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1 Introduction

There has been much work in the last 10 years deriving gauged supergravity theories in
four dimensions from string theory and M-theory. Such theories have applications to string
phenomenology, holography and black hole physics. The canonical vacua in N' = 2 gauged
supergravity are the A" = 2 AdS, vacua; the equations for such vacua are straightforward
to derive, one can find recent discussions in [1-3] which we build upon in the current work.

The essential step in gauging supergravity theories is to charge the gravitino under
isometries of the vector scalar manifold M, and the hypermultiplet scalar manifold Mj,.
We will consider Abelian gaugings in this work so that the only other charged fields are the
hypermultiplets. Certainly one should understand these global symmetries before making
them local and as luck would have it, the symmetries of very special Kahler manifolds and
quaternionic Kéhler manifolds in the image of a c-map have been studied in great depth
some time ago by de Wit and Van Proeyen [4-6]. In the current work we utilize these
descriptions of symmetric quaternionic Kahler manifolds to compute the Killing prepoten-
tials, a key ingredient in constructing gauged supergravity theories.

An interesting feature of quaternionic Kéhler manifolds is that the curvature forms
need not be exactly invariant under a given Killing vector but may transform under the
SU(2) holonomy group. We find that in order to have N’ = 2 AdS, vacua, one must gauge
along an isometry k& which induces such an SU(2) transformation. In the language of the
text below, this implies there is a non-trivial compensator W;7. Notably, the vector fields
which generate the Heisenberg algebra do not generate such transformations and are thus
not sufficient for the existence of N'= 2 AdS, vacua. Nonetheless there are large numbers
of N'=1 AdS4 vacua found by gauging the Heisenberg algebra [7, 8].

We also analyze the conditions for quarter BPS black hole horizons of the form AdSs x
¥, where ¥, is a Riemann surface of genus g. For the same vacua but in Fl-gauged



supergravity, the algebraic BPS equations have been solved [9] and the entropy found to
be related to the famous quartic invariant. We repeat this analysis for Abelian gaugings
of hypermultiplets, and again find that the quartic invariant plays a prominent role.

The work of [4-6] considered homogeneous quaternionic manifolds which lie in the
image of a c-map. This later condition is tantamount to the fact that they arise in three
dimensions as the moduli space of vector in a dimensional reduction from four dimensions.
In particular the symmetries of such manifolds were classified. We build on this work while
just considering the symmetric quaternionic Kahler manifolds. While all homogeneous
spaces are cosets, the condition of being symmetric means that all possible symmetries
are realized and they form a semi-simple Lie algebra. We add a conceptual point to the
analysis of [4-6]; the so-called hidden isometries must act symplectically on the base special
Kéhler manifold, this is not at all evident from the formulae of de Wit and Van Proeyen.
By restricting to symmetric spaces we are able to demonstrate this explicitly although
generalizing this to the homogeneous case is an interesting future step.

This paper is organized as follows. In section 2 we review aspects of N' = 2 AdSy
vacua as well as quarter BPS black hole horizons. In section 3 we review aspects of
special Kéhler geometry which we will need. In section 4 we present the symmetries of
symmetric quaternionic Kéhler manifolds. In section 5 we compute the prepotentials and
compensators for all symmetries on these quaternionic Kéahler manifolds. In section 6 we
discuss the constraints on the embedding tensor from locality and in section 7 we discuss
two examples from M-theory which utilize M}, = G(2)/ SO(4).

Note added: as this paper was being prepared for submission, we were made aware of
a recent article [10] which overlaps with our work. In particular they also compute the
Killing prepotentials associated to symmetric quaternionic Kéhler manifolds.

2 BPS vacua in N = 2 Gauged Supergravity

In this section we review some basic facts about gauged N' = 2 supergravity with n,-vector
multiplets and np-hypermultiplets. We then discuss the conditions for AdS4 vacua with
eight supercharges and AdS, x X, vacua which preserve four supercharges.

The scalar kinetic terms respect a division into hyper-scalars {¢“|u =1,...,4n;} and
vector-scalars {7/ = a7 +iy/|j =1,... ,n,}:
Mscalar = Mv X Mh (21)

where M, is a special Kéhler manifold and My, is a quaternionic Kéhler manifold. The
gauging procedure involves minimally coupling certain scalar fields with respect to a cho-
sen set of isometries of Mgcaar and in this article we will exclusively consider gauging
Abelian isometries on My. Accordingly, the hyper-scalars appear in the action with the
covariant derivative

Dq" = dg" + ky AD (2.2)

where {A*A = 0,...,n,} are the vectors fields including the graviphoton. For each
A, the vector field kn = k{0, on My, is Killing, one can thus associate to it a Killing



prepotential P*:
kaoQ* = —-DPY (2.3)

where 07 is the triplet of curvature two-forms as described in appendix B. Much as the
Killing vector provides the charge for the hyper-scalars, this Killing prepotential provides
the charge for the doublet of gravitinos ¥4:

DV = dVi + PYA™N(0%¢) U5 (2.4)
Our metric ansatz is
dsi = —e?Vdt* + e dr? + 2V Va2, (2.5)

dEZ is the uniform metric on Riemann surfaces

S2 k=1
Yy =1 T2 k=0 (2.6)
H2/T wk=—1

where k is the curvature of X, and I is a Fuchsian group which do not enter in our
local analysis.
On AdS, and AdS> x ¥4 vacua these functions U and V' are respectively

2

r r
AdS, : V= Vi=— 2.7
4 € Ra € R, ( )
v_7T" v R
AdSy x 3 e =R e =R T. (2.8)
The gauged fields give rise to the charges
1 1
pA:4/ FA, qA:Z G (2.9)
Q Eg d EQ
where FA = dAM and the dual field strength is
Gpr = RasF™ — Tzs + F™, (2.10)

the matrices R and Z being defined in the appendix A.

2.1 Magnetic gaugings

A key step in the development of gauged supergravity is making symmetries local with
respect to magnetic gauge fields in addition to the more canonical electric gauge fields. In
general this can be neatly formulated in terms of the embedding tensor [11, 12] but since
we will be restricting to Abelian gaugings we find it clearer to merely include the magnetic
Killing vectors E}{ and magnetic Killing prepotentials ]5”", we use the following notation for
the symplectic vector of gauging parameters

T, A px,A
o = (’ﬂ ) e (P ) . 1)
kX P



In section 6.1 we will enforce a particular set of constraints on these objects to ensure
that there exists a symplectic frame where all the gaugings are electric [11]. If one is willing
to consider an arbitrary prepotential F one could thus equally well consider solely electric
gaugings from the outset but we will allow for magnetic gaugings and restrict the class of
prepotentials F which we consider.

2.2 N =2 AdS,4 equations

We first analyze the algebraic equations for N' = 2 AdS, vacua with radius R and constant
scalar fields:

(P*,D;V) =0 (2.12)
L7 % (2.13)
(K", V) =0. (2.14)

where we have used the fairly standard definition
LY = (P*, V). (2.15)

To simplify these equations somewhat we first perform a symplectic rotation to a frame
where P? is purely electric (i.e. P{ = 0), then (2.12) reduces

PEfA=0. (2.16)
This implies that for each z, P} is orthogonal to fZ-A for each 7 and thus

Py =Py (2.17)
for some functions ¢”(¢"). A local SU(2)-transformation which can be used to set

=c2=0. (2.18)

We emphasize that (2.17) must be enforced for by solving (2.16), it is not a generic conse-
quence of the theory.
As a result (2.12)-(2.14) become

P = —2Im [LV)] (2.19)
et
= 2.2
£=— (2.20)
(K*V) =0 (2.21)
where we have introduced
P=P, L=L5 (2.22)

In this work, our strategy to solve these equations will be to first recognize that (2.19)
and (2.20) are identical in form to the AdS, equations in FI-gauged supergravity [13], which



are in turn identical in form to the attractor equations in ungauged N' = 2 supergravity [14,
15] and can be solved quite explicitly [16]. When M, is a symmetric space as well as a very
special Kéhler manifold, we can use the identity (A.17) and (2.19) to transform (2.21) into

0 = Iy(K",P,P,P) ~ V'I4(P) (2.23)

which is 4ny, equations depending only on the hypermultiplet scalars.

