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1 Introduction

There has been much work in the last 10 years deriving gauged supergravity theories in

four dimensions from string theory and M-theory. Such theories have applications to string

phenomenology, holography and black hole physics. The canonical vacua in N = 2 gauged

supergravity are the N = 2 AdS4 vacua; the equations for such vacua are straightforward

to derive, one can find recent discussions in [1–3] which we build upon in the current work.

The essential step in gauging supergravity theories is to charge the gravitino under

isometries of the vector scalar manifold Mv and the hypermultiplet scalar manifold Mh.

We will consider Abelian gaugings in this work so that the only other charged fields are the

hypermultiplets. Certainly one should understand these global symmetries before making

them local and as luck would have it, the symmetries of very special Kähler manifolds and

quaternionic Kähler manifolds in the image of a c-map have been studied in great depth

some time ago by de Wit and Van Proeyen [4–6]. In the current work we utilize these

descriptions of symmetric quaternionic Kähler manifolds to compute the Killing prepoten-

tials, a key ingredient in constructing gauged supergravity theories.

An interesting feature of quaternionic Kähler manifolds is that the curvature forms

need not be exactly invariant under a given Killing vector but may transform under the

SU(2) holonomy group. We find that in order to have N = 2 AdS4 vacua, one must gauge

along an isometry k which induces such an SU(2) transformation. In the language of the

text below, this implies there is a non-trivial compensator W x
k . Notably, the vector fields

which generate the Heisenberg algebra do not generate such transformations and are thus

not sufficient for the existence of N = 2 AdS4 vacua. Nonetheless there are large numbers

of N = 1 AdS4 vacua found by gauging the Heisenberg algebra [7, 8].

We also analyze the conditions for quarter BPS black hole horizons of the form AdS2×
Σg where Σg is a Riemann surface of genus g. For the same vacua but in FI-gauged
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supergravity, the algebraic BPS equations have been solved [9] and the entropy found to

be related to the famous quartic invariant. We repeat this analysis for Abelian gaugings

of hypermultiplets, and again find that the quartic invariant plays a prominent role.

The work of [4–6] considered homogeneous quaternionic manifolds which lie in the

image of a c-map. This later condition is tantamount to the fact that they arise in three

dimensions as the moduli space of vector in a dimensional reduction from four dimensions.

In particular the symmetries of such manifolds were classified. We build on this work while

just considering the symmetric quaternionic Kähler manifolds. While all homogeneous

spaces are cosets, the condition of being symmetric means that all possible symmetries

are realized and they form a semi-simple Lie algebra. We add a conceptual point to the

analysis of [4–6]; the so-called hidden isometries must act symplectically on the base special

Kähler manifold, this is not at all evident from the formulae of de Wit and Van Proeyen.

By restricting to symmetric spaces we are able to demonstrate this explicitly although

generalizing this to the homogeneous case is an interesting future step.

This paper is organized as follows. In section 2 we review aspects of N = 2 AdS4

vacua as well as quarter BPS black hole horizons. In section 3 we review aspects of

special Kähler geometry which we will need. In section 4 we present the symmetries of

symmetric quaternionic Kähler manifolds. In section 5 we compute the prepotentials and

compensators for all symmetries on these quaternionic Kähler manifolds. In section 6 we

discuss the constraints on the embedding tensor from locality and in section 7 we discuss

two examples from M-theory which utilize Mh = G2(2)/ SO(4).

Note added: as this paper was being prepared for submission, we were made aware of

a recent article [10] which overlaps with our work. In particular they also compute the

Killing prepotentials associated to symmetric quaternionic Kähler manifolds.

2 BPS vacua in N = 2 Gauged Supergravity

In this section we review some basic facts about gauged N = 2 supergravity with nv-vector

multiplets and nh-hypermultiplets. We then discuss the conditions for AdS4 vacua with

eight supercharges and AdS2 × Σg vacua which preserve four supercharges.

The scalar kinetic terms respect a division into hyper-scalars {qu|u = 1 , . . . , 4nh} and

vector-scalars {τ j = xj + iyj |j = 1 , . . . , nv}:

Mscalar =Mv ×Mh (2.1)

where Mv is a special Kähler manifold and Mh is a quaternionic Kähler manifold. The

gauging procedure involves minimally coupling certain scalar fields with respect to a cho-

sen set of isometries of Mscalar and in this article we will exclusively consider gauging

Abelian isometries on Mh. Accordingly, the hyper-scalars appear in the action with the

covariant derivative

Dqu = dqu + kuΛA
Λ (2.2)

where {AΛ|Λ = 0 , . . . , nv} are the vectors fields including the graviphoton. For each

Λ, the vector field kΛ = kuΛ∂u on Mh is Killing, one can thus associate to it a Killing
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prepotential P x:

kΛyΩx = −DP xΛ , (2.3)

where Ωx is the triplet of curvature two-forms as described in appendix B. Much as the

Killing vector provides the charge for the hyper-scalars, this Killing prepotential provides

the charge for the doublet of gravitinos ΨA:

DΨA
µ = dΨA

µ + P xΛA
Λ(σxε)ABΨB

µ (2.4)

Our metric ansatz is

ds2
4 = −e2Udt2 + e−2Udr2 + e2(V−U)dΣ2

g . (2.5)

dΣ2
g is the uniform metric on Riemann surfaces

Σg =


S2 κ = 1

T 2 κ = 0

H2/Γ̃ κ = −1

(2.6)

where κ is the curvature of Σg and Γ̃ is a Fuchsian group which do not enter in our

local analysis.

On AdS4 and AdS2 × Σg vacua these functions U and V are respectively

AdS4 : eU =
r

R
, eV =

r2

R
, (2.7)

AdS2 × Σg : eU =
r

R1
, eV =

R2

R1
r. (2.8)

The gauged fields give rise to the charges

pΛ =
1

4π

∫
Σg

FΛ , qΛ =
1

4π

∫
Σg

GΛ (2.9)

where FΛ = dAΛ and the dual field strength is

GΛ = RΛΣF
Σ − IΛΣ ∗ FΣ , (2.10)

the matrices R and I being defined in the appendix A.

2.1 Magnetic gaugings

A key step in the development of gauged supergravity is making symmetries local with

respect to magnetic gauge fields in addition to the more canonical electric gauge fields. In

general this can be neatly formulated in terms of the embedding tensor [11, 12] but since

we will be restricting to Abelian gaugings we find it clearer to merely include the magnetic

Killing vectors k̃uΛ and magnetic Killing prepotentials P̃ xΛ , we use the following notation for

the symplectic vector of gauging parameters

Ku =

(
k̃u,Λ

kuΛ

)
, Px =

(
P̃ x,Λ

P xΛ

)
. (2.11)
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In section 6.1 we will enforce a particular set of constraints on these objects to ensure

that there exists a symplectic frame where all the gaugings are electric [11]. If one is willing

to consider an arbitrary prepotential F one could thus equally well consider solely electric

gaugings from the outset but we will allow for magnetic gaugings and restrict the class of

prepotentials F which we consider.

2.2 N = 2 AdS4 equations

We first analyze the algebraic equations for N = 2 AdS4 vacua with radius R and constant

scalar fields:

〈Px, DiV〉 = 0 (2.12)

LxLx =
1

R2
(2.13)

〈Ku,V〉 = 0 . (2.14)

where we have used the fairly standard definition

Lx = 〈Px,V〉 . (2.15)

To simplify these equations somewhat we first perform a symplectic rotation to a frame

where Px is purely electric (i.e. P̃ xΛ = 0), then (2.12) reduces

P xΛf
Λ
i = 0 . (2.16)

This implies that for each x, P xΛ is orthogonal to fΛ
i for each i and thus

P xΛ = cxPΛ (2.17)

for some functions cx(qu). A local SU(2)-transformation which can be used to set

c1 = c2 = 0 . (2.18)

We emphasize that (2.17) must be enforced for by solving (2.16), it is not a generic conse-

quence of the theory.

As a result (2.12)-(2.14) become

P = −2Im
[
LV
]

(2.19)

L =
ieiψ

R
(2.20)

〈Ku,V〉 = 0 (2.21)

where we have introduced

P ≡ P3 , L ≡ L3 . (2.22)

In this work, our strategy to solve these equations will be to first recognize that (2.19)

and (2.20) are identical in form to the AdS4 equations in FI-gauged supergravity [13], which
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are in turn identical in form to the attractor equations in ungauged N = 2 supergravity [14,

15] and can be solved quite explicitly [16]. WhenMv is a symmetric space as well as a very

special Kähler manifold, we can use the identity (A.17) and (2.19) to transform (2.21) into

0 = I4(Ku,P,P,P) ∼ ∇uI4(P) (2.23)

which is 4nh equations depending only on the hypermultiplet scalars.

One objective of our current work is to clarify (2.21) and to do so we first recall an

argument from [17, 18] regarding SU(2) compensating transformations. For a given Killing

vector k, the spin connection on Mh need only be invariant under the Lie derivative by k

up to a gauge transformation

Lkωx = ∇W x
k . (2.24)

Using this one can algebraically relate the Killing prepotential associated to k

P xk = kyωx −W x
k . (2.25)

Simple inspection of (2.21) shows that if none of the gauged isometries of Mh have a non-

trivial compensator then L = 0 which by (2.20) does not give a regular AdS4 vacuum. We

see that a necessary condition in order to have a regular N = 2, AdS4 vacuum is that

one must gauge along at least one isometry of Mh which has a non-trivial compensator

W x
Λ and much of this paper is devoted to fleshing out this idea in some detail. We will

build upon the work of Van Proeyen and de Wit [4, 5] where they classified isometries of

particular quaternionic-Kähler manifolds but we will provide simplified formulae for these

isometries which we consider more easily utilized in gauged supergravity, in particular we

compute the compensators W x
Λ .

