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1 Introduction

Scattering amplitudes are essential tools for understanding multi-parton processes in high

energy physics. Traditional calculations based on Feynman diagrams have proven ex-

tremely cumbersome due to the large number of diagrams and the correlation of the color

and kinematic factors. To simplify the calculations of amplitudes, large efforts have been

made, including the development of the spinor helicity formalism [1–5], the Berends-Giele

recursion for off-shell currents [6], various forms of color decompositions [7–27], the Parke-

Taylor formula for color-ordered maximally helicity violating (MHV) amplitudes [6, 28],

the Kleiss-Kuijf (KK) relation [29], the twistor string method [30], Cachazo-Svrcek-Witten

(CSW) rules [31], Britto-Cachazo-Feng-Witten (BCFW) recursion [32, 33] and the Bern-

Carrasco-Johansson (BCJ) relation [34] between color-ordered amplitudes. Reviews of

related topics can be found in [35–43].

In most of this work the color decomposition plays an important role for understanding

and simplifying scattering amplitudes. Several types of color decompositions for gluon am-

plitudes are available, most notably the trace basis decomposition [11–20], the Del Duca-

Dixon-Maltoni (DDM) basis decomposition [21, 22] and the color-flow basis decomposi-

tion [23, 24]. Since recently it is also known how to construct orthogonal group theory

based multiplet bases for any number of quarks and gluons [25].
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While the topic of scattering amplitude recursion relations has been explored for the

kinematic factors (the color-ordered amplitudes) of the first three bases for a while [6, 32,

33], this field is unknown territory in the context of multiplet bases. In the present paper

we take the first step to remedy this by showing how to use BCFW recursion relations for

multiplet bases in the case of MHV amplitudes in pure Yang-Mills theory. To set the stage

for this task, we first give a brief overview of the standard color decompositions and the

present status of recursion strategies.

• Trace bases. The color decomposition for a tree-level gluon amplitude with n gluons

in trace bases is given by1 [11–19],

M(g1, g2, . . . , gn) = gn−2

(
1√
TR

)n ∑

σ, s.t. σ1=1

Tr(tg1tgσ2 . . . tgσn )A(σ), (1.1)

where we have used a general generator normalization tr(tatb) = TRδ
a b. The cyclicity

of the trace allows for fixing σ1 = 1, thus leaving (n − 1)! color structures in the

sum. The kinematic factors, A(σ) are called color-ordered amplitudes and can be

calculated from the color-ordered Feynman rules, also known as the color-stripped

Feynman rules. These bases (spanning sets) are easily extended to loop level, upon

which products of traces occur, [16, 17, 19, 44], as well as to processes with quarks,

requiring open quark-lines in addition to the traces [14–17, 19, 35].

• Color-flow bases. An approach similar to the trace basis approach is given by the

color-flow bases [23, 24]. Here the gluon field is rewritten in terms of the fundamen-

tal representation (Aµ)
i
j , i, j = 1, . . . , Nc, for Nc colors, and the color structure is

described in terms of flow of color. For tree-level gluon amplitudes the color decom-

position is given by

M(g1, g2, . . . , gn) = gn−2

(
1√
TR

)n ∑

σ, s.t. σ1=1

δ
iσ1
jσ2

δ
iσ2
jσ3

. . . δ
iσn
jσ1

A(σ), (1.2)

where the sum runs over the (n − 1)! permutations from connecting color lines. It

is not hard to argue that the amplitudes A(σ) are the same as in the trace bases.

Similar to the trace bases, these bases are extendable to processes at higher order.

Their advantage lies in better scaling properties for Monte Carlo treatment of the

color structure [24].

• Del Duca-Dixon-Maltoni bases. Tree-level gluon amplitudes may alternatively be

decomposed using the Del Duca-Dixon-Maltoni (DDM) bases [21, 22]

M(g1, g2, . . . , gn) = gn−2

(
1√
TR

)n−2

(1.3)

×
∑

σ, s.t. σ1=1, σn=n

ifgσ1gσ2 i1if i1gσ3 i2 . . . if in−3gσn−1gσnA(σ),

1In the color decomposition formulae, we suppress the helicity of the external legs for convenience. Only

when discussing amplitudes with a particular helicity configuration, we specify the helicity information of

the external legs.
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1...i
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1...i

1̂

i i + 1

n̂

Figure 1. BCFW recursion for color-ordered tree-level gluon amplitudes.

where σ1 = 1 and σn = n are fixed. The color-ordered amplitudes A(σ1 = 1, σ2, . . . ,

σn−1, σn = n) form the so called Kleiss-Kuijf (KK) basis [29]. All other color-ordered

amplitudes, i.e., all the amplitudes in eq. (1.1) with σ(n) 6= n, can be expressed in

the KK basis using the Kleiss-Kuijf (KK) relation

A(1, {α}, n, {β}) = (−1)nβ

∑

σ∈OP (α
⋃

βT )

A(1, σ, n), (1.4)

where nβ denotes the number of indices in the set β, and the sum runs over all

possible permutations which keep the relative order of indices in the index set α and

reverse the relative index order in the index set β, while allowing for all possible

relative orderings between each αi with respect to each βj .

Compared to the trace bases and color-flow bases there is clearly an advantage in

needing only (n− 2)! rather than (n− 1)! spanning vectors. The color decomposition

in DDM bases can also be extended to one-loop level and to amplitudes containing

a quark-antiquark pair [22]. A proof of the KK relation can be found in [22], the

BCFW approach to the KK relation is presented in [45], and the Berends-Giele

recursion approach for the off-shell KK relation was given in [46].

In the three color decompositions above, the kinematic factors can be expressed using the

color-ordered amplitudes that were defined in the trace bases decomposition, eq. (1.1).

Employing BCFW recursion, one can express these amplitudes in terms of products of

lower point on-shell color-ordered amplitudes. Specifically, for the n-gluon color-ordered

tree amplitude A(1, 2, 3, . . . , n), if we shift the momenta of gluon 1 and n using some

complex four-vector q and some complex variable z,

p̂1(z) = p1 − zq, p̂n(z) = pn + zq, (1.5)

such that the gluons 1̂ and n̂ remain on-shell, the color-ordered amplitude A(1, 2, 3, . . . , n)

is given by the BCFW recursion (see figure 1)

A (1, 2, . . . , n) (1.6)

=
n−2∑

i=2

∑

h=±

A
(
1̂(zi), 2, . . . , i,−P̂ h

1̂(zi),2,...,i
(zi)

) i

P 2
1,2,...,i

A
(
P̂−h

1̂(zi),2,...,i
, i+ 1, . . . , n− 1, n̂(zi)

)
,
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where, P1,2,...,i =
i∑

k=1

pk. For a given i, zi can be solved from

P̂ 2
1̂,2,...,i

(zi) = (p1 + p2 + · · ·+ pi − ziq)
2 = 0. (1.7)

While the trace bases, the color-flow bases and the DDM bases are conceptually sim-

ple and well-established in the literature, they all suffer from being non-orthogonal (unless

Nc → ∞), and — in an Nc = 3 sense — non-minimal. The bases being non-orthogonal

implies that the squaring of tree-level color structures involves (n− 1)!2 terms in the case

of the trace and color-flow bases, and (n − 2)!2 terms for the pure Yang-Mills specific

DDM bases. Going to arbitrary order in perturbation theory, new color structures ap-

pear and the number of vectors (neglecting charge conjugation invariance) increases up to

subfactorial(n) ≈ (n!/e) in the trace bases [25]. For practical purposes this means that

it is hard to treat the color structure of processes involving more than ∼ 8 gluons plus

qq-pairs exactly, and currently the most efficient technique for multi-parton calculations is

probably to sample color structures in the color-flow basis by Monte Carlo techniques [24].

One way to cure the bad scaling involved in the squaring step is to use orthogonal bases.

In the case of few partons, such bases, based on the decomposition of the color structure

into irreducible representations, have been around for a while [47–52], but a general strategy

for basis construction based on multiplets was presented only recently [25]. Below we give

an overview of their key properties.

• Multiplet bases. These bases are based on subgrouping sets of partons and forcing the

parton sets to transform under irreducible representations of SU(Nc). By applying

the same subgrouping procedure to all basis vectors, orthogonal basis vectors are

obtained.

The decomposition into these bases (to any order in perturbation theory) may be

written

M(g1, g2, . . . , gn) ∼
∑

α

VαAα, (1.8)

where α is some (collective) index of the basis vectors describing the involved rep-

resentations and Aα are the kinematic factors, clearly not equal to the A(σ) in

eqs. (1.1)–(1.3).

As the multiplet bases have no direct connection to tree-level color structure, they

do not typically span a minimal set for tree-level color structure alone. Instead they

are applicable to any order, and are (or can trivially be made) minimal for any finite

Nc, leading to a significant reduction in dimension for a large number of partons

(see table 1).

As the multiplet basis vectors Vα do not (generally) have any cyclic symmetry under

exchange of gluon indices, one can not expect recursion relations as simple as for the trace

basis to hold. On the other hand, being orthogonal, multiplet bases speed up the squaring

of amplitudes very significantly. We thus expect to gain in the squaring step, at the expense

of a more intricate color decomposition. This decomposition — in a recursion context —

is the topic of the present paper, and we will discuss two different ways of achieving it.
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• Clearly one strategy is to express the basis vectors in any of the bases where the

recursion is known in terms of the relevant multiplet basis. While this strategy —

which in principle is nothing but a change of basis — is straight forward, the gain

in computation time is unclear as it involves decomposing (n − 1)! or (n − 2)! color

structures into an exponentially growing number of basis vectors. In theory, the

exponential times the factorial does scale better than the factorial square involved

in squaring amplitudes in the non-orthogonal standard bases. In reality, however,

this difference only becomes significant for a relatively large number of gluons, (cf.

table 1). Directly rewriting recursion results obtained in other bases may, however,

still be beneficial if one color factor (for example one trace or one DDM color factor)

can be rewritten as a linear combination of a small number of multiplet basis vectors,

and the non-vanishing projections can be identified quickly. For tree-level gluon

amplitudes, the best option is likely to use the smaller DDM basis eq. (1.3).