One objective of our current work is to clarify (2.21) and to do so we first recall an
argument from [17, 18] regarding SU(2) compensating transformations. For a given Killing
vector k, the spin connection on M}, need only be invariant under the Lie derivative by k
up to a gauge transformation

Lrw® = VW . (2.24)

Using this one can algebraically relate the Killing prepotential associated to k
Py =kaw® — W . (2.25)

Simple inspection of (2.21) shows that if none of the gauged isometries of M, have a non-
trivial compensator then £ = 0 which by (2.20) does not give a regular AdS, vacuum. We
see that a necessary condition in order to have a regular N' = 2, AdS; vacuum is that
one must gauge along at least one isometry of Mj which has a non-trivial compensator
W3 and much of this paper is devoted to fleshing out this idea in some detail. We will
build upon the work of Van Proeyen and de Wit [4, 5] where they classified isometries of
particular quaternionic-Kéahler manifolds but we will provide simplified formulae for these
isometries which we consider more easily utilized in gauged supergravity, in particular we
compute the compensators Wy.

2.3 BPS black hole horizons: AdS; X 34

Another canonical vacuum in four dimensional A" = 2 gauged supergravity is AdSs x X,.
The bosonic fields and the supersymmetry parameter are independent of the co-ordinates
on ¥, which thus allows for quotient of H? by I'. We refer to such solutions as black hole
horizons since the horizon of a static extremal black hole is of this form. The solutions which
we study of this form preserve two real Poincaré supercharges plus two superconformal
supercharges, they are typically referred to as quarter-BPS.

The equations for BPS black hole horizons with hypermultiplets were derived in [19].
We will use the symplectic completion of these equations but as explained above, once the
locality constraints of section 6.1 are imposed, these models can always be symplectically
rotated to a frame with purely electric gaugings at the cost of a potentially non-trivial
transformation on the prepotential. From the equations in appendix D we note that the
Killing prepotentials always appear in terms of the quantity P = Pj\”pA. Since by (D.1)
p” are constant, we can use a local (on My,) SU(2) transformation to set

Py =P =0. (2.26)

In this way, much like the AdS, equations, the BPS equations depend only on Pf{’.



The BPS equations for AdSy x ¥, solutions are

Q — RAMP = —4Im(2V) (2.27)
i R3

Z=ce wTB?l (2.28)

(P,Q) = & (2.29)

(K", V) =0 (2.30)

(K*,Q) =0 (2.31)

where (R1, Rg) are the radii of AdSs and X4 in the metric ansatz (2.5) and (2.8). When
M, is a symmetric space, the equations (2.27)-(2.29) were explicitly solved in [9] and
implicitly solved when M, is not symmetric. This solution can then be used to reduce the
full set (2.27)-(2.31) to (2.30)-(2.31) depending only on the hypermultiplet scalars ¢*. Of
course these remaining equations depend non-trivially on the gauging parameters. Using
the results of [20] one can replace V in (2.30) with an expression involving I} evaluated on
P and Q.
We note that as in [9] the entropy of the black hole is obtained by expanding

0=I1,(Q —iR3P) (2.32)

into real and imaginary parts

—14(Q,Q,P,P) +VI1(Q, Q P, P)? — 14(Q,2,2,Q)14(P,P,P,P)
14(7)77)77)77))

Rj = . (2:33)
We note that the P depends nontrivially on ¢* (as opposed to the constant gauge cou-

plings in the Fl-gauged supergravity studied in [9]) which must in turn be evaluated by
solving (2.30) and (2.31).

3 Symmetries of special Kiahler manifolds

We warm up by recalling various features of the symmetry structure of special Kéahler
manifolds [4, 5]. In general for homogeneous spaces, there are certain universal symmetries
which are guaranteed to exist for any such manifold and then there are model dependent
symmetries which are constrained. For symmetric spaces all the model dependent symme-
tries are realized. This is particularly useful for our computations in the next section where
the so-called hidden isometries act symplectically on the base special Kéahler manifold.

A key point regarding symmetries on special Kéahler manifolds is that all symmetries
act on the symplectic sections as linear symplectic transformations:

XA XA
(3 -o(2) o



with

R
U:<§7_), R=RT, S=8T, T=-0T. (3.2)
However not all symplectic transformations generate isometries of M,, true symmetries
are constrained by

OF)
oxX>
contracting both sides and using the homogeneity of F we get

OF) = 8X*>, (3.3)
XA0F) = Fpox™ = 0= XSy X® —2X2QT) ZFy — FA\RMFy,. (3.4)
This constraint is sufficient to classify isometries on special Kahler manifolds.

3.1 Cubic prepotentials

When the prepotential is cubic

XiXI Xk

F= _dijkiXO )

(3.5)

the general solution to (3.4) is found by expanding in powers of 7% and one finds

,8 a; 0 0 AD 0 0
N =—(TO% =1 i ias |» San= , R = S
2= T )%=y B+ 1B6%; 0 —6d;;1,b" 0 —d*a,
(3.6)

where {3, Bij,bi,aj} are constants. On special coordinates these symmetries act as a
generalization of fractional linear transformations:

, 9 1 .
o' =0b" — gBTZ + BZjTJ - iRijlTkaal . (3.7)

The unconstrained symmetries are given by axion shifts generated by b; and a common
rescaling generated by (. The other rescalings generated by Bij are constrained

0= di(leij) (3.8)

as are the non-linear symmetries generated by a; which must satisfy

a; ;’klm =0, (3.9)
where
. . 64
ki = 47 gy = o gt (3.10)
. il gm knd
gk — 999 Ymn (3.11)

dy

When M, is a symmetric space, d% has constant entries and E]i'klm = 0. Then

the symmetry group of M, will be a simple Lie algebra where b’ generate the lowering



operators, a; generate raising operators and (ﬂ,Bij) generate Cartan elements. We can

use the constant tensor d* to define the quartic invariant

1
16

9

6 dkmp' P gigy, (312)

74(Q) = —(gap™)? + —p°d"* qiq;qr — dgodijrp’ P’ p* +

one can check that Z,(Q) is invariant under the action
A A
5 (p ) ~U (p ) (3.13)
an A
with U given by (3.2) and (3.6).

3.2 Quadratic prepotentials

We will also consider the solution to (3.4) for the series of special Kahler manifolds which
arise from quadratic prepotentials:

F=XMpeX®. (3.14)
As explained in appendix A.1 where more details are given, one can in general take
1.
n= ?dlag{l,—l,...,—l} (3.15)
i

and M, is the homogeneous space

SU(1,n,)
My =" 3.16
Y U®) x SU(ny,) ( )
The solution to (3.4) is given by (3.2) with
Spay = 47]ATRTAT]AE, (3.17)
Q= 9y, o, =-¢, o%=o0, (3.18)
with no summation on A in the last line. The special coordinates 7° transform as
ot = Aio + (.Aij - AOO(;;»)Tj — TiTjAOj (3.19)
where
A=0+2Rn. (3.20)
There is a unique (up to constant rescalings) quadratic invariant, given by
Fa(p™, qn) = 49 nasp® — aa (™) qs (3.21)
which gives rise to the unique quartic invariant
2
j4(pAaq1\) = [j2(pAaq1\)} : (322)



3.3 Lie derivative of the Kahler potential

Despite the fact that in homogeneous coordinates the Kahler potential is manifestly sym-
plectic invariant
e X = —ixTax (3.23)

and the Killing vectors act by a linear symplectic transformation (3.1), in special coordi-
nates the Kéhler potential need not be exactly invariant under the action of the Killing
vectors. For any given Killing vector k, there may be a compensating Kahler transformation

LiK = fr+ fr. (3.24)
For cubic prepotentials we have
e =8d,, Ly(K) =28 + 2a;x" (3.25)
giving the holomorphic function
fu=B+a". (3.26)

For quadratic prepotentials the Kahler potential is

Moy
e K = 2< —1+) w|2> (3.27)
i=1
the Lie derivative induces the Kéhler transformation
fulr) =274, (3.28)
In a conceptually similar vein, we will find below that the action of various symmetries on

our quaternionic Kahler manifolds induce non-trivial SU(2) compensating transformations.