2.3 BPS black hole horizons: AdS2 × Σg

Another canonical vacuum in four dimensional N = 2 gauged supergravity is AdS2 × Σg.

The bosonic fields and the supersymmetry parameter are independent of the co-ordinates

on Σg which thus allows for quotient of H2 by Γ̃. We refer to such solutions as black hole

horizons since the horizon of a static extremal black hole is of this form. The solutions which

we study of this form preserve two real Poincaré supercharges plus two superconformal

supercharges, they are typically referred to as quarter-BPS.

The equations for BPS black hole horizons with hypermultiplets were derived in [19].

We will use the symplectic completion of these equations but as explained above, once the

locality constraints of section 6.1 are imposed, these models can always be symplectically

rotated to a frame with purely electric gaugings at the cost of a potentially non-trivial

transformation on the prepotential. From the equations in appendix D we note that the

Killing prepotentials always appear in terms of the quantity P xp ≡ P xΛp
Λ. Since by (D.1)

pΛ are constant, we can use a local (on Mh) SU(2) transformation to set

P 1
p = P 2

p = 0. (2.26)

In this way, much like the AdS4 equations, the BPS equations depend only on P 3
Λ.
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The BPS equations for AdS2 × Σg solutions are

Q−R2
2MP = −4 Im(ZV) (2.27)

Z = eiψ
R2

2

2R1
(2.28)

〈P ,Q〉 = κ (2.29)

〈Ku,V〉 = 0 (2.30)

〈Ku,Q〉 = 0 (2.31)

where (R1, R2) are the radii of AdS2 and Σg in the metric ansatz (2.5) and (2.8). When

Mv is a symmetric space, the equations (2.27)-(2.29) were explicitly solved in [9] and

implicitly solved whenMv is not symmetric. This solution can then be used to reduce the

full set (2.27)-(2.31) to (2.30)-(2.31) depending only on the hypermultiplet scalars qu. Of

course these remaining equations depend non-trivially on the gauging parameters. Using

the results of [20] one can replace V in (2.30) with an expression involving I ′4 evaluated on

P and Q.

We note that as in [9] the entropy of the black hole is obtained by expanding

0 = I4

(
Q− iR2

2P
)

(2.32)

into real and imaginary parts

R4
2 =
−I4(Q,Q,P,P)±

√
I4(Q,Q,P,P)2 − I4(Q,Q,Q,Q)I4(P,P,P,P)

I4(P,P,P,P)
. (2.33)

We note that the P depends nontrivially on qu (as opposed to the constant gauge cou-

plings in the FI-gauged supergravity studied in [9]) which must in turn be evaluated by

solving (2.30) and (2.31).

3 Symmetries of special Kähler manifolds

We warm up by recalling various features of the symmetry structure of special Kähler

manifolds [4, 5]. In general for homogeneous spaces, there are certain universal symmetries

which are guaranteed to exist for any such manifold and then there are model dependent

symmetries which are constrained. For symmetric spaces all the model dependent symme-

tries are realized. This is particularly useful for our computations in the next section where

the so-called hidden isometries act symplectically on the base special Kähler manifold.

A key point regarding symmetries on special Kähler manifolds is that all symmetries

act on the symplectic sections as linear symplectic transformations:

δ

(
XΛ

FΛ

)
= U

(
XΛ

FΛ

)
, (3.1)

– 6 –
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with

U =

(
Q R
S T

)
, R = RT , S = ST , T = −QT . (3.2)

However not all symplectic transformations generate isometries of Mv, true symmetries

are constrained by

δFΛ =
∂FΛ

∂XΣ
δXΣ , (3.3)

contracting both sides and using the homogeneity of FΛ we get

XΛδFΛ = FΛδX
Σ ⇒ 0 = XΛSΛΣX

Σ − 2XΛ(QT ) Σ
Λ FΣ − FΛRΛΣFΣ . (3.4)

This constraint is sufficient to classify isometries on special Kähler manifolds.

3.1 Cubic prepotentials

When the prepotential is cubic

F = −dijk
XiXjXk

X0
, (3.5)

the general solution to (3.4) is found by expanding in powers of τ i and one finds

QΛ
Σ = −(T T )Λ

Σ =

(
β aj
bi Bi

j + 1
3βδ

i
j

)
, SΛΣ =

(
0 0

0 −6dijkb
k

)
, RΛΣ =

(
0 0

0 − 3
32 d̂

ijkak

)
(3.6)

where {β,Bi
j , b

i, aj} are constants. On special coordinates these symmetries act as a

generalization of fractional linear transformations:

δτ i = bi − 2

3
βτ i +Bi

jτ
j − 1

2
Ri l

jk τ
jτkal . (3.7)

The unconstrained symmetries are given by axion shifts generated by bi and a common

rescaling generated by β. The other rescalings generated by Bi
j are constrained

0 = di(klB
i
j) (3.8)

as are the non-linear symmetries generated by ai which must satisfy

aiE
i
jklm = 0 , (3.9)

where

Eijklm = d̂ijkdj(lmdnp)k −
64

27
δi(mdnpl) , (3.10)

d̂ijk =
gilgjmgkndlmn

d2
y

. (3.11)

When Mv is a symmetric space, d̂ijk has constant entries and Eijklm = 0. Then

the symmetry group of Mv will be a simple Lie algebra where bi generate the lowering

– 7 –
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operators, ai generate raising operators and (β,Bi
j) generate Cartan elements. We can

use the constant tensor d̂ijk to define the quartic invariant

I4(Q) = −(qΛp
Λ)2 +

1

16
p0d̂ijkqiqjqk − 4q0dijkp

ipjpk +
9

16
d̂ijkdklmp

lpmqiqj , (3.12)

one can check that I4(Q) is invariant under the action

δ

(
pΛ

qΛ

)
= U

(
pΛ

qΛ

)
(3.13)

with U given by (3.2) and (3.6).

3.2 Quadratic prepotentials

We will also consider the solution to (3.4) for the series of special Kähler manifolds which

arise from quadratic prepotentials:

F = XΛηΛΣX
Σ . (3.14)

As explained in appendix A.1 where more details are given, one can in general take

η =
1

2i
diag{1,−1, . . . ,−1} (3.15)

and Mv is the homogeneous space

Mv =
SU(1, nv)

U(1)× SU(nv)
. (3.16)

The solution to (3.4) is given by (3.2) with

SΛΣ = 4ηΛΥRΥ∆η∆Σ , (3.17)

Q0
i = Qi0 , Qij = −Qji QΛ

Λ = 0 , (3.18)

with no summation on Λ in the last line. The special coordinates τ i transform as

δτ i = Ai0 +
(
Aij −A0

0δ
i
j

)
τ j − τ iτ jA0

j (3.19)

where

A = Q+ 2Rη . (3.20)

There is a unique (up to constant rescalings) quadratic invariant, given by

J2(pΛ, qΛ) = 4pΛηΛΣp
Σ − qΛ(η−1)ΛΣqΣ (3.21)

which gives rise to the unique quartic invariant

J4(pΛ, qΛ) =
[
J2(pΛ, qΛ)

]2
. (3.22)
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3.3 Lie derivative of the Kähler potential

Despite the fact that in homogeneous coordinates the Kähler potential is manifestly sym-

plectic invariant

e−K = −iXTΩX (3.23)

and the Killing vectors act by a linear symplectic transformation (3.1), in special coordi-

nates the Kähler potential need not be exactly invariant under the action of the Killing

vectors. For any given Killing vector k, there may be a compensating Kähler transformation

LkK = fk + fk . (3.24)

For cubic prepotentials we have

e−K = 8dy , LU(K) = 2β + 2aix
i (3.25)

giving the holomorphic function

fU = β + aiτ
i . (3.26)

For quadratic prepotentials the Kähler potential is

e−K = 2

(
− 1 +

nv∑
i=1

|τ i|2
)

(3.27)

the Lie derivative induces the Kähler transformation

fU(τ i) = 2τ iAi0 . (3.28)

In a conceptually similar vein, we will find below that the action of various symmetries on

our quaternionic Kähler manifolds induce non-trivial SU(2) compensating transformations.

4 Symmetries of special quaternionic Kähler manifolds

Many of the symmetries on a special quaternionic Kähler manifold are constructed from the

symmetries of the base special Kähler manifoldMz and this is the reason for reviewing such

symmetries in section 3. As reviewed in appendix B the metric on a special quaternionic

Kähler manifold which lies in the image of a c-map is1

ds2
QK = dφ2 + gabdz

adzb +
1

4
e4φ
(
dσ +

1

2
ξTCdξ

)2 − 1

4
e2φdξTCMdξ (4.1)

with a = 1, . . . nh − 1. The symmetries of such manifolds have been studied in [4, 5] and

here we find somewhat more compact expressions and compute the Killing prepotentials.

