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mic conformal field theory (LCFT) at central charge c = 0. This theory corresponds

to the strong coupling regime of a sigma model on the complex projective superspace

CP 1|1 = U(2|1)/(U(1) × U(1|1)), and the spectrum of critical exponents can be obtained

exactly. In this paper we push the analysis further, and determine the main representation

theoretic (logarithmic) features of this continuum limit by extending to the periodic case

the approach of [1] [N. Read and H. Saleur, Nucl. Phys. B 777 (2007) 316]. We first

focus on determining the representation theory of the finite size spin chain with respect to

the algebra of local energy densities provided by a representation of the affine Temperley-

Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over

to the continuum limit to deduce the structure of the space of states as a representation

over the product of left and right Virasoro algebras. Our main result is the full struc-

ture of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for

the Hamiltonian.
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1 Introduction

Many applications of conformal field theory to statistical mechanics and condensed matter

physics are related to the case of central charge c = 0. These applications include the sta-

tistical properties of critical geometrical models such as self-avoiding walks (polymers) or

percolation, and the critical properties of non interacting 2+1 dimensional disordered elec-

tronic systems — for instance, at the transition between plateaux in the integer quantum

Hall effect.

Unfortunately, apart from some supergroup WZW models, the only well understood

c = 0 conformal field theory is the trivial, minimal and unitary, one, which contains no field

but the identity. This corresponds to the existence of the trivial modular invariant partition

function Z = 1 at c = 0, which is the result obtained by calculating the n → 0 limit of

the partition function of O(n) models or replicated disordered systems, or the Q → 1

limit of the Q-state Potts model (see the recent review [2]). Of course, these geometrical or

disordered models have non trivial observables and critical exponents. But to observe them,

one needs to understand what is happening “outside” the minimal trivial theory. While

this issue was identified rather early [3], it has proven surprisingly hard to control entirely.

For instance, despite the huge progress realized in determining exponents for polymers and

percolation, including rigorous work and connections with the SLE formalism, there is to

this day no agreement — let alone a consistent proposal — on what “the” proper conformal

field theoretic description of say percolation clusters could be. This means in particular

that very little is known about four point functions of geometrical observables in the bulk,

despite the well established existence of measurable, universal quantities [4].

– 1 –
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An aspect that got rather quickly understood is that the introduction of non trivial

observables in say percolation forces one to consider a non unitary conformal field theory.

While this is, on general grounds, a rather small price to pay for the description of ob-

servables which are most of the time non local in geometrical terms, the non-unitarity of

the c = 0 theory one is after is bound to be rather violent (in contrast say to what hap-

pens in the Lee-Yang singularity), and leads in particular to the emergence of logarithmic

features [5]. The adjective logarithmic refers to logarithmic dependence of the four point

functions on the harmonic ratio, and to logarithmic terms in the OPEs. It does not imply

that the field theory is in any way non local, but rather that the representations of the

Virasoro algebra which are involved in the description of the Hilbert space of the theory are

not fully reducible. In other words, the action of the dilatation operator L0 is not always

diagonalizable [6].

It turns out to be pretty hard to deal with logarithmic conformal field theories in

general, and for many years the field has seen but little progress. The difficulty can be

traced back to the complexity of Virasoro algebra representation theory once the criterium

of unitarity — or semi-simplicity — has been relaxed. In fact, the study of LCFTs appears

at first sight at least as difficult as the study of non semi-simple Lie algebras, which is

proverbially intricate indeed — and plagued most of the time by wilderness issues [7–10].

Nevertheless, the study of WZW models on super groups [11–13], the construction of

restricted classes of indecomposable modules [14–16], and the discovery of deep relations

with the theory of associative algebras [1, 17, 18] have suggested that the problem, how-

ever hard, might not be impossible. In the last few years, based in part on the analysis

of lattice regularizations and of the deeper role played by quantum groups at roots of

unity [19, 20], a lot has been understood about boundary LCFTs. There are now reason-

able conjectures about the general structure of Virasoro indecomposable modules [21] and

the fusion rules [1, 16, 18, 22–26], methods to determine the logarithmic couplings (inde-

composability parameters) [27, 28], etc., see the recent reviews [29, 30]. An important role

in these recent developments has been played by algebra, and concepts such as projective

and tilting modules, which we review below.

