K)

×
(
a2 − n2 +Q2

)
. (2.25)

Note that coefficient of the highest power of r on the right-hand side is positive if E > 1.

Only in this case, the motion can be unbounded (infinite). For E < 1, the motion is

bounded (finite) i.e., the particle cannot reach the horizon(s) of the black hole. For E = 1,

the motion is marginally bounded i.e., the motion is either finite or infinite. In this case, the

particle’s motion depends on the black hole parameters and specific angular momentum for

the allowed and prohibited regions of R(r) and Θ(θ) but the motion can be fully analysed

by R(r) or Veff

(
r, π2
)

in the equatorial plane. The particle whose motion is bounded,

unbounded and marginally bounded are respectively called bound, unbound and marginally

bound particle. For bound and marginally bound particles, we have Veff(r, θ) < 0 and

Veff(r, θ) ≤ 0, respectively.

We need to impose the condition ut > 0 along the geodesic. This is called the“forward-in-

time” condition which shows that the time coordinate t increases along the trajectory of

the particle’s motion. From eq. (2.13), this condition reduces to

E
[
(Σ + aχ)2 sin2 θ − χ2∆

]
> L

[
a(Σ + aχ) sin2 θ − χ∆

]
. (2.26)

For r → r+, eq. (2.26) implies

L ≤
E
[
2(n2 +Mr+)−Q2

]
a

. (2.27)
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Here, we get the upper bound of the specific angular momentum at the outer horizon of

the non-extremal KNTN black hole which is called the critical angular momentum and is

denoted by L̂+ i.e.,

L̂+ =
E
[
2(n2 +Mr+)−Q2

]
a

. (2.28)

Similarly, the critical angular momentum at the inner horizon of the non-extremal KNTN

black hole is given by

L̂− =
E
[
2(n2 +Mr−)−Q2

]
a

. (2.29)

For the extremal KNTN black hole, we use r+ = M in eq. (2.28), which gives the critical

angular momentum at the horizon of the extremal KNTN black hole

L̂ =
E
(
2a2 +Q2

)
a

. (2.30)

For a = 0, eqs. (2.28), (2.29) and (2.30) become ill-defined, so we will assume a 6= 0

throughout our work.

3 Center of mass energy for two neutral particles

In this section, we will study the CME of the collision for two neutral particles with different

rest masses falling freely from rest at infinity towards a KNTN black hole. Let us consider

that these particles collide at some radial coordinate r which are not restricted in the

equatorial plane. The 4-momentum of the ith particle is given by

Pµi = miu
µ
i , (3.1)

where i = 1, 2 and Pµi , uµi and mi are respectively the 4-momentum, 4-velocity and rest

mass (mass at rest at infinity) of the ith particle. The total 4-momentum of the two

particles is

PµT = Pµ(1) + Pµ(2). (3.2)

Since the 4-momentum has zero spatial components in the center of mass frame, therefore

the CME for the two particles is

E2
cm = −PµT PTµ = −

(
m1u

µ
(1) +m2u

µ
(2)

) (
m1u(1)µ +m2u(2)µ

)
. (3.3)

Simplifying and using uµ(i)u(i)µ = −1 in eq. (3.3), we obtain

Ecm√
2m1m2

=

√
(m1 −m2)2

2m1m2
+ 1− gµνuµ(1)u

ν
(2). (3.4)

For the KNTN metric (2.1), using eqs. (2.13), (2.14), (2.18) and (2.19) into eq. (3.4), we

get the CME of the collision

Ecm√
2m1m2

=

√
(m1 −m2)2

2m1m2
+
F (r, θ)−G(r, θ)−H(r, θ)

I(r, θ)
, (3.5)
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where F (r, θ), G(r, θ), H(r, θ) and I(r, θ) are given by

F (r, θ) = ∆Σ sin2 θ − (∆− a2 sin2 θ)L1L2 +
(
(Σ + aχ)2 sin2 θ − χ2∆

)
E1E2

+
(
χ∆− a(Σ + aχ) sin2 θ

)(
L1E2 + L2E1

)
,

G(r, θ) = sin2 θ
√
R1(r)R2(r),

Ri(r) =
[(
r2 + n2 + a2

)
Ei − aLi

]2 −∆
[
Ki + r2 + n2 + (Li − aEi)2

]
,

H(r, θ) = ∆ sin2 θ
√

Θ1(θ)Θ2(θ), (3.6)

Θi(θ) = Ki − 2an cos θ
(
1− 2E2

i

)
− cos2 θ

((
1− E2

i

)
a2 +

L2
i

sin2 θ

)
− 4n cos θEi

sin2 θ

(
n cos θEi + Li

)
,

I(r, θ) = ∆Σ sin2 θ.

