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1 Introduction

An amazing fact ofN = 4 SYM is that the planar diagrams lead to an integrable model that

computes anomalous dimensions of single trace operators (see [1] for a detailed review). It is

standard to think about this integrable model as a set of defects scattering from each other,

defects that are interpreted as excitations of an infinitely long ferromagnetic ground state

which preserves half the supersymmetries (this is an asymptotic Bethe ansatz [2]). The

theory then receives finite size corrections when the chain becomes finite in length rather

than infinitely long. This is a rather natural geometric starting point of view considering

the Penrose limit in the AdS5 × S5 dual geometry [3].

Within this paradigm one can consider an infinite spin chain limit and study the

properties of these excitations individually. Beisert [4] has argued that in this limit the

PSU(2, 2|4) symmetry algebra of the original theory is broken to a SU(2|2)× SU(2|2)⋉R

subgroup, and that moreover the excitations carry the quantum numbers of a central ex-

tension of this subalgebra. The central charge essentially measures the quasi-momentum

of the excitation on the chain. The central charge describes excitations even though the

original PSU(2, 2|4) does not admit a central extension. The way this works out is that for

a closed string the net central charge vanishes (is confined) due to the level matching con-

straints. From this point of view the additional central charge seems like an advantageous

auxiliary construction.

Consider now a theory of open superstrings in flat Minkowski space. This requires the

introduction of D-branes [5, 6]. The lowest lying string modes stretching between two such

D-branes (if they are flat, parallel and separated from each other) correspond to a massive

short representation of the unbroken supersymmetry of the D-brane configuration. These

representations require a central charge extension of the unbroken supersymmetry algebra

in order to be short, but none of the closed strings will carry that central charge. The

central charge only becomes physical in the open string sector (or when we compactify the

theory on a circle), and this can be argued to be related to additional topological charge [7].

The additional charge is the electric charge carried by the end-points of the string, which

can only become measurable in the field theory limit when we spontaneously break the
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non-abelian gauge symmetry on the stack of the branes. This corresponds to the Coulomb

branch of the maximally supersymmetric Yang Mills theory on the world volume of the

D-branes. From here on we will assume that these D-branes have a 3 + 1 dimensional

worldvolume, as these are the only examples that arise in the context of this paper. In this

sense they have N = 4 Supersymmetry in 3 + 1 dimensions.

In this letter we show that the central charge of Beisert and the central charge of the

Coulomb branch of the N = 4 SYM are really the same object. More precisely, the central

charge of the Coulomb branch of N = 4 SYM appears as a limit of the central charge

of Beisert. Although this identification of the two central charges has been suggested

before [8], the arguments there are heuristic. In this paper we can make the argument very

precise. In order to do this, one has to show that there is an open string version of the

central charge of Beisert, realized with appropriate boundary conditions, which is exactly

realized as the Coulomb branch of the N = 4 SYM theory dual theory. The main part

of the discussion is concerned with taking the flat space limit appropriately, so that even

though all states in the N = 4 SYM have a confined central charge on the sphere, one

can argue that the compensating charges for a particular state become hidden at infinity

and are essentially decoupled from each other. This way, one can ignore the interactions

between them and treat them in isolation, where the central charge becomes indispensable.

2 The one loop open spin chain and the central charge

We want to make the central charge of Beisert physical in the gravity dual theory, rather

than confined. We will thus require the central charge to be sourced by D-branes, see-

ing as the spin chain model is the dual description of fundamental strings on the bulk

geometry. We want the central charge to be carried by a D-brane object that preserves

the same amount of supersymmetry as the ferromagnetic ground state of the spin chain.

Under those conditions the unbroken symmetry coincides with one studied by Beisert. The

ferromagnetic ground state preserves half the supersymmetries. The corresponding half

BPS configurations in field theory are built from a single complex scalar degree of freedom

which we call Z (see [3, 9] for conventions).

The D-branes that preserve this subgroup of the symmetry are provided by giant

gravitons [10] and the so called dual giant gravitons [11, 12]. Both of these correspond

to D3-brane configurations in the dual AdS5 × S5 geometry, and their field theory duals

are known [13, 14]. They are generally written in terms of Young tableaux made of the

field Z. The formalism to attach open strings to the D-branes in the dual field theory was

argued for in [15], which again uses decorated young tableaux to describe the states. The

formalism makes apparent that the D-branes are spatially compact: one can not put a

single string between two of them. After all, the endpoints of the strings are charged with

respect to the gauge degrees of freedom on each such D-brane. Extra ‘return’ strings are

always required to cancel the charge. Eventually we want to argue that we can hide these

strings at infinity, for any value of g2YMN by taking an appropriate scaling limit.