The case of bulk LCFT remains however less understood. Indecomposable features

now occur not only within the chiral and antichiral sectors, but also in the way they are

mixed, and there is evidence that the relationship between bulk and boundary LCFTs

is considerably more intricate than for unitary CFTs [31–33]. This paper is the fourth

in a series [34–36] aimed at extending in the bulk case a lattice approach that was quite

successful in the boundary case. Rather than try to build a c = 0 LCFT abstractly, we focus

on a well defined, local, lattice model, the sℓ(2|1) Heisenberg spin chain with alternating

fundamental and conjugate fundamental representations. This chain is closely related —

this is discussed in details below — with the properties of the hulls of percolation clusters.

It is gapless, and can be argued to have a conformal invariant continuum limit indeed,

which must have c = 0 and be logarithmic. In a nutshell, our strategy is to infer as many

properties of this LCFT as possible from our analysis of the lattice model. Despite the

fact that we focus on what is, after all, a very simple model, the endeavor remains highly

difficult, and our results will be presented in a series of papers.

– 2 –
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One of the key ideas at the root of our strategy is that most indecomposable aspects

of the LCFT are already present on the lattice, in finite size, the algebra of local energy

densities playing the role of a lattice version of the Virasoro (or product of left and right

Virasoro) algebra. For the model we consider here (as well as in our previous papers), this

algebra is the Temperley Lieb algebra in the boundary case, and the Jones Temperley Lieb

algebra in the bulk case. A representation theoretic analysis of these algebras acting on

our models is thus a perquisite to our understanding of the logarithmic properties of their

continuum limit, and will occupy us in a great deal of the present paper.

We start in section 2 by discussing the percolation problem and how it is related with

conformal field theory. We then focus on properties of cluster boundaries — so called hulls.

We recall how they are formulated in terms of an alternating sℓ(2|1) super spin chain, which

is expected to flow, in the continuum limit, to a super projective sigma model [37, 38]. We

also remind the reader of basic considerations about modular invariance, observables, and

logarithmic features. Section 3 provides reminders on the algebraic description of the

sℓ(2|1) spin chain, and some basic representation theoretic properties of the corresponding

algebras JTLau2L(m) and JTL2L(m), both in the generic case, and in the special case m = 1

of interest here.

In section 4 — which is the most important of this paper — we discuss the decom-

position of the sℓ(2|1) spin chain over indecomposable representations of JTL2L(1). This

involves several technical aspects. First, we make the crucial observation — discussed in

more detail in appendix B — that the sℓ(2|1) spin chain provides a faithful representation

of the algebra JTL2L(1), in sharp contrast with the gℓ(1|1) spin chain studied in [34, 35],

where the corresponding representation was not faithful. The continuum limit of this

gℓ(1|1) spin chain is the ubiquitous c = −2 symplectic fermions theory, a rather simple

example of LCFT, which is quite well understood now: accordingly, the indecomposable

modules appearing in this spin chain are of very manageable form. We believe this is due

to the non faithfulness, and the fact that the gℓ(1|1) spin chain sees only a small part

of the complexity of the full JTL2L(0) algebra: this complexity would be revealed in the

gℓ(2|2) spin chain, whose continuum limit, although also having c = −2, is considerable

more involved than symplectic fermions. Note that, in contrast with the periodic version,

open gℓ(1|1) and sℓ(2|1) spin chains both provide faithful representations of the the ordi-

nary Temperley-Lieb algebra, and the modules appearing in their continuum limit are of

similar complexity.

Faithfulness gives us access to powerful tools in the analysis of the spin chain, especially

when combined with the fact that JTLN (m) is a cellular algebra. This requires manipu-

lating several key concepts of the theory of associative algebras, which are explained in

section 4.1. In section 4.2, we discuss the structure of projective modules over JTLN (1).

In section 4.3, we discuss why, the spin chain admitting a non degenerate bilinear form,

the representation of JTLN (1) should be self-dual. This allows us to argue that the build-

ing blocks of our spin chains are a special kind of modules — called tilting — which we

introduce in section 4.4. In section 4.6, we put all these ingredients together to obtain the

decomposition of the spin chain. Details on the structure of the tilting modules are pro-

vided in section 4.7, together with a discussion of the rank of Jordan cells. A remarkable
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result is that arbitrarily large ranks for the Hamiltonian are encountered as the length of

the chain increases.