4 Symmetries of special quaternionic Kahler manifolds

Many of the symmetries on a special quaternionic Kahler manifold are constructed from the
symmetries of the base special Kahler manifold M, and this is the reason for reviewing such
symmetries in section 3. As reviewed in appendix B the metric on a special quaternionic
Kihler manifold which lies in the image of a c-map is’

- 1 1 1
dshy = do? + g,5d="dz" + Ze4¢ (do + 5§T<(:cl§)2 - ZewdfTCMdf (4.1)

with a = 1,...np, — 1. The symmetries of such manifolds have been studied in [4, 5] and
here we find somewhat more compact expressions and compute the Killing prepotentials.
We use the notation whereby the symplectic sections on the special Kéahler base M, and
the symplectic vector for the Heisenberg fiber are denoted

_ZA _gA B B
Z_<GA>, §_<5A>, A=0,...np—1, (4.2)

'We will sometimes use the coordinate p = e 2%,




While de Wit and Van Proeyen considered special quaternionic Kahler manifolds which
are homogeneous spaces, we will focus on the symmetric spaces for simplicity.

One conceptual addition we add to the work of [4, 5] is the following. Since the
quaternionic Kéahler metric dsz2 x has terms quadratic but not linear in 2%, any Killing
vector which acts on the z* must be a linear symplectic transformation on the sections Z
of the form U described above. This transformation may have components {a.,b¢, 3, B%}
which depend on the fields {¢, o, £4,£4}. In this section we present this transformation for
symmetric spaces, leaving the more complicated homogeneous spaces for future work.

We have computed the Killing vectors presented in this section by explicit computation
using [4, 5] as a guide but altering and correcting their formulae where necessary.

4.1 The duality symmetries

The so-called duality symmetries are generated by

0

he, = 5 (4.4)
o = |06+ 3657 (15)
0 (9
he, = a—¢ — 20% +£Coe , (4.6)
_ 9 T
hy = (UZ) 974 + (UZ) BZ — (U¢)" Cox (4.7)
where
9
_ o€
O = _i . (4.8)
DEA

The Killing vector he, is an axion shift while h, are shifts of the Heisenberg fibers
embelished with a field dependent shift of o (there are 2ny, of them). The Killing vector
he, generates a universal scaling symmetry. These symmetries are all model independent,
they exist for any special quaternionic Kahler manifold.

The Killing vector hy uses the symplectic matrix from (3.1), (3.2) and should be
understood as a general Killing vector of the base special Kahler manifold M, which has
been uniquely lifted to a Killing vector on My, (parameters are written for this vector
since there is no symplectic expression without writing them). For cubic prepotentials,
such symmetries with non-trivial (b%, 3) are therefore universal while those with non-trivial
(B%, aq) are constrained with all the a, symmetries being realized when M is a symmetric
space. The series of quadratic prepotentials are all symmetric spaces and all the symmetries
of the base M, extend to symmetries of Mj,.

The Killing vectors h,, are 2nj-dimensional and their components read explicitly

0 1 gA a A= —— ——¢t (4.9)

ha="5ea 08, 2° do

~10 -



4.2 The hidden symmetries

In addition to these duality symmetries there are the so-called hidden symmetries and these
have a more formidable expression. After some lengthy but unenlightening computations
we find the Killing vectors fields to be generated by

d _ %) o
he = _a% + (02— 1 —W) o~ —0€Cog+ (W) Coe+ {(SZ) 571 —i—cc} (4.10)
= g 9 1o .7 T
hg = <cg 5 [2cg+<cagw] 5 T [an + 5CEETC+ O (9 W) c] e
- [(cags Z)Aa% + c.c.] (4.11)

where
(5/* €a) — *Q%TCMf (4.12)

and S is the symplectic matrix:

1 1 [ 9T (A Ea) —0TOsR(EN €4\ .
S—<§§ +H>(C, H_<818Jh(€A75A) 8,6Jh(§A,£A)>_8f(afh) . (4.13)

In addition h (&4, 3 A) is a particular quartic polynomial which will be elaborate on below. In
appendix B.2 we present these Killing vectors in a form more easily comparable with those
in [4, 5], in fact we have amended an error in h? and hg which appears in those works.

One can schematically see that the general form of
VA NA 062 =CocSZ (4.14)

is necessary since the metric (4.1) has no terms linear in dz®. As such when computing the
variation of (4.1) with respect to any Killing vector, the only terms quadratic in dz® which
are produced come only from ds? M, itself and thus must cancel amongst themselves. In
principle this argument allows for ([3 , e, b¢, BC .) to depend on (¢, o) as well but ultimately
there is no such dependence. This is the main improvement of our expressions over those
in [4, 5], in particular for symmetric spaces the matrix DS is explicitly independent of the
coordinates z® of the base M., it depends only on (£4,£4).

4.2.1 Cubic prepotentials

For cubic prepotentials

ar7brzc
g - _Dabc ZZ# (415)
we have
(€4, €a) = Tu(€) (4.16)

where 7, is the familiar quartic invariant defined in (3.12). With this form of h we note
that S has the same form as U in (3.1) and (3.6) but its entries (8, @,b, B) are now field

- 11 -



dependent:

~ 1/~ - 1/2 .+ . 9 ~ .
B=— (36" +&ut"), By =3 <358£C§C + 266" — S D" Dyegt! £e> (4.17)
1 - N 1/ - 3 a o
C~La = - 5 (250&1 + 6Dabc€bgc) ) b = — 5 <2€0§a - 32Dab65b€c> . (418)

In a sense this is our main addition to the work of [4, 5], in that we provide the explicit
form of the duality transformation on M, contained within the hidden Killing vectors on

My,

4.2.2 Quadratic prepotentials
With base special Kahler manifold

SU(l, np — 1)
, = 4.19
M U(1) x SU(np — 1) ( )
and quadratic prepotential
1
G=2%apz" = gdiag(l,—1,...,-1), (4.20)
i
the resulting quaternionic Kéhler manifold is the homogeneous space
SU(Q, np — 1)
= . 4.21
Ma SU(2) x SU(ny — 1) x U(1) (4.21)
There is a unique quartic invariant and we find that
- 1 -
h(§A7 gA) = _Ej4(§A) SA) (422)

where J is defined in (3.22). With this form we find that S has the form of (3.2) subject
to (3.17) and (3.18) but with the non-trivial components having dependence on (£4,£4).
Explicitly we find

RAB = % [fAéB - é(n’l)AB(ﬁlﬁnf —én7lE) - 1(7715)A(?715)B] (4.23)

4
Sap = % [— £alp + %UAB(4§77§ —&n ')+ 4(77§)A(77§)B] (4.24)
which satisfy (3.17) and also
0y = 3 [6%s — (& )] (425)

which gives in components

(76, — 0%6pe€ct®)  (4.26)

DO | —

O =0, Q= L(h M), Q=

and satisfies (3.18).