In principle, for tree-level processes with only gluons it is also possible to use the

Bern-Carrasco-Johansson relation [34] (the BCJ relation has been proved in both

string theory [53, 54] and field theory [45, 55, 56] ) to reduce the color-ordered ampli-

tudes in a smaller basis of (n− 3)! color-ordered amplitudes. However, this relation

will introduce complicated kinematic factors which are functions of the external mo-

menta [34]. Although, there has been extensions of the BCJ relation to cases with

fermions e.g., [57, 58], there is no general expression for the BCJ relation in the pres-

ence of (fundamental representation) quarks. Since the long term goal of this work

is to pursue recursion for processes involving quarks as well, we will therefore not

further consider BCJ relations.

• The second approach is to perform the recursion directly in the multiplet basis. Once

we know the multiplet basis decompositions for amplitudes for fewer gluons and

relations for decomposing the color structure appearing in the BCFW-recursion, we

can derive a recursion relation for the kinematic factors Aα via the BCFW recursion

for the color-dressed amplitudes.

In the following, we will demonstrate the decomposition using the above strategies. In

section 2, we calculate the kinematic factors Aα by evaluating scalar products. Section 3

provides a derivation of color-dressed BCFW recursion, followed by a recursion relation

for the color structure of MHV gluon amplitudes formulated in the multiplet basis. This

finally allows us to derive the BCFW recursion for the kinematic factors Aα for any number

of gluons. In section 4, we conclude and discuss natural extensions.

2 Evaluation by scalar products

In this section, we derive the multiplet basis expansion by comparing the color factors in

multiplet bases to those in DDM or trace bases. The general framework for this construction

is as follows:

• The color vectors (including powers of TR) in the DDM or trace basis (or, in general,

any spanning set in which the recursion is known) can be expanded in the multiplet

– 5 –
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basis vectors,

cσ =
∑

α

aασVα, (2.1)

where the coefficients are given by scalar products of these two kinds of color factors2

aασ = 〈Vα|cσ〉. (2.2)

The scalar product is given by summing over all external color indices, i.e., for arbi-

trary color structures c1 and c2,

〈c1|c2〉 =
∑

a1, a2, ...

(
c1a1 a2...

)∗
c2a1 a2..., (2.3)

with ai = 1, . . . , Nc if parton i is a quark or antiquark and ai = 1, . . . , N2
c − 1 if

parton i is a gluon.

• Substituting the expression eq. (2.1) into the DDM decomposition, eq. (1.3), or the

trace basis decomposition, eq. (1.1), and collecting the kinematic factors correspond-

ing to a given basis vector Vα in the multiplet basis, the color-dressed amplitude can

be stated as

M(g1, g2, . . . , gn) = gn−2
∑

α

[
∑

σ

aασA(σ)

]
Vα. (2.4)

Comparing the above expression to the multiplet basis expansion eq. (1.8), we can

read off the kinematic factor multiplying the basis vector Vα

Aα =
∑

σ

aασA(σ). (2.5)

In principle, one can use this method to derive the multiplet basis expansions for an ar-

bitrary number of external legs with arbitrary helicity configuration. We have calculated

the multiplet basis decompositions for up to six gluons, and demonstrate the calculations

in the three- and four-gluon cases below. The five- and six-gluon cases are treated using

multiplet basis recursion in section 3.

2.1 The three-gluon amplitude

For three gluons the multiplet basis can be chosen as

V8s
g1 g2 g3 = dg1g3g2 =

1

TR
[Tr(tg1tg3tg2) + Tr(tg1tg2tg3)] ,

V8a
g1 g2 g3 = ifg1g3g2 =

1

TR
[Tr(tg1tg3tg2)− Tr(tg1tg2tg3)] , (2.6)

making it orthogonal but not normalized. From these two equations, we get

Tr(tg1tg3tg2) =
TR

2
[dg1g3g2 + ifg1g3g2 ] , Tr(tg1tg2tg3) =

TR

2
[dg1g3g2 − ifg1g3g2 ] . (2.7)

2We assume the orthogonal multiplet basis to also be normalized, if it is not, this is trivially accounted for.

– 6 –
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Thus the three-gluon multiplet basis expansion is given by

M(g1, g2, g3) = g

(
1√
TR

)3 TR

2
[dg1g3g2 + ifg1g3g2 ]A(1, 3, 2) (2.8)

+ g

(
1√
TR

)3 TR

2
[dg1g3g2 − ifg1g3g2 ]A(1, 2, 3)

= g
1

2
√
TR

dg1g3g2 [A(1, 3, 2)+A(1, 2, 3)]+g
1

2
√
TR

ifg1g3g2 [A(1, 3, 2)−A(1, 2, 3)].

Since A(1, 2, 3) is antisymmetric under 1 ↔ 2 we find

A8s = 0, A8a =
1√
TR

A(1, 3, 2), (2.9)

where we note that the first equation can be seen as a manifestation of charge conjugation

invariance (cyclic reflection), and that the second color factor is precisely the amplitude

for the (only) vector in the DDM basis.

2.2 The four-gluon amplitude

In the four-gluon case, we start from the DDM decomposition with 1 and 2 as the fixed legs

M(g1, g2, g3, g4)=g2
1

TR
ifg1g2i1if i1g3g4A(1, 2, 3, 4)+g2

1

TR
ifg1g3i1if i1g2g4A(1, 3, 2, 4). (2.10)

Using ColorMath [59] to evaluate the scalar products in eq. (2.2) this is decomposed into

the multiplet basis3 V

V =

{
V1

g1 g3; g2 g4 ,V
8s
g1 g3; g2 g4 ,V

8a
g1 g3; g2 g4 ,V

27
g1 g3; g2 g4 ,

1√
2

[
V10

g1 g3; g2 g4+V10
g1 g3; g2 g4

]
,V0

g1 g3; g2 g4

}
, (2.11)

given by [25],

Vα
g1 g3; g2 g4 =

1√
dα

Pα
g1 g3; g2 g4 (2.12)

where Pα is the projection operator onto the irreducible representation α with dimension

dα [25, 50, 60–62],

P1
g1 g3; g2 g4 =

1

N2
c − 1

δg1 g3δg2 g4 ,

P8s
g1 g3; g2 g4 =

Nc

2TR(N2
c − 4)

dg1g3i1di1g2g4 ,

P8a
g1 g3; g2 g4 =

−1

2NcTR
ifg1 g3 i1if i1 g2 g4 ,

P27
g1 g3; g2 g4 =

1

4

(
δg1 i1δg3 i2 + δg1 i2δg3 i1

) [
δi1 g2δi2 g4 +

1

T 2
R

tr
(
ti1tg4ti2tg2

)]

− Nc − 2

2Nc
P8s

g1 g3; g2 g4 −
Nc − 1

2Nc
P1

g1 g3; g2 g4 ,

P10
g1 g3; g2 g4 =

1

4

(
δg1 i1δg3 i2 − δg1 i2δg3 i1

) [
δi1 g2δi2 g4 +

1

T 2
R

tr
(
ti1tg4ti2tg2

)]
− 1

2
P8a

g1 g3; g2 g4 ,

3The gluon order convention in V
α
g1 g3; g2 g4

probably seems unnatural at this stage, but the advantages

will become clear in section 3.3.

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
9

P10
g1 g3; g2 g4 =

1

4

(
δg1 i1δg3 i2 − δg1 i2δg3 i1

) [
δi1 g2δi2 g4 − 1

T 2
R

tr
(
ti1tg4ti2tg2

)]
− 1

2
P8a

g1 g3; g2 g4 ,

P0
g1 g3; g2 g4 =

1

4

(
δg1 i1δg3 i2 + δg1 i2δg3 i1

) [
δi1 g2δi2 g4 − 1

T 2
R

tr
(
ti1tg4ti2tg2

)]

− Nc + 2

2Nc
P8s

g1 g3; g2 g4 −
Nc + 1

2Nc
P1

g1 g3; g2 g4 , (2.13)

and the general expressions for the dimensions are4

d8 = N2
c −1, d10 =

1

4

(
N4

c −5N2
c +4

)
, d27 =

1

4
N2

c

(
N2

c +2Nc−3
)

d0 =
1

4
N2

c

(
N2

c −2Nc−3
)
.

(2.14)

Expressed in this basis (which is also electronically attached as an online resource) the

amplitude can be stated

M(g1, g2, g3, g4) = g2A · V , (2.15)

where A is the kinematic factor,

A = Nc ×
{
− 2A(1, 2, 3, 4),−

√
(Nc + 1) (Nc − 1)A(1, 2, 3, 4),−

√
(Nc + 1) (Nc − 1)

[A(1, 2, 3, 4)+2A(1, 3, 2, 4)] ,
√
(Nc+3) (Nc−1)A(1, 2, 3, 4), 0,

−
√
(Nc+1) (Nc−3)A(1, 2, 3, 4)

}
. (2.16)

Note that in the above discussion, we did not specify the helicity of the external legs.

When we want to consider the kinematic factor for a particular helicity configuration, e.g.,

1−, 2+, 3+, 4− we just substitute the corresponding form of the color-ordered amplitudes

into eq. (2.16).

A few remarks on the basis are in place. First we note that for Nc = 3 the last basis

vector vanishes as it corresponds to a multiplet which only appears for Nc ≥ 4. For four

gluons this reduction in dimension due to small Nc is rather unimportant, but for large n,

the difference becomes significant, (cf. table 1).