The one loop computations for the open spin chain Hamiltonian in the SU(2) sector

depend on if we use regular giant gravitons, or dual giant gravitons [16] (see also [17]).
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They can be written as follows

Hgiant = g2YMN
[

(B − a†1)(B
† − a1) + (a†1 − a†2)(a1 − a2) + . . .

]

(2.1)

where B,B† are realized as a truncated harmonic oscillator algebra. These are also available

at two loop order [20]. This means B†|n〉 = N−1/2
√
n+ 1|n + 1〉, but the range of n is

restricted from above by N , the rank of the gauge group, plus corrections of order one

depending on how many giant gravitons there are. Or similarly,

Hdualgiant = g2YMN
[

(A† − a†1)(A− a1) + (a†1 − a†2)(a1 − a2) + . . .
]

(2.2)

where again A†|n〉 = N−1/2
√
n+ 1|n + 1〉 where the range of n is bounded below by N

(also with corrections of order one depending on how many giant gravitons there are). This

repackages various square roots that appear in the computation in terms of the algebra

of raising and lowering operators for a harmonic oscillator. Our notation is such that

n = N − b0, or n = N + a0 in the notation of [16], where this was explicitly computed, but

not written in terms of ordinary harmonic oscillator algebras. The oscillators ai commute

with each other, but they realize a Cuntz algebra [18]. The factors of N−1/2 in A,B are

convenient in order to get all the factors of N outside the 1-loop effective Hamiltonian.

Sets with many open strings and giants can be analyzed in this formalism (see [19] and

references therein).

In the works [9, 20, 21], the operators B,B† were effectively replaced by c-numbers

that describe the collective coordinate of the giant gravitons. These collective coordinates

live on a disk in the complex plane of radius one. The factors of N−1/2 on the oscillators

indicate that the corresponding collective coordinate populates preferentially the values of

n ≃ O(N). A simple way to understand what this means is to assume that approximately

B|ξ〉 ≃ ξ|ξ〉 (2.3)

so that |ξ〉 is like a coherent state of a harmonic oscillator. Solving these equations (without

assuming the truncations) we find that

|ξ〉 ≃
∑ (

√
Nξ)n√
n!

|n〉 (2.4)

and then we impose the truncation |n〉 = 0 for n > N . This is a rewriting of the results

in [9] in this harmonic oscillator language. In that work the starting point was completely

different and the harmonic oscillator language was derived after the coherent states were

postulated. The truncation means that we can only trust the coherent states so long as

|ξ| < 1, and one can get near the edge to about order N−1/2 depending on the error one

is willing to tolerate. This is exponentially suppressed on the distance to the edge of the

disk. This point of view realizes very explicitly the holes in the free fermion picture droplet

of the Half-BPS states [22].

We now want to complete the picture above for the coherent states of the fermions in

the fermion droplet picture, rather than the holes. This is, for the dual giant states. The
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answer is pretty straightforward. We want to convert the operators A,A† to c-numbers.

We do this by solving the following equation

A|Z〉 = Z|Z〉 (2.5)

The solution is

|Z〉 ≃
∑ (

√
NZ)n√
n!

|n〉 (2.6)

and the only difference with a regular harmonic oscillator coherent state is that we need

to truncate n ≥ N . Again, just as in [9], one can compute the norm of the state

〈Z|Z〉 =
∑

n≥N

|NZ|n
n!

≃ exp(|NZ|2) (2.7)

and the approximation to the norm of a regular coherent state of the harmonic oscillator

(the right hand side) is good only if |Z| > 1 + O(1/
√
N). This is, the coherent state we

find is very similar to a coherent state of an ordinary harmonic oscillator only so long as

the collective coordinate Z lives on the complex plane with the unit circle removed. It is

easy to see that the energy (above the ground state) is then

∆ = 〈NA†A−N〉 = 〈n−N〉 = N(|Z|2 − 1). (2.8)

The factor of N in front of |Z|2 − 1 can be interpreted as a tension, and usual large N

counting indicates that this corresponds to a D-brane state [9]. Here we use the convention

that the energy on the sphere is related to the dilatation operator of the Euclidean field

theory, which is why we called it ∆. Notice that this structure of coherent states was

conjectured also in [23].

Once we replace the A,A† operators by c-numbers, the giant gravitons and dual gi-

ant gravitons appear essentially on the same footing on the boundary conditions. In the

works [20, 21] it was argued that the Beisert central charge [4] for an open string state

between giants was exactly ξ− ξ̃. Now we can get Z−Z̃ for open strings between two dual

giant gravitons or all possible combinations of dual-giant and giant states on both ends.