This concludes our description of the Killing vectors on quaternionic Kahler manifolds.
We next turn to the computation of the Killing prepotentials for these Killing vectors which
will involve computing the compensators W .

- 12 —
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Figure 1. Root diagram for the G5 Lie algebra.

4.3 Killing vector algebra

The non-vanishing commutators of the algebra are [5]

[h607 h€+] :2h6+7 [h607 hoc] :ho“ [ha, hta] :C h5+’
[heoahe_] =—2h_, [heo,ha] = — hg, [he_aha] = — ha,
[h6+7 hef] = - heou [h5+7 ha] :ha7 [hUa ha] :U h&
1
[ha, h%] =C hE_, [atha, oztha] 25 at(COé heo + h’[ra@
with

1 1
Taa =(a')(6'0¢) S = ) C(aa' +ad') + 1 Hy 4C,

Hp, 5 =0(0chl, 5)" = (o' 0¢) (6" 0¢ ) H,

W o =(a'0e)(a'0¢)h.

[hU7 hoz] =U hom

(4.27)

(4.28a)
(4.28)

(4.28¢)

There are two Heisenberg subalgebra, one generated by {hq, he, }, the other by {hg, he_}.
As an example we give the Ga root diagram in figure 1. The hidden symmetries are

on the left side.

5 The Killing prepotentials and compensators

For applications to N' = 2 gauged supergravity we need to compute the Killing prepoten-
tials. As reviewed in section B the action of a Killing vector on the spin connection may

induce a local SU(2) transformation:

La(w®) = dWE + €V Wiw?
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and W} is then referred to as a compensator. The Killing prepotentials are then given by
Py = kpow® — WY (5.2)

and we find this to be an efficient route to computing the Killing prepotentials. We use the

canonical expression for the spin connection using homogeneous coordinates on M, [21]:?

Wt = Ve R+ ZTCde (5.3)
5 e 1.y 1 kor= o8 A

although one is of course free to choose another gauge. We have denoted the Kahler
potential on M, by Kq.

5.1 The compensators

5.1.1 Duality symmetries

We find that the spin connection is exactly invariant under all the duality symmetries
except some components of hy. For the quaternionic Kéhler manifolds where M, has a
cubic prepotential, we find

Ly(wh) = —iadmz¢wt. (5.5)

and so the only non-trivial compensator is
Wi = acJm 2¢. (5.6)
For the M}, where M, has a quadratic prepotential, we find
Loa (wh) = —iIm2* Q%w™, Lpao (w') = —iRez" ROLT (5.7)
and thus the non-trivial compensators for the duality symmetries
Woa =Imz*Q%,  Wpi =Rez"RY. (5.8)
5.1.2 Hidden symmetries

For the hidden symmetries all components of the compensator are non-trivial. Nonetheless
we can derive an expression which is equally valid for all prepotentials since the model
dependence appears only through the compensator for the duality symmetry hy.

Wt = —i2y/2e 9 ZTCe
W63_ = —Wg —e 2

> . (5.9)
Wi =-CoWF =i2v2e2 ¢CZ
W3 = —2Co.W2

The expression W§ is defined to mean Wyj with the parameters in U promoted to the
field dependent quantity S using (4.17)-(4.18) in the cubic case and (4.23)-(4.26) in the
quadratic case. Similarly to the Killing vectors, W5 is a 2nj-dimensional vector.

2this expression is of course not invariant under local SU(2) transformations and neither are our expres-
sions for Py or Wy
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5.2 Killing prepotentials
We find the Killing prepotentials by using

P¥ = kyw” — WE. (5.10)

Since we have already computed the compensators, it remains to just compute kp_iw® for
the various Killing vectors. This contraction must be done in special co-ordinates, not
homogeneous co-ordinates.

For the universal symmetries we have

1
+ _ 3 2¢
.F)E+ = O 7PE+ = 56 s
1 & 1
Pt :ﬁeTQH)ZT(Cﬁ, r? 2562¢0', (5.11)
K 1
PH=—\2e2%C2, P} =— 5e2¢><c§

For the model-dependent symmetries on the special Kéhler base the prepotentials are
K 1 __
Pf =v2est0ZTCcue, Pl = 18%%@5 — fezTCuZ (5.12)
For the hidden symmetries we find

Pt =2 2 +e [azTcg —i2e2¢TCy — ZTC(QW)}

) o ) (5.13)
PY =se™ 4 e = 262 W + ETC(W)| + 07" €52
and X
PY = — Ve #0(Z7CE)CE — 2C(0e P ) (5.14)

sz =—-C {0 e20¢ + 23§Pe3_}

6 The gauging

Once the Killing vectors are classified a gauged supergravity theory is specified by a large
set of gauging parameters which dictate how the various fields are charged. In this section
we present the constraints on the embedding tensor for our Abelian gaugings. We denote
the set of all Killing vectors of the hypermultiplets by

k-A = {hU7hOéahaah€+7h€07h€,} (61)

and consider the most general gauging by introducing electric and magnetic parameters
@AA
ot = (6.2)
A

04 = {U,a,a, e4,€0,€—} (6.3)

for each of these Killing vectors
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where we allow for a different symmetry Uy for each vector field. Each of the parameters is
a symplectic vector whose components are of the same dimension than the corresponding
Killing vectors (see appendix C for explicit lists). In particular all the parameters of the
matrix U become symplectic vectors.

Contracting the Killing vectors with the parameters give the Killing vectors K

K= IC“(;ZU =04k = hy + a'Chy + @'Chg + e he, + €ohey + €—he_ (6.4)

that couple to the electric and magnetic gauge fields.? Splitting the electric and magnetic
components give

d _
ky = kx(?iqu = hy, + af\Cha + ay\Chg + €+Ahe+ + €onhe, +€—ahe_, (6.5)
B = %A“a‘zu = hya + a'*Chg + & Chg + et he, + el hey + X he (6.6)

Electric and magnetic gaugings are distinguished only by the position of their A index.

The number of parameters is
#(params) = 2n, x [(4 4 z)n), + 3] (6.7)

since for each of the (2n,)-dimensional symplectic vector component there is: 3 parameters
for he, and h.., 2n; parameters for o and & and xnj, parameters for hy (z being of
order 1 or nj depending on the model under consideration). All these parameters are not
independent since consistency impose relations between them.

6.1 Constraints on the gauging parameters

The gauging parameters are constrained by two conditions [3, 11, 12]: closure of the Killing
vector algebra

[k, kg) = f 45 ke (6.8)

and locality. These two conditions are also necessary for satisfying the supersymmetric
Ward identities [12].

Since only the hypermultiplet isometries are gauged, the Killing vectors k4 form an
abelian algebra [3, 22]. As a consequence the following commutators need to vanish

[ka, ks] = [ka, ks] = [ka, k] = 0. (6.9)

30ur notation is not very convenient for the vector hy: by the contraction we mean that the matrices
U” and Ua are used as the parameter for hy, i.e. we have hya and hy, .
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Upon inserting the explicit expression (6.5) of kj and using the algebra (4.27), the
first commutator leads to a set of quadratic constraints (see (C.4) for the definition of T)

0 =T(ap,dx) — T(as, ay), (6.10a)
0= —(Upax — Usap) + (eopas — eonan) + (e4p0ax — €450 ), (6.10b)
0 = (Upay — Ugap) + (e_arax — e_sap) + (egalx — €oxan), (6.10c)
0 = o Cax + 2(eyxeon — €4a€0x), (6.10d)
0 = (@ Cax — a\Cax) + 2(eyse_r — e1ne_y), (6.10e)
0 = alCax + 2(eope_x — €oxe—_p)- (6.10f)

These constraints involves product of electric parameters. The two other commutators
lead to similar constraints for electric/magnetic and magnetic/magnetic products (see ap-
pendix C).