We use the notation whereby the symplectic sections on the special Kähler base Mz and

the symplectic vector for the Heisenberg fiber are denoted

Z =

(
ZA

GA

)
, ξ =

(
ξA

ξ̃A

)
, A = 0, . . . nh − 1 , (4.2)

ZA =

(
1

za

)
, a = 1, . . . , nh − 1 (4.3)

1We will sometimes use the coordinate ρ = e−2φ.
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While de Wit and Van Proeyen considered special quaternionic Kähler manifolds which

are homogeneous spaces, we will focus on the symmetric spaces for simplicity.

One conceptual addition we add to the work of [4, 5] is the following. Since the

quaternionic Kähler metric ds2
QK has terms quadratic but not linear in za, any Killing

vector which acts on the za must be a linear symplectic transformation on the sections Z

of the form U described above. This transformation may have components {ac, bc, β, Ba
b}

which depend on the fields {φ, σ, ξA, ξ̃A}. In this section we present this transformation for

symmetric spaces, leaving the more complicated homogeneous spaces for future work.

We have computed the Killing vectors presented in this section by explicit computation

using [4, 5] as a guide but altering and correcting their formulae where necessary.

4.1 The duality symmetries

The so-called duality symmetries are generated by

hε+ =
∂

∂σ
, (4.4)

hα = C
[
∂ξ +

1

2
ξ
∂

∂σ

]
, (4.5)

hε0 =
∂

∂φ
− 2σ

∂

∂σ
+ ξC∂ξ , (4.6)

hU = (UZ)A
∂

∂ZA
+ (UZ)A

∂

∂Z
A
− (Uξ)TC∂ξ (4.7)

where

∂ξ =

 ∂
∂ξ̃A

− ∂
∂ξA

 . (4.8)

The Killing vector hε+ is an axion shift while hα are shifts of the Heisenberg fibers

embelished with a field dependent shift of σ (there are 2nh of them). The Killing vector

hε0 generates a universal scaling symmetry. These symmetries are all model independent,

they exist for any special quaternionic Kähler manifold.

The Killing vector hU uses the symplectic matrix from (3.1), (3.2) and should be

understood as a general Killing vector of the base special Kähler manifold Mz which has

been uniquely lifted to a Killing vector on Mh (parameters are written for this vector

since there is no symplectic expression without writing them). For cubic prepotentials,

such symmetries with non-trivial (ba, β) are therefore universal while those with non-trivial

(Ba
b, aa) are constrained with all the aa symmetries being realized whenMz is a symmetric

space. The series of quadratic prepotentials are all symmetric spaces and all the symmetries

of the base Mz extend to symmetries of Mh.

The Killing vectors hα are 2nh-dimensional and their components read explicitly

hA = − ∂

∂ξA
+

1

2
ξ̃A

∂

∂σ
, hA = − ∂

∂ξ̃A
− 1

2
ξA

∂

∂σ
. (4.9)
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4.2 The hidden symmetries

In addition to these duality symmetries there are the so-called hidden symmetries and these

have a more formidable expression. After some lengthy but unenlightening computations

we find the Killing vectors fields to be generated by

hε− = −σ ∂

∂φ
+ (σ2−e−4φ−W )

∂

∂σ
−σξC∂ξ+ (∂ξW )TC∂ξ+

[
(SZ)A

∂

∂ZA
+ c.c.

]
(4.10)

hα̂ = −1

2
Cξ

∂

∂φ
+

[
σ

2
Cξ + C∂ξW

]
∂

∂σ
+

[
σ11 +

1

2
Cξ ξTC + ∂ξ(∂ξW )TC

]
∂ξ

−
[
(C∂ξS Z)A

∂

∂ZA
+ c.c.

]
(4.11)

where

W =
1

4
h(ξA, ξ̃A)− 1

2
e−2φξTCMξ (4.12)

and S is the symplectic matrix:

S =
1

2

(
ξξT +

1

2
H

)
C , H =

(
∂I∂Jh(ξA, ξ̃A) −∂I∂Jh(ξA, ξ̃A)

−∂I∂Jh(ξA, ξ̃A) ∂I∂Jh(ξA, ξ̃A)

)
= ∂ξ (∂ξh)T . (4.13)

In addition h(ξA, ξ̃A) is a particular quartic polynomial which will be elaborate on below. In

appendix B.2 we present these Killing vectors in a form more easily comparable with those

in [4, 5], in fact we have amended an error in hσε− and hσα̂ which appears in those works.

One can schematically see that the general form of

δε−Z = S Z, δα̂Z = C∂ξS Z (4.14)

is necessary since the metric (4.1) has no terms linear in dza. As such when computing the

variation of (4.1) with respect to any Killing vector, the only terms quadratic in dza which

are produced come only from ds2
Mz

itself and thus must cancel amongst themselves. In

principle this argument allows for (β̃, ãc, b̃
c, B̃c

e) to depend on (φ, σ) as well but ultimately

there is no such dependence. This is the main improvement of our expressions over those

in [4, 5], in particular for symmetric spaces the matrix DS is explicitly independent of the

coordinates za of the base Mz, it depends only on (ξA, ξ̃A).

4.2.1 Cubic prepotentials

For cubic prepotentials

G = −Dabc
ZaZbZc

Z0
(4.15)

we have

h(ξA, ξ̃A) = I4(ξ) (4.16)

where I4 is the familiar quartic invariant defined in (3.12). With this form of h we note

that S has the same form as U in (3.1) and (3.6) but its entries (β̃, ã, b̃, B̃) are now field
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dependent:

β̃ =− 1

2

(
3ξ̃0ξ

0 + ξ̃aξ
a
)
, B̃ a

b =− 1

2

(
2

3
δab ξ̃cξ

c + 2ξ̃bξ
a − 9

8
D̂aceDbcfξ

f ξ̃e

)
(4.17)

ãa =− 1

2

(
2ξ0ξ̃a + 6Dabcξ

bξc
)
, b̃a =− 1

2

(
2ξ̃0ξ

a − 3

32
D̂abcξ̃bξ̃c

)
. (4.18)

In a sense this is our main addition to the work of [4, 5], in that we provide the explicit

form of the duality transformation on Mz contained within the hidden Killing vectors on

Mh.

4.2.2 Quadratic prepotentials

With base special Kähler manifold

Mz =
SU(1, nh − 1)

U(1)× SU(nh − 1)
(4.19)

and quadratic prepotential

G = ZAηABZ
B, η =

1

2i
diag(1,−1, . . . ,−1), (4.20)

the resulting quaternionic Kähler manifold is the homogeneous space

Mh =
SU(2, nh − 1)

SU(2)× SU(nh − 1)×U(1)
. (4.21)

There is a unique quartic invariant and we find that

h(ξA, ξ̃A) = − 1

16
J4(ξA, ξ̃A) (4.22)

where J4 is defined in (3.22). With this form we find that S has the form of (3.2) subject

to (3.17) and (3.18) but with the non-trivial components having dependence on (ξA, ξ̃A).

Explicitly we find

RAB =
1

2

[
ξAξB +

1

8
(η−1)AB(4ξηξ − ξ̃η−1ξ̃)− 1

4
(η−1ξ̃)A(η−1ξ̃)B

]
(4.23)

SAB =
1

2

[
− ξ̃Aξ̃B +

1

2
ηAB(4ξηξ − ξ̃η−1ξ̃) + 4(ηξ)A(ηξ)B

]
(4.24)

which satisfy (3.17) and also

QAB =
1

2

[
ξAξ̃B − (η−1ξ̃)A(ηξ)B

]
, (4.25)

which gives in components

QAA = 0 , Q0
a =

1

2

(
ξ0ξ̃a + δ0cδabξ̃cξ

b
)
, Qab =

1

2

(
ξaξ̃b − δacδbeξ̃cξe

)
(4.26)

and satisfies (3.18).

This concludes our description of the Killing vectors on quaternionic Kähler manifolds.

We next turn to the computation of the Killing prepotentials for these Killing vectors which

will involve computing the compensators W x
Λ .
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Figure 1. Root diagram for the G2 Lie algebra.

4.3 Killing vector algebra

The non-vanishing commutators of the algebra are [5]

[hε0 , hε+ ] =2hε+ , [hε0 , hα] =hα, [hα, h
t
α] =Chε+ , [hU, hα] =Uhα,

[hε0 , hε− ] =− 2hε− , [hε0 , hα̂] =− hα̂, [hε− , hα] =− hα̂,
[hε+ , hε− ] =− hε0 , [hε+ , hα̂] =hα, [hU, hα̂] =Uhα̂,

[hα̂, h
t
α̂] =Chε− , [α̂thα̂, α

thα] =
1

2
α̂tCαhε0 + hTα,α̂

(4.27)

with

Tα,α̂ =(αt∂ξ)(α̂
t∂ξ)S = −1

2
C(α̂αt + αα̂t) +

1

4
H ′′α,α̂C, (4.28a)

H ′′α,α̂ =∂ξ(∂ξh
′′
α,α̂)t = (αt∂ξ)(α̂

t∂ξ)H, (4.28b)

h′′α,α̂ =(αt∂ξ)(α̂
t∂ξ)h. (4.28c)

There are two Heisenberg subalgebra, one generated by {hα, hε+}, the other by {hα̂, hε−}.
As an example we give the G2 root diagram in figure 1. The hidden symmetries are

on the left side.

