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1 Introduction

Duality symmetries have been at the heart of developments in string theory. A duality —

the presence of a hidden symmetry or relation between theories — once found, immediately

provokes a set of questions. The very presence of the duality seems to imply a lack of

understanding of the theory; one hopes to discover the reason for the hidden symmetry

and perhaps discover a theory in which this duality symmetry is manifest.

Certainly since 1995, this idea has been very successfull in the context of supersym-

metric field theories. The S-duality present in N = 4 super Yang-Mills theory and in the
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low energy effective description of the N = 2 super Yang-Mills theory is explained by the

realization that these theories can be described as coming from the dimensional reduction

of a single theory, with (0, 2) supersymmetry in six dimensions (in M-theory terms, the

theory of the M-theory fivebrane) [1–3]. This has led to a profound exploration of field

theories that have used the (0, 2) theory to explain all manner of field theory properties

in lower dimensions and has even gone as far as providing an explanation of the esoteric

duality of the Geometric Langlands program [4].

Central to these explanations is the fact that the six-dimensional theory is equipped

with a self-dual three-form field strength. The source for this field comes from a self-dual

string. The coupling in this theory is of order one as it must be for a self-dual theory.

Thus there is no notion of perturbation theory. To generate a perturbative regime we must

introduce a scale into the theory so that at given energies we can form a small dimensionless

parameter with which we can do perturbative calculations. Most simply this is achieved

by compactifying the six dimensional theory on a circle of radius R. This then produces

five-dimensional Yang-Mills with coupling given by R.

The more interesting thing happens when we compactify on a torus and the reduced

theory is four-dimensional Yang-Mills with coupling given by the complex structure of

the torus. The S-duality in the four-dimensional theory is then just a consequence of the

modular invarince of the torus, i.e. a trivial consequence of the geometric description of the

torus. The self-dual strings of the six dimensional theory can wrap either the a or b cycles

of the torus. This describes the 1/2 BPS spectrum of the N = 4 theory that in turn forms

a representation of the SL(2) duality group [2]. The SL(2) duality symmetry is then just

from relabelling the cycles on the torus that the string wraps. The string itself is self-dual

and has no duality property; the duality is emergent based on different perspectives in the

reduction of the theory. This idea has been used and studied in numerous applications and

directions. In what follows, we will describe something like a supergravity analogue.

Exceptional Field Theory [5–8] was developed as a theory to make manifest the U-

duality groups of M-theory. The theory lives in a space with many new dimensions and

comes equipped with something known as the physical section condition which determines

how one may carry out a reduction of the theory back down to eleven dimensions or less.

The U-duality groups enter when due to the presence of isometries in the extended space

there are different ways to do this reduction and usual spacetime as embedded in this theory

becomes ambiguous. Thus the duality is a consequnce of an ambiguity in the description

of the reduction. Now what of 1/2 BPS states in the theory? Brane and string solutions of

supergravity all transform under U-duality. We will describe a single object in Exceptional

Field Theory and show how the ambiguity in its reduction leads to all the 1/2 BPS objects

in supergravity that transform into each other under U-duality.

This object obeys a twisted self-duality constraint in terms of the gauge fields of

Exceptional Field Theory.1 It will also be geometrically self-dual in the following sense.

The solution is heuristically speaking a superposition of a wave and monopole with a single

free quantized parameter which gives both the monopole charge and the wave momentum.

1The twisted self-duality equation was first described in the seminal work of Cremmer, Julia and Pope [9].
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We call this self-dual because if one reduces this object so that the wave propogates along

some circle then this will give rise to an electric charge from the reduced perspective which

is equal to the magnetic charge coming from the monopole. Thus in some sense it is a

lift of a self-dual KK-dyon [10]. This object is the analogue of the self-dual string in the

(0, 2) theory. Its reduction provides us with the complete 1/2 BPS spectrum and the

action of the duality group on the BPS spectrum is just a relabelling in terms of this single

self-dual object.

We will analyze this solution and make explicit its reduction to the various branes

in supergravity (such as fundamental strings, solitonic branes and D-branes). We also

show how the EFT solution (which maybe thought of as a superposition of a wave and

monopole) changes its character as one moves from asymptotic infinity towards the core of

the solution.

In this paper we will begin with an EFT primer that should give a sufficent outline to

follow the results presented here. For the original works see [5–8]. Then we describe the

solution and subsequently its reduction to the various branes in supergravity. We analyze

the behavior of the self-dual solution in EFT and in particular look at the difference

between the core and asymptotic regions and conclude with a discussion on the absence of

singularities of the EFT solution.

For the relevant literature the reader may consult recent reviews of DFT and related

theories given in [11–13]; the primary work of Siegel in constructing a duality manifest

formalism [14–16]; the work outlining DFT [17–20]. The steps towards an M-theory equiv-

alent to DFT for the truncated theory are given in [21–36]. And there is now a whole host

of interesting works in this field, for a representative but by no means complete sample one

may start with [37–45]. All of this is related to the long standing E11 program of West and

collaborators, see for example [46–50].

2 Exceptional Field Theory

The primary idea behind Exceptional Field Theory [5] is to make the exceptional sym-

metries of eleven-dimensional supergravity manifest. The appearence of the exceptional

groups in dimensionally reduced supergravity theories was first discussed in [9, 51]. In

Exceptional Field Theory one first performes a decomposition of eleven-dimensional super-

gravity but with no reduction or truncation into an (11−D)×D split. That is one takes

the eleven dimensions of supergravity to be

M11 = M11−D ×MD . (2.1)

Then one supplements the D so called “internal” directions with additional coordinates to

linearly realize the exceptional symmetries. This follows the previous works on truncated

theories that realize the exceptional duality groups [21–26] through introducing novel extra

dimensions and leads to

M11 −→ M11−D ×MdimED (2.2)
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where dimED is the dimension of the fundamental2 representation of the exceptional group

ED and MdimED is a coset manifold that comes equipped with the coset metric of ED/H

(where H is the maximally compact subgroup of ED). This “exceptional extended geom-

etry” has been constructed for several U-duality groups but was previously restricted to

truncations of the eleven-dimensional theory where the “external” metric was taken to be

flat and off-diagonal terms (the “gravi-photon”) were set to zero. Furthermore, coordinate

dependence was restricted to the internal extended coordinates.

Exceptional Field Theory provides the full, non-truncated theory which allows for a

dependence on all coordinates, external, internal and extended. This allows for eleven-

dimensional supergravity to be embedded into a theory that is fully covariant under the

exceptional groups ED for D = 6, 7, 8 [6–8] (a supersymmetric extension for D = 6, 7 can

be found in [52, 53]) and more recently also for D = 4, 5 [45, 54].

It is worthwhile at this stage to describe how the U-duality groups become related to

the embedding of the eleven dimensions in the extended space. The combination of p-form

gauge transformations and diffeomorphism give rise to a continuous local ED symmetry.

This however is not U-duality which is a global discrete symmetry that only occurs in the

presence of isometries. (See [55] for the equivalent discussion for DFT). Crucially however

there is also a physical section condition that provides a constraint in EFT that restricts the

coordinate dependence of the fields to a subset of the dimensions and thus there naturally

appears a physical submanifold which we identify as usual spacetime. When there are

no isometries present this section condition constraint produces a canonical choice of how

spacetime is embedded in the extended space. However, in the presence of isometries

there is an ambiguity in how one identifies the submanifold in the extended space. This

ambiguity is essentially the origin of U-duality with different choices of spacetime associated

to U-duality related descriptions. (This is discussed in detail for the case of DFT in [56]).

In this paper we focus on the E7 group and the corresponding EFT. We will give a

brief overview of the most important concepts of the theory, closely following [7] where all

the details can be found. We choose E7 since it has all the complexities that we wish to

explore. It is expected that the narrative of this paper could easily be repeated for other

choices of duality group.

2.1 Basics of the E7 EFT

The E7 Exceptional Field Theory lives in a 4 + 56-dimensional spacetime. The four di-

mensional external space has coordinates xµ and metric gµν = eµ
aeν

bηab which may be

expressed in terms of a vierbein. The 56-dimensional extended internal space has coordi-

nates Y M which are in the fundamental representation of E7. This exceptional extended

space is equipped with a generalized metric MMN which parametrizes the coset E7/SU(8).

From earlier work [21–23, 25, 26, 30] the 56-dimensional exceptional extended geometry

is known. This space can be seen as the combination of the seven internal directions of

the KK-decomposition with the M2-, M5- and D6-brane wrapping directions. Its tangent

2This is true for D = 6, 7, 8. For other groups a different representation might be needed for the

construction, e.g. for D = 4 where E4 = SL(5) it is the 10.
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space is given by

TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ Λ6TM (2.3)

where M is the seven-space.

In addition to the external metric gµν and the generalized metric MMN , EFT also

requires a generalized gauge connection Aµ
M and a pair of two-forms Bµν α and Bµν M

to describe all degrees of freedom of eleven-dimensional supergravity. Here α = 1, . . . , 144

labels the adjoint and M = 1, . . . , 56 the fundamental representation of E7. For more on

the nature of these two-forms see [7]. For the main part of this paper they will both be zero

and not play a role in what follows though they are of course crucial for the consistency of

the theory.

Thus, the field content of the E7 exceptional field theory is

{

gµν ,MMN ,Aµ
M , Bµν α, Bµν M

}

. (2.4)

All these fields are then subjected to the physical section condition which picks a subspace

of the exceptional extended space. This section condition can be formulated in terms of

the E7 generators (tα)
MN and the invariant symplectic form ΩMN of Sp(56) ⊃ E7 as

(tα)
MN∂M∂NΦ = 0 , ΩMN∂MΦ∂NΨ = 0 (2.5)

where Φ,Ψ stand for any field and gauge parameter.

The equations of motion describing the dynamics of the fields can be derived from the

following action

S =

∫

d4xd56Y e

[

R̂+
1

48
gµνDµM

MNDνMMN

−
1

8
MMNFµν MFµν

N − V (MMN , gµν) + e−1Ltop

]

.