The so-called locality constraints implies that the electric/magnetic duality exists and
that we can rotate to a frame which is purely electric. Using the notation (6.2) for the
gauging parameters this condition reads

(e%,6°) = 0. (6.11)

The explicit list is given in appendix C. These constraints generalize the one given in [22].
A consequence of the locality constraints is that the symplectic product of K% with P*
always vanishes

(K", P*) = 0. (6.12)

The prepotential is linear in the gauging parameters and it can be written
PT = 04PE. (6.13)
Inserting this expression and (6.4) into the brackets we get

(K, P*) = K4 PE(O4, 65) = 0. (6.14)

7 Examples

In this section we work through two examples of gauged supergravity theories which arise
from M-theory and which have M}, = G(2)/ SO(4), reproducing the N’ = 2 AdS, vacuum
and then look at black hole horizons. It is well known that when an FI-gauged supergravity
theory (i.e. with nj = 0 and U(1)g gauging) admits an N/ = 2 AdS, vacuum it also admits
a constant scalar flow to AdSy x Hy /T, one can find a very general proof of this in [23].
With the addition of hypermultiplets, one can set them also constant and then the only
additional constraints are (K% Q) = 0. Subject to this being solved, the hypermultiplets
decouple and the constant scalar flow is also a solution of the theory with hypermultiplets.
We demonstrate this in our two examples.

Our first example was obtained in [22] corresponding to the invariant dimensional
reduction of M-theory on V5 5. Our second example comes from [24] and corresponds to a
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consistent truncation of the dimensional reduction of maximal gauged supergravity on the
Einstein three-manifold* M; € {H3/T, T3, S3}.

7.1 Vi

The invariant reduction of M-theory on seven-dimensional cosets was performed in [22]
where in addition the general reduction on SU(3)-structure manifolds was performed. All
the resulting four dimensional gauged supergravity models found in that work fall into the
class studied here, namely the hypermultiplet scalar manifold is a symmetric space which
lies in the image of a c-map. Black hole solutions in many of these models were studied
in [19], here we restrict ourselves to the example where M} = Gy(2)/ SO(4) corresponding
to the reduction on Vs .
The following data specifies the four dimensional supergravity theory [22]:

- ~SU(1,1) C(xhy? (1

Ny = 17 M’U - U(l) ) F=- XO ’ XA - (T) ) (7 1)
_ _ Gy ~ SuU(1,1) (2 (1

np =2, MhiSO(Zl)’ szw g=— 70 Zh = (Z) . (7.2)

The nonvanishing electric gaugings are given by

4 4
by = %51\0, aiA = _ﬁém’ €+A = —€00AQ - (7.3)

The non-vanishing magnetic gauging is given by
e = —26M (7.4)

The constant ey has its origin in the M-theory three-form with legs in the external four
dimensional spacetime which has been dualized to a constant [22].

We note that the gaugings which specify this model were incorrectly reported in [22]
to have vanishing compensator W§. This of course is incompatible with the existence of a
supersymmetric AdS, vacuum. The resolution is that as found in section 5.1.1 the Killing
vectors ky with a; # 0 have non-trivial compensators and we now see this is nontrivially
gauged. In fact this is the only gauging with a non-trivial compensator in this reduction.

7.1.1 AdS4 vacua

The Killing prepotentials Pi are set to vanish by the condition
h=¢é4=0. (7.5)
Then from <ICA, ImV) = 0 (in the direction of M) we get

KAi=0 = 2 =iV3. (7.6)

T is a discrete subgroup of SL(2,C).
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and from (K% ImV) = 0 (in the direction of the axion a) we get

6
¢ _ 7.7

while the axion is unfixed. As a result we have the Killing prepotentials
P{=(1,0), P*"=(0,—6/e). (7.8)
The vector multiplet scalars are then given by

x=0, Y= %0 (7.9)

and the AdS4 radius is given by

126
R?Ads;; - 37/2 . (710)
€

0
7.1.2 AdS2 X ¥4 vacua

There is a related AdSy x H? /f vacuum at the same point on the scalar moduli spaces
M,y x My. The charges are

1 €
= (- — A1
Q (470707 3 ) (7.11)
and the radii are
63/4 63/4
Ry = 8(21/433/4) ” Ry = 4(21/433/4) " (7.12)

7.2 SO(5) gauged supergravity on Mj3

The maximal gauged supergravity in seven dimensions [25] has been dimensionally reduced
on three-dimensional constant curvature Einstein manifolds and consistently truncated to
a four dimensional gauged supergravity theory in [24]. The resulting theory is given by the

following data:

_ CsuL) . (X a1

TLv—]., MU—W, .F— 4 XO s X = - y (713)
_ _ Gy _ Su(L,1) _(Z2Y A_ (1

np =2, Mh_SO(4)7 MZ_W Gg=— 70 Z" = e (7.14)

We have computed the gaugings in our terminology by careful comparison with [24]. This
requires a non-trivial co-ordinate change which is detailed in appendix F.

To specify the gaugings we need only to give the components of the embedding tensor
n (6.3). We find that k; = 0 and the non-vanishing electric components are in kg
33/4¢

(6% 0— = a070 = 33/4, 04170 = 4 . (7.15)

Likewise we find that k% = 0 and the non-vanishing magnetic components are in k!
1 1

! === (7.16)
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The integer £ = {—1,0,1} corresponds to the reduction on Mz = {H3/I", T3, S} respec-
tively. The gauging from o provides the non-trivial compensator required to have a
supersymmetric AdSy vacuum.
This yields the magnetic Killing prepotentials
1/4 1/4
pro_q,  pli_ 3"/ ey Pl 3" ’
2 2
and the electric Killing prepotentials

4
—_e¥el (7.17)

1
1 4 10 2
Py = 33/44[—96 xl+2x(e*x” —3)

3972 (66°(€! — X&) + €7 — 20 + (0 + 2x¢")

+6€" - 61! +6x(¢")?) )|

P02 = 33}44 [ — 9ePTPY 4 2e7973¢ <62¢(3e4‘px2 -1)
392 (e2(36 (—x€” + £1)%) — (€0 - ) )]
P = i [18VEP (& — €) + 0 (6(2 + 32()) (718)

_9551 4 33/2(§1§0£1 4 2(51)3 _ 2050))}
PP =0.
7.2.1 AdS4 vacua

The supersymmetric AdS4 vacuum is at
1 L

A — & — — f— — 4 e — = —
and in particular requires ¢ = —1, corresponding to a reduction on Hj3/T'. The AdS,
radius is 1
R = —. 7.20
Adsy = 75 (7.20)
Evaluated at this vacuum the Killing prepotentials become
~ ~ 1 ~ 1
Pi=Pi=pPA=p3r_0, P2= -1 P?? = 3 (7.21)

7.2.2 AdS; X ¥4 vacua

The AdSs x ¥, vacuum for is located at the same point on the scalar manifold. The charges
are given by

3
p0:_17 p1:07 QOZO, Q1:_§ (722)
The radii are given by
1 1
R1 - W’ RQ = W . (723)
When lifted to M-theory this is a solution of the form
AdSy x H2/T x (H3/T x,, %) (7.24)

where the S% is fibered non-trivially over H3. It arises as the IR of a domain wall AdS; —
AdS, x H? where the scalar fields take constant values along the whole flow.
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8 Conclusions

We have analyzed the symmetry structure of symmetric special quaternionic Kahler man-
ifolds with a view towards studying general gaugings of N' = 2 supergravity. In particular
we have computed the Killing prepotentials and compensators for all symmetries of such
manifolds. We have shown in certain examples how this fits with existing theories in the
literature derived from M-theory.