5 The Killing prepotentials and compensators

For applications to N = 2 gauged supergravity we need to compute the Killing prepoten-

tials. As reviewed in section B the action of a Killing vector on the spin connection may

induce a local SU(2) transformation:

LΛ(ωx) = dW x
Λ + εxyzW y

Λω
z (5.1)
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and W x
Λ is then referred to as a compensator. The Killing prepotentials are then given by

P xΛ = kΛyω
x −W x

Λ (5.2)

and we find this to be an efficient route to computing the Killing prepotentials. We use the

canonical expression for the spin connection using homogeneous coordinates on Mz [21]:2

ω+ =
√

2e
KΩ
2

+φZTCdξ (5.3)

ω3 =
e2φ

2

(
dσ +

1

2
ξTCdξ

)
+

1

2
eKΩ

[
GBdZ

B − ZAdGA + c.c.
]

(5.4)

although one is of course free to choose another gauge. We have denoted the Kähler

potential on Mz by KΩ.

5.1 The compensators

5.1.1 Duality symmetries

We find that the spin connection is exactly invariant under all the duality symmetries

except some components of hU. For the quaternionic Kähler manifolds where Mz has a

cubic prepotential, we find

LU(ω+) = −iacImzc ω+ . (5.5)

and so the only non-trivial compensator is

W 3
U = acImzc . (5.6)

For the Mh where Mz has a quadratic prepotential, we find

LQa0
(
ω+
)

= −i ImzaQa0ω+ , LRa0

(
ω+
)

= −iRezaRa0ω+ (5.7)

and thus the non-trivial compensators for the duality symmetries

W 3
Qa0 = ImzaQa0 , W 3

Ra0 = RezaRa0 . (5.8)

5.1.2 Hidden symmetries

For the hidden symmetries all components of the compensator are non-trivial. Nonetheless

we can derive an expression which is equally valid for all prepotentials since the model

dependence appears only through the compensator for the duality symmetry hU.

W+
ε− = −i2

√
2 e

KΩ
2
−φ ZTCξ

W 3
ε− = −W 3

S − e−2φ

W+
α̂ = −C∂ξW+

ε− = i2
√

2 e
KΩ
2
−φCZ

W 3
α̂ = −2C∂ξW 3

ε−

. (5.9)

The expression W x
S is defined to mean W x

U with the parameters in U promoted to the

field dependent quantity S using (4.17)-(4.18) in the cubic case and (4.23)-(4.26) in the

quadratic case. Similarly to the Killing vectors, Wα̂ is a 2nh-dimensional vector.

2this expression is of course not invariant under local SU(2) transformations and neither are our expres-

sions for P xΛ or W x
Λ

– 14 –



J
H
E
P
0
5
(
2
0
1
5
)
1
2
2

5.2 Killing prepotentials

We find the Killing prepotentials by using

P xΛ = kΛyω
x −W x

Λ . (5.10)

Since we have already computed the compensators, it remains to just compute kΛyωx for

the various Killing vectors. This contraction must be done in special co-ordinates, not

homogeneous co-ordinates.

For the universal symmetries we have

P+
ε+ = 0 ,P 3

ε+ =
1

2
e2φ ,

P+
ε0 =

1√
2
e
KΩ
2

+φZTCξ , P 3
ε0 =

1

2
e2φσ,

P+
α =−

√
2e

KΩ
2

+φCZ , P 3
α =− 1

2
e2φCξ

(5.11)

For the model-dependent symmetries on the special Kähler base the prepotentials are

P+
U =

√
2e

KΩ
2

+φZTCUξ , P 3
U =

1

4
e2φξTCUξ − eKΩZTCUZ (5.12)

For the hidden symmetries we find

P+
ε− =
√

2e
KΩ
2

+φ
[
σZTCξ − i2e−2φξTCZ − ZTC(∂ξW )

]
P 3
ε− =

1

2
e−2φ +

σ2

2
e2φ − 1

4
e2φ
[
2W + ξTC(∂ξW )

]
+ eKΩZ

TCSZ
(5.13)

and

P+
α̂ =−

√
2e

KΩ
2

+φ(ZTCξ)Cξ − 2C(∂ξP
+
ε−)

P 3
α̂ =− C

[
σ e2φξ + 2∂ξP

3
ε−

] (5.14)

6 The gauging

Once the Killing vectors are classified a gauged supergravity theory is specified by a large

set of gauging parameters which dictate how the various fields are charged. In this section

we present the constraints on the embedding tensor for our Abelian gaugings. We denote

the set of all Killing vectors of the hypermultiplets by

kA = {hU, hα, hα̂, hε+ , hε0 , hε−} (6.1)

and consider the most general gauging by introducing electric and magnetic parameters

ΘA =

(
ΘAΛ

ΘAΛ

)
(6.2)

for each of these Killing vectors

ΘA = {U, α, α̂, ε+, ε0, ε−} (6.3)
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where we allow for a different symmetry UΛ for each vector field. Each of the parameters is

a symplectic vector whose components are of the same dimension than the corresponding

Killing vectors (see appendix C for explicit lists). In particular all the parameters of the

matrix U become symplectic vectors.

Contracting the Killing vectors with the parameters give the Killing vectors K

K = Ku ∂

∂qu
= ΘAkA = hU + αtChα + α̂tChα̂ + ε+hε+ + ε0hε0 + ε−hε− (6.4)

that couple to the electric and magnetic gauge fields.3 Splitting the electric and magnetic

components give

kΛ = kuΛ
∂

∂qu
= hUΛ

+ αtΛChα + α̂tΛChα̂ + ε+Λhε+ + ε0Λhε0 + ε−Λhε− , (6.5)

k̃Λ = k̃Λu ∂

∂qu
= hUΛ + αtΛChα + α̂tΛChα̂ + εΛ+hε+ + εΛ0 hε0 + εΛ−hε− (6.6)

Electric and magnetic gaugings are distinguished only by the position of their Λ index.

The number of parameters is

#(params) = 2nv ×
[
(4 + x)nh + 3

]
(6.7)

since for each of the (2nv)-dimensional symplectic vector component there is: 3 parameters

for hε0 and hε± , 2nh parameters for α and α̂ and xnh parameters for hU (x being of

order 1 or nh depending on the model under consideration). All these parameters are not

independent since consistency impose relations between them.

6.1 Constraints on the gauging parameters

The gauging parameters are constrained by two conditions [3, 11, 12]: closure of the Killing

vector algebra

[kA, kB] = f CAB kC (6.8)

and locality. These two conditions are also necessary for satisfying the supersymmetric

Ward identities [12].

Since only the hypermultiplet isometries are gauged, the Killing vectors kA form an

abelian algebra [3, 22]. As a consequence the following commutators need to vanish

[kΛ, kΣ] = [kΛ, k̃Σ] = [k̃Λ, k̃Σ] = 0. (6.9)

3Our notation is not very convenient for the vector hU: by the contraction we mean that the matrices

UΛ and UΛ are used as the parameter for hU, i.e. we have hUΛ and hUΛ .
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Upon inserting the explicit expression (6.5) of kΛ and using the algebra (4.27), the

first commutator leads to a set of quadratic constraints (see (C.4) for the definition of T)

0 = T(αΛ, α̂Σ)− T(αΣ, α̂Λ), (6.10a)

0 = −(UΛαΣ − UΣαΛ) + (ε0ΛαΣ − ε0ΣαΛ) + (ε+Λα̂Σ − ε+Σα̂Λ), (6.10b)

0 = (UΛα̂Σ − UΣα̂Λ) + (ε−ΛαΣ − ε−ΣαΛ) + (ε0Λα̂Σ − ε0Σα̂Λ), (6.10c)

0 = αtΛCαΣ + 2(ε+Σε0Λ − ε+Λε0Σ), (6.10d)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(ε+Σε−Λ − ε+Λε−Σ), (6.10e)

0 = α̂tΛCα̂Σ + 2(ε0Λε−Σ − ε0Σε−Λ). (6.10f)

These constraints involves product of electric parameters. The two other commutators

lead to similar constraints for electric/magnetic and magnetic/magnetic products (see ap-

pendix C).

The so-called locality constraints implies that the electric/magnetic duality exists and

that we can rotate to a frame which is purely electric. Using the notation (6.2) for the

gauging parameters this condition reads

〈Θα, Θβ〉 = 0. (6.11)

The explicit list is given in appendix C. These constraints generalize the one given in [22].

A consequence of the locality constraints is that the symplectic product of Ku with Px

always vanishes

〈Ku,Px〉 = 0. (6.12)

The prepotential is linear in the gauging parameters and it can be written

Px = ΘAP xA. (6.13)

Inserting this expression and (6.4) into the brackets we get

〈Ku,Px〉 = KuAPxB〈ΘA, ΘB〉 = 0. (6.14)

7 Examples

In this section we work through two examples of gauged supergravity theories which arise

from M-theory and which have Mh = G2(2)/ SO(4), reproducing the N = 2 AdS4 vacuum

and then look at black hole horizons. It is well known that when an FI-gauged supergravity

theory (i.e. with nh = 0 and U(1)R gauging) admits an N = 2 AdS4 vacuum it also admits

a constant scalar flow to AdS2 × H2/Γ̃, one can find a very general proof of this in [23].

With the addition of hypermultiplets, one can set them also constant and then the only

additional constraints are 〈Ku,Q〉 = 0. Subject to this being solved, the hypermultiplets

decouple and the constant scalar flow is also a solution of the theory with hypermultiplets.

We demonstrate this in our two examples.

Our first example was obtained in [22] corresponding to the invariant dimensional

reduction of M-theory on V5,2. Our second example comes from [24] and corresponds to a
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consistent truncation of the dimensional reduction of maximal gauged supergravity on the

Einstein three-manifold4 M3 ∈ {H3/Γ, T
3, S3}.