(2.6)

The first term is a covariantized Einstein-Hilbert term given in terms of the spin connection

ω of the vierbein eµ
a (with determinant e)

LEH = eR̂ = eea
µeb

νR̂µν
ab where R̂µν

ab ≡ Rµν
ab[ω] + Fµν

Meaρ∂Meρ
b . (2.7)

The second term is a kinetic term for the generalized metric MMN which takes the form

of a non-linear gauged sigma model with target space E7/SU(8). The third term is a

Yang-Mills-type kinetic term for the gauge vectors Aµ
M which are used to define the

covariant derivatives Dµ. The fourth term is the “potential” V built from internal extended

derivatives ∂M

V = −
1

48
MMN∂MMKL∂NMKL +

1

2
MMN∂MMKL∂LMNK

−
1

2
g
−1∂Mg∂NMMN −

1

4
MMN

g
−1∂Mgg

−1∂Ng−
1

4
MMN∂Mgµν∂Ngµν

(2.8)

where g = e2 = det gµν . The last term is a topological Chern-Simons-like term which is

required for consistency.
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All fields in the action depend on all the external and extended internal coordinates.

The derivatives ∂M appear in the non-abelian gauge structure of the covariant derivative

and together with the two-forms Bµν in the field strengths Fµν
M .

The gauge connection Aµ
M allows for the theory to be formulated in a manifestly

invariant way under generalized Lie derivatives. The covariant derviative for a vector of

weight λ is given by

DµV
M = ∂µV

M −Aµ
K∂KV M + V K∂KAµ

M +
1− 2λ

2
∂KAµ

KV M

+
1

2

[

24(tα)MN (tα)KL +ΩMNΩKL

]

∂NAµ
KV L .

(2.9)

The associated non-abelian field strength of the gauge connection, defined as

Fµν
M ≡ 2∂[µAν]

M − 2A[µ
N∂NAν]

M

−
1

2

[

24(tα)MN (tα)KL − ΩMNΩKL

]

A[µ
K∂NAν]

L ,
(2.10)

is not covariant with respect to vector gauge transformations. In order to form a prop-

erly covariant object we extend the field strength with Stückelberg-type couplings to the

compensating two-forms Bµν α and Bµν M as follows

Fµν
M = Fµν

M − 12(tα)MN∂NBµν α −
1

2
ΩMNBµν N . (2.11)

For a detailed derivation and explanation of this we refer to [7]. The Bianchi identity for

this generalized field strength is

3D[µFνρ]
M = −12(tα)MN∂NHµνρ α −

1

2
ΩMNHµνρ N (2.12)

which also defines the three-form field strengths Hµνρ α and Hµνρ M . The final ingredient

of the theory are the twisted self-duality equations for the 56 EFT gauge vectors Aµ
M

Fµν
M =

1

2
eǫµνρσΩ

MNMNKFρσ K (2.13)

which relate the 28 “electric” vectors to the 28 “magnetic” ones. This self-duality relation

is a crucial property of the E7 EFT and is essential for the results presented here. In fact

this sort of twisted self-duality equation has been described many years ago in the seminal

work of [9].

To conclude this brief overview of exceptional field theory, we note that the bosonic

gauge symmetries uniquely determine the theory. They are given by the generalized dif-

feomorphisms of the external and extended internal coordinates. For more on the novel

features of the generalized diffeomorphisms in exceptional field theory see [7].

An immediate simplification to the above equations presents itself when the coordinate

dependence of fields and gauge parameters is restricted. In section 3 we will consider a

solution of EFT which only depends on external coordinates. Thus any derivative of the

internal extended coordinates, ∂M , vanishes trivially. Furthermore, our solution comes with
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zero two-form fields Bµν α and Bµν M , thus simplifying the gauge structure further. The

upshot of this is a drastic simplification of the theory: covariant derivatives Dµ reduce to

ordinary partials ∂µ, the generalized field strength Fµν
M is simply given by 2∂[µAν]

M , the

covariantized Einstein-Hilbert term reduces to the ordinary one and the potential V of the

generalized metric vanishes. Finally the Bianchi identity reduces to the usual dFM = 0.

We will comment in future work on how to reinstate a dependence on internal extended

coordinates and thus localize solutions in the exceptional extended space [57].

2.2 Embedding supergravity into EFT

Having outlined the main features of the E7 EFT, we proceed by showing how eleven-

dimensional supergravity can be embedded in it (again following [7] closely). Applying

a specific solution of the section condition (2.5) to the EFT produces the dynamics of

supergravity with its fields rearranged according to a 4 + 7 Kaluza-Klein coordinate split.

The appropriate solution to the section condition is related to a decomposition of the

fundamental representation of E7 under its maximal subgroup GL(7)

56 → 7 + 21 + 7 + 21 (2.14)

which translates to the following splitting of the extended internal coordinates

Y M = (ym, ymn, ym, ymn) (2.15)

wherem = 1, . . . , 7 and the pairmn is antisymmetric. We thus have indeed 7+21+7+21 =

56 coordinates. The section condition is solved by restricting the coordinate dependence

of fields and gauge parameters to the ym coordinates. We thus have

∂mn → 0 , ∂m → 0 , ∂mn → 0

Bµν
mn → 0 , Bµν

m → 0 , Bµνmn → 0
(2.16)

where the second line is the necessary consequence for the compensating two-form Bµν
M .

The complete procedure to embed supergravity into EFT can be found in [6, 7], here

we will focus on those aspects relevant to our results. The Kaluza-Klein decomposition of

the eleven-dimensional spacetime metric takes the following form

ĝµ̂ν̂ =

(

ĝµν ĝµn
ĝmν ĝmn

)

=

(

gµν +Aµ
mAν

ngmn Aµ
mgmn

gmnAν
n gmn

)

(2.17)

where hatted quantities and indices are eleven-dimensional. The four-dimensional external

sector with its metric gµν is carried over to the EFT. The seven-dimensional internal

sector is extended to the 56-dimensional exceptional space and the internal metric gmn

becomes a building block of the generalized metric MMN . The KK-vector Aµ
m becomes

the ym-component of the EFT vector Aµ
M .

The gauge potentials C3 and C6 of supergravity are also decomposed under the 4 + 7

coordinate split. Starting with the three-form, there is the purely external three-form part

Cµνρ which lives in the external sector. The purely internal scalar part Cmnp is included in

– 7 –
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MMN . The one-form part Cµ mn is the ymn-component of Aµ
M . The remaining two-form

part Cµν m gets encoded in compensating two-form Bµν M . Similarly for the six-form, the

purely internal scalar Cm1...m6
is part of MMN . The one-form Cµ m1...m5

is dualized on

the internal space and forms the ymn-component of Aµ
M . The remaining components of

C6 with a mixed index structure (some of which need to be dualized properly) are encoded

in the two-forms Bµν α and Bµν M .

In the next section we will work with supergravity solutions where the gauge poten-

tials only have a single non-zero component which will be of the one-form type under the

above coordinate split. There will not be any internal scalar parts or other mixed index

components. The above embedding of supergravity fields into EFT can therefore be simply

summarized as follows. The spacetime metric gµν of the external sector is carried over; the

generalized metric MMN of the extended internal sector is given in terms of the internal

metric gmn by

MMN (gmn) = g1/2diag
[

gmn, g
mn,kl, g−1gmn, g−1gmn,kl

]

(2.18)

where the determinant of the internal metric is denoted by g = det gmn, the four-index

objects are defined by gmn,kl = gm[kgl]n and similarly for the inverse; and the compontents

of the EFT vector potential Aµ
M are

Aµ
m = Aµ

m , Aµ mn = Cµ mn , Aµ
mn =

1

5!
ǫmn m1...m5Cµ m1...m5

. (2.19)

The final component, Aµ m, is related to the dual graviton and has no appearence in the

supergravity picture, see [7].

It is also possible to embed the Type II theories in ten dimensions into EFT. The

Type IIA embedding follows from the above solution to the section condition by a simple

reduction on a circle. In contrast, the Type IIB embedding requires a different, inequivalent

solution to the section condition [7]. Both Type II embeddings are presented in appendix A

We are now equipped with the tools to relate Exceptional Field Theory to eleven-

dimensional supergravity and the Type IIA and Type IIB theory in ten dimensions. This

will be useful when analyzing the EFT solution we are presenting next.

3 A self-dual solution in EFT

Having introduced Exceptional Field Theory with its field content and equations, we can

now consider specific field configurations which solve these equations. We are looking for a

solution from which the known supergravity solutions can be extracted by a suitable choice

of section. Furthermore, as argued in the introduction, this solution needs to satisfy the

twisted self-duality equation (2.13).

Now consider the following set of fields. We take the external sector to be four-

dimensional spacetime with one timelike direction t and three spacelike directions wi with

i = 1, 2, 3. The external metric is that of a point-like object, given in terms of a harmonic

function of the transvere coordinates by

gµν = diag
[

−H−1/2, H1/2δij

]

, H(r) = 1 +
h

r
(3.1)

where r2 = δijw
iwj and h is some constant (which will be interpreted later).

– 8 –
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The 56-dimensional extended internal sector uses the coordinates Y M given in (2.15).

The EFT vector potential Aµ
M of our solution has “electric” and “magnetic” components

(from the four-dimensional spacetime perspective) that are given respectively by

At
M =

H − 1

H
aM and Ai

M = Aiã
M , (3.2)

where Ai is a potential of the magnetic field. The magnetic potential obeys a BPS-like

condition where its curl is given by the gradient of the harmonic function that appears in

the metric
~∇× ~A = ~∇H or ∂[iAj] =

1

2
ǫij

k∂kH . (3.3)

The index M in Aµ
M labels the 56 vectors, only two of which are non-zero for our solution.

The vector aM in the extended space (a scalar form a spacetime point of view) points in

one of the 56 extended directions. Later we will interprete this direction as the direction

of propagation of a wave or momentum mode. The dual vector ãM denotes the direction

dual to aM given approximately by aM ∼ ΩMNMNK ãK . This sense of duality between

directions of the extended space will be formalized in section 3.2.

Using the relation betweenH and Ai, one can immediately check that Aµ
M satisfies the

twisted self-duality equation (2.13). Loosly speaking, the duality on the external spacetime

via ǫµνρσ exchanges electric At
M and magnetic Ai

M components of the potential. The

symplectic form ΩMN acts on the extended internal space and swaps aM with its dual

ãM . If one goes through the calculation carefully, one sees that minus signs and factors of

powers of H only work out if both actions on the external and extended internal sector are

carried out simultaneously. We will show this explicitly in section 3.2.

The generalized metric of the extended internal sector, MMN , is a diagonal matrix

with just four different entries,
{

H3/2, H1/2, H−1/2, H−3/2
}

. The first and last one appear

once each, the other two appear 27 times each. The precise order of the 56 entries of course

depends on a coordinate choice, but once this is fixed it characterizes the solution together

with the choice of direction for aM .