Then we note that, due to charge conjugation invariance (which at tree-level mani-

fests itself as cyclic reflection in trace bases), the decuplet and anti-decuplet in eq. (2.11)

must multiply the same amplitude, which — at tree-level — vanishes. Charge conjugation

invariance is also the reason why the octet vectors corresponding to contracting one anti-

symmetric structure constant with one symmetric structure constant vanish. This means

that the four-gluon basis vectors can be expressed in terms of projectors only. Note, how-

ever, this a special feature of the four-gluon basis, it is not generally possible (even for n

even), as there are different ways of building up the same multiplet, see for example [25].

Finally we point out that although the multiplet decomposed result eq. (2.16) may look

somewhat complicated, it is now in an excellent form for squaring. For given helicities and

external momenta, the color-ordered amplitudes in eq. (2.16) are just (complex) numbers.

To get the full amplitude square, we thus just have to square the coefficients in eq. (2.16)

and add them up.

In this particular case of four gluons only, not much is gained by this rewriting, as the

scalar product matrix for the DDM basis anyway only involves 2× 2 terms. However, for

4Independently of Nc we refer to the adjoint representation as the octet representation, and similarly

we label other representations by their Nc = 3 dimension, although clearly the dimension depends on Nc.
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larger bases, where the 2 × 2 scalar product matrix is replaced by a matrix of dimension

(n − 2)! × (n − 2)! (or (n − 1)! × (n − 1)! for trace bases), avoiding the factorial square is

clearly desirable.

Unfortunately, with the naive way of calculating scalar products utilized here, involving

direct evaluation of (n − 2)! × (the number of multiplet basis vectors) entries, what is

gained in the squaring step for multiplet bases, may be lost in the step of scalar product

decomposition. We do note, however, that a more clever procedure for evaluating scalar

products, based on the birdtrack method and Wigner 3j and 6j coefficients [26, 62] possibly

could change this conclusion. As it is unclear if the scalar product method is beneficial,

the remainder of this paper instead focuses on deriving recursion relations directly in the

multiplet basis.

3 Recursion in multiplet bases

In this section, we present an on-shell recursion approach for the kinematic factor Aα in

the multiplet basis expansion eq. (1.8). We will show that once we know the recursion

relation between the color factors in the multiplet bases for the n-gluon and (n− 1)-gluon

amplitudes in addition to the BCFW recursion for color-dressed amplitudes, we can derive

a recursion relation for the kinematic factors Aα for the MHV helicity configuration. The

main idea is:

• We use BCFW recursion to rewrite the color-dressed amplitude in terms of products

of on-shell lower point color-dressed amplitudes for all MHV channels.

• For a given channel in the BCFW recursion, the color factors in the BCFW expression

of the n-gluon amplitude can be constructed by vectors in the (n−1)-gluon multiplet

basis contracted with structure constants, while the corresponding kinematic factor

for the BCFW expression is obtained from the (n−1)-gluon on-shell MHV amplitude

and the three-gluon MHV amplitude.

• We derive a recursion relation for the color structure between the n- and (n−1)-gluon

multiplet bases. Using this recursion relation we can express the color factors in the

n-gluon multiplet basis, and collecting the kinematic factors corresponding to the

same multiplet basis vector, we obtain a recursion relation for the n-gluon kinematic

factor Aα.

In the following, we first present a review of BCFW recursion for color-dressed amplitudes

and then discuss the MHV configuration.

3.1 BCFW recursion for color-dressed amplitudes

Now let us review the BCFW recursion for color-dressed gluon amplitudes at tree-level [63].

We consider an n-gluon color-dressed tree amplitude M(g1, g2, . . . , gn), where gi is used

to denote a gluon with momentum (counted outwards), helicity and color. If we shift the

momenta of the gluons g1 and gn with a complex four-vector q obeying

q · p1 = q · pn = q2 = 0, (3.1)
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1̂

...





I i
P 2
I

−P̂
gI ,hI

I P̂
gI ,−hI

I

n̂

...





J

Figure 2. The amplitude is divided into a left set I ∪ 1̂ and a right set J ∪ n̂. Note that here, as

opposed to in figure 1, no ordering is inferred among the partons on the left and right side.

the shifted momenta,

p̂1(z) = p1 − zq, p̂n(z) = pn + zq, (3.2)

remain on-shell. With this shift, the color-dressed amplitude M(z) becomes a rational

function of the complex variable z. The desired amplitude is just M(0). To solve for

M(0), we use Cauchy’s theorem

∮

finite poles

dz
M(z)

z
=

∮

z→∞

dz
M(z)

z
. (3.3)

The integrals around the finite poles are given by their residues, thus we have

M(0) = −
∑

zi 6=0

Resz→zi

M(z)

z
+ B, (3.4)

where B comes from the contour integral at infinity. In the study of BCFW recursion, the

boundary behavior when z → ∞ is important and has been investigated systematically

in [64]. For gluon amplitudes, we can always choose a shift such that B = 0. The residues

of the finite poles can be obtained by considering the factorization behavior, with which

the amplitude is factorized into two on-shell sub-amplitudes when an internal line goes

on-shell. The nontrivial contributions for the z-poles are those with the two shifted legs

in two different sub-amplitudes. For the shift in eq. (3.2), we let the gluon g1 be in the

left sub-amplitude and the gluon gn be in the right sub-amplitude. If we divide the other

(n−2) gluons into the left set I and the right set J , as in figure 2, the position of the pole

corresponding to this division can be found by solving

P̂ 2
I (z) =

(
p̂1(z) +

∑

k∈I

pk

)2

= 0, (3.5)

giving the poles

zI =

(
p1 +

∑
k∈I

pk

)2

2q ·
(
p1 +

∑
k∈I

pk

) . (3.6)
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The n-gluon color-dressed amplitude is factorized into two lower point on-shell amplitudes

M(z)
z→zI−→

∑

iI ,hI

M
(
ĝ1(zI), {gk |k∈I},−P̂ iI ,hI

I
(zI)

) i

P̂ 2
I
(zI)

M
(
P̂ iI ,−hI

I
(zI), {gl |l∈J }, ĝn(zI)

)
,

(3.7)

where iI and hI are used to denote the color and helicity indices for the internal line.

Then at zI

M(z)

z

z→zI−→
∑

iI ,hI

M
(
ĝ1(zI), {gk |k∈I},−P̂ iI ,hI

I
(zI)

) i

zIP̂ 2
I
(zI)

M
(
P̂ iI ,−hI

I
(zI), {gl |l∈J }, ĝn(zI)

)
.

(3.8)

Considering the position of the pole in eq. (3.6), we have

M(z)

z

z→zI−→ −
∑

iI ,hI

i
M

(
ĝ1(zI), {gk |k∈I},−P̂ iI ,hI

I
(zI)

)
M

(
P̂ iI ,−hI

I
(zI), {gl |l∈J }, ĝn(zI)

)

P 2
I

1

z−zI
,

(3.9)

where the denominator is the squared sum of the momenta of the external legs in the left

set. Thus the residue for the division I,J is

Res
z→zI

M(z)

z
= −

∑

iI ,hI

M
(
ĝ1(zI), {gk |k∈I},−P̂ iI ,hI

I
(zI)

) i

P 2
I

M
(
P̂ iI ,−hI

I
(zI), {gl |l∈J }, ĝn(zI)

)
.

(3.10)

The numerator here is a product of two on-shell sub-amplitudes with the momentum of

gluon g1 and gn shifted. To get the full amplitude, we should sum over all possible residues

at all finite poles. The amplitude is then given by the following BCFW recursion relation

M (g1, g2, . . . , gn) (3.11)

=
∑

I

∑

iI ,hI

M
(
ĝ1(zI), {gk |k∈I},−P̂ iI ,hI

I (zI)
) i

P 2
I

M
(
P̂ iI ,−hI
I (zI), {gl |l∈J }, ĝn(zI)

)
.

3.2 Kinematic recursion

When we calculate an (n > 3)-gluon color-dressed amplitude for a given helicity configu-

ration, the configurations with all helicities positive and all helicities except one positive

have to vanish [6]. The first nontrivial configuration is the MHV configuration with two

negative helicity gluons.

It is convenient to use the spinor helicity formalism [1–5] to study amplitudes. In the

spinor helicity formalism, one expresses external momenta pµi by double spinors (λi)a(λ̃i)ȧ,

where (λi)a and (λ̃i)ȧ are two-dimensional Weyl spinors. The polarization vectors are

explicitly expressed as εµ+ ∼ −
√
2µaλ̃ȧ

〈µ|λ〉 and εµ− ∼ −
√
2λaµ̃ȧ

[λ̃|µ̃]
, where the spinor products

are defined by 〈λ | µ〉 ≡ ǫbaλaµb and
[
λ̃ | µ̃

]
≡ ǫȧḃλ̃ȧµ̃ḃ, using µ and µ̃ to denote the

reference spinors. The matrices ǫab and ǫȧḃ are given by

ǫab = ǫȧḃ =

(
0 1

−1 0

)
. (3.12)

– 11 –
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...

1̂−

+

+ −

+

n̂−

+
1̂−

+

+

...

− +

+

n̂−

Figure 3. The allowed divisions, (3, n−1) (left) and (n−1, 3) (right), for the MHV amplitude with

the gluons with shifted momenta 1̂ and n̂ as the negative helicity legs. As is proven in appendix A,

only the (n− 1, 3) factorization channel contributes.