What determines if we have a giant or dual giant is if the collective coordinate appearing

in the spin chain is inside the unit radius disk, or outside of it. Given such a state, on a

spin chain with k sites, meaning there are k+1 units of SO(4) charge, we expect an energy

of the form

∆− J =

√

(k + 1)2 +
g2YMN

4π2
|ξ − ξ̃|2 (2.9)

This is a generalization of the giant magnon bound state dispersion relation [24] (see [21]

for the choice of conventions). We can clearly now replace ξ or ξ̃ by Z or Z̃ or both. This

is essentially identical to a relativistic dispersion relation

E ≃
√

p2 +m2 (2.10)

where m ∝ |ξ− ξ̃| and p ∝ k. In this setup k is quantized and it corresponds to the charge

under the SO(4) R-charge of the theory, but if one can take k → ∞ appropriately and we
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rescale it, we can replace it by a continuous variable. Surprisingly, this is also argued to be

the correct dispersion relation by doing a calculation that assumes we are in the Coulomb

branch of N = 4 SYM [8] in a saddle point limit (following ideas in [28]), but where now k

plays the role of an angular momentum on the boundary S3. If we think of these as open

strings ending on D3-brane, the BPS states corresponding to W-bosons can only carry

momentum along the directions of the brane, but not also transverse to it. Both types of

states can not be BPS simultaneously. This presents a puzzle that we will resolve later in

the paper.

3 Dual giant gravitons and the Coulomb branch

As noticed in [12, 22], a single dual giant graviton state corresponds to a classical symmetry

breaking pattern SU(N) → SU(N −1)×U(1). When we quantize the classical physics and

include the quantum effects, the truncation of the lower levels for the oscillator pair A,A†

where the levels for n < N are missing can be interpreted as a Fermi exclusion principle

due to the free fermion description of the BPS states [22]. As such, the oscillator pair A†, A

can be thought of as being the oscillator degrees of freedom of the eigenvalues of the field Z

directly and don’t need any correction. With these conventions Z acts as a raising operator

Z ≃ diag(
√
NA†

i + . . . ). To do this we have a diagonal ansatz for Z, where the eigenvalues

are fermionic degrees of freedom in a harmonic oscillator. Hence they are represented by an

ordinary algebra of states in a harmonic oscillator. To describe physical states, one needs

to impose the Fermi exclusion principle by hand: writing completely antisymmetric wave

functions on the Hilbert space of states. The lowering operator is in the conjugate field

Z̄ ≃ diag
√
NAi+ . . . . From here, the expectation values of 〈Tr(Z̄k)〉 = ∑

i(
√
NZi(t))

k can

be read directly from the collective coordinates if we have many such giants. We thus find

that the c-numbers Z(t) can be interpreted as the classical field solutions for the equations

of motion of the field Z itself. The only caveat in interpreting this immediately as the

Coulomb brach is that the Z depend on time as Z(t) ≃ Z(0) exp(it), and we find ourselves

in a compact space: this is the correct result for field theory on an S3 × R geometry, not

infinite flat space.

There is a simple way to recover the Coulomb branch: take a limit where the mass

scales of any interesting process is much higher than the scale determining the radius of the

sphere S3. At the same time, we want only degrees of freedom associated to field theory

in the Coulomb branch of an U(2) gauge theory to survive, but strings should. This is,

we want to take a limit where |
√
NZR| → ∞. Here, R is the radius of the sphere (it has

been set to one in the convention so far). In this limit, the vacuum expectation value of

the field Z is going to infinity. We want to change units so that the value of the field is of

order one. This means we can think equivalently as the field being fixed in size, but taking

R → ∞ instead. In such a situation, we are also rescaling the time scale for a process to

be that associated to the scale of the expectation value of the field, rather than the time

that it takes to go around the sphere on the S3 ×R geometry. Under such conditions, the

times scales are short, and the effective frequency that controls the evolution of the field

Z goes to zero. We can argue that we are therefore in a static situation for the field, on
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the Coulomb branch. For such short timescales, an excitation at one location of the sphere

has no time to communicate to a return string that is located close to the opposite side of

the sphere. The return string is essentially hidden at infinity after the rescaling. The local

excitations can be addressed in isolation ignoring the global charge constraint. Now, the

central charge has become completely physical.