For definiteness, let’s fix the coordinate system and pick a direction for aM which we

call z, i.e. aM = δMz. The dual direction is denoted by z̃ and we have ãM = δMz̃. Then

Mzz = H3/2 and Mz̃z̃ = H−3/2. For completeness, the full expression for the generalized

metric for the coordinates in (2.15) is3

MMN = diag
[

H3/2, H1/2δ6, H
−1/2δ6, H

1/2δ15, H
−3/2, H−1/2δ6, H

1/2δ6, H
−1/2δ15

]

. (3.4)

The second 28 components are the inverse of the first 28 components, reflecting the split

of the EFT vector Aµ
M into 28 “electric” and 28 “magnetic” components.

To get the fields for any other direction, one simply has to perform a SO(56) rotation

in the extended space. The rotation matrix R ∈ SO(56) rotates aM in the desired direction

a′M and at the same time transforms MMN according to

a′
M

= RM
NaN , M′

MN = RM
KMKLR

L
N . (3.5)

3Here δn denotes an n-dimensional Kronecker delta.
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Since the action and the self-duality equation is invariant under such a transformation, the

fields can freely be rotated in the extended space.

The remaining fields of the theory, namely the two-form gauge fields Bµν α and Bµν M ,

are trivial. Also the external part of the three-form potential, Cµνρ, vanishes for our solu-

tion. This will eventually restrict somewhat the possible supergravity solutions obtained

from this EFT solution. Dropping these restrictions would be interesting and provide

a technical challenge to repeat this paper but include other fluxes such as those on the

external space.

To recap, the fields gµν , Aµ
M and MMN as given in equations (3.1), (3.2) and (3.4)

(together with (3.3)) form our solution to EFT. They satisfy the self-duality equation and

their respective equations of motion.

Note that all fields directly or indirectly depend on the harmonic function H which in

turn only depends on the external transverse coordinates wi. There is thus no coordinate

dependence on any of the internal or extended coordinates. This solution therefore is de-

localized and smeared over all the internal extended directions. It is an interesting open

question to look at solutions localized in the extended space. In theory, EFT can handle

coordinate dependencies on all coordinates, even the extended ones. We leave this for

future work.

3.1 Interpreting the solution

How do we interpret this solution in Exceptional Field Theory? Before we do this let us

return to how solutions in the truncated theory may be interpreted. A wave whose mo-

mentum is in a winding direction describes a brane associated with that winding direction,

e.g. a wave with momentum along y12 describes a membrane extended over the y1, y2 di-

rections. A monopole-like solution — by which we mean a Hopf fibration — where the S1

fibre is a winding direction describes the S-dual brane to that winding direction, e.g. if the

fibre of the monopole is y12 then the solution describes a fivebrane. Thus in the extended

(but truncated) theory branes can have either a description as monopole or as a wave.

These statements were the conclusions of [56, 58].

Now because of the truncation it was not possible to describe a given solution in both

ways within the same description of spacetime. The key point of EFT is that there is no

truncation and so such things are possible. The self-duality relation is simply the Kaluza-

Klein description of a solution that has both momentum and non-trivial Hopf fibration, i.e.

it is simultaneously electric and magnetic from the point of view of the KK-graviphoton.

As commented in the introduction, these are not just solutions to some linear abelian

theory but full solutions to the gravitational theory (or in fact EFT). As such they are

exact self-dual solutions to the non-linear theory though are charged with respect to some

U(1) symmetry that is given by the existence of the S1 in extended space. Our intuition

should be shaped by this experience with Kaluza-Klein theory and the solution thought of

as simultaneously a wave and a monopole whose charge is equal to the wave’s momentum.

Let us look at the moduli of the solution. The solution is specified by two pieces of

data, the vector aM and the constant h that appears in the harmonic function. The vector

specifies the direction the wave is propagating in. That is, it gives the direction along
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which there is momentum. The constant h in the harmonic function of the solution is then

proportional to the amount of momentum carried.

In addition, the solution comes with a monopole-like structure, whose fibre is in the

direction dual to the direction of propagation of the wave and whose base is in the external

spacetime. In the case of the smeared solution studied in this paper this fibration may

be classified by its first Chern class which is h. (See [57] for a discussion of the localized

non-smeared solution.)

To give a non-trivial first Chern class the fibre must be an S1 and then the magnetic

charge h is integral. This is essentially Dirac quantization but now our theory also requires

self-duality which in turn implies that the momentum in the dual direction to the fibre is

quantized. The presence of quantized momentum in this direction then implies that this

direction itself must also be an S1. Let us examine this quantitatively.

The electric charge of the solution is related to the radius of the circle by

qe =
n

Re
with n ∈ Z (3.6)

and the magnetic charge is related to the radius of the fibre by

qm = mRm with m ∈ Z . (3.7)

Now the twisted self-duality relaltion implies

qe = qm =⇒ n/m = ReRm . (3.8)

From examining the norms of the E7 vectors that specifiy the solution we can determine

Re and Rm as

Re = |aM | and Rm = |ãM | . (3.9)

Calculating these norms using the metric of the solution (see the next section) then reveals

Re = H3/4 , Rm = H−3/4 thus ReRm = 1 and n = m. (3.10)

So the E7 related radii are duals and the electric and magnetic quantum numbers are

equal. Note that the harmonic function H (and thus the radii) is a function of r, the radial

coordinate of the external spacetime. This will lead to interesting insights when we analyze

the solution close to its core or far away from it in section 5.

The actual direction aM that one chooses determines how one interprets the solution

in terms of the various usual supergravity descriptions. That is we can interpret this single

solution in terms of the brane solutions in eleven dimensions or the Type IIA and Type

IIB brane solutions in ten dimensions. We will show this in detail in section 4.

Finally let us a add a comment about the topological nature of these solutions. The

more mathematically minded reader will note that brane solutions like the NS5-brane are

not classified by the first Chern class which in cohomolgy terms is given by H2(M ;Z) but

instead by the Dixmier-Douady class, i.e. H3(M ;Z). For the smeared solution these two

are related since H3(S2 × S1;Z) = H2(S2;Z) × H1(S1;Z). Thus for the smeared branes

there is no issue. The question of the global structure of the localized solutions where one

has a genuine H3 is however an important open question that has recently received some

attention [38, 59, 60].
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3.2 Twisted self-duality

The EFT gauge potential Aµ
M presented above satisfies the twisted self-duality equa-

tion (2.13). This can be checked explicitly by looking at the components of the equation

and making use of the relation between the harmonic function H and the spacetime vector

potential Ai given in (3.3).

First though, we will look at the relation between the two vectors aM and ãM that

define the directions of At
M and Ai

M . The duality relation between them can be made

precise by normalizing the vectors using the generalized metric MMN . The unit vectors

âM =
aM

|aN |
=

aM
√

aKaLMKL

and ˆ̃aM =
ãM

|ãN |
=

ãM
√

ãK ãLMKL

(3.11)

are related via the symplectic form Ω by

âM = ΩMNMNK
ˆ̃aK , ΩMN =

(

0 I

−I 0

)

. (3.12)

If the vectors are not normalized the metric in the duality relation introduces extra factors.

For the specific directions given above we have âM = H−3/4δMz and ˆ̃aM = H3/4δMz̃ which

indeed satisfy (3.12) for the MMN given in (3.4).

Let’s now turn to the self-duality of the field strength. We begin by computing the

field stregth Fµν
M of Aµ

M as given in (2.11), recalling the simplifications our solution

provides. There are two components which read

Fit
M = 2∂[iAt]

M = −∂i(H
−1 − 1)aM = H−2∂iHδMz

Fij
M = 2∂[iAj]

M = 2∂[iAj]ã
M = ǫij

k∂kHδMz̃ .
(3.13)

The spacetime metric gµν is given in (3.1) and has determinant e2 = | det gµν | = H. This

can be used to rewrite the self-duality equation (2.13) as

Fµν
M =

1

2
H1/2ǫµνρσg

ρλgστΩMNMNKFλτ
K (3.14)

where the spacetime metric is used to lower the indices on FM . Now we can look at the

components of the equation. Starting with

Fij
M = H1/2ǫijktg

klgttΩMNMNKFlt
K (3.15)

and inserting for the spacetime metric and the field strength gives

Fij
M = −H1/2ǫtijkH

−1/2δkl
(

−H1/2
)

ΩMNMNKH−2∂lHaK

= H−3/2
(

ǫij
k∂kH

)

ΩMNMNKδKz (3.16)

where the extra minus sign in the first line comes from permuting the indices on the four-

dimensional epsilon which is then turned into a three-dimensional one. In the next step we
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make use of (3.3) and the components of Ω and M that are picked out by the summation

over indices are substituted

Fij
M = H−3/22∂[iAj]Ω

MzMzz

= H−3/22∂[iAj]δ
Mz̃H3/2 = 2∂[iAj]ã

M (3.17)

and we obtained the expected result. Similarly, the other component of the self-duality

equation reads

Fit
M =

1

2
H1/2ǫitjkg

jpglqΩMNMNKFpq
K . (3.18)

Going through the same steps as before leads to

Fit
M = −

1

2
H1/2ǫtijkH

−1/2δkpH−1/2δlqΩMNMNK2∂[pAq]ã
K

= −H−1/2
(

ǫi
jk∂jAk

)

ΩMNMNKδKz̃ . (3.19)

Again substituting for Ω and M gives the expected result

Fit
M = −H−1/2∂iHΩMz̃Mz̃z̃

= −H−1/2∂iH
(

− δMz
)

H−3/2 = H−2∂iHaM (3.20)

to match with (3.13).

Thus the components of the field strength of the EFT vector Aµ
M given in (3.13)

satisfy the self-duality condition. It is also possible to satisfy an anti-self-duality equation.

If the magnetic charge of our solution is taken to be minus the electric charge, this has

the effect of modifying the magnetic component of the EFT vector by an extra minus

sign, Ai
M = −Aiã

M . The above calculation then works exactly the same but the extra

minus sign ensures that the field strength is anti-self-dual. This choice would then be

consistent with the orginal EFT paper [7] (of course the choice of self-dual or anti-self-dual

is ultimately related to how supersymmetry is represented).

4 The spectrum of solutions

The self-dual EFT solution presented in the previous section gives rise to the full spectrum

of 1/2 BPS solutions in eleven-dimensional supergravity and the Type IIA and Type IIB

theories in ten dimensions. We will now show how applying the appropriate solution to

the section condition and rotating our solution in a specific direction of the exceptional ex-

tended space leads to the wave solution, the fundamental, solitonic and Dirichlet p-branes,

the KK-branes which are extended monopoles, and an example of an intersecting brane

solution. All these extracted solutions together with their Kaluza-Klein decomposition can

be found in appendix B for easy referal.