In the spinor helicity formalism, all amplitudes are expressed by spinor products. The

color-ordered MHV amplitude is given by the famous formula

A
(
1+, 2+, . . . , i−, . . . , j−, . . . , n+

)
= i

〈i | j〉4
〈1 | 2〉 〈2 | 3〉 . . . 〈n− 1 | n〉 〈n | 1〉 , (3.13)

which was conjectured in [28] and proven in [6]. When we consider the MHV amplitude

where all helicities are flipped, we just (up to a factor (−1)n) replace 〈 | 〉 by [ | ]

A
(
1−, 2−, . . . , i+, . . . , j+, . . . , n−

)
= (−1)ni

[i | j]4
[1 | 2] [2 | 3] . . . [n− 1 | n] [n | 1] . (3.14)

Let us now consider the color-dressed MHV amplitude with g1 and gn as negative

helicity gluons. We can conveniently shift the momenta of g1 and gn in the spinor helicity

formalism

λ1 → λ1, λ̃1 → λ̃1 − zλ̃n,

λ̃n → λ̃n, λn → λn + zλ1. (3.15)

This is nothing but the spinor expression of the (1, n)-shift defined by eq. (3.2), as p1 ∼
λ1λ̃1, pn ∼ λnλ̃n, and q ∼ λ1λ̃n. The constraint equations, eqs. (3.1), forcing the momenta

in eq. (3.2) to remain on-shell, are automatically satisfied in this spinor expression and the

boundary contribution B vanishes, meaning that we can use the BCFW recursion for the

color-dressed amplitude eq. (3.11) without any boundary correction. We also note that

with this shift, g1 and gn must be in opposite sub-amplitudes. For MHV amplitudes, there

are only two types of divisions, sketched in figure 3, which possibly could contribute

• The (3, n − 1) divisions with 3-gluon MHV amplitudes as left sub-amplitudes and

(n− 1)-gluon MHV amplitudes as right sub-amplitudes.

• The (n − 1, 3) divisions with (n − 1)-gluon MHV amplitudes as left sub-amplitudes

and 3-gluon MHV amplitudes as right sub-amplitudes.

The other divisions always contain sub-amplitudes (for more than three gluons) with less

than two negative helicity gluons and have to vanish. In fact, as is proven in appendix A,

– 12 –
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the (3, n− 1) division also vanishes. Thus the full color-dressed amplitude can be stated

M
(
g−1 , g

+
2 , · · · , g+n−1, g

−
n

)

=
n−1∑

i=2

M
(
ĝ−1 , . . . , g

+
i−1, P̂

ii,−
i,n , g+i+1, . . . , g

+
n−1

) i

P 2
i,n

M
(
−P̂ ii,+

i,n , g+i , ĝ
−
n

)
, (3.16)

where ii denotes the (implicitly summed over) color index connecting the sub-amplitudes.

The right sub-amplitude is given by

M
(
−P̂ ii,+

i,n , g+i , ĝ
−
n

)
= g

1√
TR

ifgiiignAMHV
(
i+,−P̂+

i,n, n̂
−
)
= g

1√
TR

ifgiiign(−i)

[
i | −P̂i,n

]3

[
−P̂i,n | n̂

]
[n̂ | i]

.

(3.17)

The left sub-amplitude is given by the (n− 1)-gluon multiplet basis expansion

M
(
ĝ−1 , . . . , g

+
i−1, P̂

ii,−
i,n , g+i+1, . . . , g

+
n−1

)

= gn−3
∑

α

Vα
g1...gi...gn−1

|gi→iiA
α
(
1̂−, . . . , (i− 1)+, P̂−

i,n, (i+ 1)+, . . . , (n− 1)+
)
, (3.18)

where, at this point, we make no statement about what gluons are counted as incoming and

outgoing in the multiplet bases. The recursion relation between the n-gluon color factors

and the (n− 1)-gluon color factors can be written as
(
Vα

g1...gi...gn−1
|gi→ii

)
ifgiiign =

∑

β

(Ti)βαV
β
g1...gn . (3.19)

The matrices Ti describe the effect of emitting gluon n from gluon i (from the vector α

in the (n − 1)-gluon basis), decomposed into the n-gluon basis. We will refer to these

matrices as the radiation matrices for (n − 1) → n gluons, and in section 3.3, we will

show how to calculate them efficiently. Inserting eq. (3.18) and eq. (3.19) into the BCFW

expression for the color-dressed amplitude, eq. (3.16), and collecting the kinematic factor

corresponding to Vβ
g1...gn , we obtain the recursion relation for the kinematic factor in the

MHV configuration

Aβ
(
1−, 2+, 3+, . . . , n−

)

=

n−1∑

i=2

∑

α

(Ti)βα ×


Aα

(
1̂−, . . . , (i− 1)+, P̂−

i,n, (i+ 1)+, . . . , (n− 1)+
)

× i

si,n
(−i)

1√
TR

[
i | −P̂i,n

]3
[
−P̂i,n | n̂

]
[n̂ | i]


 , (3.20)

where si,n = (pi + pn)
2 = 2pi · pn.

The above recursion relation for the kinematic factors expresses the kinematic factor

of the n-gluon MHV amplitude in terms of the (n − 1)-gluon MHV amplitude and the

three-gluon MHV amplitude. To calculate the n-gluon kinematic factor for the MHV

configuration using eq. (3.20), we thus use the kinematic factors in the multiplet basis

expansion of the (n−1)-gluon MHV amplitude and the matrices Ti (which will be derived

in the next section) as input.
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3.3 Color structure recursion

Before stating expressions in the multiplet bases we need to fix our conventions. The vector

space of interest is the overall singlet space for the involved (incoming plus outgoing)

partons. Clearly the basis vectors for this space can be chosen in many different ways.

The prescription detailed in [25] constructs vectors by first constructing gluon projection

operators projecting on irreducible representations for ⌊n/2⌋ → ⌊n/2⌋ gluons. Following

this, basis vectors for processes with up to n gluons can be constructed. (The extension

to processes involving quarks is achieved by grouping the quarks and antiquarks to qq-

pairs and noting that each pair transforms either as a singlet or as an octet.) For a

process with n gluons, the gluons are divided into ⌈n/2⌉ “incoming” gluons and ⌊n/2⌋
“outgoing” gluons, such that there are either equally many outgoing and incoming gluons

or one more incoming gluon. For the full set of gluons to transform under a singlet, the

overall representation under which the “incoming” gluons transform must match the overall

representation under which the “outgoing” gluons transform. The total dimension of the

vector space is thus given by the number of ways of combining matching “incoming” and

outgoing representations.

The gluons on either side are then subgrouped such that the first two gluons transform

under representation α1, the first three gluons transform under representation α2, etc. The

set of representations is collectively referred to as α, and the “incoming” gluons are taken

to be g1, g3, . . . , g2⌈n
2
⌉−1, whereas the “outgoing” are given even numbers g2, g4, . . . , g2⌊n

2
⌋.

Using these conventions, and letting single lines denote the adjoint representation and

double lines denote arbitrary representations, the orthonormal basis vectors are

Vα
g1 g3 ... g2⌈n

2 ⌉−1; g2 g4 ... g2⌊n
2 ⌋

= Nα1...αn−3 (3.21)

×

α2α1
α⌈n2 ⌉−1

1

3

5

2⌈n2⌉−1

αn−3αn−4

2⌊n2⌋

2

4

6

α⌈n2 ⌉−2 α⌈n2 ⌉

,

where

Nα1 α2...αn−3 =

√√√√√√

∏n−3
i=1 dαi

α1 α2

α1

. . .
α⌈n2⌉−2
α⌈n2⌉−1

α⌈n2⌉
α⌈n2⌉−1 . . . αn−4

αn−3

αn−3

. (3.22)

Here the vacuum bubbles in the denominator are Wigner 3j coefficients. They can be

normalized to one, inducing a normalization for the generalized vertices connecting the

representations.

Letting Aα(1, 2, . . . , n) denote the amplitude (for convenience we keep the gluon argu-

ments in Aα in this order) the decomposition into these bases may thus be written

M(g1, g2, . . . , gn) = gn−2
∑

α

Vα
g1 g3 ...g2⌈n

2 ⌉−1; g2 g4 ...g2⌊n
2 ⌋
Aα(1, 2, . . . , n). (3.23)
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A remark on the implication of charge conjugation is in place. As gluons transform under

the charge conjugation invariant adjoint representation, any overall gluon amplitude must

respect this symmetry. This is manifest in the DDM bases in the sense that each spanning

color structure obeys this symmetry, but it is not manifest in the trace bases and the

multiplet bases. For tree-level trace bases charge conjugation invariance instead shows up

as cyclic reflection. For multiplet bases, charge conjugation invariance displays itself by

the amplitude for a (non-invariant) basis vector and its conjugate being equal up to a sign

— and by the vanishing of amplitudes for which all involved representations are invariant,

but the invariance is spoiled by the generalized vertices.

For many gluons almost all of the basis vectors contain at least one representation

which is not charge conjugation invariant, meaning that almost every basis vector must

occur with its conjugate. Using these linear combinations as basis vectors thus reduces the

dimension of the vector space by approximately a factor two.

For the explicit calculations for four, five and six gluons, we have used conjugation

invariant bases. However, for comparison, the dimensions of the vector spaces, are — as

for the trace basis case — stated without this symmetry in table 1. This also has the

advantage that the vector space dimension for n gluons is approximately equal to the

dimension for n− nq gluons and nq qq-pairs, see [26].

With the above basis conventions the radiation matrices, eq. (3.19), are given by

(
Vα

g1 g3 ... g2⌈n−1
2 ⌉−1

; g2 g4 ... g2⌊n−1
2 ⌋

∣∣∣
gi→ii

)
ifgiiign =

∑

β

(Ti)βαV
β
g1 g3 ... g2⌈n

2 ⌉−1; g2 g4 ... g2⌊n
2 ⌋
,

(3.24)

giving for the amplitudes, eq. (3.20),

Aβ
(
1−, 2+, 3+, . . . , n−

)
=

n−1∑

i=2

∑

α

(Ti)βα (3.25)

×


Aα

(
1̂−, 2+, . . . , (i− 1)+, P̂−

i,n, (i+ 1)+, . . . , (n− 1)+
) 1

si,n

1√
TR

[
i | −P̂i,n

]3
[
−P̂i,n | n̂

]
[n̂ | i]


 .