Here, Ei, Li and Ki are respectively the specific energy, specific angular momentum and

Carter constant of the ith particle. Clearly, the CME (3.5) is invariant under the inter-

change of the quantities L1 ↔ L2, E1 ↔ E2 and m1 ↔ m2.

3.1 Near-horizon collision of particles around the non-extremal KNTN black

hole

Let us discuss the properties of the CME (3.5) as the particles approach the horizons r+

and r− of the non-extremal KNTN black hole.

3.1.1 Collision at the outer horizon

The terms F (r, θ) − G(r, θ) − H(r, θ) and I(r, θ) of right-hand side of eq. (3.5) vanish at

r+. Using L’Hospital’s rule and the identity r2
+ − 2Mr+ − n2 + a2 + Q2 = 0, the value of

the CME at r+ becomes

Ecm√
2m1m2

∣∣∣∣
r→r+

=

√
(m1 −m2)2

2m1m2
+
∂rF (r, θ)− ∂rG(r, θ)− ∂rH(r, θ)

∂rI(r, θ)

∣∣∣∣∣
r→r+

, (3.7)

where

∂rF (r, θ)
∣∣
r→r+ = 2

(
r+ −M

)(
r2

+ + (n+ a cos θ)2
)

sin2 θ − 2(r+ −M)L1L2

+
[
4r+

(
r2

+ + n2 + a2
)

sin2 θ − 2(r+ −M)(a sin2 θ − 2n cos θ)2
]
E1E2

− 2
(
2n(r+ −M) cos θ + aM sin2 θ

)(
L1E2 + L2E1

)
,

∂rG(r, θ)
∣∣
r→r+ =

[
sin2 θ

2
√
R1(r)R2(r)

(
R2(r)∂rR1(r) +R1(r)∂rR2(r)

)]∣∣∣∣
r→r+

, (3.8)

∂rRi(r)
∣∣
r→r+ = 4r+

[(
r2

++n2 + a2
)
Ei−aLi

]
Ei−2

(
r+−M

)[
Ki+r

2
++n2+(Li−aEi)2

]
,

∂rH(r, θ)
∣∣
r→r+ = 2(r+ −M) sin2 θ

√
Θ1(θ)Θ2(θ),

∂rI(r, θ)
∣∣
r→r+ = 2(r+ −M)

(
r2

+ + (n+ a cos θ)2
)

sin2 θ.
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After much simplification, we get the CME at the outer horizon

Ecm

2
√
m1m2

∣∣∣∣
r→r+

=

[
(m1−m2)2

4m1m2
+1+

1

4
(
L̂+1−L1

)(
L̂+2−L2

)[[(L̂+1−L1

)
−
(
L̂+2−L2

)]2
+

1

r2
++(n+a cos θ)2

(
(r2

++n2)2

(r2
++n2+a2)2

(
L1L̂+2−L2L̂+1

)2
+K2

(
L̂+1−L1

)2
+K1(L̂+2 − L2)2 − a cos θ

(
2n+ a cos θ

)[(
L̂+1−L1

)2
+
(
L̂+2−L2

)2])]
− 1

2
(
r2

++(n+a cos θ)2
)

sin2 θ

[
cos2 θL1L2 +

2an cos θ
(
L1L̂+2+L2L̂+1

)
r2

+ + n2 + a2

+
a2
[
(a sin2 θ − 2n cos θ)2 − a2 sin2 θ

]
(r2

+ + n2 + a2)2
L̂+1L̂+2 + sin2 θ

√
Θ1(θ)Θ2(θ)

]] 1
2

,

(3.9)

where L̂+i is the critical angular momentum for the ith particle, and can be written as