4.1 Supergravity solutions

We start by lookig at the EFT solution from an eleven-dimensional supergravity point of

view. Using the results of section 2.2 in reverse, the supergravity fields can be extracted

from the EFT solution. Recall that the resulting supergravity fields will be rearranged

according to a 4 + 7 Kaluza-Klein coordinate split.
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First, the extended coordinates Y M are decomposed into ym, ymn and so on as given

in (2.15). Then by comparing the expression for the generalized metric of the internal

extended space, MMN , of our solution in (3.4) to (2.18), one can work out the seven-

dimensional internal metric gmn. The components of the EFT vector potential Aµ
M given

in (3.2) can be related to the KK-vector of the decomposition and the C3 and C6 form

fields respectively according to (2.19). Finally, the external spacetime metric gµν in (3.1)

is simply carried over to the 4-sector of the KK-decompostion.

As mentioned before, the EFT solution is characterized by the direction of the vector

aM and a corresponding ordering in the diagonal entries of MMN . If the procedure of

extracting a supergravity solution just described is applied to the EFT solution as presented

in section 3, i.e. with the direction of the ym-type, aM = δMz where we now identify z

with y1, the first of the ordinary ym directions, the pp-wave solution of supergravity can

be extracted. From MMN , the internal metric is given by

gmn = diag[H, δ6] (4.1)

where δ6 is a Kronecker delta of dimension six. These are the remaining six directions of

ym. The “electric” part of the EFT vector, At
z = −(H−1 − 1), becomes the cross-term in

the supergravity metric. The “magentic” part Ai
z̃ = Ai is like a dual graviton and does

not appear in the supergravity picture. Note that the dual direction to z is y1 = z̃. See

appendix B.1 for the supergravity wave decomposed under a 4+7 split. Since our self-dual

EFT solution is interpreted as a wave now propagating in the ordinary direction y1 = z, it

is not too surprising to recover the supergravity wave once the extra exceptional aspects

are removed.

As shown in previous work [56, 58], we know that a wave in an exceptional extended

geometry can also propagate along the novel dimensions such as ymn or ymn. If our solution

is rotated to propagate in those directions, e.g. aM = δM 12 or aM = δM 67, the membrane

and fivebrane solutions of supergravity are recovered. For the former, the membrane is

stretched along y1 and y2, for the latter, the fivebrane is strechted along the complimentary

directions to y6 and y7, i.e. y1, y2, y3, y4 and y5. This result is obtained by an accompanying

rotation of the generalized metric according to (3.5) and extracting the internal metrics for

the M2 and the M5 (cf. appendix B.1)

gmn = H1/3diag
[

H−1δ2, δ5
]

, gmn = H2/3diag
[

H−1δ5, δ2
]

. (4.2)

The masses and charges of the branes are provided by the momentum in the extended

directions. The electric potential is given by At
M which encodes the C3 for the M2 and

the C6 for the M5. The magnetic potential is given by Ai
M which gives their duals, i.e.

the C6 for the M2 and the C3 for the M5. We will explain this procedure of obtaining the

membrane and fivebrane from the EFT solution in more detail below.

We have previously speculated [56] that the wave in EFT along ym, the fourth possible

direction, should correspond to a monopole-like solution in supergravity. Since we are now

working with a self-dual solution, we can show that this is indeed the case. If the direction

of aM is of the ym-type, e.g. aM = δMz̃, and thus ãM along ym (essentially swapping aM and
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ãM of the pp-wave), the KK-monopole is obtained. Again performing the corresponding

rotation of the generalized metric, the internal metric can be extracted

gmn = diag
[

H−1, δ6
]

. (4.3)

The “magnetic” part of the EFT vector, Ai
z = Ai, becomes part of the KK-monopole

metric in supergravity. The “electric” part At
z̃ = −(H−1 − 1) now has the nature of a

dual graviton and does not contribute in the supergravity picture. This is the opposite

scenario to the pp-wave described above, underlining the electric-magnetic duality of these

two solutions.

The four supergravity solutions we have extracted from our EFT solution all have the

same external spacetime metric gµν under the KK-decomposition,

gµν = diag
[

−H−1/2, H1/2δij

]

(4.4)

which has the character of a point-like object (in four dimensions). The four solutions only

differ in the internal metric gmn, the KK-vector of the decomposition and of course the

C-fields. But these elements are just rearranged in Aµ
M and MMN (gmn) and are all the

same in EFT, up to an SO(56) rotation of the direction aM of the solution.

4.1.1 From wave to membrane

Let’s pause here briefly and take a closer look at a specific example of such a rotation.

The EFT solution presented in section 3 with the choice for the vector aM given there and

the generalized metric MMN in (3.4) for a fixed coordinate system directly reduces to the

pp-wave in eleven dimensions.

We now want to demonstrate how this can also give the M2-brane at the same time by

simply picking a different duality frame, that is choosing a different section of the extended

space to give the physical spacetime. This new duality frame is obtained by rotating the

fields of the solution according to (3.5).

As explained above, if the EFT solution is propagating along a ymn direction, say y12,

it gives the membrane. Thus the vector aM = δM1 has to be rotated into a′M = δM 12.

This has the effect of exchanging y1 with y12 and their corresponding components in the

metric, i.e. M1 1 ↔ M12 12. This should not come as a surprise since here momentum and

winding directions are exchanged which is exactly what is expected in relating the wave

and the membrane via duality.

Besides y1 ↔ y12, the frame change also swaps the following pairs of coordinates and

the corresponding components of the metric (here the index a takes the values 3 to 7)

y2 ↔ y2 , yab ↔ yab , y1a ↔ y1a . (4.5)

These are simple exchanges between dual pairs of coordinates that reflect the new duality

frame.

After the rotation, the generalized metric reads (still in the coordinate system given

by (2.15))

MMN = diag
[

H−1/2δ2, H
1/2δ5, H

3/2, H1/2δ10, H
−1/2δ10,

H1/2δ2, H
−1/2δ5, H

−3/2, H−1/2δ10, H
1/2δ10

]

.
(4.6)
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sector external internal

coordinate
wi ya yA yα

t w1 w2 w3 y1 y2 y3 y4 y5 y6 y7

membrane ◦ – – – ◦ ◦ – – – – –

fivebrane ◦ – – – ◦ ◦ ◦ ◦ ◦ – –

Table 1. The coordinates of the membrane and fivebrane are either in the external or internal

sector of the KK-decomposition. A circle ◦ denotes a worldvolume direction of the brane while a

dash − indicates a transverse direction.

This can now be compared to (2.18) to read off the internal metric in the reduced, eleven-

dimensional picture as described above, and gives (4.2), the M2-brane strechted along y1

and y2. Similar rotation procedures can be applied to relate the pp-wave or the membrane

to the fivebrane and the monopole.

Our self-dual EFT wave solution with attached monopole-structure thus unifies the

four classic eleven-dimensional supergravity solutions and provides the so-far missing link

in the duality web of exceptionally extended solutions.

4.1.2 The membrane/fivebrane bound state

The self-dual EFT solution does not only give the standard 1/2 BPS branes of supergravity

but also bound states. Such solutions were first mentioned in [61] and then interpreted

by Papadopoulos and Townsend in [62]. As an illustrative example we will show how the

dyonic M2/M5-brane solution of [63] can be obtained from our EFT solution.

Before we find this bound state of a membrane and a fivebrane, it is useful to see how

to pick a duality frame such that the EFT solution reduces to the (pure) fivebrane. Above

we have just seen how to rotate the frame to get the (pure) membrane instead of the wave.

If we rotate further to have the solution propagate in the y67 direction, i.e a′′M = δM 67,

then we get the fivebrane.

Starting from the membrane frame of the previous subsection with a′M = δM 12 and

the generalized metric in (4.6), the new frame rotation exchanges the membrane direction

y12 with the fivebrane direction y67 and their correspondig components in the metric,

M12 12 ↔ M67 67. Again it is very natural to exchange a membrane coordinate ymn with

a fivebrane coordinate ymn in this kind of duality transformation.

In what follows, it will be useful to split the index of the coordinate ym into m =

(a,A, α). Here ya with a = 1, 2 are the two worldvolume directions of the membrane

or two of the worldvolume directions of the fivebrane. The yA with A = 3, 4, 5 are the

remaining three worldvolume directions of the fivebrane, they are transverse directions for

the membrane. And finally the yα with α = 6, 7 are transverse directions to both the

membrane and fivebrane. Table 1 shows the worldvolume (a circle ◦) and transverse (a

dash −) directions of the membrane and fivebrane together with the coordinate labels and

sector under the KK-decomposition.
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Besides yab = y12 ↔ yαβ = y67, the frame change also swaps some other pairs of

coordinates. This can now be neatly written as

yab ↔ yαβ , yaα ↔ yaα ,

yA ↔ yBC , yA ↔ yBC .
(4.7)

The first line contains further exchanges between membrane directions and fivebrane di-

rections. The second line is a result of going from the membrane frame to the fivebrane

frame. Once the corresponding components of the metric have been exchanged as well,

it reads
MMN = diag

[

H−1/2δ5, H
1/2δ2, H

1/2δ10, H
−1/2δ10, H

−3/2,

H1/2δ5, H
−1/2δ2, H

−1/2δ10, H
1/2δ10, H

3/2
]

,
(4.8)

which can be reduced to give the internal fivebrane metric (4.2). Inserting the rotated

vector a′′M into (3.2) then gives the corresponding C-form field as explained above.

Now that it is clear how to obtain both the M2-brane and the M5-brane from our

self-dual EFT solution, we can attempt to obtain the dyonic M2/M5 bound state of [63].

To achieve this, we will again start from the membrane duality frame. This time though,

we do not rotate the frame all the way into the fivebrane frame but introduce a parameter

ξ which interpolates between a purely electric M2-brane and a purely magnetic M5-brane.

For ξ = 0 the transformation gives the fivebrane whereas for ξ = π/2 the membrane is

recovered.4 Therefore a vector of the form

aM(M2/M5) = sin ξ aM(M2) + cos ξ aM(M5) (4.9)

points the EFT solution in the direction which gives the M2/M5-brane (here aM(M2) = δM 12

and aM(M5) = δM 67 from above). If this vector is inserted into the EFT vector potential,

one obtains both the C3 and the C6 (together with their duals) of the membrane and

fivebrane, each modulated by sin ξ or cos ξ. Since we are dealing with a dyonic solution,

both an electric and a magnetic potential are expected.