We then turn to conformal field theory. This is considerably more involved than in

the gℓ(1|1) case since the sℓ(2|1) spin chain is not free. To start, we focus in section 5 on

the generating functions of energy levels, which contain information about the left-right

Virasoro vir⊕ vir content in the scaling limit. While the chain is not solvable in the usual

sense, these generating functions can be obtained by using known results for twisted XXZ

spin chains where the same standard modules appear: results for the sℓ(2|1) chain itself are

then obtained by using the algebraic analysis. In section 6 we then turn to the discussion

of the operator content of simple JTL modules at c = 0. While in the case of the gℓ(1|1)
spin chain, simples of JTL led, in the scaling limit, to direct sums of simples of vir⊕vir, we

find that it is not the case here. We provide the essential features of the left-right Virasoro

structure of simple JTL modules in the scaling limit, and reach in particular the conclusion

that the size of Jordan cells in the continuum theory can be even larger than those observed

on the lattice. This is a new feature, compared with the boundary and gℓ(1|1) cases. We

also discuss the field content of our theory up to level (2, 2). In section 7.1, we finally come

to the discussion of the indecomposable content of the scaling limit of the tilting modules.

We discuss in particular the identity or vacuum module, and the appearance of Jordan cells

for L0 + L̄0 of arbitrarily large rank. The last section contains conclusions and directions

for future work.

To help the reader we now provide a summary of our main results, with the indication

of where they can be found in the text.

First, for the lattice:

• The Hilbert space of the spin chain decomposes onto tilting modules Tj,P that are

glueings of standard modules as in figures 15 and 16. The multiplicities can be

obtained, see section 4.6 and an example in section 4.6.1, but are complicated and

not particularly illuminating at this stage. They correspond to combinations of many

representations of sℓ(2|1). For a given tilting, these multiplicities quickly stabilize as

N increases, and are the same in the scaling limit.

• The structure of the tilting modules in terms of JTL simples can be obtained. It

is also complicated, and depends on N . But patterns as N increases can easily

be understood. The most detailed analysis is provided in figure 18 for the vacuum

“tilting” module.

• A consequence of the structure of the modules is the likely appearance of Jordan cells

of arbitrarily large size for the Hamiltonian as N increases. The analysis is described

in section 4.7.

Second, in the scaling limit:

• In contrast with the gℓ(1|1) case of the open case, simple representations of JTL do

not become direct sum of simple representations of vir ⊕ vir in the scaling limit. In

particular, the scaling limit should exhibit Jordan cells which are not present on the

lattice. Examples are given in equations (6.22) and (6.23).

– 4 –
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(2, 2)

(2, 7) (2, 5) (2, 0) (0, 2) (5, 2) (7, 2)

(0, 7) (0, 5) (2, 1) (2, 2) (0, 0) (2, 2) (1, 2) (5, 0) (7, 0)

(2, 7) (2, 5) (2, 0) (0, 2) (5, 2) (7, 2)

(2, 2)

Figure 1. The “kernel” part of the vacuum module of our c = 0 bulk theory considered as a

vir ⊕ vir-subquotient (see section 7.1). The nodes (h, h̄) denote irreducible vir ⊕ vir subquotients

with conformal weight (h, h̄). The arrows represent the “irreversible” action of the algebra vir⊕vir:

if two nodes A and B are connected by an arrow A −→ B, this means that one can go from A to

B by acting with vir⊕ vir, but not the other way around. We show only the positive and negative

modes action, i.e., the action of L0 + L̄0 is not shown explicitly.

• The indecomposable structure of the tilting modules under vir⊕vir is thus particularly

cumbersome. It is worked out in full detail for the vacuum module with the final

structure given in figure 1 and with explicit left-right Virasoro action up to conformal

weights (2, 2) in figure 2, where for notations see also section 7.1. The complete

description of the operator content (including the multi hulls operators) of our theory

is in section 6.3. Several important conclusions follow, among which:

• The identity field occurs with multiplicity one, and satisfies all the properties expected

from a well-defined vacuum of a bulk field theory — in particular, it is invariant under

translations.

• There is a Jordan cell of rank two for the fields in (0, 2) and (2, 0) — the stress energy

tensor has a single logarithmic partner, with indecomposability parameter b = −5.

• There is a Jordan cell of rank three for the field (2, 2).

• Jordan cells of arbitrarily high rank occur in the scaling limit for large enough con-

formal weights. These ranks can be calculated, and examples are given in section 7.2.

1.1 Notations

To help the reader navigate throughout the paper, we provide a partial list of notations

(consistent with all other papers in the series):

TLN — the (ordinary) Temperley-Lieb algebra,

– 5 –
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(2, 2)

Ā†/b̃ A†/b̃

t

(2, 0)

A†

b

Ā

t̄

(0, 2)

Ā†

b

A

ψ

(2, 2)

Ā†/b

A†/b

|0〉 (2, 2)

T

(2, 0)

Ā

T̄

(0, 2)

A
T T̄

(2, 2)

Figure 2. The structure of the vacuum module up to level (h, h̄) = (2, 2). The operators A and Ā

are defined as A = L
−2 − 3

2
L2
−1 and Ā = L̄

−2 − 3
2
L̄2
−1, with the corresponding indecomposability

parameters b = b̄ = −5 [32]. The irreducible subquotients are simply represented by their conformal

weight (h, h̄), except for the vacuum |0〉 state which has (h, h̄) = (0, 0). We also show some of the

corresponding quantum fields, including the stress energy tensor T and its logarithmic partner t.