The overarching goal of this study is a comprehensive understanding of BPS vacua in
N = 2 gauged supergravity, in particular black hole solutions. A particular goal, yet to
be realized is to generalize the solution of black hole horizons in [9] to include hypermulti-
plets. This requires a deeper analysis of (2.30) and (2.31) as well as the constraints on the
embedding tensor in section 6.

An interesting related computation was performed in [8] regarding the analysis of
N =1 AdS, vacua in the same theories we have studied in this work. The key difference
is that for N' =1 AdS, vacua one only gauges the Heisenberg shift symmetries and these
have vanishing compensators. Nonetheless with this simplification the authors of [8] could
derive very general classes of AdS, vacua in theory coupled to hypermultiplets whose scalar
manifold lies in the image of a c-map.

A more immediate a modest goal is to complete the analysis of black hole horizons
of [19] by expressing the scalar fields and radii in terms of the charges. One lesson from the
study of FI-gauged supergravity in [9] was that while this inversion can be a formidable
task in any given example, it is advantageous to maintain the symplectic covariance by
studying general classes of theories simultaneously. The models studied in [19] have a
hypermultiplet scalar manifold M}, whose base special Kahler manifold M, has a quadratic
prepotential. This can be studied using the techniques from this work and should result in
complete solution for the black hole horizons for all the models of [22]. This should involved
carefully considering the embedding of the Abelian gauge group into the symplectic group
or equivalently solving the constraints in section 6. A simple model of AdS; vacua was
solved in [26] where very particular patterns were observed regarding the dependence if if
the solution space on the gauge group and its embedding.

Another interesting direction is to find the analytic black hole solutions for models with
hypermultiplets much like the analytic solutions in FI-gauged supergravity [13, 20, 27]. The
key step in finding the most general dyonic static black hole these Fl-gauged supergravity
theories was to posit the ansatz whereby a particular metric function was, much like the
Demianski-Plebanski solution [28], a quartic polynomial in the radius. This ansatz may help
in generalizing such analytic solutions to hypermultiplet theories, it seems like a difficulty
problem but any progress would be an interesting development.

One last issue is that the computations in this paper can most likely be generalized to
include all homogeneous quaternionic Kahler manifolds, not just the symmetric ones. For
these manifolds, the hidden Killing vectors are significantly more complicated but given
that they have been explicitly computed in [4] one imagines it to be possible to compute
the associated Killing prepotentials, we leave this for future investigations.
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A Special Kahler geometry

We start with a brief summary of special Kéhler geometry. The key ingredients are a
Kéhler manifold M, equipped with an Sp(2n, + 2,R) bundle over it with sections

A
X:<X>, A=0,....ny. (A1)
F\

We will be primarily concerned in this paper with the so-called very special Kéhler mani-
folds, which means there is a cubic prepotential

XiXI Xk

F=—dijki—5 >

i=1,...,ny. (A.2)

The canonical complex coordinates 7% = z* + i y* on M, are called special coordinates

XA _ (:) = Fy= <—§;T,i> . (A.3)

The metric can be obtained from a Kéahler potential K

e = —iXTOX =84, (A.4)
where  is the (2n, + 2) x (2n, + 2) dimensional matrix Q = ( % § ).

We next introduce the operators which appear in the gauge field Lagrangian
Nas = Ras + iZas (A.6)

There is a very useful projection operator

T-1R 71
7
M = ( Cipy zl) (A7)

which satisfies
MY = =iV, MU; = iU; (A.8)

where V = e£/2X and )
U, =D,V =0,V + 58¢KV (A.9)
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The Riemann tensor on M, is given by

) ) ) 9 ~
R = 6i6) + 6465 — Ed“mdmjk (A.10)

where
. il jm knd
dzjk _ 99 32 Imn (All)
Y

When M, is in addition a homogeneous space, the tensor d* has constant entries and
satisfies certain useful identities

Ay e = ;i; 8 + 38 Ay ] (A.12)
A7* e = gi; gt - (A.13)
The quartic invariant is defined using both d;j;;, and diik.
1(Q) = —(P°q0 + P'¢))* — dqodijep'P'p" + %poc?jkqujqk + %dijkf’mpipquqm . (A14)
From this we obtain a symmetric four index tensor
I(Q) = %tMNRSQMQNQRQS (A.15)
which is then used to define the derivative of Iy4:
Q) = %QMNtNRSTQRQSQT- (A.16)
We note that I} can be used to relate the real and imaginary parts of the symplectic
section V 7(Im V)
ReV:—W. (A.17)
We will often employ the shorthand notation
d, = dijkTiTka , dr; = dz’jijTk , drij = dijka . (A.18)
A.1 Quadratic prepotential
The general quadratic prepotential is
F=XMpanX®. (A.19)

Using an orthogonal matrix we can diagonalize 7 then with a complex rescaling of X we
can set 1
n= ?diag{l,—l,...,—l}. (A.20)
i

We then choose special coordinates:

Xt = <1> . Fy=2peX* =i <_1> (A.21)
T T

~ 93 -



giving
i

which is the maximally symmetric metric on

SU(1,ny)

M. = U(1) x SU(ny)

Taking the variation of F = 2npy X X we get

s (QA X2 + RIAFA) = Spu X> — (QT) U Fy,

=  2pax(Q5 X2 + 2R ar X T) = Sap X — 2(QT) Znpa X2

which gives

772(/\ QEA) = 0

Saz = 4R Az -
Note that (A.26) gives
QAA = 0, Qoi = Qi07 Qij = —jS

(A indices are not summed).
The special coordinates 7* transform as

67’i = Aio - TiAOO + Al]']—j — TiTjAOj

where

A=09+2Rn.

(A.22)

(A.23)

(A.29)

(A.30)

From this we see that we should remove Tr A or AOO since their action on 77 is redundant,

this is tantamount to removing Tr R or ROO. This leaves the components

1 1
Rg(ny+1)(nv+2)_17 ngnv(nv_l)_FnH

(A.31)

giving n2 + 2n, which agrees with the number of Killing vectors on SU(1,n,)/[U(1) x

SU(ny)] thus demonstrating that all Killing vectors come from the symplectic action (3.1).

The Lie derivative of the Kéhler potential gives
X Ly (67K> = — [Ti (JTliO — ?i?jjloj) — |7'i|2]00 + Ti?jfj + c.c.} e
= —2[2'Q%) — 2iy'(Rm)'y |,
so the Kahler potential tranforms as

Lu(K) = fu(r) + fu(®),  fu(r) =204,
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B Quaternionic Kahler geometry

Here we collect some facts about quaternionic Kéahler geometry. The triplet of curvature
two-forms Q% are given by

1
0" = Dw” = dw” + iexyzwy A w® (B.1)

where w” is the SU(2)-valued spin connection. For each Killing vector kx one can construct
the moment maps, or Killing prepotentials P§:

—kpoQ" = DPY . (B.2)

The curvature forms need not be precisely invariant under the action of kx but may
transform by a compensating local SU(2) transformation

LpQF = e"*QYWR | Lrw® = DWY . (B.3)
Following [18] page 719, one can show that the Killing prepotentials are given by
Py = kpow® — WY (B.4)
and in addition the compensator W} satisfies
LAWE — LWE 4+ eV WIWE = FRAWE . (B.5)

B.1 Special quaternionic Kahler geometry

In this work we are primarily concerned with quaternionic Kéhler manifolds My, (of real
dimension 4ny) which lie in the image of the c-map. Amongst other things, this means
that My, has a base (2nj, — 2)-dimensional base manifold M, which is special Kéhler. For
such manifolds the metric takes the form

o1 1 S|
huwdg'dg® = d¢? + g ;dz"dz" + Ze% <da + 2§T(Cd§> — 1e2<7>dgT<CMdg (B.6)

0 1
e- (31 o

and M is the equivalent of M but for M,

'R -7-1
M = B.8
(I +RIT'R —RI—1> (B8)
On the base special K&hler manifold we denote the sections by

A
zz<Z>, A=0,. . np—1. (B.9)

where a =1,...,n5, — 1 and
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Will will generically assume there is a prepotential G which thus satisfies G4 = 043G, special

zA = (;) . (B.10)

The canonical expression for the spin connection [21] uses homogeneous coordinates on M :

co-ordintaes on M, are given by

Wt = V2e 0 ZTCdg (B.11)
1 1 1 _
WS = §e2¢ <da + 2£T(Cd£> + 5eKﬂ (GpdZ® — 7G4 + c.c.] (B.12)

where we have denoted the Kéhler potential on M, by Kq.