If we have two such eigenvalues with a collective coordinate turned on, we have broken

SU(N) → SU(N − 2)× U(1)× U(1). A string stretching between the two dual giants will

have a Beisert central charge Z1 − Z2, and it can be thought of as an off-diagonal field of

SYM charged under both U(1). The mass we associate with it is gYM

√
N(Z1 −Z2), which

we want to be large (much larger than R−1, even for arbitrarily small gYMN). However, the

SU(N−2) still present suggests that we have to think about the problem in terms of strong

coupling physics. To decouple the degrees of freedom charged under both U(1)×U(1) from

the rest , we want the other off-diagonal degrees of freedom to be much more massive. This

is, we want to take the limit in such a way that

|(Z1 −Z2)|
|Z1|

→ 0 (3.1)

Moreover, we still need to get rid of the possibility of excited strings between the dual

giants. This requires taking this limit in a more careful fashion. We want the two dual

giants to be “close” to each other in the AdS geometry. Closer than the local string scale

at the location of the branes. This requires translating the Z coordinates to global AdS

coordinates. Following [12], if we have an AdS metric of the form

ds2 = − cosh2 ̺dt2 + d̺2 + sinh2 ̺dΩ2
3 (3.2)

=
1

cos2 ρ
(−dt2 + dρ2 + sin2 ρdΩ2

3) (3.3)

a dual giant graviton with momentum L is located at a radial position

tan ρ = sinh ̺ =
√

L/N =
√

|Z|2 − 1 (3.4)

Here we are using the fact that ∆ = L = N |Z|2 −N . This means that the redshift factor

is cosh ̺ = |Z| ≃ |Z1| ≃ |Z2|, and for the branes to be closer than the string scale, the

energy of a string suspended between them needs to be lower than the local string length.

This means that we want to take the limit such that

1 ≪ gYM

√
N |Z1 −Z2| ≪ ℓ−1

s cosh ̺ = (g2YMN)1/4|Z| (3.5)

this only modifies equation (3.1) at strong t’Hooft coupling. Obviously both limits can

be realized by first choosing |Z1 − Z2| sufficiently large, and then choosing |Z| to be that

much larger. Notice that in this limit the branes can also be considered to be static. This

is because the proper velocity of the branes on a rest frame located at the AdS position of

the brane is vproper = 1/ cosh(̺) → 0, an effect due to the blueshift of proper time.

In this limit, at energies of order gYM

√
N |Z1 − Z2| there is no way to excite stringy

states that are not low energy W-bosons. Similarly, we can argue that there is no back
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reaction so long as the energy of these W bosons is much smaller than the energy of the

brane gYM

√
N |Z1 − Z2| ≪ L ≃ N |Z|2. Since the right hand side grows quadratically in

|Z|, there is always a sufficiently large value of Z for which the energy of the W-bosons

is subleading, even at finite values of gYM. Any calculation done in this double scaling

limit for dual giants can be considered to be exactly in the Coulomb branch of N = 4

SYM in flat space. Here we now see the identification of the central charge of Beisert as

being identical in value to the central charge of N = 4SYM, even at finite coupling in the

appropriate limit.

4 Walls of stability

The next question that needs to be asked is if the BPS states with given quantum numbers

exist or if they don’t. We will address this explicitly in the SU(2) sector at weak coupling,

and will conjecture what the rules for the other states are. The key observation is that the

ground state of the spin chain Hamiltonian described by (2.1) and (2.2) can be computed

in the presence of coherent states for giants or dual giants, along the lines of [20].

H1−loop = g2YMN

[

(w∗−a†1)(w−a1)+
k−1
∑

i=1

(a†i −a†i+1)(ai−ai+1)+(a†k− w̃∗)(ak− w̃)

]

(4.1)

The idea is to introduce coherent states for the Cuntz oscillators ai, such that

ai|zi〉 = zi|zi〉 (4.2)

Substituting in the Hamiltonian, the energy becomes a simple quadratic form

〈H1−loop〉 = g2YMN

[

(w∗ − z∗1)(w − z1) +
k−1
∑

i=1

|zi − zi+1|2 + (z∗k − w̃∗)(zk − w̃)

]

(4.3)

which can also be written as

〈H1−loop〉 = g2YMN

k−1
∑

i=0

|zi − zi+1|2 (4.4)

with z0 = w and zk+1 = w̃. The energy is minimized if zi − zi+1 = zi−1 − zi for all

i = 1, . . . k. This actually corresponds to an exact eigenstate of the Hamiltonian, with the

minimal value of the energy. The values of zℓ are then determined readily as

zℓ = w +
w̃ − w

k + 1
ℓ (4.5)

and they interpolate linearly between w, w̃. The central charge of the state would be

characterized by w − w̃.