7.1 V5,2

The invariant reduction of M-theory on seven-dimensional cosets was performed in [22]

where in addition the general reduction on SU(3)-structure manifolds was performed. All

the resulting four dimensional gauged supergravity models found in that work fall into the

class studied here, namely the hypermultiplet scalar manifold is a symmetric space which

lies in the image of a c-map. Black hole solutions in many of these models were studied

in [19], here we restrict ourselves to the example where Mh = G2(2)/ SO(4) corresponding

to the reduction on V5,2.

The following data specifies the four dimensional supergravity theory [22]:

nv = 1 , Mv =
SU(1, 1)

U(1)
, F = −(X1)3

X0
, XΛ =

(
1

τ

)
, (7.1)

nh = 2 , Mh =
G2(2)

SO(4)
, Mz =

SU(1, 1)

U(1)
G = −(Z1)3

Z0
, ZΛ =

(
1

z

)
. (7.2)

The nonvanishing electric gaugings are given by

b1Λ =
4√
3
δΛ0 , a1,Λ = − 4√

3
δΛ0 , ε+Λ = −e0δΛ0 . (7.3)

The non-vanishing magnetic gauging is given by

εΛ+ = −2δΛ1 (7.4)

The constant e0 has its origin in the M-theory three-form with legs in the external four

dimensional spacetime which has been dualized to a constant [22].

We note that the gaugings which specify this model were incorrectly reported in [22]

to have vanishing compensator W x
Λ . This of course is incompatible with the existence of a

supersymmetric AdS4 vacuum. The resolution is that as found in section 5.1.1 the Killing

vectors kU with ai 6= 0 have non-trivial compensators and we now see this is nontrivially

gauged. In fact this is the only gauging with a non-trivial compensator in this reduction.

7.1.1 AdS4 vacua

The Killing prepotentials P±Λ are set to vanish by the condition

ξA = ξ̃A = 0 . (7.5)

Then from 〈KȦ, ImV〉 = 0 (in the direction of Mz) we get

KȦ = 0 ⇒ z1 = i
√

3 . (7.6)

4Γ is a discrete subgroup of SL(2,C).
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and from 〈Ka, ImV〉 = 0 (in the direction of the axion a) we get

eφ =

√
6

e0
(7.7)

while the axion is unfixed. As a result we have the Killing prepotentials

P 3
Λ = (1 , 0) , P̃ 3,Λ = (0,−6/e0) . (7.8)

The vector multiplet scalars are then given by

x = 0 , y =

√
e0

6
(7.9)

and the AdS4 radius is given by

R2
AdS4

=
12
√

6

e
3/2
0

. (7.10)

7.1.2 AdS2 × Σg vacua

There is a related AdS2 × H2/Γ̃ vacuum at the same point on the scalar moduli spaces

Mv ×Mh. The charges are

Q = (
1

4
, 0, 0,

e0

8
) (7.11)

and the radii are

R1 =
e

3/4
0

8(21/433/4)
, R2 =

e
3/4
0

4(21/433/4)
. (7.12)

7.2 SO(5) gauged supergravity on M3

The maximal gauged supergravity in seven dimensions [25] has been dimensionally reduced

on three-dimensional constant curvature Einstein manifolds and consistently truncated to

a four dimensional gauged supergravity theory in [24]. The resulting theory is given by the

following data:

nv = 1 , Mv =
SU(1, 1)

U(1)
, F =− 4

(X1)3

X0
, XΛ =

(
1

τ

)
, (7.13)

nh = 2 , Mh =
G2(2)

SO(4)
, Mz =

SU(1, 1)

U(1)
G = −(Z1)3

Z0
, ZΛ =

(
1

z

)
. (7.14)

We have computed the gaugings in our terminology by careful comparison with [24]. This

requires a non-trivial co-ordinate change which is detailed in appendix F.

To specify the gaugings we need only to give the components of the embedding tensor

in (6.3). We find that k1 = 0 and the non-vanishing electric components are in k0

α0
,0 =

1

2
, α̂0,0 = 33/4 , α1,0 =

33/4`

4
. (7.15)

Likewise we find that k̃0 = 0 and the non-vanishing magnetic components are in k̃1

α 1
1, = − 1

2
√

3
. (7.16)
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The integer ` = {−1, 0, 1} corresponds to the reduction on M3 = {H3/Γ, T
3, S3} respec-

tively. The gauging from α̂0,0 provides the non-trivial compensator required to have a

supersymmetric AdS4 vacuum.

This yields the magnetic Killing prepotentials

P̃ x,0 = 0 , P̃ 1,1 =
31/4

2
eφ+3ϕχ , P̃ 2,1 =

31/4

2
eφ+ϕ , P̃ 3,1 =

31/4

2
e2φξ1 (7.17)

and the electric Killing prepotentials

P 1
0 =

1

33/44

[
− 9e4ϕχ`+ 2χ(e4ϕχ2 − 3)

+33/2
(

6ξ0(ξ1 − χξ0) + e4ϕ
(
− 2σ + ξ0(ξ̃0 + 2χ3ξ0)

+ξ̃1ξ
1 − 6χ2ξ0ξ1 + 6χ(ξ1)2

))]
P 2

0 =
1

33/44

[
− 9eφ+ϕ`+ 2e−φ−3ϕ

(
e2φ(3e4ϕχ2 − 1)

+33/2
(
e2φ(3e4ϕ(−χξ0 + ξ1)2)− (ξ0)2 − e6ϕ

))]
P 3

0 =
1

33/44

[
18
√

3e2ϕ(χξ0 − ξ1) + e2φ
(
ξ̃0(2 + 33/2(ξ0)2) (7.18)

−9`ξ1 + 33/2(ξ̃1ξ
0ξ1 + 2(ξ1)3 − 2σξ0)

)]
P x1 = 0 .

7.2.1 AdS4 vacua

The supersymmetric AdS4 vacuum is at

ξA = ξ̃A = χ = a = φ = 0 , eϕ =
1

31/4
, τ1 =

i

2
√

2
(7.19)

and in particular requires ` = −1, corresponding to a reduction on H3/Γ. The AdS4

radius is

RAdS4 =
1√
2
. (7.20)

Evaluated at this vacuum the Killing prepotentials become

P 1
Λ = P 3

Λ = P̃ 1,Λ = P̃ 3,Λ = 0 , P 2
0 = −1

4
, P̃ 2,2 =

1

2
(7.21)

7.2.2 AdS2 × Σg vacua

The AdS2×Σg vacuum for is located at the same point on the scalar manifold. The charges

are given by

p0 = −1 , p1 = 0 , q0 = 0 , q1 = −3

2
(7.22)

The radii are given by

R1 =
1

23/4
, R2 =

1

21/4
. (7.23)

When lifted to M-theory this is a solution of the form

AdS2 ×H2/Γ̃× (H3/Γ×w S4) (7.24)

where the S4 is fibered non-trivially over H3. It arises as the IR of a domain wall AdS4 →
AdS2 ×H2 where the scalar fields take constant values along the whole flow.
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8 Conclusions

We have analyzed the symmetry structure of symmetric special quaternionic Kähler man-

ifolds with a view towards studying general gaugings of N = 2 supergravity. In particular

we have computed the Killing prepotentials and compensators for all symmetries of such

manifolds. We have shown in certain examples how this fits with existing theories in the

literature derived from M-theory.

The overarching goal of this study is a comprehensive understanding of BPS vacua in

N = 2 gauged supergravity, in particular black hole solutions. A particular goal, yet to

be realized is to generalize the solution of black hole horizons in [9] to include hypermulti-

plets. This requires a deeper analysis of (2.30) and (2.31) as well as the constraints on the

embedding tensor in section 6.

An interesting related computation was performed in [8] regarding the analysis of

N = 1 AdS4 vacua in the same theories we have studied in this work. The key difference

is that for N = 1 AdS4 vacua one only gauges the Heisenberg shift symmetries and these

have vanishing compensators. Nonetheless with this simplification the authors of [8] could

derive very general classes of AdS4 vacua in theory coupled to hypermultiplets whose scalar

manifold lies in the image of a c-map.

A more immediate a modest goal is to complete the analysis of black hole horizons

of [19] by expressing the scalar fields and radii in terms of the charges. One lesson from the

study of FI-gauged supergravity in [9] was that while this inversion can be a formidable

task in any given example, it is advantageous to maintain the symplectic covariance by

studying general classes of theories simultaneously. The models studied in [19] have a

hypermultiplet scalar manifoldMh whose base special Kähler manifoldMz has a quadratic

prepotential. This can be studied using the techniques from this work and should result in

complete solution for the black hole horizons for all the models of [22]. This should involved

carefully considering the embedding of the Abelian gauge group into the symplectic group

or equivalently solving the constraints in section 6. A simple model of AdS4 vacua was

solved in [26] where very particular patterns were observed regarding the dependence if if

the solution space on the gauge group and its embedding.

Another interesting direction is to find the analytic black hole solutions for models with

hypermultiplets much like the analytic solutions in FI-gauged supergravity [13, 20, 27]. The

key step in finding the most general dyonic static black hole these FI-gauged supergravity

theories was to posit the ansatz whereby a particular metric function was, much like the

Demianski-Plebanski solution [28], a quartic polynomial in the radius. This ansatz may help

in generalizing such analytic solutions to hypermultiplet theories, it seems like a difficulty

problem but any progress would be an interesting development.