L̂+i = Ei[2(n2+Mr+)−Q2]
a . The necessary condition to obtain an arbitrarily high CME is

Li = L̂+i. Choosing E1 = E2 = E, we get L̂+1 = L̂+2 = L̂+ = E[2(n2+Mr+)−Q2]
a , and

eq. (3.9) reduces to

Ecm

2
√
m1m2

∣∣∣∣
r→r+

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4
(
L̂+ − L1

)(
L̂+ − L2

)[(L1 − L2)2

+
1

r2
+ + (n+ a cos θ)2

(
(r2

+ + n2)2

a2
E2
(
L1 − L2

)2
+K2

(
L̂+ − L1

)2
+K1

(
L̂+ − L2

)2 − a cos θ
(
2n+ a cos θ

)[(
L̂+ − L1

)2
+
(
L̂+ − L2

)2])]
− 1

2
(
r2

+ + (n+ a cos θ)2
)

sin2 θ

[
cos2 θL1L2 + 2n cos θE(L1 + L2)

+
[
(a sin2 θ−2n cos θ)2−a2 sin2 θ

]
E2+sin2 θ

√
Θ1(θ)Θ2(θ)

]] 1
2

. (3.10)

Let us consider a marginally bound particle (E = 1) with the critical angular momen-

tum L̂+. The conditions for the allowed region, R(r) ≥ 0 and Θ(θ) ≥ 0 give the upper and

lower bounds for the Carter constant K given below

K
(1)
min ≤ K ≤ K

(1)
max , (3.11)

where

K(1)
max =

(r + r+)2(r − r+)

(r − r−)
− r2 −

(
n2 + r2

+

a

)2

− n2, (3.12)

K
(1)
min =

cos2 θ

a2 sin2 θ

(
(a2 + n2 + r2

+)2 + 4a2n2
)

+
4n cos θ

a sin2 θ
(a2 + n2 + r2

+)− 2an cos θ. (3.13)
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Solving eq. (3.11), we find that the marginally bound particle with the critical angular

momentum reaches the outer horizon of the non-extremal KNTN black hole if the following

condition is satisfied

A1 cos3 θ +B1 cos2 θ + C1 cos θ +D1 ≤ 0 for any r ≥ r+, (3.14)

where A1 = 2a3n, B1 = a2
(

(r+r+)2(r−r+)
(r−r−) − r2 + 5n2 + a2 + 2r2

+

)
, C1 = 2an(a2+2n2+2r2

+)

and D1 = −a2 (r+r+)2(r−r+)
(r−r−) + a2r2 + (n2 + r2

+)2 + a2n2.

If one chooses θ = π
2 , the CME (3.9) at the outer horizon of the non-extremal KNTN

black hole reduces to

Ecm

2
√
m1m2

∣∣∣∣
r→r+

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4(L̂+1 − L1)(L̂+2 − L2)

([(
L̂+1 − L1

)
−
(
L̂+2 − L2

)]2
+

(
L1L̂+2 − L2L̂+1

)2
2M2 + 2n2 −Q2 + 2M

√
M2 + n2 − a2 −Q2

−
a2
(
L1L̂+2 − L2L̂+1

)2(
2M2 + 2n2 −Q2 + 2M

√
M2 + n2 − a2 −Q2

)2
)] 1

2

, (3.15)

which is indeed finite for all values of L1 and L2 except when L1 or L2 is approximately

equal to the critical angular momentum L̂+i, for which the neutral particles collide with an

arbitrarily high CME. In the case of the same specific energies, the form of the CME (3.15)

at r+ reads

Ecm

2
√
m1m2

∣∣∣∣
r→r+

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4
(
L̂+ − L1

)(
L̂+ − L2

)((L1 − L2)2 (3.16)

+
2M2 + 2n2 − a2 −Q2 + 2M

√
M2 + n2 − a2 −Q2

a2
E2
(
L1 − L2

)2)] 1
2

.