Note that the vacuum is unique, and satisfies in particular L
−1 |0〉 = L̄

−1 |0〉 = 0.

T
a
N — the periodic Temperley-Lieb algebra with the translation u, or the algebra of affine

diagrams,

JTLN — the Jones-Temperley-Lieb algebra,

JTL
au
2L(m) — the augmented Jones-Temperley-Lieb algebra,

Wj,e2iK — the standard modules over JTLN ,

Wj,P — the same, with P = e2iK ,

W0,q2 — the standard module over JTLN for j = 0,

Pj,P — projective modules,

Tj,P — tilting modules,

[

j, e2iK
]

or Xj,P — simple modules over JTLN ,

F
(0)
j,P — characters of JTL simples,

(h, h̄) — simple Virasoro modules,

χh,h̄ — characters of Virasoro simples,

vir⊕ vir — the direct sum of the left and right Virasoro algebras of central charge c = 0.
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Finally, we stress that we adopt the convention that when a module is called ‘inde-

composable module’, it is not irreducible.

2 The model and some general observations

2.1 Remarks about percolation

It is important to start by some generalities about geometrical models and conformal field

theory. In the case of a critical statistical mechanic model which is defined locally in terms

of spins and their interaction, the definition of the conformal field theoretic limit is a priori

obvious: what one needs to do is simply consider the scaling limit of local observables

in order to obtain scaling fields [39]. Considering for instance the Ising model, the most

natural such observables are the spin and the energy, which, together with the identity,

constitute in fact the full primary operator content of what is usually considered as ‘the’

CFT for the Ising model, which is simply the minimal, unitary c = 1
2 CFT. If one tries to

apply the same approach to the problem of percolation, one is forced to recognize that the

only local observable is the presence or absence of a bond on a given edge. In percolation

however, edges are occupied independently of each other. There is thus no trivial scaling

limit to this local observable, and the CFT description of the problem is bound to be the

trivial one, with only the identity field, and c = 0. The obvious point is that, in order to

obtain interesting quantities in percolation, one needs to consider observables which are in

fact non local in terms of the basic edges occupancy. Part of the history of the field has

been to recognize that these observables could also be described by a local field theory, via

maneuvers which trade non-locality for non-unitarity — this will be discussed more below.

The important point here is that, once non local observables are introduced, it is not at all

clear where to stop, nor is it clear which set of such observables one can hope to describe

within a consistent CFT.

In percolation, one can first consider the connectivity of clusters, that is, define corre-

lation functions via the probability that a given set of points belongs to the same cluster.

The associated conformal weight is known to be h = h̄ = 5
96 , and can be formally repro-

duced using the Kac formula with half integer labels: h = h3/2,3/2. Three point functions

have been studied recently, and found in numerical agreement with a continuation of the

formula for Liouville theory to the imaginary (time like) domain [40, 41]. Nothing is known

so far for the four point functions, and there is no evidence that the continuation of the

Liouville theory itself makes sense as a CFT.

Meanwhile, one can consider refined connectivities, for instance via the probability

that a set of points not only belongs to the same cluster, but are connected via two

non intersecting paths on this cluster. The corresponding exponent (related to the so

called backbone fractal dimension) is not known in closed form. It has been determined

numerically to be h = h̄ = .1784 ± 0.0003 by transfer matrix calculation. It can also be

obtained, in principle, within the SLE formalism and the numerical solution of a differential

equation [42].

To add to the confusion, there are many more geometrical observables one can consider.

Of particular interest to us are the properties of percolation hulls. One can indeed consider

– 7 –
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the probability that two points belong to the boundary of the same cluster: the associated

conformal weight is known to be h = h̄ = 1
8 . It is then easy to generalize this to observables

Ok where k cluster boundaries come together, with the exponent hk = h̄k = 4k2−1
24 [43].

When discussing the possible LCFT description of a problem such as percolation,

it is crucial to consider which set of observables one would like to describe, with the

understanding that there is probably no single LCFT encompassing them all, since different

observables may well not be mutually local. Attempts to define abstractly the fusion

algebra of percolation without specifying which observables one is interested in appear as

pure nonsense to us.