One last issue is that the computations in this paper can most likely be generalized to

include all homogeneous quaternionic Kähler manifolds, not just the symmetric ones. For

these manifolds, the hidden Killing vectors are significantly more complicated but given

that they have been explicitly computed in [4] one imagines it to be possible to compute

the associated Killing prepotentials, we leave this for future investigations.
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A Special Kähler geometry

We start with a brief summary of special Kähler geometry. The key ingredients are a

Kähler manifold Mv equipped with an Sp(2nv + 2,R) bundle over it with sections

X =

(
XΛ

FΛ

)
, Λ = 0, . . . , nv . (A.1)

We will be primarily concerned in this paper with the so-called very special Kähler mani-

folds, which means there is a cubic prepotential

F = −dijk
XiXjXk

X0
, i = 1, . . . , nv . (A.2)

The canonical complex coordinates τ i = xi + i yi on Mv are called special coordinates

XΛ =

(
1

τ i

)
⇒ FΛ =

(
dτ
−3dτ,i

)
. (A.3)

The metric can be obtained from a Kähler potential K

e−K = −iXTΩX = 8dy (A.4)

gi = ∂i∂K (A.5)

where Ω is the (2nv + 2)× (2nv + 2) dimensional matrix Ω =
(

0 11
−11 0

)
.

We next introduce the operators which appear in the gauge field Lagrangian

NΛΣ = RΛΣ + iIΛΣ (A.6)

There is a very useful projection operator

M =

(
I−1R −I−1

I +RI−1R −RI−1

)
(A.7)

which satisfies

MV = −iV , MUi = iUi (A.8)

where V = eK/2X and

Ui = DiV = ∂iV +
1

2
∂iKV (A.9)
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The Riemann tensor on Mv is given by

Ri l
jk = δijδ

l
k + δikδ

l
j −

9

16
d̂ilmdmjk (A.10)

where

d̂ijk =
gilgjmgkndlmn

d2
y

(A.11)

When Mv is in addition a homogeneous space, the tensor d̂ijk has constant entries and

satisfies certain useful identities

d̂ijkdjl(mdnp)k =
16

27

[
δildmnp + 3δi(mdnp)l

]
(A.12)

d̂ijkdj(lmdnp)k =
64

27
δi(mdnpl) . (A.13)

The quartic invariant is defined using both dijk and d̂ijk:

I4(Q) = −(p0q0 + piqi)
2 − 4q0dijkp

ipjpk +
1

16
p0d̂ijkqiqjqk +

9

16
dijkd̂

ilmpjpkqlqm . (A.14)

From this we obtain a symmetric four index tensor

I4(Q) =
1

4!
tMNRSQMQNQRQS (A.15)

which is then used to define the derivative of I4:

I ′4(Q)M =
1

3!
ΩMN t

NRSTQRQSQT . (A.16)

We note that I ′4 can be used to relate the real and imaginary parts of the symplectic

section V
ReV = − I ′4(ImV)

2
√
I4(ImV)

. (A.17)

We will often employ the shorthand notation

dτ = dijkτ
iτ jτk , dτ,i = dijkτ

jτk , dτ,ij = dijkτ
k . (A.18)

A.1 Quadratic prepotential

The general quadratic prepotential is

F = XΛηΛΣX
Σ . (A.19)

Using an orthogonal matrix we can diagonalize η then with a complex rescaling of XΛ we

can set

η =
1

2i
diag{1,−1, . . . ,−1} . (A.20)

We then choose special coordinates:

XΛ =

(
1

τ i

)
, FΛ = 2ηΛΣX

Σ = i

(
−1

τ i

)
(A.21)

– 23 –



J
H
E
P
0
5
(
2
0
1
5
)
1
2
2

giving

e−K = 2(1− |τ i|2) , gi =
δi

1− |~τ |2
(A.22)

which is the maximally symmetric metric on

Mz =
SU(1, nv)

U(1)× SU(nv)
. (A.23)

Taking the variation of FΛ = 2ηΛΣX
Σ we get

2ηΛΣ(QΣ
∆X

∆ +RΣ∆F∆) = SΛΣX
Σ − (QT ) Σ

Λ FΣ (A.24)

⇒ 2ηΛΣ(QΣ
∆X

∆ + 2RΣ∆η∆ΥX
Υ) = SΛΣX

Σ − 2(QT ) Σ
Λ ηΣ∆X

∆ (A.25)

which gives

ηΣ(ΛQΣ
∆) = 0 (A.26)

SΛΣ = 4ηΛΥRΥ∆η∆Σ . (A.27)

Note that (A.26) gives

QΛ
Λ = 0 , Q0

i = Qi0 , Qij = −Qji (A.28)

(Λ indices are not summed).

The special coordinates τ i transform as

δτ i = Ai0 − τ iA0
0 +Aijτ j − τ iτ jA0

j (A.29)

where

A = Q+ 2Rη . (A.30)

From this we see that we should remove TrA or A0
0 since their action on τ i is redundant,

this is tantamount to removing TrR or R0
0. This leaves the components

R :
1

2
(nv + 1)(nv + 2)− 1 , Q :

1

2
nv(nv − 1) + nv (A.31)

giving n2
v + 2nv which agrees with the number of Killing vectors on SU(1, nv)/

[
U(1) ×

SU(nv)
]

thus demonstrating that all Killing vectors come from the symplectic action (3.1).

The Lie derivative of the Kähler potential gives

eKLU
(
e−K

)
= −

[
τ i
(
Ai0 − τ iτ jA

0
j

)
− |τ i|2A0

0 + τ iτ jAij + c.c.
]
eK

= −2
[
xiQi0 − 2iyi(Rη)i0

]
, (A.32)

so the Kähler potential tranforms as

LU(K) = fU(τ i) + fU(τ i) , fU(τ i) = 2τ iAi0. (A.33)
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B Quaternionic Kähler geometry

Here we collect some facts about quaternionic Kähler geometry. The triplet of curvature

two-forms Ωx are given by

Ωx = Dωx = dωx +
1

2
εxyzωy ∧ ωz (B.1)

where ωx is the SU(2)-valued spin connection. For each Killing vector kΛ one can construct

the moment maps, or Killing prepotentials P xΛ :

−kΛyΩx = DP xΛ . (B.2)

The curvature forms need not be precisely invariant under the action of kΛ but may

transform by a compensating local SU(2) transformation

LkΩx = εxyzΩyW z
Λ , Lkωx = DW x

Λ . (B.3)

Following [18] page 719, one can show that the Killing prepotentials are given by

P xΛ = kΛyω
x −W x

Λ (B.4)

and in addition the compensator W x
Λ satisfies

LΛW
x
Σ − LΣW

x
Λ + εxyzW y

ΛW
z
Σ = f∆

ΛΣW
x
∆ . (B.5)

B.1 Special quaternionic Kähler geometry

In this work we are primarily concerned with quaternionic Kähler manifolds Mh (of real

dimension 4nh) which lie in the image of the c-map. Amongst other things, this means

that Mh has a base (2nh − 2)-dimensional base manifold Mz which is special Kähler. For

such manifolds the metric takes the form

huvdq
udqv = dφ2 + gabdz

adzb +
1

4
e4φ

(
dσ +

1

2
ξTCdξ

)2

− 1

4
e2φdξTCMdξ (B.6)

where a = 1, . . . , nh − 1 and

C =

(
0 11

−11 0

)
(B.7)

and M is the equivalent of M but for Mz

M =

(
I−1R −I−1

I +RI−1R −RI−1

)
(B.8)

On the base special Kähler manifold we denote the sections by

Z =

(
ZA

GA

)
, A = 0 , . . . , nh − 1 . (B.9)
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Will will generically assume there is a prepotential G which thus satisfies GA = ∂AG, special

co-ordintaes on Mz are given by

ZA =

(
1

za

)
. (B.10)

The canonical expression for the spin connection [21] uses homogeneous coordinates onMz:

ω+ =
√

2e
KΩ
2

+φZTCdξ , (B.11)

ω3 =
1

2
e2φ

(
dσ +

1

2
ξTCdξ

)
+

1

2
eKΩ

[
GBdZ

B − ZAdGA + c.c.
]

(B.12)

where we have denoted the Kähler potential on Mz by KΩ.

B.2 Hidden symmetries: field variations

Following [4, 5] we denote the parameters for these symmetries as (ε−, α̂
A, α̂A) and varia-

tions associated to the Killing vectors (4.10) are

δρ = 2ρ
[
σε− +

1

2
α̂TCξ

]
(B.13)

δσ = σ
[
σε− +

1

2
α̂TCξ

]
− ρ2ε− −DW (B.14)

δξ = ξ
[
σε− +

1

2
α̂TCξ

]
+ σα̂− ∂ξDW (B.15)

δZ = DS Z (B.16)

with ρ = e−2φ

α̂ =

(
α̂A

α̂A

)
, D = ε− − α̂TC∂ξ , W =

1

4
h(ξA, ξ̃A)− 1

2
ρξTCMξ (B.17)

and S is the symplectic matrix:

S =
1

2

(
ξξT +

1

2
H

)
C , H =

(
∂I∂Jh(ξA, ξ̃A) −∂I∂Jh(ξA, ξ̃A)

−∂I∂Jh(ξA, ξ̃A) ∂I∂Jh(ξA, ξ̃A)

)
= ∂ξ (∂ξh)T . (B.18)

Our expression for δσ differs from that found in [4, 5] by a component in the final term

DW . We have not been able to check that our expression for δZ precisely agrees with the

expressions there.