In figure 1, we plot the effective potential Veff

(
r, π2
)

of marginally bound particles for

M = 1, a = 0.8, n = 0.4, Q = 0.7211 with different specific angular momenta L =

−2, − 1, 0, 1, 2.25964 where 2.25964 is the critical angular momentum L̂+. Clearly, the

effective potential Veff

(
r, π2
)

is negative when r ≥ r+, therefore the particles can reach the

outer horizon. Vertical lines in the subplot represent the locations of the outer and inner

horizons. We also plot the CME of the collision for L1 = −2, − 1, 0, 1 and L2 = L̂+.

Clearly, the CME blows up at the outer horizon r+ = 1.00385.

3.1.2 Collision at the inner horizon

Similarly the terms F (r, θ)−G(r, θ)−H(r, θ) and I(r, θ) of right-hand side of eq. (3.5) also

vanish at r−. Using L’Hospital’s rule and by simplifying the calculation, we get the CME

– 10 –
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for the two neutral particles at the inner horizon

Ecm

2
√
m1m2

∣∣∣∣
r→r−

=

[
(m1−m2)2

4m1m2
+1+

1

4
(
L̂−1−L1

)(
L̂−2−L2

)[[(L̂−1−L1)−(L̂−2−L2)
]2

+
1

r2
−+(n+a cos θ)2

(
(r2
−+n2)2

(r2
−+n2+a2)2

(
L1L̂−2−L2L̂−1

)2
+K2

(
L̂−1−L1

)2
+K1

(
L̂−2−L2

)2−a cos θ
(
2n+a cos θ

)[(
L̂−1−L1

)2
+
(
L̂−2−L2

)2])]
− 1

2
(
r2
−+(n+a cos θ)2

)
sin2 θ

[
cos2 θL1L2+

2an cos θ(L1L̂−2+L2L̂−1)

r2
−+n2+a2

+
a2
[
(a sin2 θ−2n cos θ)2−a2 sin2 θ

]
(r2
−+n2+a2)2

L̂−1L̂−2+sin2 θ
√

Θ1(θ)Θ2(θ)

]] 1
2

.

(3.17)

This is the CME formula for the two neutral particles, where L̂−i is the critical angular

momentum at the inner horizon, which can be written as L̂−i = Ei[2(n2+Mr−)−Q2]
a . An

arbitrary high CME can be obtained by using the condition Li = L̂−i for either of the

two particles. The critical angular momentum is same when both particles have the same

specific energy and is given by L̂−1 = L̂−2 = L̂− = E[2(n2+Mr−)−Q2]
a , while the CME (3.17)

reduces to

Ecm

2
√
m1m2

∣∣∣∣
r→r−

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4
(
L̂− − L1

)(
L̂− − L2

)[(L1 − L2)2

+
1

r2
− + (n+ a cos θ)2

(
(r2
− + n2)2

a2
E2
(
L1 − L2

)2
+K2

(
L̂− − L1

)2
+K1(L̂− − L2)2 − a cos θ

(
2n+ a cos θ

) [(
L̂− − L1

)2
+
(
L̂− − L2

)2])]
− 1

2
(
r2
− + (n+ a cos θ)2

)
sin2 θ

[
cos2 θL1L2 + 2n cos θE(L1 + L2)

+
[
(a sin2 θ−2n cos θ)2 − a2 sin2 θ

]
E2 + sin2 θ

√
Θ1(θ)Θ2(θ)

]] 1
2

. (3.18)

Let us consider a marginally bound particle (E = 1) with the critical angular momen-

tum L̂−. The conditions for the allowed region, R(r) ≥ 0 and Θ(θ) ≥ 0 give

K
(2)
min ≤ K ≤ K

(2)
max, (3.19)

where K
(2)
min and K

(2)
max are given by

K(2)
max =

(r + r−)2(r − r−)

(r − r+)
− r2 −

(
n2 + r2

−
a

)2

− n2, (3.20)

K
(2)
min =

cos2 θ

a2 sin2 θ

((
a2 + n2 + r2

−
)2

+ 4a2n2
)

+
4n cos θ

a sin2 θ

(
a2+n2+r2

−
)
− 2an cos θ. (3.21)
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Figure 1. The effective potential (top figure) and center of mass energy (bottom figure) for

marginally bound particles in the equatorial plane of the non-extremal KNTN black hole. We set

M = 1, m1 = m2 = 1, a = 0.8, n = 0.4 and Q = 0.7211. Vertical lines identify the location of the

inner and outer horizons of the black hole.