Having found the new EFT vector, the above rotation now needs to be applied to the

generalized metric. Comparing the metric for the M2 in (4.6) and the M5 in (4.8), one finds

that the components which get exchanged in (4.7) differ by a factor of H. In most cases

H1/2 becomes H−1/2 or vice versa, e.g. MAB = H1/2δAB and MABCD = H−1/2δAB,CD

are exchanged. The only exceptions are for the ab = 12 and αβ = 67 components where

H±3/2 becomes H±1/2. The partial, ξ-dependent rotation now introduces factors of sin ξ

and cos ξ into the metric components and generates off-diagonal entries. To see how they

arise, one has to consider the effect of the rotation on the coordinates.

The coordinate pairs which get rotated into each other are the same as in (4.7), but

now superpositons are formed instead of exchanging them completely. One can think of

each pair as a 2-vector acted on by

R2 =

(

sin ξ cos ξ

− cos ξ sin ξ

)

(4.10)

4This choice of ξ — and not one shifted by π/2 — might be counterintuitive but has been made to

match the ξ in [63].

– 17 –



J
H
E
P
0
5
(
2
0
1
5
)
1
3
0

which is the 2×2 submatrix of the full rotation matrix R in (3.5). Then the new coordinate

pair is schematically5 given by, for example
(

y′A

y′BC

)

= R2

(

yA

yBC

)

=

(

sin ξ yA + cos ξ yBC

sin ξ yBC − cos ξ yA

)

. (4.11)

The other coordinate pairs which are acted on by copies of R2 are
(

yab
yαβ

)

,

(

yab

yαβ

)

,

(

yaα
ybβ

)

and

(

yA
yBC

)

. (4.12)

These rotations have quite non-trivial consequences for the corresponding components of

the generalized metric. Conjugating the 2 × 2 blocks of the metric with R2 gives for

our example
(

M′
AB M′

A
EF

M′CD
B M′CDEF

)

= R2

(

MAB 0

0 MCDEF

)

R−1
2 (4.13)

and similarly for all the other metric components which are rotated into each other. The

essential action of this rotation becomes clearest when the indices are surpressed. The

result, which is the same for all the blocks, is

R2

(

H1/2 0

0 H−1/2

)

R−1
2 =

(

H1/2 sin2 ξ+H−1/2 cos2 ξ −H−1/2(H−1) sin ξ cos ξ

−H−1/2(H−1) sin ξ cos ξ H−1/2 sin2 ξ+H1/2 cos2 ξ

)

. (4.14)

This transformation produces additional off-diagonal terms in the generalized metric. In

the ordinary supergravity picture these extra terms reduce to components of the C-field

in the internal sector of the KK-decomposition which are of the form Cmnk. These terms

are not present for the pure membrane and fivebrane, they only occur in the bound state

solution. The E7 generalized metric with cross-terms due to non-vanishing internal C-field

was constructed in general form in [30] and the appropriate reduction ansatz (which has

the same form as the metric) for our concrete scenario was spelled out in [56].

The next step is thus to bring the above matrix into the standard coset form of a

generalized metric or a KK-reduction ansatz which can be done by using some trigonometric

identities and introducing the shorthand

Ξ = sin2 ξ +H cos2 ξ . (4.15)

Then the new metric components read




H1/2Ξ−1
[

1 + (H−1)2

H sin2 ξ cos2 ξ
]

−H−1/2ΞH−1
Ξ sin ξ cos ξ

−H−1/2ΞH−1
Ξ sin ξ cos ξ H−1/2Ξ



 (4.16)

which is of the desired form. It is interesting to see that it is actually possible to rewrite

the transformed metric in a coset form. The underlying reason for this is that the original

matrix was already in coset form, just without any off-diagonal terms, i.e. without a C-field.

5More formally, one can introduce epsilon symbols so that the index structure works out, e.g. y′A =

sin ξ yA + cos ξ ǫABCyBC .
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Now this matrix can be compared to a suitable reduction ansatz to extract the (com-

ponents of) the metric and the C-field in supergravity. Such an ansatz — adapted to our

coordinates here — takes the form

g1/2

(

gAB + CACDg
CD,EFCEFB CACDg

CD,EF

gCD,EFCEFB gCD,EF

)

(4.17)

where g = det gmn is the determinant of the internal metric. Comparing these two matrices

leads to the following components (note that of course to find the determinant all blocks

have to be taken into account, not just those corresponding to yA and yBC)

gAB = H1/3Ξ−2/3δAB g = H1/3Ξ−2/3

gCD,EF = H−2/3Ξ4/3δCD,EF CABC = −
H − 1

Ξ
sin ξ cos ξ ǫABC .

(4.18)

The same procedure also works for the other pairs of indices that need to be trans-

formed and their corresponding metric components. The only difference is for (y12, y
67)

where the metric has an extra factor of H, i.e. M12,12 = H3/2 and M67,67 = H1/2. But this

factor is just carried through and does not affect the calculation presented above. Similarly,

for (y12, y67) there is an extra factor of H−1 in the metric.

Also note that for some cross-terms in the reduction anstatz one needs to define

V m1...m4 = 1
3!ǫ

m1...m4n1...n3Cn1...n3
, see [30] for more details. Since the only non-zero com-

ponent (in the internal sector) of C3 is CABC , the only component of this V that does not

vanish is V abαβ = −H−1
Ξ sin ξ cos ξǫabαβ.

Once the transformation of each index pair and the corresponding metric component

together with the reduction to supergravity is performed, the dyonic M2/M5-brane solution

is obtained in the usual 4+7 Kaluza-Klein split. Its internal metric gmn (and its determinant

g) recovered form the generalized metric together with the external metric gµν which is

just carried over from the external sector of the EFT solution are given by

gmn = H1/3Ξ1/3diag
[

H−1δab,Ξ
−1δAB, δαβ

]

, g = H1/3Ξ−2/3

gµν = diag
[

−H−1/2, H1/2δij

]

,
(4.19)

with Ξ as defined in (4.15). Reversing the KK-decomposition, finally gives the eleven-

dimensional spacetime metric of the solution as in [63]

ds2 = H−2/3Ξ1/3
[

−dt2 + δabdy
adyb

]

+H1/3Ξ−2/3
[

δABdy
AdyB

]

+H1/3Ξ1/3
[

δijdw
idwj + δαβdy

αdyβ
]

.
(4.20)

The harmonic function H = H(r) here only depends on the three wi where r2 = δijw
iwj .

It is smeared over the remaining transverse coordinates yA and yα. In [63] the solution is

only delocalized in the three yA since it is constructed in eight dimensions and then lifted

to eleven dimensions by including the yA. Simply delocalizing it in yα allows for a complete

identification with the solution here. Furthermore, in the reference a multi-brane solution
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is constructed whereas here only a single source is considered. The result can of course be

extended to take several identical brane sources into account.

It can be checked that setting ξ to 0 or π/2 and thus either Ξ = H or Ξ = 1 reproduces

the pure M5-brane (B.7) and the pure M2-brane (B.5) respectively.

The components of the three-form gauge potential which have one external and two

internal indices, i.e. Cµ mn were obtained from the EFT vector potential Aµ
M . The com-

ponent Cmnk which is entirely in the internal sector was extracted from the generalized

metric MMN . Together they read

Ctab =
H − 1

H
sin ξ ǫab

Ciαβ = Ai cos ξ ǫαβ

CABC = −
H − 1

Ξ
sin ξ cos ξ ǫABC

(4.21)

where Ai is defined as before. These are exactly the C-field components of the bound state

solution (in [63] they are given in terms of their field strengths). Again one can check that

in the pure cases where either cos ξ = 0 or sin ξ = 0, the three-form potential only has

a single component as given in (B.5) and (B.7) respectively. The third component above

vanishes in the two pure cases.

In summary, it has been shown that the self-dual EFT solution contains the dyonic

M2/M5-brane solution. Therefore, the EFT solution does not only give the standard super-

gravity branes but in fact also the brane bound states. The standard ones are the objects

obtained by pointing the vector along one of the axes of our 56-dimensional exceptional

extended coordinate space. But any combination of directions is possible, thus giving rise

to dyonic bound states of branes. Furthermore, the solutions of the Type II theories in ten

dimensions are also included. We will look at this aspect next.

4.2 Type IIA solutions

In appendix A it is shown how the ten-dimensional Type IIA theory can directly be em-

bedded into EFT without an intermediate step to the eleven-dimensional theory. Applying

this procedure in reverse, the EFT solution can be viewed from a Type IIA point of view.

In the case of extracting the eleven-dimensional solutions, the internal extended coor-

dinate Y M was decomposed into four distinct subsets (2.15) such as ym or ymn. Having

the EFT wave propagating along those four kinds of directions gave rise to the four differ-

ent solutions in supergravity with the four components of the EFT vector potential (2.19)

providing the KK-vector and C-fields. Now in the ten-dimensional Type IIA case, the

generalized coordinate splits into eight separate sets of directions (A.1) and we can thus

expect to get eight different solutions, one for each possible orientation of the EFT solution

(together with the eight types of components of the EFT vector (A.4)).

Let us first obtain the WA-solution, the pp-wave spacetime in Type IIA. The general-

ized metric has to be slightly reshuffled to accommodate our new choice of coordinates, its

precise form can be found in the appendix. To obtain the wave, the EFT solution is made

to propagate along one of the ordinary directions ym̄, say y1 = z. Using the ansatz (A.3)
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for MMN in Type IIA and comparing it to the (rotated) generalized metric of the EFT

solution gives the dilaton e2φ and the internal 6-metric ḡm̄n̄ of the WA-solution under the

4 + 6 KK-decomposition. The corresponding EFT vector component is At
z = −(H−1 − 1)

which provides the KK-vector of the decomposition and combines with the internal and

external metrics to form the ten-dimensional metric of the wave. The other component of

the vector potential, Ai
z̃ = Ai is related to the dual graviton which does not appear in the

ten-dimensional picture. The KK-decomposition of the wave and other Type II solutions

can be found in appendix B.2.

If instead the EFT solution is chosen to propagate along the compact circle yθ, the

same procedure as above leads to the D0-brane. The RR-one-form C1 it couples to can

be extracted from the EFT vector At
θ. The dual seven-form C7 is derived from the other

component, Ai
θ̃.