B.2 Hidden symmetries: field variations

A

Following [4, 5] we denote the parameters for these symmetries as (e_,a”,a4) and varia-

tions associated to the Killing vectors (4.10) are

op = 2p [06_ + %@TCQ (B.13)
6o = oloe_ + %aﬂcg] — ple_ — DW (B.14)
66 = &foe_ + é&T(Cd + oo — 0:DW (B.15)
6Z =DSZ (B.16)
with p = e2¢
a= (gj) ,  D=e —a'Co, W= ih(é“‘,&) — %pr(CMf (B.17)

and S is the symplectic matrix:
IRy [ 070 h(EA, ) —0TOsR(EA EA)\ T
5= 2(55 ! 2H)C’ " (816Jh(5A,5A) orosh(ch £y )~ OO (B9

Our expression for do differs from that found in [4, 5] by a component in the final term
DW. We have not been able to check that our expression for §Z precisely agrees with the
expressions there.

B.3 Computing the compensators

We now provide some details about how we computed the compensators W for the duality
symmetries as well as the hidden symmetries. We do this by computing the Lie derivative
of the spin connection then using
La(wh) = dWE FiwEW§ + i Wi (B.19)
La(w?) = dWR +Im (W™ WY). (B.20)
The key point is that we must use special coordinates on M, in the expressions (B.11)

and (B.12). Some of these calculations are lengthy but in principle they are all fairly
straightforward.
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B.3.1 Duality symmetries

Under the Cartan transformation 8 we have

£B(6KQ/2) _ BEKQ/Q

as well as
T _ e é 0 __ é aj¢e é a
£5<Z Cdg) = —Bdfy — D" = S2"dq + ¢ Daade
1 28 - 28
2 *Dz 0 _ g0 a_iDza “
+ ﬁ3! d¢ 3 % d¢ 3 D, d¢
= —pzTcde.
In total (B.21) and (B.22) give
Lswt)=0

(B.21)

(B.22)

(B.23)

and this demonstrates the need to compute in special co-ordinates. Similarly one finds

Ls(w?®) =0
Under the a.-symmetries the special coordinates transform as
520 — 1 a e b_c. __ a e 9 ﬁaefD
z ——inc 2’20, = —2 (aez)%—?’—zae o f
and we find
Lo(eX/?) = aRezel? £ (Z7Cd¢) = —a.2°Z7Cde,

which gives

Lo(wh) = —ia.Imzfwt .

Then

La(e®) = 2a.Rez¢ el

La|Gpdz® — 7G| = —20a' [Gpdz® — Z"dG | — i 2a,dz*

which gives
Lo(w?) = admdz®.
The non-vanishing compensators from the duality symmetries are then
W*r=0, W3 = GIm 2°.

a
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(B.25)

(B.26)

(B.27)

(B.28)

(B.29)
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B.3.2 Hidden symmetries

The hidden symmetries require more attention, they all have non-trivial compensators and
the computation of these is somewhat intensive. As mentioned in the main text, a key
to understanding the hidden symmetries is that the variation of the fields on the special
Kahler base M, can be thought of as a £-dependent symmetry from section 3. These
parameters will now produce non-trivial terms when they appear under a derivative.

As an example we derive the variation of w® under k._. After some work we find the
following expressions for e€_:

Oc_

(W) = i(—ay' +e )t — [i2v2e F (27T |iw® — d(i2v3e T 027CE) (B3Y)

Then comparing with (B.19) we find that the compensator for our general Killing vectors is

K
WE = —i2v2ez ¢ Z27C¢ (B.32)
W3 = aJdmzt —e 2 (B.33)
where 1
Ge = =5 (26%€c — 6Decs€°) (B.34)

is the field-dependent parameter for the isometry on M,.

C Gaugings and their constraints

For completeness the full set of constraints for the (symplectic) gaugings parameters are
listed below.
The set of parameters
04 = {U,a,at, e, e,e_} (C.1)

reads explicitly

~ A
AN aAA - b
—~ - ’
UA ah ok N ah ah €+A
U = s o = , = 5 o = , =

~ Y )
Ua o oy an ay el
~ € =
A QA 7 \eon

where U and U, are matrices whose parameters depend on the model.
The constraints from the closure of the abelian algebra are

e electric/electric

0 =T(an,dx) — T(as, da), (C.3a)
0= —(Upay — Usap) + (egpas — oxan) + (€1p40x — €150 ), (C.3b)
0= (Upay — Usayp) + (e—rax — e—xap) + (eoals — eonay), (C.3c)
0 = o\ Cax, + 2(exegn — €4 n€0%), (C.3d)
0 = (@4 Cax, — o\ Cax) + 2(eyse_p — e1ne_y), (C.3e)
0 = o, Cax, + 2(egpe_x — €oxe_7). (C.3f)
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e electric/magnetic

0 = T(ap, &”) — T(a®, ay), (C.3g)
0= —(Upa™ — U%ap) + (eoac™ — egan) + (448 — €5ay), (C.3h)
0 = (Upa” — UZap) + (e_pa” — €Zan) + (egrd™ — egan), (C.31)
0 = ahCa® + 2(eFeop — exaey), (C.3)
0= (@4 Ca™ — ahCa™) + 2(eFe_p — e1n€>), (C.3k)
0 = alCa™ + 2(egpe” — e3'e_n). (C.31)

e magnetic/magnetic

0 =T(a™, a%) — T(a®,at), (C.3m)
0=—(U"a” — UM + (e} o™ — o) + (eha™ — fal), (C.3n)
0= (UAQ* —U¥a%) + (*a* — o) + (ha” — eal), (C.30)
0=a'*Ca® + 2(5 e} — ebedy), (C.3p)
0 = (a'ACa® — otAca®) + 2(e+e - eﬁe%), (C.3q)
0=at"Ca” + 2(e)e® — ey'et). (C.3r)

We recall the expression of the matrix
Toa = ('0)(a'0¢) S. (C.4)
The number of constraint from the algebra is

ny(ny — 1) [np(ng + 1)
2 2

#(algebra constraints) = 3 +2np+3 (C.5)
where the 3 comes from the three sets of constraints, the second front factor from the
antisymmetric equations on (A, ). The matrix T is symmetric.