The inequality (3.19) gives the upper and lower bounds for the Carter constant K. By

eq. (3.19), one can say that the marginally bound particle with the critical angular mo-

mentum reaches the inner horizon of the non-extremal KNTN black hole if the following

condition is satisfied

A2 cos3 θ +B2 cos2 θ + C2 cos θ +D2 ≤ 0 for any r ≥ r−, (3.22)

where A2 = 2a3n, B2 = a2
(

(r+r−)2(r−r−)
(r−r+) − r2 + 5n2 + a2 + 2r2

−

)
, C2 = 2an(a2+2n2+2r2

−)

and D2 = −a2 (r+r−)2(r−r−)
(r−r+) + a2r2 + (n2 + r2

−)2 + a2n2.
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In the equatorial plane, eq. (3.17) at the inner horizon takes the following form

Ecm

2
√
m1m2

∣∣∣∣
r→r−

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4
(
L̂−1 − L1

)(
L̂−2 − L2

)([(L̂−1 − L1

)
−
(
L̂−2 − L2

)]2
+

(
L1L̂−2 − L2L̂−1

)2
2M2 + 2n2 −Q2 − 2M

√
M2 + n2 − a2 −Q2

−
a2
(
L1L̂−2 − L2L̂−1

)2(
2M2 + 2n2 −Q2 − 2M

√
M2 + n2 − a2 −Q2

)2
)] 1

2

. (3.23)

Clearly, the CME is finite for all values of L1 and L2 except when L1 or L2 is approximately

equal to the critical angular momentum. For E1 = E2 = E, eq. (3.23) gives

Ecm

2
√
m1m2

∣∣∣∣
r→r−

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4
(
L̂− − L1

)(
L̂− − L2

)((L1 − L2)2 (3.24)

+
2M2 + 2n2 − a2 −Q2 − 2M

√
M2 + n2 − a2 −Q2

a2
E2
(
L1 − L2

)2)] 1
2

.

We plot the effective potential Veff

(
r, π2
)

of marginally bound particles in figure 2 for M = 2,

a = 0.6, n = 0.1, Q = 0.6 with different specific angular momenta L = −2, − 1, 0, 1, L̂−
where L̂− = 2.83264. Clearly, the effective potential Veff

(
r, π2
)

is negative for r ≥ r−, so the

particles can reach the inner horizon after crossing outer horizon. The subplot shows the

behaviour of Veff

(
r, π2
)

near the horizons and identify the location of the outer and inner

horizons. We also plot the CME of the collision for L1 = −2, −1, 0, 1 and L2 = L̂−. The

CME is finite at the outer horizon and blows up at the inner horizon r− = 1.35969.

3.2 Near-horizon collision of particles around the extremal KNTN black hole

Let us study the properties of the CME (3.5) as the particles approach the horizon of the

extremal KNTN black hole. In the case of the extremal KNTN black hole, the NUT charge

n, mass M , rotating parameter a and charge Q satisfies the relation n2 = a2 + Q2 −M2.

Using this relation in eq. (3.9), we obtain

Ecm

2
√
m1m2

∣∣∣∣
r→M

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4(L̂1 − L1)(L̂2 − L2)

[[
(L̂1 − L1)− (L̂2 − L2)

]2
+

1

M2 + (n+ a cos θ)2

(
(a2 +Q2)2

(2a2 +Q2)2

(
L1L̂2 − L2L̂1

)2
+K2(L̂1 − L1)2

+K1(L̂2 − L2)2 − a cos θ
(
2n+ a cos θ

)[
(L̂1 − L1)2 + (L̂2 − L2)2

])]
− 1

2
(
M2 + (n+ a cos θ)2

)
sin2 θ

[
cos2 θL1L2 +

2an cos θ(L1L̂2 + L2L̂1)

2a2 +Q2

+
a2
[
(a sin2 θ − 2n cos θ)2 − a2 sin2 θ

]
(2a2 +Q2)2

L̂1L̂2 + sin2 θ
√

Θ1(θ)Θ2(θ)

]] 1
2

.