B.3 Computing the compensators

We now provide some details about how we computed the compensators W x
Λ for the duality

symmetries as well as the hidden symmetries. We do this by computing the Lie derivative

of the spin connection then using

LΛ(ω±) = dW±Λ ∓ iω
±W 3

Λ ± iω3W±Λ (B.19)

LΛ(ω3) = dW 3
Λ + Im(ω−W+

Λ ) . (B.20)

The key point is that we must use special coordinates on Mz in the expressions (B.11)

and (B.12). Some of these calculations are lengthy but in principle they are all fairly

straightforward.
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B.3.1 Duality symmetries

Under the Cartan transformation β we have

Lβ(eKΩ/2) = βeKΩ/2 (B.21)

as well as

Lβ
(
ZTCdξ

)
= −βdξ̃0 −

β

3!
Dzdξ

0 − β

3
zadξ̃a +

β

6
Dz,adξ

a

+2β
1

3!
Dzdξ

0 − 2β

3
zadξ̃a −

2β

3
Dz,adξ

a

= −βZTCdξ . (B.22)

In total (B.21) and (B.22) give

Lβ(ω+) = 0 (B.23)

and this demonstrates the need to compute in special co-ordinates. Similarly one finds

Lβ(ω3) = 0 (B.24)

Under the ac-symmetries the special coordinates transform as

δza = −1

2
Ra e

bc zbzcae = −za(aeze) +
9

32
aeD̂

aefDz,f (B.25)

and we find

La(eK/2) = acRezc eK/2 , La(ZTCdξ) = −aczcZTCdξ , (B.26)

which gives

La(ω+) = −iac Imzc ω+ . (B.27)

Then

La(eK) = 2acRezc eK ,

La
[
GBdZ

B − ZAdGA
]

= −2alx
l
[
GBdZ

B − ZAdGA
]
− ie−KΩacdz

c (B.28)

which gives

La(ω3) = acImdzc . (B.29)

The non-vanishing compensators from the duality symmetries are then

W±a = 0 , W 3
a = âcImzc . (B.30)
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B.3.2 Hidden symmetries

The hidden symmetries require more attention, they all have non-trivial compensators and

the computation of these is somewhat intensive. As mentioned in the main text, a key

to understanding the hidden symmetries is that the variation of the fields on the special

Kähler base Mz can be thought of as a ξ-dependent symmetry from section 3. These

parameters will now produce non-trivial terms when they appear under a derivative.

As an example we derive the variation of ωx under kε− . After some work we find the

following expressions for ε−:

δε−(ω+) = i
(
−aiyi+e−2φ

)
ω+−

[
i2
√

2 e
KΩ
2
−φ(ZTCξ)

]
iω3−d

(
i2
√

2 e
KΩ
2
−φZTCξ

)
(B.31)

Then comparing with (B.19) we find that the compensator for our general Killing vectors is

W±ε− = −i2
√

2 e
KΩ
2
−φ ZTCξ (B.32)

W 3
ε− = âcImzi − e−2φ (B.33)

where

âc = −1

2

(
2ξ0ξ̃c − 6Dcefξ

eξf
)

(B.34)

is the field-dependent parameter for the isometry on Mz.

C Gaugings and their constraints

For completeness the full set of constraints for the (symplectic) gaugings parameters are

listed below.

The set of parameters

ΘA = {U, α, α̂t, ε+, ε0, ε−} (C.1)

reads explicitly

U =

(
UΛ

UΛ

)
, α =

(
αΛ

αΛ

)
,=


(
αAΛ

αΛ
A

)
(
αAΛ
αAΛ

)
 , α̂ =

(
α̂Λ

α̂Λ

)
,=


(
α̂AΛ

α̂Λ
A

)
(
α̂AΛ
α̂AΛ

)
 ,

ε± =

(
εΛ±
ε±Λ

)
,

ε0 =

(
εΛ0
ε0Λ

)
(C.2)

where UΛ and UΛ are matrices whose parameters depend on the model.

The constraints from the closure of the abelian algebra are

• electric/electric

0 = T(αΛ, α̂Σ)− T(αΣ, α̂Λ), (C.3a)

0 = −(UΛαΣ − UΣαΛ) + (ε0ΛαΣ − ε0ΣαΛ) + (ε+Λα̂Σ − ε+Σα̂Λ), (C.3b)

0 = (UΛα̂Σ − UΣα̂Λ) + (ε−ΛαΣ − ε−ΣαΛ) + (ε0Λα̂Σ − ε0Σα̂Λ), (C.3c)

0 = αtΛCαΣ + 2(ε+Σε0Λ − ε+Λε0Σ), (C.3d)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(ε+Σε−Λ − ε+Λε−Σ), (C.3e)

0 = α̂tΛCα̂Σ + 2(ε0Λε−Σ − ε0Σε−Λ). (C.3f)
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• electric/magnetic

0 = T(αΛ, α̂
Σ)− T(αΣ, α̂Λ), (C.3g)

0 = −(UΛα
Σ − UΣαΛ) + (ε0Λα

Σ − εΣ0 αΛ) + (ε+Λα̂
Σ − εΣ+α̂Λ), (C.3h)

0 = (UΛα̂
Σ − UΣα̂Λ) + (ε−Λα

Σ − εΣ−αΛ) + (ε0Λα̂
Σ − εΣ0 α̂Λ), (C.3i)

0 = αtΛCαΣ + 2(εΣ+ε0Λ − ε+Λε
Σ
0 ), (C.3j)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(εΣ+ε−Λ − ε+Λε
Σ
−), (C.3k)

0 = α̂tΛCα̂Σ + 2(ε0Λε
Σ
− − εΣ0 ε−Λ). (C.3l)

• magnetic/magnetic

0 = T(αΛ, α̂Σ)− T(αΣ, α̂Λ), (C.3m)

0 = −(UΛαΣ − UΣαΛ) + (εΛ0 α
Σ − εΣ0 αΛ) + (εΛ+α̂

Σ − εΣ+α̂Λ), (C.3n)

0 = (UΛα̂Σ − UΣα̂Λ) + (εΛ−α
Σ − εΣ−αΛ) + (εΛ0 α̂

Σ − εΣ0 α̂Λ), (C.3o)

0 = αtΛCαΣ + 2(εΣ+ε
Λ
0 − εΛ+εΣ0 ), (C.3p)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(εΣ+ε
Λ
− − εΛ+εΣ−), (C.3q)

0 = α̂tΛCα̂Σ + 2(εΛ0 ε
Σ
− − εΣ0 εΛ−). (C.3r)

We recall the expression of the matrix

Tα,α̂ = (αt∂ξ)(α̂
t∂ξ)S. (C.4)

The number of constraint from the algebra is

#(algebra constraints) = 3
nv(nv − 1)

2

[
nh(nh + 1)

2
+ 2nh + 3

]
(C.5)

where the 3 comes from the three sets of constraints, the second front factor from the

antisymmetric equations on (Λ,Σ). The matrix T is symmetric.

The constraints from locality are

0 = 〈α, αt〉 = αΛαtΛ − αΛα
tΛ, (C.6a)

0 = 〈α, α̂t〉 = αΛα̂tΛ − αΛα̂
tΛ, (C.6b)

0 = 〈α̂, α̂t〉 = α̂Λα̂tΛ − α̂Λα̂
tΛ, (C.6c)

0 = 〈α, ε+〉 = αΛε+Λ − αΛε
Λ
+, (C.6d)

0 = 〈α, ε0〉 = αΛε0Λ − αΛε
Λ
0 , (C.6e)

0 = 〈α, ε−〉 = αΛε−Λ − αΛε
Λ
−, (C.6f)

0 = 〈α̂, ε+〉 = α̂Λε+Λ − α̂Λε
Λ
+, (C.6g)

0 = 〈α̂, ε0〉 = α̂Λε0Λ − α̂Λε
Λ
0 , (C.6h)

0 = 〈α̂, ε−〉 = α̂Λε−Λ − α̂Λε
Λ
−, (C.6i)

0 = 〈ε+, ε−〉 = εΛ+ε−Λ − ε+Λε
Λ
−, (C.6j)

0 = 〈ε+, ε0〉 = εΛ+ε0Λ − ε+Λε
Λ
0 , (C.6k)
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0 = 〈ε0, ε−〉 = εΛ0 ε−Λ − ε0Λε
Λ
−, (C.6l)

0 = 〈U, ε+〉 = αΛε+Λ − αΛε
Λ
+, (C.6m)

0 = 〈U, ε0〉 = αΛε0Λ − αΛε
Λ
0 , (C.6n)

0 = 〈U, ε−〉 = αΛε−Λ − αΛε
Λ
−, (C.6o)

0 = 〈U, α〉 = αΛε0Λ − αΛε
Λ
0 , (C.6p)

0 = 〈U, α̂〉 = αΛε−Λ − αΛε
Λ
− (C.6q)

where

〈α, αt〉 =

(
〈αA, αB〉 〈αA, αB〉
〈αA, αB〉 〈αA, αB〉

)
, 〈α, ε+〉 =

(
〈αA, ε+〉
〈αA, ε+〉

)
(C.7)

and similarly for the others. The notation 〈U, X〉 is shortcut for the product of X with

all parameters of U (by linearity). For example with a cubic prepotential one of the

constraint is

〈β,X〉 = 0, β =

(
βΛ

βΛ

)
. (C.8)