As can be seen in eq. (3.24), the color structure of the recursion relation in the multiplet

bases is given by inserting one gluon to the (n− 1)-gluon basis vectors,

(
Vα

g1 g3 ... g2⌈n−1
2 ⌉−1

; g2 g4 ... g2⌊n−1
2 ⌋

∣∣∣
gi→ii

)
ifgiiign . (3.26)

For example, denoting the five-gluon basis vectors Vα
g1 g3 g5; g2 g4 , if we radiate another

gluon g6, we can attach it to any of the gluons g1, g2, g3, g4 and g5. The correspond-

ing color factors then become Vα
i g3 g5; g2 g4

ifg1ig6 , Vα
g1 g3 g5; i g4

ifg2ig6 , Vα
g1 i g5; g2 g4

ifg3ig6 ,

Vα
g1 g3 g5; g2 i

ifg4ig6 and Vα
g1 g3 i; g2 g4

ifg5ig6 . The systematic evaluation of such color structure

in the larger basis is the topic of the present section.

One way of evaluating the radiation matrices is to simply calculate scalar products

between the left hand side color structure of eq. (3.24) and the vectors in the larger basis.
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This is equivalent to the method of section 2. However, as most of these scalar products

vanish — for reasons that will become clear later in this section — such a strategy would

be unnecessarily expensive.

Instead we here present a more elegant way of evaluating the weights for the n-gluon

basis vectors using group theory and the birdtrack notation [62]. By applying group the-

oretical relations to the left hand side of eq. (3.24) it can be cast into the form of the

right hand side, with the radiation matrix elements expressed in terms of group theoretical

weights, the Wigner coefficients.

A method for evaluating scalar products between Feynman diagrams and multiplet ba-

sis vectors is explored in [26]. The same techniques are applicable for the decomposition of

an (n− 1)-gluon multiplet basis vector which has radiated an nth gluon, into n-gluon mul-

tiplet basis vectors. For this decomposition, three group theoretical relations are required,

the completeness relation for tensor products, the color structure of a vertex correction and

the relation between the ordering of the representations of a vertex. In birdtrack notation

the completeness relation reads

µ

ν =
∑

α∈µ⊗ν

dα

ν

α

µ

µ

ν

µ

ν

α

. (3.27)

In the tensor product µ ⊗ ν above, there can be more than one instance of a particular

representation. In this case all instances have to be summed over, for example in A ⊗ A,

where A denotes the adjoint representation (not to be confused with the amplitude), there

are two “octets”.

The second relation is a special case of the Wigner-Eckart theorem, the color structure

of a vertex correction can be written as [26, 62]

α

β

γ
δ

ǫ

ζ =
∑

a

ǫ

γ

α

δ

ζ

βa

γ
α

β

aa

γ

β

α

a
. (3.28)

The above equation is sometimes stated without the sum. Indeed the sum is only needed

if there is more than one instance of γ in the tensor product α ⊗ β. In this case, the

αβγ-vertex may appear in more than one version, this occurs, for example, when α, β and

γ are octets, then a is if and d.

The third relation concerns the ordering of representations in a vertex, the relation

between the two orderings is given by [62],

γ

β

α
− ≡ γ

β

α

=
∑

a

γ
α

β

− a

γ
α

β

aa

γ

β

α

a
, (3.29)
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where the equivalence defines Yutsis’ notation [65]. Typically this just gives a sign ±1, for

example we have a minus sign for the antisymmetric triple-gluon vertex.

3.3.1 Example: 4 → 5 gluons

The method of evaluating the radiation matrices with the above stated relations will first

be applied to a 4 → 5 gluon example, and after that a general formula will be derived.

Let us thus consider a four-gluon basis vector radiating a fifth gluon from gluon 3. In

diagrammatic form, denoting the standard triple gluon vertex, ifabc, with a black dot,

where the indices are read in counter clockwise order, the color structure becomes

Nα1

α1
1

3

5

2

4
, (3.30)

where we have drawn the fifth gluon such that the gluon ordering in eq. (3.21) is respected.

Applying the completeness relation eq. (3.27) to gluon 5 and the representation α1 gives

Nα1

α1
1

3

5

2

4
= −

∑

β1∈A⊗α1

dβ1

β1

α1
Nα1

α1
1

3

5

α1
2

4

β1

, (3.31)

where the sum runs over representations in the adjoint representation times α1. On the

right hand side above, gluon 1 and 3 and the representation β1 are connected by a vertex

correction. Using eq. (3.28) with γ → β1, ǫ → α1 and α, β, δ, ζ → A to remove it, the color

structure is

Nα1

α1
1

3

5

2

4
= −

∑

β1∈(A⊗α1∩A⊗A)
a

dβ1

β1

α1

β1

α1

a

β1
a a

Nα1

Nβ1α1
Nβ1α1

β1
1

3

5

α1
2

4

a

.

(3.32)

This equation is now of the desired form, eq. (3.24) where the radiation matrix components

trivially can be read off by comparison to eq. (3.21). Letting β = (β1, β2) denote the repre-

sentation set labeling the 5-gluon basis vector, we immediately see that the representation

β2 is constrained to be β2 = α1. Thus most of the projections onto the 5-gluon basis

vectors vanish.

Note that eq. (3.32) has been derived without explicitly stating the representation α1.

The result is thus generic and, knowing the Wigner coefficients and the dimensions of the

representations, it can be used for immediately writing down the decomposition for any

initial Vα. As an example, if α1 = 10 the allowed β1 representations, i.e., those present in

both A⊗ α1 and A⊗A, are 8, 10, 27 and 0 (for Nc ≥ 4). If β1 = 8, there are two possible
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vertices connecting gluon 1 and 3 in the 5-gluon basis vector, and similarly if β1 = 10 (and

Nc ≥ 4) there are two vertices connecting β1 and α1.

For evaluating the right hand side of eq. (3.32) we use the dimensions of the repre-

sentations, stated in eq. (2.14), and the Wigner coefficients calculated as in [26]. Ordering

the allowed representations β1 as (8s, 8a, 27, 10f , 10fd, 0), the Wigner 6j coefficient in

eq. (3.32) takes the values(
−1√

N2
c −4 (N2

c −1)
, 0,

1√
N2

c +3Nc+2 (N2
c −Nc)

,

√
2√

N2
c −4 (N2

c −1)
, 0,

1√
N2

c −3Nc+2 (N2
c +Nc)

)

(3.33)

respectively. In [26] the Wigner 3j coefficients are normalized to one. Eq. (3.32) is valid for

any normalization as long as it is consistently used. However, requiring all 3j coefficient

to be one implies a normalization if̃abcif̃ cba = 1 for the triple-gluon vertex. To get the

correct ifabc-normalization, eq. (3.33) must be therefore multiplied by a factor of
√

=
√
2Nc(N2

c − 1)TR (using standard normalization of vertices). (3.34)

Normalizing the Wigner 3j coefficients to one and using the definition of the normalization

constants, eq. (3.22), gives
Nα1

Nβ1α1
=

1√
dβ1

. (3.35)

Combining the dimensions, the Wigner 6j coefficients, the normalization factor eq. (3.34),

and the overall sign in eq. (3.32) gives

√
TR

(√
2Nc

N2
c − 4

, 0,−
√

Nc(Nc + 3)

2(Nc + 2)
,−

√
Nc, 0,−

√
Nc(Nc − 3)

2(Nc − 2)

)
. (3.36)

These are the factors required to express the color structure of eq. (3.30) in terms of the

five-gluon basis vectors. For bases which are not charge conjugation invariant, they would

be the entries in the radiation matrix T3, corresponding to mapping the initial vector V10

emitting a gluon g5 from gluon g3 onto the five-gluon basis vectors V8s,10, V8a,10, V27,10,

V10,10f , V10,10fd and V10,0. In the above case, the initial color structure, eq. (3.30) with

α1 = 10, is from a basis vector which is not charge conjugation invariant, and neither

is any of the vectors which the color structure is projected onto. To get to the charge

conjugation invariant vectors in this case simply requires the substitution of 10 → 20 in

the vector representation labels. With this change, the result, eq. (3.36), can be compared

to column five of T3 in eq. (B.3) in appendix B, where the radiation matrices for 4 → 5

gluons are given expressed in the basis from eq. (B.1) (which is also electronically attached

as an online resource).

In general, when knowing the radiation matrices in non-charge conjugation invariant

bases and converting to charge conjugation invariant bases, a sign might be required since

the n-gluon non-invariant vector may come with a minus sign in the linear combination

building up the charge conjugation invariant vector. For the same reason another minus

sign may come from the (n − 1)-gluon basis vector. Apart from a potential sign, factors

compensating for vector normalizations and occurrence of both a vector and its conjugate

on the right hand side of eq. (3.24) may be required.
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For five external gluons (and Nc ≥ 4) there are 22 charge conjugation invariant basis

vectors, stated in eq. (B.1), but the example color structure is given by only four of them.

It is worth noting that although, in this case, most of the basis vectors with β2 = 10

contribute (there are only two zeros in eq. (3.36)), for more external gluons the constraints

corresponding to β1 ∈ α1 ⊗ A become more restrictive. This point will be elaborated on

after the derivation of the general formula for radiation matrices.

3.3.2 The general case: n − 1 → n gluons

In general, if the nth gluon is radiated from one of the incoming gluons, the color structure

of eq. (3.26) will be of the form

Nα1 α2...αn−1−3

α2α1
αj−1 αj

1

3

5

i = 2j+1

2(⌈n−1

2
⌉−1)+1

αj+1

2(j+1)+1

α⌈n−1
2 ⌉−2

n

α⌈n−1
2 ⌉−1

α⌈n−1
2 ⌉

, (3.37)

where, if j = 0 or 1 (i.e. i = 1 or 3), αj−1 is an octet. In the following steps it will

be assumed that gluon 1 is not the emitter, this special case will be addressed after the

derivation. To get to the right hand side of eq. (3.24), the same steps as in the above

example are used: first the completeness relation, eq. (3.27), is applied repeatedly and

then vertex corrections are removed using eq. (3.28).