(3.25)
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Figure 2. The effective potential (top figure) and center of mass energy (bottom figure) for

marginally bound particles in the equatorial plane of the non-extremal KNTN black hole. We set

M = 2, m1 = m2 = 1, a = 1.8, n = 0.1, and Q = 0.6. Vertical lines identify the location of the

inner and outer horizons of the black hole.

Eq. (3.25) is the CME for the two neutral particles at the horizon of the extremal KNTN

black hole. The critical angular momentum at the horizon is given by L̂i = Ei(2a
2+Q2)
a ,

for the ith particle. The necessary condition for obtaining an arbitrarily high CME is

Li = L̂i for either of the two particles. For E1 = E2 = E, we get the same critical angular
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momentum i.e., L̂1 = L̂2 = L̂ = E(2a2+Q2)
a , and eq. (3.25) takes the form

Ecm

2
√
m1m2

∣∣∣∣
r→M

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4(L̂− L1)(L̂− L2)

[
(L1 − L2)2

+
1

M2 + (n+ a cos θ)2

(
(a2 +Q2)2

a2
E2
(
L1 − L2

)2
+K2(L̂− L1)2

+K1(L̂− L2)2 − a cos θ
(
2n+ a cos θ

)[
(L̂− L1)2 + (L̂− L2)2

])]
− 1

2
(
M2 + (n+ a cos θ)2

)
sin2 θ

[
cos2 θL1L2 + 2n cos θE(L1 + L2)

+
[
(a sin2 θ − 2n cos θ)2 − a2 sin2 θ

]
E2 + sin2 θ

√
Θ1(θ)Θ2(θ)

]] 1
2

. (3.26)

Let us consider a marginally bound particle (E = 1) with the critical angular momen-

tum L̂. The inequality (3.11) reduces to

K
(3)
min ≤ K ≤ K

(3)
max , (3.27)

where

K(3)
max = 2Mr +M2 −

(
n2 +M2

a

)2

− n2, (3.28)

K
(3)
min =

cos2 θ

a2 sin2 θ

(
(a2+n2+M2)2+4a2n2

)
+

4n cos θ

a sin2 θ
(a2 + n2 +M2)− 2an cos θ. (3.29)

Thus for the marginally bound particle with the critical angular momentum to reach the

horizon of the extremal KNTN black hole, the following condition must be satisfied

A3 cos3 θ +B3 cos2 θ + C3 cos θ +D3 ≤ 0 for any r ≥M, (3.30)

where A3 = 2a3n, B3 = a2(2Mr + 3M2 + 5n2 + a2), C3 = 2an(a2 + 2n2 + 2M2) and

D3 = −2a2rM − a2M2 + (n2 +M2)2 + a2n2.

Further, if the collision occurs in the equatorial plane, the CME (3.25) at the horizon

of the extremal KNTN black hole reduces to

Ecm

2
√
m1m2

∣∣∣∣
r→M

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4(L̂1 − L1)(L̂2 − L2)

([
(L̂1 − L1)− (L̂2 − L2)

]2
+

a2 +Q2

(2a2 +Q2)2

(
L1L̂2 − L2L̂1

)2)] 1
2

, (3.31)

which is indeed finite for all values of L1 and L2 except when L1 or L2 approaches the

critical angular momentum, for which the CME is arbitrarily high. When the electric

charge Q vanishes, eq. (3.31) gives the result for the extremal Kerr-Taub-NUT black hole

as obtained in ref. [17]. When the specific energy of both the particles are exactly alike,
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then (3.31) becomes

Ecm

2
√
m1m2

∣∣∣∣
r→M

=

[
(m1 −m2)2

4m1m2
+ 1 +

1

4(L̂− L1)(L̂− L2)

(
(L1 − L2)2

+
a2 +Q2

a2
E2
(
L1 − L2

)2)] 1
2

. (3.32)

There must exist intervals for the spin parameter a, NUT charge n and electric charge

Q to ensure that the marginally bound particles with the critical angular momentum L̂

reach the horizon of the extremal KNTN black hole and collide at the horizon. Since the

motion of the particle in the equatorial plane can be fully analysed by the effective potential