The picture should be clear by now. The EFT solution, that is the generalized metric

MMN and the vector potential Aµ
M , are rotated in a specific direction. Depending on

the nature of that direction, different solution in the ten-dimensional theory arise. The

F1-string and NS5-brane solution can be extracted if the EFT solution propagates along

one of the ym̄θ and ym̄θ directions respectively. The corresponding EFT vector provides

the NSNS-two-form B2 and dual NSNS-six-form B6 for the string and vice versa for the

fivebrane. Similarly, if the directions are ym̄n̄ and ym̄n̄, the D2- and D4-branes with the

corresponding set of dual RR-three-form C3 and RR-five-form C5 are obtained.

The last two directions the EFT solution can be along are ym̄ and yθ. These are the

dual directions to ym̄ and yθ and hence provide the solutions dual to WA and D0, that is

the KK6A-brane and the D6-brane. For the KK6A-brane, essentially the KK-monopole of

the Type IIA theory, if we choose y1 = z̃ as the direction, the EFT vector Ai
z̃ = Ai gives

the KK-vector for the ten-dimensional metric and the dual At
z = −(H−1 − 1) is the dual

graviton for that solution. For the D6-brane, the EFT vector provides the RR-seven-form

C7 it couples to together with the dual one-form C1.

We have thus outlined how eight different Type IIA solutions can all be extracted

from a single self-dual solution in EFT. The fundamental wave and string, the solitonic

monopole and fivebrane, and the four p-even D-branes all arise naturally by applying the

Type IIA solution to the section condition to the EFT wave rotated in the appropriate

direction. A summery of all the possible orientations and corresponding solutions can be

found at the end of this section.

4.3 Type IIB solutions

Along the same lines as above, using the ansatz for embedding the Type IIB theory into

EFT allows for further solutions to be extracted from the EFT wave. The generalized

coordinate Y M is now split into five distinct sets according to (A.6) which gives five possible

directions to align the EFT solution (together with five types of components in the EFT

vector (A.9)).

As before, the entries of the generalized metric MMN have to be rearranged to ac-

commodate the choice of coordinates (see appendix B.2). Comparing the Type IIB ansatz

for MMN in (A.7) to the (rotated) generalized metric leads to the six-dimensional internal
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metric ḡm̄n̄ together with the SL(2) matrix γab. If the direction of choice is of the ym̄ type,

the WB-solution can be extracted. This is the pp-spacetime of the Type IIB theory which

is identical to the WA-solution. The procedure is exactly the same as before with the Aµ
M

providing the KK-vector for the ten-dimensional metric (and the dual graviton which plays

no role).

The dual choice of direction, i.e. ym̄, gives the dual solution, that is the KK6B-brane,

the KK-monopole of the Type IIB theory. Again the EFT vector contributes the KK-vector

and dual graviton. The KK6B-brane is identical to the KK6A-brane.

A more interesting choice of direction is to rotate the EFT solution along one of the

ym̄ a. This produces the Type IIB S-duality doublet of the F1-string and D1-brane. They

couple to a two-form which carries an additional SL(2) index a to distinguish between the

NSNS-field B2 and the RR-field C2. From the generalized metric MMN the internal metric

ḡm̄n̄ and the SL(2) matrix γab containing the dilaton e2φ (C0 vanishes for this solution) can

be extracted. The EFT vector Aµ m̄ a provides the two-form (and also the dual six-form).

Similarly, the EFT solution along one of the ym̄ a gives rise to the other S-duality

doublet of the Type IIB theory, the NS5-brane and the D5-brane. They couple to a six-

form which also carries an SL(2) index to distinguish the NSNS- and RR-part, B6 and

C6 respectively. The six-form is encoded in the electric part of the EFT vector At
m̄ a =

−(H−1 − 1) (and the dual two-form is encoded in the magnetic part Ai m̄ a = Ai) upon

dualization on the internal coordinate.

Finally, having the EFT solution along the fifth direction from a Type IIB point of

view, ym̄n̄k̄, leads to the self-dual D3-brane together with its self-dual four-form C4 encoded

in Aµ m̄n̄k̄.

As in the Type IIA theory, the fundamental wave and string, the solitonic monopole

and fivebrane, and three p-odd D-branes, can all be extracted from the EFT solution by

applying the Type IIB solution to the section condition and rotating the fields appropri-

ately. All the obtained solutions are summarized in table 2, together with the orientation

the EFT solution, i.e. its direction of propagation.

In theory it should also be possible to obtain the D-instanton (the D(-1)-brane) and its

dual, the D7-brane, from the EFT solution. The reason why this is not as straightforward

as for all the other D-branes is that the instanton, as the name implies, does not have a

time direction, it is a ten-dimensional Euclidean solution. Therefore the EFT solution has

to be set up in such a way that the time coordinate is not in the external sector but in

the internal sector of the KK-decomposition. Then being part of the exceptional extended

space it can be rotated and “removed” when taking the section back to the physical space,

leaving a solution without a time direction.

The issue for the D7-brane is that it only has two transverse directions, so it cannot

fully be accommodated by our KK-decomposition which places time plus three transverse

direction in the external sector and the the world volume (with the remaining transverse

bits, if there are any) in the internal sector. This clearly does not work for the D7-brane.

Both of these reasons are not fundamental shortcomings of the EFT solution, they are

just technical issues arising from the way we set everything up.
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theory solution orientation
EFT

vector
At

M Ai
M

D = 11

WM ym Aµ
m KK-vector dual graviton

M2 ymn Aµ mn C3 C6

M2/M5 ∗ ∗ C3 ⊕ C6 C6 ⊕ C3

M5 ymn Aµ
mn C6 C3

KK7 ym Aµ m dual graviton KK-vector

D = 10

Type IIA

WA ym̄ Aµ
m̄ KK-vector dual graviton

D0 yθ Aµ
θ C1 C7

D2 ym̄n̄ Aµ m̄n̄ C3 C5

F1 ym̄θ Aµ m̄θ B2 B6

KK6A ym̄ Aµ m̄ dual graviton KK-vector

D6 yθ Aµ θ C7 C1

D4 ym̄n̄ Aµ
m̄n̄ C5 C3

NS5 ym̄θ̄ Aµ
m̄θ B6 B2

D = 10

Type IIB

WB ym̄ Aµ
m̄ KK-vector dual graviton

F1 / D1 ym̄ a Aµ m̄ a B2 / C2 B6 / C6

D3 ym̄n̄k̄ Aµ m̄n̄k̄ C4 C4

NS5 / D5 ym̄ a Aµ
m̄ a B6 / C6 B2 / C2

KK6B ym̄ Aµ m̄ dual graviton KK-vector
∗ The orientation of the M2/M5 bound state requires a superposition of a membrane direction

ymn and a fivebrane direction ymn. Therefore the EFT vector in that hybrid direction gives both

the C3 and the C6 since it is a dyonic solution.

Table 2. This table shows all supergravity solutions in ten and eleven dimensions discussed in this

section. The orientation indicates the type of direction along which the EFT solution propagates

to give rise to each of the supergravity solutions. It also determines the nature of the components

of the EFT vector in the supergravity picture.

5 Wave vs. monopole

Having constructed this self-dual wave solution with monopole-structure in EFT and shown

how it relates to the known solutions of supergravity, we want to analyze it further. The

fields of the solution, that is the metrics gµν and MMN and the vector potential Aµ
M ,

are all expressed in terms of the harmonic function H(r) with r2 = δijw
iwj where r is

the radial coordinate of the tranverse directions in the external sector. This leads to the

immediate question of what happens to the solution when r goes to zero or infintiy, i.e.

what happens close to the core of the solution or far away from it?

To carry out the analysis, the solution is not treated as living in 4+56 dimensions

but as a truely 60-dimensional solution. Thus the three constituents of the solution, the

external metric gµν , the extended internal metric MMN and the vector potential Aµ
M are

combined in the usual Kaluza-Klein fashion to form a 60-dimensional metric

HM̂N̂ =

(

gµν +Aµ
MAν

NMMN Aµ
MMMN

MMNAν
N MMN

)

(5.1)
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where gµν is given in (3.1), Aµ
M in (3.2) and MMN is taken from (3.4) to be

MMN = diag
[

H3/2, H1/2δ27, H
−1/2δ27, H

−3/2
]

. (5.2)

We then insert the EFT monopole/wave solution to find6

HM̂N̂ =

(

H1/2Hwave
AB 0

0 H−1/2Hmono
ĀB̄

)

(5.3)

where to top left block is simply the metric of a wave with 27 transverse dimensions and

the bottom right block is the metric of a monopole (euclidean Taub-NUT), also with 27

transverse dimensions

Hwave
AB =







H − 2 H − 1 0

H − 1 H 0

0 0 δ27






, (5.4)

Hmono
ĀB̄ =







H
(

δij +H−2AiAj

)

H−1Ai 0

H−1Aj H−1 0

0 0 δ27






. (5.5)

In (5.3) it is interesting to see that there is a natural split into a block diagonal form simply

by composing the fields à la Kaluza-Klein. These two blocks come with prefactors of H±1/2

with opposite power, so the geometry will change distinctly between large and small r.

Close to the core of the solution, where r is small, H becomes large and the wave

geometry dominates. Far away for large r, H will be close to one (and thus Ai vanishes)

and neither the monopole nor wave dominates. Thus one would imagine asymptotically

either description is valid and the different choices related through a duality transformation.

However what is curious is the dominance of the wave solution in the small r region. It

appears according to this analysis that all branes in string and M-theory when thought of

as solutions in EFT are wave solutions in the core.

6 Discussion

Here we wish to enter into some speculation that has motivated some of this work. In

particular we wish to comment on the issue of the singularity structure of supergravity

solutions.7 As is well known from the works of Duff and others [64], the nature of singu-

larities at the core of brane solutions depends on the duality frame that one uses. Given

that EFT provides a formalism unifying different duality frames then one would imagine

that solutions in EFT maybe be singularity free at the core.

A good way to think about DFT or EFT is as a Kaluza-Klein-type theory. The space

is extended and the reduction of the theory through use of the section condition gives

supergravity. Let’s recall some basic properties of ordinary Kaluza-Klein theory that will

be useful for our intuition. The reduced theory is gravity plus electromagnetism (and a

scalar field which will not be relevant here). One typically allows various singular solutions

6The resulting object has dimension 60 whereas the two blocks have dimension 29 and 31 respectively

as indicated by the indices M̂ , A and Ā.
7We are grateful to Michael Duff for discussions on this issue.
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such as electric sources which have delta function-type singularities and magnetic sources

which also are singular. Then the Kaluza-Klein lift of these solutions smooths out the

singularities. The electric charges are just waves propagating around the KK-circle and

the magnetic charges come from fibering the KK-circle to produce a total space describing

an S3. Thus the singularities inherent from the abelian charges become removed when one

considers the full theory and the U(1) is just a subgroup of some bigger non-abelian group,

in this case five-dimensional diffeomorphisms.