We thus want to apply the completeness relations to gluon n and the representations

αj , αj+1, . . . , α⌈n−1
2

⌉−1, i.e., we insert it in the encircled positions in

Nα1 α2...αn−4

α2α1
αj−1 αj

α⌈n−1
2 ⌉−1

1

3

5

2j+1

2(⌈n−1

2
⌉−1)+1

αj+1

2(j+1)+1

α⌈n−1
2 ⌉

n

, (3.38)
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resulting in

∑

βj ,βj+1,...,β⌈n−1
2 ⌉−1

dβj

βj

αj

dβj+1

βj+1

αj+1

. . .
dβ

⌈n−1
2 ⌉−1

β⌈n−1
2 ⌉−1

α⌈n−1
2 ⌉−1

Nα1 α2...αn−4

×

α2α1
αj−1 βj

1

3

5

2j+1

2(⌈n−1

2
⌉−1)+1

βj+1

2(j+1)+1

β⌈n−1
2 ⌉−2

α⌈n−1
2 ⌉β⌈n−1

2 ⌉−1

αj αj αj+1
α⌈n−1

2 ⌉−2
α⌈n−1

2 ⌉−1

n

α⌈n−1
2 ⌉−1

.

(3.39)

Here gluon 2j+1 has a vertex correction of a different form compared to the other gluons.

We first treat this separately and then address all other vertex corrections. Using Yutsis’

notation, eq. (3.29), and eq. (3.28), the leftmost vertex correction can be written

αj−1 βjαj

−
− =

∑

bj

αj

βj

αj−1

−
−

bj

βj

αj−1

bjbj

αj−1 βjbj

. (3.40)

The remaining vertex corrections can be contracted similarly, for example

βj βj+1

αj αj+1
=

∑

bj+1

βj+1

βj

αj+1

αj

bj+1

βj+1

βj

bj+1bj+1

βj βj+1bj+1

. (3.41)
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Applying the above steps and adjusting the vertex order of the last new vertex results in

∑

βj ,βj+1,...,β⌈n−1
2 ⌉−1

bj ,bj+1,...,b⌈n−1
2 ⌉

dβj

βj

αj

αj

βj

αj−1

−
−

bj

βj

αj−1

bjbj




⌈n−1
2

⌉−1∏

k=j+1

dβk

βk

αk

βk

βk−1

αk

αk−1

bk

βk

βk−1

bkbk




α⌈n−1
2 ⌉−1

β⌈n−1
2 ⌉−1

− b⌈n−1
2 ⌉b⌈n−1

2 ⌉

α⌈n−1
2 ⌉−1

β⌈n−1
2 ⌉−1

b⌈n−1
2 ⌉b⌈n−1

2 ⌉

× Nα1 α2...αn−4

N
α1...αj−1βj ...β⌈n−1

2 ⌉−1
α
⌈n−1

2 ⌉−1
...αn−4

N
α1...αj−1βj ...β⌈n−1

2 ⌉−1
α
⌈n−1

2 ⌉−1
...αn−4

×

α2α1
αj−1 βj

1

3

5

2j+1

2(⌈n−1

2
⌉−1)+1

βj+1

2(j+1)+1

β⌈n−1
2 ⌉−2

n

α⌈n−1
2 ⌉−1

β⌈n−1
2 ⌉−1

α⌈n−1
2 ⌉

, (3.42)

where the vertex labels in the third line have been suppressed. The third line of eq. (3.42),

combined with the last normalization factor of the second line is now of the form of a basis

vector. Hence the factor in front of it is the radiation matrix T2j+1 expressed in terms of

Wigner coefficients.

We remark that the form of the radiation matrix from the example, eq. (3.32), differs

from eq. (3.42). This is only due to the fifth gluon being drawn in an, at that point,

more natural way. The two expressions are identical, if the expression from eq. (3.42) is

written out for gluon 3 with n = 5, it can be simplified to become exactly the expression

of eq. (3.32).

The derived result, eq. (3.42), is for gluons emitted from the “incoming” gluons. For

gluons emitted from the “outgoing” gluons an analogous derivation can be done, resulting

in an equation similar to eq. (3.42). A special case occurs if the emitter is the first gluon on

its side, gluon 1 for the “incoming” side and gluon 2 for the “outgoing” side. Compared to

the radiation matricesT3 andT4 the matricesT1 andT2 are identical up to sign differences

for some entries. The difference originates from a difference in the leftmost (rightmost for

gluon 2) vertex correction, eq. (3.40), that results in a change in vertex ordering which

gives a possible sign difference. (Taking gluon 1 and gluon n to be the gluons with shifted

momenta, emission from gluon 1 need not be considered, see figure 3.)
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Concerning the group theoretical constraints on the representations we note that each

representation to the left of βj and to the right of β⌈n−1
2

⌉−1 are constrained to be equivalent

to representations in the set α, i.e.,

βk = αk, for k = 1, . . . , j − 1,

βk = αk−1, for k = ⌈n− 1

2
⌉, . . . , n− 3. (3.43)

The shift in the index of the second equality in eq. (3.43) is from the fact that there are

n− 3 representations for n gluons and n− 4 for n− 1 gluons, with the new representation

being inserted just before α⌈n−1
2

⌉−1.

There are also constraints on the set of representations β coming from the completeness

relations applied in eq. (3.39),

βk ∈ αk ⊗A, for k = j, j + 1, . . . , ⌈n− 1

2
⌉ − 1. (3.44)

This constraint will become more restrictive when the emitting gluon is far from the middle

of the basis vector, since in this case, the constraint is imposed on many representations

in the basis vector.

Using the constraints eq. (3.43) and eq. (3.44), the number of possibly non-zero ele-

ments in the radiation matrix columns can be counted (more are zero due to generalized

vertices giving Wigner coefficients which are zero). The result, averaged over all possible

emitters 2, . . . , n − 1 and all possible initial basis vectors, is shown in table 1 along with

the maximal number of possible β for any α. Both the maximal number of possible β for

any α and the average over all α and all emitters are overestimates, as symmetries of the

Wigner coefficients will force some of them to vanish, depending on the choice of vertices.

In addition, there are Wigner coefficients vanishing due to the invariance condition of ten-

sors under the group, see [62] for the invariance condition in birdtrack notation. For the

calculated radiation matrices, the reductions due to vanishing Wigner coefficients changes

the averages for Nc ≥ n from 6.9 to 3.9 and 14.4 to 8.9 for the n = 5 and n = 6 cases,

respectively. For the gluons only case there is the further reduction due to charge conjuga-

tion invariance. For comparison, table 1 also shows the dimensions of the (all order) vector

space, both for QCD and in the limit Nc → ∞, and the number of vectors in the spanning

sets for the “trace bases” and “DDM bases”.

We note that although the average (and maximal) number of terms does increase with

the number of gluons, compared to the increase in the dimension of the vector space,

this growth is very mild, meaning that a smaller and smaller fraction of all basis vectors

contribute. Instead of having to treat the square of the number of basis vectors in the

squaring of the amplitude, we thus only need to treat the number of basis vectors, times

the number of contributing emitters times the average number of terms in deriving the

amplitude; recall that the squaring of the color structure itself is quick in the orthogonal

bases. For example, using the trace basis for 10 gluons requires (362 880)2 ∼ 1011 terms

in the squaring step, with the (gluon specific) DDM basis this can be reduced to ∼ 109,

whereas using the multiplet basis would require up to 19 208 × 8 × 106 ∼ 107 terms for

the identification of new basis vectors. For more gluons the difference is even larger. As

our long term goal is to include processes with an arbitrary number of quarks, we view
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n 5 6 7 8 9 10 11 12

Avg QCD 6.0 10.8 17.5 32.5 54.6 106 185 268

Nc ≥ n 6.9 14.4 24.6 57.9 109 299 593 1 775

Max QCD 8 33 33 178 178 962 962 5 220

Nc ≥ n 9 44 44 400 400 4 006 4 006 41 256

Vectors QCD 32 145 702 3 598 19 280 107 160 614 000 3 609 760

(all orders) Nc ≥ n 44 265 1 854 14 833 133 496 1 334 961 14 684 570 176 214 841

Trace any Nc 24 120 720 5 040 40 320 362 880 3 628 800 39 916 800

DDM any Nc 6 24 120 720 5 040 40 320 362 880 3 628 800

Table 1. The average (taken over all initial vectors and the emitters 2, . . . , n − 1) and maximal

number of non-zero elements in the columns of the radiation matrices for (n − 1) → n gluons.

The stated numbers are overestimates since they assume that no Wigner 6j coefficient involving

admissible representations vanishes. For comparison we also show the total dimension of the all

order vector space for Nc ≥ n and for Nc = 3 (without accounting for reduction due to charge

conjugation invariance) and the number of spanning vectors in the tree-level trace bases and the

DDM bases.

the comparison between the non charge conjugation invariant multiplet basis and the trace

basis as the most relevant comparison. From table 1 we thus conclude that the overall

treatment of the color structure can be sped up significantly by the usage of multiplet bases.

3.4 The five-gluon amplitude

Utilizing that only the (n − 1, 3) division contributes, the BCFW recursion expression,

eq. (3.16), for the five-gluon color-dressed MHV amplitude is given by the sum of the

diagrams in figure 4. As seen in eq. (2.16), the four-gluon color-dressed (MHV) sub-

amplitudes can be expressed in the multiplet basis.

The contractions of basis vectors in the four-gluon sub-amplitudes and the structure

constants in the three-gluon sub-amplitudes can be expanded in the five-gluon multiplet

basis using the radiation matrices Ti for emitting the gluon g5, illustrated in figure 4.