Veff

(
r, π2
)
, so with the help of the effective potential given in eq. (2.24), we can determine

intervals of a and n corresponding to different values of Q. The effective potential for the

marginally bound particle with the critical angular momentum L̂ is given by

Veff

(
r,
π

2

)
= −

(r −M)2
(
Mr − a2 +M2 − 3Q2

2 −
Q4

2a2

)
(r2 + a2 +Q2 −M2)2 . (3.33)

Here, the condition for the particle falling freely from rest at infinity to reach the horizon

can be expressed as

Veff

(
r,
π

2

)
≤ 0 for any r ≥M, (3.34)

which is equivalent to

Mr − a2 +M2 − 3Q2

2
− Q4

2a2
≥ 0 for any r ≥M. (3.35)

Combining with the condition 0 ≤ n2 = a2 +Q2 −M2 and set M = 1, we get intervals for

a and n for different values of Q as shown in table 1. Note that, there are two different

intervals for the spin parameter a corresponding to the co-rotating and counter-rotating

orbits. For Q = 0, we get intervals for a and n as discussed earlier in ref. [17]. With the

increase of Q, the intervals for a and n become narrow.

The maximum and minimum value of L can be obtained by the conditions

Veff

(
r,
π

2

)
= 0, ∂rVeff

(
r,
π

2

)
= 0. (3.36)

Then the interval L ∈ [Lmin, Lmax] can be determined from it. The intervals for the specific

angular momentum for different values of a and Q are shown in table 2. Note that, with

the increase of a and Q, the interval L ∈ [Lmin, Lmax] becomes wider.

We plot the effective potential Veff

(
r, π2
)

in figure 3 for L = −1 and L = L̂ in the

top and bottom plots, respectively. Clearly, for case (III) Q = 0.3, a = 1.6, the effective

potential Veff

(
r, π2
)

is non-positive for L = −1 but positive near the horizon r+ = r− = 1

for L = L̂, so the particle cannot reach the horizon in this case for L = L̂. For cases (I)

Q = 0.1, a = 1.2, (II) Q = 0.2, a = 1.3, (IV) Q = 0.4, a = 1.06 and (V) Q = 0, a =
√

2,

Veff

(
r, π2
)
≤ 0 when r ≥M = 1 for the both specific angular momenta. Hence, the particle

can reach the horizon in all the four cases for L = −1 and L = L̂. We also plot the CME of
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Q a n

0
[
1,
√

2
]
,

[
−
√

2, − 1
] [

− 1, 1
]

0.1
[
0.99499, 1.40889

]
,

[
− 1.40889, − 0.99499

] [
− 0.99748, 0.99748

]
0.2

[
0.97980, 1.39269

]
,

[
− 1.39269, − 0.97980

] [
− 0.98974, 0.98974

]
0.3

[
0.95394, 1.36485

]
,

[
− 1.36485, − 0.95394

] [
− 0.97612, 0.97612

]
0.4

[
0.91652, 1.32389

]
,

[
− 1.32389, − 0.91652

] [
− 0.95534, 0.95534

]
Table 1. The intervals for the spin parameter a and NUT charge n with different electric charge

Q for the extremal KNTN black hole.

Q a = 1 a = 1.1 a = 1.2 a = 1.3

0
[
− 4.82843, 2

] [
− 5.02685, 2.20171

] [
− 5.2224, 2.34962

] [
− 5.41546, 2.58869

]
0.1

[
− 4.83135, 2.01

] [
− 5.02955, 2.06517

] [
− 5.22492, 2.36131

] [
− 5.41782, 2.59755

]
0.2

[
− 4.84011, 2.04

] [
− 5.03766, 2.23636

] [
− 5.23246, 2.39551

] [
− 5.42488, 2.62375

]
0.3

[
− 4.85463, 1.82908

] [
− 5.05111, 2.19607

] [
− 5.24499, 2.44978

] [
− 5.4366, 2.67045

]
0.4

[
− 4.87481, 2.16

] [
− 5.06982, 2.34748

] [
− 5.26243, 2.53484

] [
− 5.45292, 2.72286

]
Table 2. The interval L ∈ [Lmin, Lmax] with different spin parameter a and electric charge Q for

the extremal KNTN black hole.

the collision in figure 4 for L1 = −1 and L2 = L̂. For the case (III) Q = 0.3, a = 1.6, a does

not belong to
[
0.95394, 1.36485

]
, the CME only exists for r ≥ 1.69668. This is because

the collision for the two marginally bound particle with L1 = −1 and L2 = L̂ cannot take

place at r < 1.69668. For the case (I), (II), (IV) and (V), the CME is divergent at the

horizon r+ = r− = 1.