In terms of an orthonormal basis of occupation number, the coherent states for the

Cuntz oscillator are given by

|z〉i ∝
∞
∑

s=0

zsi |s〉 (4.6)
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The state has finite norm only if
∑ |zi|2s < ∞. A would-be ground state is therefore

normalizable only if the |zi| < 1 for all i = 1, . . . , k. If we fix w, w̃, it is clear that when

both w, w̃ are inside the unit disk (including the edge), that all zi are inside the unit disk.

However, if one or both of w, w̃ are outside the unit disk, there always exists a sufficiently

large k for which at least one |zℓ| > 1 (usually many). How many such states have that

property for a fixed k depend on the positions of w, w̃ in the complex plane. As we move

them (by choosing different giant gravitons or dual giant gravitons), a zi might cross from

being inside the unit disk to going outside it and the state disappears. It is interesting to

characterize that motion in terms of a physical observable, rather than the norm of the

coherent state which can always be chosen to be equal to one before taking the limit.

The simplest way to do so is to compute the expectation value of the occupation

number operator for a site i on such a coherent state,

〈N̂i〉 = Nz

∞
∑

s=0

s|zi|2s =
|zi|2

(1− |zi|2)
(4.7)

This evaluates to a number greater than zero if |zi| < 1, and it becomes infinity when

|zi| → 1. Beyond that, the value can be analytically continued for |zi| > 1, but it is

negative in value, which can not be possible (the number operator is positive on the Hilbert

space of states). The way this happens is that a quantum number for a state becomes

infinitely large. This is reminiscent of other setups where BPS states are lost when they

become physically infinitely large [25], where a naive analysis would allow an analytic

continuation that makes the state unphysical by having a negative size. The condition of

positive size then becomes a condition that determines if the corresponding state is stable

or unstable. What should happen when the system stops having a BPS ground state is

that supersymmetry is broken. It is reasonable to expect that in this case the spectrum

of the spin chain becomes continuous , along the lines of [26]. The transition that should

get rid of the BPS state is that the gap from the ground state to the continuum closes. In

the full N = 4 SYM the spectrum of energies will be eventually discrete. This only comes

about from considering back reaction of the D-branes in which the strings end and this

is subleading when counting powers of N . The stability question of these magnon is also

very reminiscent of the stability problem for ‘twisted magnons’ in N = 2 theories [27].

A rather important question is what to do with the SL(2) sector, which is the sector

that gives rise to the results in [8]. The simplest way to think about it is to go to the

plane wave limit [3]. In that limit the SO(4) of R-charge and the SO(4) of rotations on

the S3 appear on the same footing. Indeed, even the free fermion picture — as realized

in supergravity– simplifies [29], and the supergravity theory in this limit treats holes and

fermions exactly on the same footing. The natural conjecture is that what we have been

able to show in the SU(2) sector should be copied to the SL(2) sector. As we have seen,

the stability of BPS states are determined by the physics near the edge of the unit circle,

and when we zoom on this edge we get the plane wave limit. For two giants that are

holes, we get this sequence of intermediate values of zi on the filled area of the droplet.

It should be the case that for two giants that are fermions, (dual giants) we get a similar

sequence of intermediate values of zi describing the state on the unfilled area of the droplet,
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even though it is not clear how to interpret them in terms of coherent states of the Cuntz

oscillator. Such a system should describe the BPS (bound) states in the SL(2) sector. The

classical string solutions associated to such BPS states should be very similar to the giant

magnons [30] and their dyonic counterparts [31], but they should reside in AdS space times

a circle rather than the sphere times time. It is likely that such states can be related to the

spike solutions in the string sigma model [32], but they do not have a logarithmic correction

to the energy in terms of the spin like those that show up in purely AdS solutions [33].

This seems to be related to the intuition that spinning them faster does not seem to get

them closer to the boundary. The study of such string solutions is beyond the scope of the

present paper.

These states will only be bound because of the presence of the central charge and the

finite length of the string. After all, the naive interaction in the sigma model on departing

from the plane wave limit between SL(2) impurities is repulsive, due to the AdS being

negatively curved, whereas in contrast the five sphere is positively curved and the SU(2)

sector interaction is attractive. When these other BPS states in the SL(2) sector cross into

the filled area they disappear. What this means is that the states that have the correct

energy in [8] do not really exist as normalizable bound states. They exist only in the

Coulomb branch without taking into account the non-trivial quantum corrections from the

fermion droplet.
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