The constraints from locality are

0= (a,a!) = ataly — apat™, (C.6a)
0= (o, at) = oral — apa'®, (C.6b)
0= (a,a') = a*al, — aya™, (C.6¢)
0= (o, eq) =a’esp — oerﬁ\_, (C.6d)
0= (o, e0) = a’egp — aAeé\, (C.6e)
0= (a,e ) =a’e_p —ape®, (C.6f)
0=(a,ey) = atesn — anel, (C.6g)
0= (@, €) = a eop — Apel, (C.6h)
0=(q,e ) =a e —aret, (C.61)
0= (e4,€e_) :e+e_A—e+Aef, (C.6j)
0= (e+,€) = 6$60A — e n€ED, (C.6k)
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0= (€, €_) = €ye_p — eone™, (C.6])
0= (U,er) =aleip — oer{\H (C.6m)
0= (U, ) = a’egn — ape, (C.6n)
0= (U,e_) =ale_p —apre®, (C.60)
0= (U, a) = aep — apel, (C.6p)
0= (U,a) = ae_p — ape® (C.6q)
where
A B A A
a7at _ <a ) & > <a 7O‘B> 7 a,e) = <a 76+> C.7
< > <<aA,OéB> <OéA,OéB> < +> <aA7€+> ( )

and similarly for the others. The notation (U, X) is shortcut for the product of X with
all parameters of U (by linearity). For example with a cubic prepotential one of the

BA
(8,X) =0, ﬁz(ﬁ ) (C.8)
A

constraint is

The numbers of locality constraints is

#(locality constraints) = 3n} + 6ny + 3 + z np(2ny, + 3). (C.9)

D Black hole flow equations

In [19] the equations for static black holes in electrically gauged N/ = 2 supergravity were
derived assuming that PZ{ = PK = 0. We can relax this assumption and still converge on the
identical equations. Without any such assumption, with all components of P{ non-trivial
in principle, the full set of equations for BPS black holes takes the form

P =0 (D.1)

(" PY)? = w? (D.2)

kiph =0 (D.3)

LAPEpEPE = 2V UIm (e7¥ 2) (D.4)

Oy (V) = LAPFpTPE + 2U-VIRe (7 2) (D.5)

0,V = 2"V LAPEpE P (D.6)

O (eVLD) = ﬁIAEREApA — %IAqu (D.7)
_ pA 1 4

O (e7Vcd) = v + WIAZngAPK + @—szpgpﬁpgcﬁ (D.8)

g = 2¢"URw9, (pngﬁ?Px) (D.9)
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where we have defined the rescaled sections
LY=L i =e WA (D.10)
and e is the phase of the supersymemtry parameter. First we define
Py =pipt (D.11)
then use a local SU(2) transformation to set
By=P;=0, (D.12)

which is weaker than setting P{ = P = 0 as was done in [19]. At this point one can see
that P} and P completely drop out of the above equations (D.1)-(D.9). This allows us to
rewrite all equations in terms of P{ = Py only.

E Killing vectors on the coset G/H

There is a general method to construct Killing vectors on cosets which we will utilize
here [29, 30]. We first define a canonical automorphism on the Lie algebra of G:

T(ﬁ):—ﬁ, 7(E;) = —F;, 7(F})=—E;, i=1,...,6. (E.1)
We define a rotated basis K1; = E; + F; and the 7-invariant subalgebra is given by K_;
T(K_i) == K—i . (E2)

The general construction involves starting with a semi-simple Lie algebra g with gen-
erators T4 and decomposing it into orthogonal subspaces under the Killing form

kap = Te(TaTs) (E.3)

as

|=

+ E (E4)

S

The indices under this decomposition are {T4} = {T;,T,}. The coset element is L(y) and
the one form has some component along k& and some along h:

V(y) = dLL™" = V*(y)T, + Q'(y)T; (E.5)

Viy) = Vady® (E.6)

where we introduced coordinates y® on the coset G/H.
We now produce a formula for the Killing vectors on G/H. If we vary the coset

element by
L — hLg (E.7)
where
g=1+cTy (E.8)
h=1-eWiT; (E.9)
v =yt + 'K (y) (E.10)
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we get
SL(y) = AK4L(y) = A | LTy — Wj‘TiL} . (E.11)

From this we find that
LTAL ! = K§(0o L)LY + WiT; (E.12)
which can be projected onto both K and H to give®

DT [TpT,) = K§ Tr[(0oL)L™'T,] (E.14)
= fo)’{ba = KgVab/{ba (E15)

and we now have an explicit formula for the Killing vectors on G/H
KG=D2(Vh,~. (E.16)

We now use this general formula to produce Killing vectors on the two canonical examples
of homogeneous quaternionic Kahler manifolds.

F  Gayz)/S0(4)

We now construct the quaternionic Kéhler metric on Gy()/ SO(4) and perform the explicit
co-ordinate transformation such that the resulting space is clearly in the image of a c-map.
We take the following standard generators of Ga:

1
Hy = ﬁ(en — ey + 2e33 — 2e55 + €66 — €77) , Ha = e11 + €22 — €66 — €77,
1
Ey = —2(e6 + e27), Fy = _§<€61 +er2),
1 2
Ey = ﬁ(%u — 2e53 — 2e63 + 2e74) Fy = 7 (e14 — €25 — €36 + €a7)
Es = L(613 — 2e4 + 2e46 — 2€57) F3 = 1 (es1 — €42 + €a — €75)
V3 V3
1 1
Ey = 7 (e21 + €43 + esa + e76) Fy= —%(612 + 2e34 + 2e45 + €67) ,
1
Es = 5(6’51 + er3), F5 = —2(e15 — e37),
Eg = —e23 — €73, Fs = —e32 — eg5 -
Using K4; = E; + F; we form the ordered basis
Ta={K_1,...,K_ g Hi,Hy,Ki1,...Kig) (F.1)
5We define the adjoint action to be
gTag ' =DA'Ty. (E.13)
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the Cartan Killing Form is

k=4 —ls 0 .
0 1g
We take the coset element to be

V= e(¢1H1+¢2H2)/26CE1 e\/g(*91E2+92E3)6§2E6 62\/§E4e*9~1E'5

and the resulting metric is

ds? = 2 (de} + dgd) + S (FIP?,
i=1
with the frames given by
F = dc,
F? = V/3do",

F3 = V/3(d6? — cdot),

Ft =232 <da + %(9%192 - 02d91)> :

F° = dby — 660 da — 0 (01 d6* — 6%dot),

FO = dby — 60°da — 6(0*d6* — 0%de*) — CF°.
The co-ordinate transformation to bring the metric to the form (B.6) is

o' = —\/§<<p+¢+ 10%4(3)>

3
@ :<Z>—3cp—110g3

C:33/4§0
I S B
a = _631/451 - 231/4X§
gl = X
V3

62 = 314 (¢! 4 xeY)
1 /-
01 = w (fo - X2§1>
Oy = —o + 2x(H)2 + %5050 + %5151 — x2e%¢!

The base special Kahler manifold is
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with prepotential
(2')°

G=—"

(F.20)

where the special co-ordinate on the M, is

A_ (1) _ 1
e (- (). -

Explicitly the metric is the c-map coordinates is

ds® = d¢® + 3dp? + ze“%"dxz + %e‘*@b <da - %[&d&f‘ — éAdéA]>2
2700 4 22l — e
+362¢+6“" (déo + xdér — x*dg” + 3x*de")?
+%62¢+2¢ (d€1 — 3x%de” + 6xde!)” . (F.22)
We can also write down the Killing vectors in the quaternionic-Kahler construction in

terms of those obtained from the coset construction K 4. First for the duality symmetries

we find

1
he, = §[K6 + Ki4] (F.23)
33/4
h’ao - 7 [Kl + K9:| (F24)
33/4
ha, = 5 (K3 + K11 (F.25)
1
hao = =5 (K4 + Ki2] (F.26)
1
hal = W [K5 + Klg} (F27)
V3 1
he, = > [K7 — \/§K8:| (F.28)
1
ha = 5 (K2 — K] (F.29)
1
hg = ~5312 [K7 + V3Ks] (F.30)
1
hy = =3 (K2 + Ky (F.31)

where {hq, hy, hg} refer to the obvious components of hy. Then for the hidden symmetries
we find

he = K¢— K4 (F.32)
1
haO - W [K4 - K12:| (F33)
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1

har = 237 (K5 — Ki3] (F.34)
1
1

hal - W [Kg - Kll] (F36)
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