4 Conclusion

In this paper, we have studied the CME of the collision for two neutral particles with

different rest masses falling freely from rest at infinity in the background of a KNTN

black hole. Further, we have discussed the CME when the collision takes place near the

horizon(s) of an extremal and non-extremal KNTN black hole. We have found that an

arbitrarily high CME is achievable with following conditions: (1) the collision occurs at

the horizon(s) of an extremal and non-extremal KNTN black hole, (2) one of the colliding

particles has critical angular momentum, and (3) the spin parameter a 6= 0. We discovered

the upper and lower bounds of the Carter constant K for a marginally bound particle with

the critical angular momentum in an extremal and non-extremal KNTN black hole. In the

equatorial plane, we discovered that there exists intervals for the spin parameter a, NUT

charge n and specific angular momentum L correspond to the electric charge Q for which

not only two marginally bound particles reach the horizon of the extremal KNTN black

hole but also the collision of these particles happens at the horizon.

– 17 –
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Figure 3. The effective potential for marginally bound particles in the equatorial plane of the

extremal KNTN black hole for M = 1. Here, L = −1 in the top figure and L = L̂ in the bottom

figure. The horizon is fixed at r+ = r− = 1.
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Figure 4. The center of mass energy for marginally bound particles in the equatorial plane of the

extremal KNTN black hole. We set M = 1 and m1 = m2 = 1. Here, L1 = −1 and L2 = L̂. The

horizon is at r+ = r− = 1.

A Curvature invariants for KNTN black hole

The curvature invariants for KNTN metric are given by

I1 = gµνRµν = 0, (A.1)

I2 = RµνR
µν =

64Q4(
r2 + (n+ a cos θ)2

)6 , (A.2)

I3 = RµνρσR
µνρσ =

8
(
ε1+ε2 cos θ+ε3 cos2 θ+ε4 cos3 θ+ε5 cos4 θ+ε6 cos5 θ+ε7 cos6 θ

)(
r2+(n+a cos θ)2

)6 ,

(A.3)

where

ε1 = 6n8−12n6Q2+7n4Q4−90n6r2+120n4Q2r2−34n2Q4r2+90n4r4−60n2Q2r4+7Q4r4

− 6n2r6 − 6M2(n6 − 15n4r2 + 15n2r4 − r6) + 12Mr(6n6 −Q2r4 − 5n4(Q2 + 4r2)

+ 2n2(5Q2r2 + 3r4)), (A.4)

ε2 = 4an(9n6 − 17Q4r2 − 15Q2r4 − 15n4(Q2 + 6r2)− 9M2(n4 − 10n2r2 + 5r4) + n2(7Q4

+ 90Q2r2 + 45r4) + 6Mr(15n4 + 10Q2r2 + 3r4 − 10n2(Q2 + 3r2))), (A.5)

ε3 = −2a2(−45n6+17Q4r2+30n4(2Q2+9r2)+45M2(n4−6n2r2+r4)−3n2(7Q4+60Q2r2

+ 15r4)− 60Mr(6n4 +Q2r2 − 3n2(Q2 + 2r2))), (A.6)

ε4 = 4a3n(30n4 + 7Q4 + 900r2 − 30M2(n2 − 3r2)− 60Mr(−3n2 +Q2 + r2)− 30n2(Q2

+ 3r2)), (A.7)
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ε5 = −a4(−90n4 − 7Q4 − 60M(6n2 −Q2)r + 90M2(n2 − r2) + 30n2(2Q2 + 3r2)), (A.8)

ε6 = −12a5n(3M2 − 3n2 +Q2 − 6Mr), (A.9)

ε7 = −6a6(M2 − n2). (A.10)

The non-trivial curvature invariants are finite at ∆ = 0 and infinite at Σ = 0, hence these

are coordinate and curvature singularities, respectively.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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