Collecting the kinematic factors corresponding to a given five-gluon basis vector, we can

write down the recursion relation eq. (3.25) for the kinematic factor for five gluons

Aβ(1−, 2+, 3+, 4+, 5−) =
∑

α

(T2)βαA
α
(
1̂−, P̂−

2,5, 3
+, 4+

) 1

s25

1√
TR

[
2 | −P̂2,5

]3
[
2 | 5̂

] [
5̂ | −P̂2,5

]

+
∑

α

(T3)βαA
α
(
1̂−, 2+, P̂−

3,5, 4
+
) 1

s35

1√
TR

[
3 | −P̂3,5

]3
[
3 | 5̂

] [
5̂ | −P̂3,5

]

+
∑

α

(T4)βαA
α
(
1̂−, 2+, 3+, P̂−

4,5

) 1

s45

1√
TR

[
4 | −P̂4,5

]3
[
4 | 5̂

] [
5̂ | −P̂4,5

] .

(3.45)

Here the matrices Ti in the first, second and third term of eq. (3.45) are the radiation

matrices corresponding to the first, second and the third diagram in figure 4. They are
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1̂−

3+

5̂−
4+

2++− 1̂−

3+

5̂−
4+

2+

+−
1̂−

3+

5̂−
4+

2+

+
−

1

3

5

4

2 1

3

5

4

2 1

3

5

4

2

Figure 4. The relevant splittings for the BCFW recursion in the five-gluon MHV case (above) and

the corresponding color structure for the radiation matrices (below). Note that the orders of the

ifgigi,ngn vertices are drawn to be consistent with eq. (3.25).

calculated as in section 3.3 and explicit matrices are stated in appendix B. The four-gluon

kinematic factors Aα
(
1̂−, P̂−

2,5, 3
+, 4+

)
, Aα

(
1̂−, 2+, P̂−

3,5, 4
+
)
and Aα

(
1̂−, 2+, 3+, P̂−

4,5

)
are

given by replacing the gluons 2, 3 and 4 in eq. (2.16) by P̂−
2,5, P̂

−
3,5 and P̂−

4,5 respectively, and

inserting the explicit expressions for the color-ordered MHV amplitudes eq. (3.13). Using

the Mathematica package S@M [66], one can compute the kinematic factors. Clearly, in

the five-gluon case, the only non-vanishing helicity configurations are the MHV and the

MHV making our result applicable to all relevant cases.

As shown in section 2, one can always express the kinematic factor in the multiplet

basis expansion in terms of color-ordered amplitudes in the KK basis. To achieve this in the

recursion approach, we recall that the (n − 1)-gluon kinematic factor Aα(1, . . . , n) can be

written in terms of (n−1)-gluon color-ordered amplitudes A(σ) (in the five-point case, the

(n−1)-gluon result is given by eq. (2.16)). Since the (n−1)-gluon color-ordered amplitudes

satisfy the KK relation eq. (1.4), we can apply KK relations to rewrite the (n − 1)-gluon

kinematic factor in the multiplet basis in terms of (n−1)-gluon color-ordered amplitudes of

the form A(1−, . . . , P̂−
i,n). After substituting KK expressions for the (n−1)-gluon kinematic

factors — as well as the particular form of the MHV amplitudes eq. (3.13) — into the n-

gluon recursion expression (eq. (3.45) for five gluons), we obtain the n-gluon kinematic

factor expressed in terms of combinations of n-gluon color-ordered MHV amplitudes of the

form A(1−, . . . , n−). Putting all this together, we arrive at the five-gluon result, explicitly

stated in appendix B, and electronically attached as an online resource. Clearly, in the

five-gluon case, the only non-vanishing helicity configurations are the MHV and the MHV

configuration, making our result applicable to all relevant cases.

3.5 The six-gluon amplitude

The six-gluon MHV amplitudes have been calculated analogously using the electronically

attached charge conjugation invariant multiplet basis (see online resource). Concerning the

basis, we remark that the dimension of the all order vector space is reduced from 265 to

140 when keeping only conjugation invariant linear combinations of vectors. Specializing

to Nc = 3 brings down the dimension further to 75.
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We also note that although — expressed in the KK basis — there could naively be

up to 4! spinor terms multiplying each basis vector, on average only 8.5 contribute. By

the scalar product approach in section 2, we find that the final expression for the MHV

amplitude is also valid when we replace the KK basis for the MHV configuration by the

basis for arbitrary helicity configurations. Thus we need not specify the helicity information

in the final six gluon result. The six-gluon basis, the radiation matrices and the resulting

amplitudes are electronically attached as online resources.

4 Conclusion and outlook

We have shown how BCFW recursion can be used for relating higher point tree-level MHV

gluon amplitudes to results for fewer external legs. To achieve this recursive decomposition

we have utilized two different strategies.

One option is to straightforwardly evaluate scalar products of color factors in the

multiplet bases with those in the DDM decomposition (or in principle any other basis where

recursion relations are known). While this strategy benefits from being conceptually simple,

it will be competitive for multi-particle processes only if a rapidly decreasing fraction of

such scalar products are non-zero, and if the contributing scalar products can be identified

and evaluated quickly.

Therefore we have shown how to derive n-gluon MHV amplitudes directly in the mul-

tiplet bases. This requires the calculation of “radiation matrices”, describing the effect of

radiating one gluon from an (n − 1)-gluon basis vector, decomposed into the n-basis vec-

tors. We have shown how to efficiently calculate these matrices using birdtrack techniques,

and argued that the overall treatment of color structure can be sped up significantly using

multiplet bases.

While we do believe that the present paper is an important step in the direction of

achieving efficient multi-particle amplitude calculations in multiplet bases, quite some work

remains before this becomes reality. First of all, the results should be extended beyond

MHV, to processes with quarks, and preferably beyond leading order. Secondly, it remains

to efficiently implement multiplet bases and calculation of the radiation matrices.

Finally, we remark that we have studied recursion using one particular form of multiplet

bases, corresponding to one particular subgrouping of partons. It appears quite likely that

even more efficient choices of multiplet bases can be made, such that the radiation matrices

are even more sparse and the recursion can be achieved even quicker.
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A Vanishing of the (3, n − 1) division

Here we show the vanishing of the (3, n − 1) division in the BCFW recursion expression

of the MHV amplitude M(g−1 , g
+
2 , . . . , g

−
n ) for the (1, n)-shift, eq. (3.15). The proof here

is similar to the proof used for color-ordered amplitudes which can be found, for example,

in [43]. For the (3, n−1) division, the left sub-amplitudes are three-gluon MHV amplitudes,

while the right sub-amplitudes are (n − 1)-gluon MHV amplitudes. Using the fact that

the sub-amplitudes for fewer gluons always can be expressed as linear combinations of

color-ordered amplitudes in the DDM basis, we find that one contribution to the kinematic

factor for this division has the form

i

[
i| − P̂1,i

]3
[
1̂ | i

] [
1̂ | −P̂1,i

] i

s1i
i

〈
P̂1,i | n̂

〉3

〈
P̂1,i | l

〉
. . . 〈k | n̂〉

, (A.1)

where l and k are two arbitrary unshifted gluons in the right set, and
∣∣∣−P̂1,i

]
= ±i

∣∣∣P̂1,i

]
.

(Since there are three
∣∣∣−P̂1,i

]
’s in the numerator and one in the denominator, the sign

(±1) does not appear in the final result.) In the above expression we have divided out a

factor
[
i| − P̂1i

]
in the MHV amplitude and a factor

〈
P̂1,i | n̂

〉
in the MHV amplitude.

The position of the pole for the above expression is

s1,i(z) = ([1|i]− z [n|i]) 〈i|1〉 = 0 ⇒ z1,i =
[1|i]
[n|i] . (A.2)

The numerator of eq. (A.1) then reads (up to a factor i)

([
i | P̂1,i

] 〈
P̂1,i | n̂

〉)3
= ([i | 1] 〈1 | n̂〉 − z1,i [i | n] 〈1 | n̂〉)3

= ([i | 1]− z1,i [i | n])3 〈1 | n〉3

= 03 〈1 | n〉3 . (A.3)

Also in the denominator, several factors vanish,
[
1̂ | i

]
= [1 | i]− z1,i [n | i] = 0, (A.4)

and
[
1̂ | P̂1,i

] 〈
P̂1,i | l

〉
=

[
1̂ | p̂1 + pi | l

〉

= −〈l | i〉 ([1 | i]− z1,i [n | i])
= 0. (A.5)

Thus, after dividing out a factor ([1 | i]− z1,i [n | i])2 in both numerator and denominator,

the expression eq. (A.1) is proportional to

[1 | i]− z1,i [n | i] = 0. (A.6)

Therefore, the (3, n− 1) division always gives a vanishing contribution.
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B Five-gluon multiplet basis, radiation matrices and MHV amplitudes

We use the charge conjugation invariant orthonormal five-gluon multiplet basis given below.