A similar process happens when one considers the ’tHooft-Polyakov monopole where in

the low energy effective field theory the gauge group is broken to U(1) and the monopole is

a normal Dirac monopole (with a singularity at the origin). Near the core of the monopole

however, the low energy effective description breaks down, and the full non-abelian theory

becomes relevant. The non-abelian interactions smooth out the core of the monopole

and the singularity is removed. This intuition is exactly what we wish to envoke when

thinking about DFT and its M-theory counterpart. Solutions become smoothed out by

the embedding in a bigger theory, U(1) charges in particular are simply the result of some

reduction and the singularities are non-existent in the full theory [65].

So can one show that the EFT solutions described here are free of singularities at

their core? The question drives at the heart of EFT and its string avatar DFT. The

wave and monopole are singularity free in general relativity but to see that one must

carry out a reasonabley sophisticated analysis and show that the naive singularities in the

solution are purely coordinate singularities. This maybe done by examining amongst other

things geodesic motion. See for example [64] which discusses this extensively for brane

solutions. In EFT, we do not have at this point all the tools to make such a statement

with full confidence. Even the idea of a generalized notion of the Riemann tensor is not

unambiguously defined and geodesic motion in the extended space is also not something

yet explored. Thus although the solutions presented here would be singularity free in

relativity, until we have developed more analytic tools for extended geometries we can only

say that the solutions are suggestive of a singularity free generalized geometry in analogy

to the Riemannian case. It is hoped to explore these questions in a more rigorous fashion

in future work.
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A Embedding the Type II theories into EFT

In this appendix we show how the Type II theories can be embedded into EFT. The

difference between Type IIA and Type IIB arises from applying different solutions of the

section condition to the EFT equations.

– 25 –



J
H
E
P
0
5
(
2
0
1
5
)
1
3
0

A.1 The Type IIA theory

The ten-dimensional Type IIA theory is a simple reduction of eleven-dimensional super-

gravity on a circle. It is thus possible to embed it into EFT as well using the same solution

to the section condition given in section 2.2. Instead of a 4 + 7 coordinate split in the

KK-decomposition we now have a 4 + 6 split. The dictionary for embedding the Type

IIA fields into EFT can be obtained from the results of section 2.2 by simply splitting the

internal seven-dimensional sector into 6 + 1 by doing another KK-decomposition.

Under the split ym = (ym̄, yθ) with m̄ = 1, . . . , 6 and yθ = θ the coordinate of the

circle, the corresponding generalized coordinates read

Y M =
(

ym̄, yθ, ym̄n̄, ym̄θ, ym̄, yθ̄, y
m̄n̄, ym̄θ̄

)

. (A.1)

Noting that the internal metric gmn of our solution is diagonal, no KK-vector will arise

from this decomposition. We thus simply have

gmn = diag
[

e−φ/6ḡm̄n̄, e
4φ/3

]

(A.2)

where e2φ is the string theory dilaton of the Type IIA theory and the precise nummeri-

cal powers have been chosen to be in the Einstein frame. Inserting this ansatz into the

generalized metric for embedding supergravity into EFT (2.18) gives

MMN (ḡm̄n̄, φ) = ḡ1/2diag
[

ḡm̄n̄, e
3φ/2, eφ/2ḡm̄n̄,k̄l̄, e−φḡm̄n̄,

ḡ−1ḡm̄n̄, e−3φ/2ḡ−1, e−φ/2ḡ−1ḡm̄n̄,k̄l̄, e
φḡ−1ḡm̄n̄

]

(A.3)

where ḡ, ḡm̄n̄,k̄l̄ and ḡm̄n̄,k̄l̄ are defined in terms of ḡm̄n̄ as before (barred quantities are

six-dimensional). As in the eleven-dimensional case, we are not considering any internal

components of the RR or NSNS gauge potentials. The only non-zero components are the

one-form parts which are in the EFT vector potential Aµ
M as before. The vector is also

split under the above decomposition resulting in a component for each of the directions

given in (A.1)

{

Aµ
m̄,Aµ

θ,Aµ m̄n̄,Aµ m̄θ,Aµ m̄,Aµ θ,Aµ
m̄n̄,Aµ

m̄θ
}

. (A.4)

All these parts of Aµ
M encode a component of a field from the Type IIA theory except

Aµ m̄ which relates to the dual graviton. The first one, Aµ
m̄ is just the KK-vector of

the original 4 + 6 decomposition. The RR-fields C1, C3, C5 and C7 are encoded in Aµ
θ,

Aµ m̄n̄, Aµ
m̄n̄ and Aµ θ respectively where the latter two have to be dualized on the internal

six-dimensional space. The remaining two, Aµ m̄θ and Aµ
m̄θ contain the NSNS-fields B2

and B6, where again the second one has to be dualized. It is nice to see how the self-

duality of the EFT vector contains all the known dualities between the form fields in the

Type IIA theory.
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A.2 The Type IIB theory

Unlike the Type IIA theory, the Type IIB theory does not follow from the solution to the

section condition that gives eleven-dimensional supergravity. There is another, inequivalent

solution [7] which is related to a different decomposition of the fundamental representation

of E7. The relevant maximal subgroup is GL(6)× SL(2) and we have

56 → (6, 1) + (6, 2) + (20, 1) + (6, 2) + (6, 1) (A.5)

which translates to the following splitting of the extended internal coordinates

Y M = (ym̄, ym̄ a, ym̄n̄k̄, y
m̄ a, ym̄) (A.6)

where again m̄ = 1, . . . , 6 and a = 1, 2 is an SL(2) index. The middle component is totally

antisymmetric in all three indices. Note that the six-dimensional index is not the same as

in the 6 + 1 Type IIA decompostion above. Here we rather have a 5 + 2 split where the

yab (a single component) is reinterpreted as the sixth component of ym̄. Loosly speaking

this comes from the fact that Type IIB on a circle is related to M-theory on a torus. This

is made precise at the end of this section.

From [7], the generalized metric (again without any contribution from the internal

components of the form fields) for this case is given by

MMN (ḡm̄n̄, γab) = ḡ1/2diag
[

ḡm̄n̄, ḡ
m̄n̄γab, ḡ−1ḡm̄k̄p̄,n̄l̄q̄, ḡ

−1ḡm̄n̄γab, ḡ
−1ḡm̄n̄

]

(A.7)

where ḡmkp,nlq = ḡm[n|ḡk|l|ḡp|q] (in analogy to gmn,kl above) and γab is the metric on the torus

γab =
1

Im τ

(

|τ |2 Re τ

Re τ 1

)

, τ = C0 + ie−φ (A.8)

with the complex torus parameter τ (the “axio-dilaton”) given in terms of the RR-scalar C0

and the string theory dilaton e2φ. We will come back to this setup at the end of this section.

The EFT vector is also decomposed and has a component for each direction in (A.6)

{

Aµ
m̄,Aµ m̄ a,Aµ m̄n̄k̄,Aµ

m̄ a,Aµ m̄

}

. (A.9)

As before, these parts each encode a component of a field from the Type IIB theory except

Aµ m̄ which relates to the dual graviton. As always, Aµ
m̄ is the KK-vector of the original

4+6 decomposition. The components Aµ m̄ a and Aµ
m̄ a contain the SL(2) doublets B2/C2

and B6/C6 where the latter one needs to be dualized on the internal space. Here B denotes

a NSNS-field and C the dual RR-field. The component Aµ m̄n̄k̄ corresponds to the self-dual

four-form C4. Again it can be seen that the self-duality of the EFT vector gives the duality

relations between the form fields in the Type IIB theory.

Let us conclude by checking how the Type IIB theory on a circle is related to the eleven-

dimensional theory on a torus. Since both theories have the external four-dimensional

spacetime in common, we will only look at the internal sector. The seven dimensions are
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split into 5+2 such that the coordinates are ym = (yṁ, ya) where ṁ = 1, . . . , 5 and a = 1, 2.

Starting from (2.15), the generalized coordinates then decompose as

Y M =
(

yṁ, ya, yṁṅ, yṁa, yab, yṁ, ya, y
ṁṅ, yṁa, yab

)

. (A.10)

By noting that yab has only a single component (by antisymmetry), y12, these coordinates

can be repackaged into ym̄ = (yṁ, y12) and similar for the dual coordinates to make contact

with (A.6). We thus have

(6, 1) : ym̄ = (yṁ, y12)

(6, 2) : ym̄a = (yṁa, y
a)

(20, 1) : ym̄n̄k̄ = (yṁṅ, y
ṁṅ)

(6, 2) : ym̄a = (yṁa, ya)

(6, 1) : ym̄ = (yṁ, y12)

(A.11)

justifying the presence of the six-dimensional index m̄ above. Now turn to the seven-

dimensional metric gmn. Again omitting a KK-vector for cross-terms, the ansatz for the

decomposition is (a dot denotes a five-dimensional quantity)

gmn = diag
[

ġṁṅ, e
∆γab

]

(A.12)

with γab as given in (A.8). There the torus metric is conformal and has unit determinant.

For completeness, we include a volume factor for the torus in the discussion here, such that

the determinant of the 2 × 2 sector gab is det |e∆γab| = e2∆. This ansatz can be inserted

into the generalized metric for embedding supergravity into EFT (2.18) to give

MMN = ġ1/2diag
[

e∆ġṁṅ, e
2∆γab, e

∆ġṁṅ,ṗq̇, ġṁṅγab, e−∆γab,cd,

ġ−1e−∆ġṁṅ, ġ−1e−2∆γab, ġ−1e−∆ġṁṅ,ṗq̇, (A.13)

ġ−1ġṁṅγab, ġ
−1e∆γab,cd

]

.