The numbers of locality constraints is

#(locality constraints) = 3n2
h + 6nh + 3 + xnh(2nh + 3). (C.9)

D Black hole flow equations

In [19] the equations for static black holes in electrically gauged N = 2 supergravity were

derived assuming that P 1
Λ = P 2

Λ = 0. We can relax this assumption and still converge on the

identical equations. Without any such assumption, with all components of P xΛ non-trivial

in principle, the full set of equations for BPS black holes takes the form

p′Λ = 0 (D.1)

(pΛP xΛ)2 = κ2 (D.2)

kuΛp
Λ = 0 (D.3)

LΛ
r P

x
Λp

ΣP xΣ = e2(V−U)Im(e−iψZ) (D.4)

∂r(e
U ) = LΛ

i P
x
Λp

ΣP xΣ + e2(U−V )Re(e−iψZ) (D.5)

∂rV = 2e−ULΛ
i P

x
Λp

ΣP xΣ (D.6)

∂r
(
eULΛ

r

)
=

1

2e2(V−U)
IΛΣRΣ∆p

∆ − 1

2
IΛΣqΣ (D.7)

∂r
(
e−ULΛ

i

)
=

pΛ

2e2V
+

1

2e2U
IΛΣP xΣp

∆P x∆ +
4

e2U
LΣ
r P

x
Σp

∆P x∆LΛ
r (D.8)

q̇u = 2e−Uhuv∂v

(
pΣP xΣLΛ

i P
x
Λ

)
(D.9)
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where we have defined the rescaled sections

LΛ = LΛ
r + iLΛ

i = e−iψLΛ (D.10)

and eiψ is the phase of the supersymemtry parameter. First we define

P xp = P xΛp
Λ (D.11)

then use a local SU(2) transformation to set

P 1
p = P 2

p = 0 , (D.12)

which is weaker than setting P 1
Λ = P 2

Λ = 0 as was done in [19]. At this point one can see

that P 1
Λ and P 2

Λ completely drop out of the above equations (D.1)-(D.9). This allows us to

rewrite all equations in terms of P 3
Λ ≡ PΛ only.

E Killing vectors on the coset G/H

There is a general method to construct Killing vectors on cosets which we will utilize

here [29, 30]. We first define a canonical automorphism on the Lie algebra of G:

τ( ~H) = − ~H , τ(Ei) = −Fi , τ(Fi) = −Ei , i = 1, . . . , 6 . (E.1)

We define a rotated basis K±i = Ei ± Fi and the τ -invariant subalgebra is given by K−i

τ(K−i) = K−i . (E.2)

The general construction involves starting with a semi-simple Lie algebra g with gen-

erators TA and decomposing it into orthogonal subspaces under the Killing form

κAB = Tr(TATB) (E.3)

as

g = h+ k (E.4)

The indices under this decomposition are {TA} = {Ti, Ta}. The coset element is L(y) and

the one form has some component along k and some along h:

V (y) = dLL−1 = V a(y)Ta + Ωi(y)Ti (E.5)

V a(y) = V a
α dy

α (E.6)

where we introduced coordinates yα on the coset G/H.

We now produce a formula for the Killing vectors on G/H. If we vary the coset

element by

L→ hLg (E.7)

where

g = 1 + εATA (E.8)

h = 1− εAW i
ATi (E.9)

y′α = yA + εAKα
A(y) (E.10)
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we get

δL(y) = εAKAL(y) = εA
[
LTA −W i

ATiL
]
. (E.11)

From this we find that

LTAL
−1 = Kα

A(∂αL)L−1 +W i
ATi (E.12)

which can be projected onto both K and H to give5

D B
A Tr

[
TBTa

]
= Kα

A Tr
[
(∂αL)L−1Ta

]
(E.14)

⇒ D b
Aκba = Kα

AV
b

α κba (E.15)

and we now have an explicit formula for the Killing vectors on G/H

Kα
A = D b

A (V −1) α
b . (E.16)

We now use this general formula to produce Killing vectors on the two canonical examples

of homogeneous quaternionic Kähler manifolds.

F G2(2)/ SO(4)

We now construct the quaternionic Kähler metric on G2(2)/ SO(4) and perform the explicit

co-ordinate transformation such that the resulting space is clearly in the image of a c-map.

We take the following standard generators of G2:

H1 =
1√
3

(
e11 − e22 + 2e33 − 2e55 + e66 − e77

)
, H2 = e11 + e22 − e66 − e77 ,

E1 = −2(e16 + e27) , F1 = −1

2
(e61 + e72) ,

E2 =
1

2
√

3

(
2e41 − 2e52 − 2e63 + 2e74

)
, F2 =

2√
3

(
e14 − e25 − e36 + e47

)
,

E3 =
1√
3

(
e13 − 2e24 + 2e46 − 2e57

)
, F3 =

1√
3

(
e31 − e42 + e64 − e75

)
,

E4 = − 1√
3

(
e21 + e43 + e54 + e76

)
, F4 = − 1√

3

(
e12 + 2e34 + 2e45 + e67

)
,

E5 =
1

2

(
e51 + e73

)
, F5 = −2(e15 − e37) ,

E6 = −e23 − e73 , F6 = −e32 − e65 .

Using K±i = Ei ± Fi we form the ordered basis

TA = {K−1 , . . . ,K−6, H1, H2,K+1, . . .K+6} (F.1)

5We define the adjoint action to be

gTAg
−1 = D B

A TB . (E.13)
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the Cartan Killing Form is

κ = 4

(
−116 0

0 118

)
. (F.2)

We take the coset element to be

V = e(ϕ1H1+ϕ2H2)/2eζE1e
√

3(−θ1E2+θ2E3)eθ̃2E6e2
√

3E4e−θ̃1E5 (F.3)

and the resulting metric is

ds2 =
1

4

(
dϕ2

1 + dϕ2
2

)
+

6∑
i=1

(F i)2 , (F.4)

with the frames given by

F1 = dζ , (F.5)

F2 =
√

3dθ1 , (F.6)

F3 =
√

3(dθ2 − ζdθ1) , (F.7)

F4 = 2 31/2

(
da+

1

2
(θ1dθ2 − θ2dθ1)

)
, (F.8)

F5 = dθ̃1 − 6θ1da− θ1(θ1dθ2 − θ2dθ1) , (F.9)

F6 = dθ̃2 − 6θ2da− θ2(θ1dθ2 − θ2dθ1)− ζF5 . (F.10)

The co-ordinate transformation to bring the metric to the form (B.6) is

ϕ1 = −
√

3

(
ϕ+ φ+

log(3)

4

)
(F.11)

ϕ2 = φ− 3ϕ− 3

4
log 3 (F.12)

ζ = 33/4ξ0 (F.13)

a = − 1

6 31/4
ξ̃1 −

1

2 31/4
χξ1 (F.14)

θ1 =
χ√
3

(F.15)

θ2 = 31/4(−ξ1 + χξ0) (F.16)

θ̃1 =
1

33/4

(
ξ̃0 − χ2ξ1

)
(F.17)

θ̃2 = −σ + 2χ(ξ1)2 +
1

2
ξ0ξ̃0 +

1

2
ξ1ξ̃1 − χ2ξ0ξ1 (F.18)

The base special Kähler manifold is

Mz =
SU(1, 1)

U(1)
(F.19)
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with prepotential

G = −(Z1)3

Z0
(F.20)

where the special co-ordinate on the Mz is

ZA =

(
1

z

)
=

(
1

χ+ ie−2ϕ

)
. (F.21)

Explicitly the metric is the c-map coordinates is

ds2 = dφ2 + 3dϕ2 +
3

4
e4ϕdχ2 +

1

4
e4φ

(
dσ − 1

2

[
ξ̃Adξ

A − ξAdξ̃A
])2

+
1

4
e2φ−6ϕ(dξ0)2 +

3

4
e2φ−2ϕ(dξ1 − χdξ0)2

+
1

4
e2φ+6ϕ

(
dξ̃0 + χdξ̃1 − χ3dξ0 + 3χ2dξ1

)2
+

1

12
e2φ+2ϕ

(
dξ̃1 − 3χ2dξ0 + 6χdξ1

)2
. (F.22)

We can also write down the Killing vectors in the quaternionic-Kähler construction in

terms of those obtained from the coset construction KA. First for the duality symmetries

we find

hε+ =
1

2

[
K6 +K14

]
(F.23)

hα0 =
33/4

2

[
K1 +K9

]
(F.24)

hα1 = −33/4

2

[
K3 +K11

]
(F.25)

hα0 = − 1

2 33/4

[
K4 +K12

]
(F.26)

hα1 = − 1

2 33/4

[
K5 +K13

]
(F.27)

hε0 =

√
3

2

[
K7 −

1√
3
K8

]
(F.28)

ha =
1

2

[
K2 −K10

]
(F.29)

hβ = − 1

2 31/2

[
K7 +

√
3K8

]
(F.30)

hb = −1

2

[
K2 +K10

]
(F.31)

where {ha, hb, hβ} refer to the obvious components of hU. Then for the hidden symmetries

we find

hε− = K6 −K14 (F.32)

hα̂0 =
1

33/4

[
K4 −K12

]
(F.33)
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hα̂1 =
1

33/4

[
K5 −K13

]
(F.34)

hα̂0
=

1

33/4

[
K1 −K9

]
(F.35)

hα̂1
=

1

33/4

[
K3 −K11

]
(F.36)
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