As remarked in section 3.3 we need, apart from the representation labels αi, also a label

distinguishing the various vertices from each other. For this reason the vectors carry labels

α1, α2, α
′
2 where, αi contains additional information about the vertex if needed. Also,

since our basis is charge conjugation invariant, the representations 10 and 10 only appear

together, referred to as 20. The five-gluon basis is

V8a,1,1
g1 g3 g5; g2 g4 =

1

(N2
c − 1)

√
2NcTR

ifg1g3g5δg2g4

V1,8,8a
g1 g3 g5; g2 g4 =

1

(N2
c − 1)

√
2NcTR

δg1g3ifg2g5g4

V8s,8s,8a
g1 g3 g5; g2 g4 =

√
Nc

2T
3/2
R (N2

c − 4)
√
2(N2

c − 1)
dg1g3i1di1g5i2if i2g4g2

V8s,8a,8s
g1 g3 g5; g2 g4 =

√
Nc

2T
3/2
R (N2

c − 4)
√
2(N2

c − 1)
dg1g3i1if i1g5i2di2g4g2

V8a,8s,8s
g1 g3 g5; g2 g4 =

√
Nc

2T
3/2
R (N2

c − 4)
√
2(N2

c − 1)
ifg1g3i1di1g5i2di2g4g2

V8a,8a,8a
g1 g3 g5; g2 g4 =

1

2(NcTR)3/2
√

2(N2
c − 1)

ifg1g3i1if i1g5i2if i2g4g2

V27,8,8a
g1 g3 g5; g2 g4 =

√
2

N
3/2
c

√
TR (N2

c + 2Nc − 3)
P27

g1 g3; i1 g5if
i1g4g2

V20,8,8s
g1 g3 g5; g2 g4 =

√
Nc

(N2
c − 4)

√
TR (N2

c − 1)
P10−10

g1 g3;i1 g5d
i1g4g2

V20,8,8a
g1 g3 g5; g2 g4 =

1√
NcTR (N4

c − 5N2
c + 4)

P10+10
g1 g3;i1 g5if

i1g4g2

V0,8,8a
g1 g3 g5; g2 g4 =

√
2

N
3/2
c

√
TR(N2

c − 2Nc − 3)
P0

g1 g3; i1 g5if
i1g4g2

V8a,27,27
g1 g3 g5; g2 g4 =

√
2

N
3/2
c

√
TR (N2

c + 2Nc − 3)
ifg1g3i1P27

i1 g5; g2 g4

V27,27a,27
g1 g3 g5; g2 g4 =

2

Nc

√
TR (N3

c + 3N2
c −Nc − 3)

P27
g1 g3; i1 i3if

i3g5i2P27
i1 i2; g2 g4

V20,27,27
g1 g3 g5; g2 g4 =

2√
NcTR (N4

c +N3
c − 7N2

c −Nc + 6)
P10+10

g1 g3; i1 i3if
i3g5i2P27

i1 i2; g2 g4

V8s,20,20
g1 g3 g5; g2 g4 =

√
Nc

(N2
c − 4)

√
TR (N2

c − 1)
dg1g3i1P10−10

i1 g5; g2 g4

V8a,20,20
g1 g3 g5; g2 g4 =

1√
NcTR (N4

c − 5N2
c + 4)

ifg1g3i1P10+10
i1 g5; g2 g4

V27,20,20
g1 g3 g5; g2 g4 =

2√
NcTR (N4

c +N3
c − 7N2

c −Nc + 6)
P27

g1 g3; i1 i3if
i3g5i2P10+10

i1 i2; g2 g4
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V20,20f,20
g1 g3 g5; g2 g4 =

√
2√

NcTR (N4
c − 5N2

c + 4)
P10+10

g1 g3; i1 i3if
i3g5i2P10+10

i1 i2; g2 g4

V20,20fd,20
g1 g3 g5; g2 g4 =

√
2Nc√

TR(N6
c − 14N4

c + 49N2
c − 36)

( P10+10
g1 g3; i1 i3d

i3g5i2P10−10
i1 i2; g2 g4

− 1

Nc
P10+10

g1 g3; i1 i3if
i3g5i2P10+10

i1 i2; g2 g4 )

V0,20,20
g1 g3 g5; g2 g4 =

2√
NcTR(N4

c −N3
c − 7N2

c +Nc + 6)
P0

g1 g3; i1 i3if
i3g5i2P10+10

i1 i2; g2 g4

V8a,0,0
g1 g3 g5; g2 g4 =

√
2

N
3/2
c

√
TR(N2

c − 2Nc − 3)
ifg1g3i1P0

i1 g5; g2 g4

V20,0,0
g1 g3 g5; g2 g4 =

2√
NcTR(N4

c −N3
c − 7N2

c +Nc + 6)
P10+10

g1 g3; i1 i3if
i3g5i2P0

i1 i2; g2 g4

V0,0a,0
g1 g3 g5; g2 g4 =

2

Nc

√
TR(N3

c − 3N2
c −Nc + 3)

P0
g1 g3; i1 i3if

i3g5i2P0
i1 i2; g2 g4 . (B.1)

The radiation matrices for adding the gluon g5 to the four-gluon multiplet basis from
eq. (2.11) expressed in the five-gluon basis in eq. (B.1) are given by

T2 =
√
TR

















































































































0 0 −
√

2Nc

N2
c−1

0 0 0

−
√
2Nc 0 0 0 0 0

0 −
√

Nc

2
0 0 0 0

0

√

Nc

2
0 0 0 0

0 0 −
√

Nc

2
0 0 0

0 0

√

Nc

2
0 0 0

0 0 0
√

2
Nc

0 0

0 0 0 0
√

2Nc

N2
c−4

0

0 0 0 0 0 0

0 0 0 0 0 −
√

2
Nc

0 0
√

Nc(Nc+3)
2(Nc+1)

0 0 0

0 0 0
√
Nc + 1 0 0

0 0 0 0 −
√

Nc(Nc+3)
2(Nc+2)

0

0
√
Nc 0 0 0 0

0 0 0 0 0 0

0 0 0 −
√

N2
c−Nc−2

Nc
0 0

0 0 0 0
√
Nc 0

0 0 0 0 0 0

0 0 0 0 0 −
√

N2
c+Nc−2

Nc

0 0 −
√

Nc(Nc−3)
2(Nc−1)

0 0 0

0 0 0 0 −
√

Nc(Nc−3)
2(Nc−2)

0

0 0 0 0 0
√
Nc − 1

















































































































, (B.2)
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T3 =
√
TR













































































































−
√
2Nc 0 0 0 0 0

0 0 −
√

2Nc

N2
c−1

0 0 0

0 0 −
√

Nc

2
0 0 0

0 −
√

Nc

2
0 0 0 0

0 −
√

Nc

2
0 0 0 0

0 0 −
√

Nc

2
0 0 0

0 0
√

Nc(Nc+3)
2(Nc+1)

0 0 0

0
√
Nc 0 0 0 0

0 0 0 0 0 0

0 0 −
√

Nc(Nc−3)
2(Nc−1)

0 0 0

0 0 0
√

2
Nc

0 0

0 0 0 −
√
Nc + 1 0 0

0 0 0 −
√

N2
c−Nc−2

Nc
0 0

0 0 0 0
√

2Nc

N2
c−4

0

0 0 0 0 0 0

0 0 0 0 −
√

Nc(Nc+3)
2(Nc+2)

0

0 0 0 0 −
√
Nc 0

0 0 0 0 0 0

0 0 0 0 −
√

Nc(Nc−3)
2(Nc−2)

0

0 0 0 0 0 −
√

2
Nc

0 0 0 0 0 −
√

N2
c+Nc−2

Nc

0 0 0 0 0 −
√
Nc − 1













































































































(B.3)

and

T4 =
√
TR













































































































0 0
√

2Nc

N2
c−1

0 0 0
√
2Nc 0 0 0 0 0

0

√

Nc

2
0 0 0 0

0

√

Nc

2
0 0 0 0

0 0

√

Nc

2
0 0 0

0 0

√

Nc

2
0 0 0

0 0 0 −
√

2
Nc

0 0

0 0 0 0 −
√

2Nc

N2
c−4

0

0 0 0 0 0 0

0 0 0 0 0
√

2
Nc

0 0 −
√

Nc(Nc+3)
2(Nc+1)

0 0 0

0 0 0
√
Nc + 1 0 0

0 0 0 0
√

Nc(Nc+3)
2(Nc+2)

0

0 −
√
Nc 0 0 0 0

0 0 0 0 0 0

0 0 0

√

N2
c−Nc−2

Nc
0 0

0 0 0 0
√
Nc 0

0 0 0 0 0 0

0 0 0 0 0

√

N2
c+Nc−2

Nc

0 0
√

Nc(Nc−3)
2(Nc−1)

0 0 0

0 0 0 0
√

Nc(Nc−3)
2(Nc−2)

0

0 0 0 0 0
√
Nc − 1
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Using the above radiation matrices (which can also be found among the electronic attach-

ments available as online resource) in eq. (3.45) we arrive at the five-gluon multiplet basis

result

Aα(1, 2, 3, 4, 5) =
6∑

i=1

KiCiαNα , (B.5)

where α = 1, . . . , 22, corresponding to the 22 vectors in the five-gluon basis. Here K, C and

N are defined by

K =
(
A(1, 2, 3, 4, 5), A(1, 2, 4, 3, 5), A(1, 3, 2, 4, 5), A(1, 3, 4, 2, 5), A(1, 4, 2, 3, 5), A(1, 4, 3, 2, 5)

)
,

(B.6)

C =




1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1

2 1
2 1 1 1 1 −Nc

2 1 0 Nc

2 − 2
Nc

1 1 0 0 0 0 0 0 2
Nc

1 1

2 0 0 0 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0

2 0 0 0 2 −2 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0

2 −1
2 −1 1 1 −1 Nc

2 1 0 −Nc

2 − 2
Nc

1 1 0 0 0 0 0 0 2
Nc

1 1

1 −1 −1 1 1 −1 −1 0 0 −1 1 1 0 −1 0 −1 0 0 −1 1 0 1




(B.7)

and

N = (Nc)
3/2

(
√
2, 2

√
2,

√
N2

c −1√
2

,

√
N2

c −1√
2

,

√
N2

c −1√
2

,

√
N2

c −1√
2

,

√
2
√

N2
c +2Nc−3

Nc
,−

√
N2

c −1, 0,

√
2
√

N2
c −2Nc−3

Nc
,−

√
N2

c +2Nc−3√
2

,−
√

N2
c +3Nc−

3

Nc
− 1,−

√
N4

c +N3
c −7N2

c −Nc+6

Nc
,

−
√

N2
c −1, 0,−

√
N4

c +N3
c −7N2

c −Nc+6

Nc
, 0, 0,

√
N4

c −N3
c −7N2

c +Nc+6

Nc
,

√
N2

c −2Nc−3√
2

,

√
N4

c −N3
c − 7N2

c +Nc + 6

Nc
,

√
N3

c − 3N2
c −Nc + 3√
Nc

)
. (B.8)
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