It is easy to check that the object γab,cd = γa[cγd]b has only one component γ12,12 which

evaluates to 1 (and similarly for the inverse γab,cd). With this in mind, the components

of the generalized metric can be repackaged in terms of a six-dimensional metric gm̄n̄ =

e∆/2diag[ġṁṅ, e
−2∆] and determinant ḡ = e∆ġ just like the coordinates. The five parts of

the generalized metric thus read

(6, 1) : ḡm̄n̄ = e∆/2 diag
[

ġṁṅ, e
−2∆

]

(6, 2) : ḡm̄n̄γab = e−∆/2 diag
[

ġṁṅγab, e2∆γab
]

(20, 1) : ḡ−1ḡm̄k̄p̄,n̄l̄q̄ = e∆/2 diag
[

ġṁṅ,ṗq̇, e−2∆ġ−1ġṁṅ,ṗq̇

]

(6, 2) : ḡ−1ḡm̄n̄γab = e−∆/2 diag
[

ġ−1ġṁṅγab, e
−2∆ġ−1γab

]

(6, 1) : ḡ−1ḡm̄n̄ = e−3∆/2 diag
[

ġ−1ġṁṅ, ġ
−1e2∆

]

(A.14)

which is in agreement with (A.6). These identifications here are not obvious, but can be

checked by an explicit calculation of individual components.
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B Glossary of solutions

The purpose of this appendix is not only to collect all the fundamental, solitonic and

Dirichlet solutions of ten- and eleven-dimensional supergravities as they can be found in

any standard text book (for us Ortin’s book [66] was an invaluable source), but also to

present them with their fields rearranged according to a Kaluza-Klein coordinate split. It

is the decomposed fields that are extracted from the EFT solution in the main text. It also

highlights some interesting similarities between these solutions, such as that they all have

the same four-dimensional external spacetime under the decompostion.

The coordinates x̂µ̂ = (xµ, xm) are either split into 11 → 4 + 7 or 10 → 4 + 6 and the

corresponding KK-decomposition takes the form

ĝµ̂ν̂ =

(

gµν +Aµ
mAν

ngmn Aµ
mgmn

gmnAν
n gmn

)

(B.1)

where hatted quantities are ten- or eleven-dimensional and the internal sector is six- or

seven-dimensional. The off-diagonal or cross-term Aµ
m is called the KK-vector and will

mostly be zero except for the wave and the monopole. The four-dimensional external

metric gµν has to be rescaled by the determinant of the internal metric gmn to remain in

the Einstein frame. This is crucial for comparing solutions and takes the form

gµν → | det gmn|
1/2gµν . (B.2)

The power of the determinant in the rescaling depends on the number of external dimen-

sions and is 1/2 in our case.

The eleven-dimensional supergravity solutions are specified in terms of the metric ĝµ̂ν̂
and the three-form and the six-form potentials C3 and C6 which are duals of each other. In

the NSNS-sector, the fields of the ten-dimensional Type II solutions are the metric ĝµ̂ν̂ , the

string theory dilaton8 e2φ and the two-form and six-form Kalb-Ramond potentials B2 and

B6 which again are duals. In the RR-sector we have the Cp potentials with p = 1, . . . , 7 in

this paper. The odd ones belong to the Type IIA theory and the even ones to the Type

IIB theory.

From an EFT point of view, the external metric is simply the rescaled gµν . The form

fields and the KK-vector Aµ
m constitute the components of the EFT vector Aµ

M . The

generalized metric MMN is constructed from the internal metric gmn according to (2.18).

The dilaton φ in Type IIA or the axio-dilaton τ in Type IIB also enter the generalized

metric as in (A.3) and (A.7) respectively.

Each solution is presented with its full field content in terms of the harmonic function

H which has a functional dependence on the transverse directions of each solution. Then we

perform the explained KK-decomposition by picking time and three of the transverse direc-

tions to be in the four-dimensional external sector and the world volume directions together

with the remaining transverse ones to be in the six- or seven-dimensional internal sector.

8The constant part of the dilaton is denoted by e2φ0 where φ0 is a constant which can be set to zero if

convenient.
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As part of the decomposition the solution is smeared over those transverse directions in the

internal sector so that it is only localized in the three transverse directions in the external

sector, i.e. H = 1 + h/|r| with r2 = δijw
iwj and the w’s denote these three directions.

A final note on the notation: t is the time coordinate, z is the “special” direction of

the wave and the monopole, ~x(p) denotes the p world volume directions of a p-brane and

~y(D−1−p) the remaining D− 1− p transverse directions, the first three of which are usually

taken to be in the external sector as explained above, i.e. wi = yi for i,= 1, 2, 3.

B.1 Wave, membrane, fivebrane and monopole in D = 11

The wave — WM.

ds2 = −H−1dt2 +H
[

dz − (H−1 − 1)dt
]2

+ d~y 2
(9)

= (H − 2)dt2 + 2(H − 1)dtdz +Hdz2 + d~y 2
(9)

H = 1 +
h

|~y(9)|7
.

(B.3)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm =
(

z, ~y(6)
)

gmn = diag[H, δ6] , det gmn = H

gµν = diag[−H−1/2, H1/2δij ] , At
z = −

(

H−1 − 1
)

.
(B.4)

The membrane — M2.

ds2 = H−2/3
[

−dt2 + d~x 2
(2)

]

+H1/3d~y 2
(8)

Ctx1x2 = −(H−1 − 1), Ciy4y5y6y7y8 = Ai

H = 1 +
h

|~y(8)|6
.

(B.5)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm =
(

~x(2), ~y(5)
)

gmn = H1/3diag
[

H−1δ2, δ5
]

, det gmn = H1/3

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.6)

The fivebrane — M5.

ds2 = H−1/3
[

−dt2 + d~x 2
(5)

]

+H2/3d~y 2
(5)

Ctx1x2x3x4x5 = −
(

H−1 − 1
)

, Ciy4y5 = Ai

H = 1 +
h

|~y 2
(5)|

3
.

(B.7)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm =
(

~x(5), ~y(2)
)

gmn = H2/3diag
[

H−1δ5, δ2
]

, det gmn = H−1/3

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.8)
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The monopole — KK7.

ds2 = −dt2 + d~x 2
(6) +H−1

[

dz +Aidy
i
]2

+Hd~y 2
(3)

= −dt2 + d~x 2
(6) +H−1dz2 + 2H−1Aidy

idz +H
(

δij +H−2AiAj

)

dyidyj

H = 1 +
h

|~y(3)|
, ∂[iAj] =

1

2
ǫij

k∂kH .

(B.9)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm =
(

z, ~x(6)
)

gmn = diag
[

H−1, δ6
]

, det gmn = H−1

gµν = diag
[

−H−1/2, H1/2δij

]

, Ai
z = Ai .

(B.10)

The M2/M5 bound state.

ds2 = H−2/3Ξ1/3
[

dt2 + d~x 2
(2)

]

+H1/3Ξ1/3d~y 2
(5) +H1/3Ξ−2/3d~z 2

(3)

Ctx1x2 = −
(

H−1 − 1
)

sin ξ, Ciy4y5z1x2z3 = Ai sin ξ

Ciy4y5 = Ai cos ξ, Ctx1z2z1x2z3 = −
(

H−1 − 1
)

cos ξ

Cz1z2z3 = −(H − 1)Ξ−1 sin ξ cos ξ

H = 1 +
h

|~y(3)|
, Ξ = sin2 ξ +H cos2 ξ .

(B.11)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm =
(

~x(2), ~y(2), ~z(3)
)

gmn = H1/3Ξ1/3diag
[

H−1δ2, δ2,Ξ
−1δ3

]

, det gmn = H1/3Ξ−2/3

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.12)

B.2 Wave, String, Fivebrane and Monopole in D = 10

The wave — WA/B.

ds2 = −H−1dt2 +H
[

dz − (H−1 − 1)dt
]2

+ d~y 2
(8)

H = 1 +
h

|~y(8)|6
, e2φ = e2φ0 .

(B.13)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm̄ =
(

z, ~y(5)
)

ḡm̄n̄ = diag[H, δ5] , det ḡm̄n̄ = H

gµν = diag
[

−H−1/2, H1/2δij

]

, At
z = −

(

H−1 − 1
)

.
(B.14)

The fundamental string — F1.

ds2 = H−3/4
[

−dt2 + dx2
]

+H1/4d~y 2
(8)

Btx = −(H−1 − 1), Biy4y5y6y7y8 = Ai

H = 1 +
h

|~y(8)|6
, e2φ = H−1e2φ0 .

(B.15)
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KK-decomposition: xµ =
(

t, ~y(3)
)

and xm̄ =
(

x, ~y(5)
)

ḡm̄n̄ = H1/4diag
[

H−1, δ5
]

, det ḡm̄n̄ = H1/2

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.16)

The solitonic fivebrane — NS5.

ds2 = H−1/4
[

−dt2 + d~x 2
(5)

]

+H3/4d~y 2
(4)

Btx1x2x3x4x5 = −
(

H−1 − 1
)

, Biy4 = Ai

H = 1 +
h

|~y(4)|2
, e2φ = He2φ0 .

(B.17)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm̄ =
(

~x(5), y
4
)

ḡm̄n̄ = H3/4diag
[

H−1δ5, 1
]

, det ḡm̄n̄ = H−1/2

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.18)

The monopole — KK6A/B.

ds2 = −dt2 + d~x 2
(5) +H−1

[

dz +Aidy
i
]2

+Hd~y 2
(3)

H = 1 +
h

|~y(3)|
, e2φ = e2φ0 .

(B.19)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm̄ =
(

z, ~x(5)
)

ḡm̄n̄ = diag
[

H−1, δ5
]

, det ḡm̄n̄ = H−1

gµν = diag
[

−H−1/2, H1/2δij

]

, Ai
z = Ai .

(B.20)

B.3 D-Branes in D = 10

The Dp-brane for p = 0, . . . , 6.

ds2 = H
p−7

8

[

−dt2 + d~x 2
(p)

]

+H
p+1

8 d~y 2
(9−p)

Ctx1...xp = −
(

H−1 − 1
)

, Ciy4...y9−p = Ai

H = 1 +
h

|~y(9−p)|7−p
, e2φ = H

3−p
2 e2φ0 .

(B.21)

KK-decomposition: xµ =
(

t, ~y(3)
)

and xm̄ =
(

~x(p), ~y(6−p)

)

ḡm̄n̄ = H
p+1

8 diag
[

H−1δp, δ6−p

]

, det ḡm̄n̄ = H
3−p
4

gµν = diag
[

−H−1/2, H1/2δij

]

.
(B.22)

Note: in Type IIB the D1-brane forms an S-duality doublet with the F1-string. This means

they are identical solutions up to an SL(2) transformation and their dilatons are inverses

of each other. The same applies for the D5-brane and the NS5-brane.
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