Although the cluster connectivity is the most natural observable to consider, we have

unfortunately not been able to make much progress in its bulk conformal description,

for technical reasons that we will discuss later. Instead, this paper will focus mostly on

attempts at constructing a LCFT describing the properties of hulls, and in particular the

observables Ok. Before getting into details, we would like to stress one more confusing

fact: while in the bulk, the properties of the insides and hulls of clusters are profoundly

different, they coincide near a boundary. This is simply because, near a boundary, a point

which belongs to a cluster necessarily also belongs to its hull. Hence, the set of possible

geometrical observables in percolation is smaller in the boundary case than in the bulk

case, a deep indication of the fact that, for LCFTs, bulk and boundary are not as tightly

related as for unitary, rational CFTs [44].

2.2 The SUSY spin chain

As anticipated in the foregoing discussion, we will discuss in this paper the LCFT descrip-

tion of the hulls of percolation cluster. The main reason for this is that the hulls, whose

definition is initially non local, can be described by a fully local lattice model involving

spins with nearest neighbor interaction. The drawback of this model is that it is non

unitary — the Boltzmann weights are not positive definite. The spins take values in rep-

resentations of the superalgebra gℓ(2|1), and the model enjoys the corresponding (target

space) supersymmetry.

The first step to obtain our model is to trade the description of percolation in terms of

clusters for a description in terms of loops. Geometrically, these loops are obtained via the

so called polygon decomposition of the medial lattice in figure 3. For bond percolation on

the square lattice — to which we restrict here — the loops live on another square lattice,

which they cover entirely. There is a one to one correspondence between loops and clusters,

see figure 4. At criticality, occupied and empty edges occur with probability p = 1
2 . This

translates into the fact that all loop configurations are equiprobable, and that the loops

must all be counted with a fugacity equal to one. The partition function of the model

with doubly periodic boundary conditions is trivial, and can be taken to be Z = 1 with

the proper normalizations. Observe in particular that the operators Ok have a natural

interpretation in terms of k loops joining two points, see figure 5.

The next step is to consider the loops as Feynman diagrams expressing contraction of

what will turn out to be supergroup variables. The idea is that vertices of the medial lattice

represent interactions, while the fugacity of the loops is obtained by a simple counting

– 8 –
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Figure 3. The medial lattice of the square lattice.

Figure 4. The one to one correspondence between clusters of occupied edges and loop configura-

tions.

x

y

Figure 5. A sketch of the multi hulls operators.
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ci

ci

ci+1

ci+1 di di

cici

1 (−1)c

Figure 6. The elementary Boltzmann weights in the interpretation of loops as Feynman diagrams.

argument, the resulting weight being the number of bosonic minus the number of fermionic

colors (or degrees of freedom).

To give details, it is more convenient to imagine calculating the partition function

or some correlation function using a transfer matrix formalism [37, 38]. We consider for

instance vertical propagation on our figures, and imagine that every edge carries a color ci
which can be bosonic or fermionic. When two edges meet, either there is no interaction, or

a contraction takes place. This is described by the two possible diagrams in figure 6 and

in the second case, the ‘Boltzmann weight’ is a sign factor (−1)|ci|, where |ci| is zero if the

color is bosonic, and unity if the color is fermionic. It is easy to see that this reproduces the

required statistics of the loops on the medial graph. The elementary interaction encoded

by the second diagram in figure 6 corresponds to the action of a Temperley-Lieb algebra

generator denoted by ei. This will be discussed in more detail below. First, we need to

reformulate the problem slightly in order to make the underlying supersymmetry manifest.

To do so, we associate with each edge of the medial lattice a Z2 graded vector space of

dimension 2|1, that is, a bosonic (resp. fermionic) space of dimension 2 (resp. 1). We choose

these vector spaces to alternate: we choose the fundamental V of the Lie superalgebra

gℓ(2|1) for even edges, and the dual V ∗ on odd ones, see appendix A for definitions. The

transfer matrix then acts on the graded tensor product H = (V ⊗ V ∗)⊗L. The distinction

between odd and even edges can be interpreted as a choice of orientation for the loops,

see figure 7.

To proceed, it is convenient to describe the representations V and V ∗ using oscillators.

For i even we introduce boson operators bai , b
†
ia, satisfying [bai , b

†
jb] = δijδ

a
b (a, b = 1, 2),

and fermion operators fα
i , f

†
iα, {fα

i , f
†
jβ} = δijδ

α
β , with α = 1, β = 1, and i, j = 1, . . . , N .

For i odd, we have similarly boson operators bia, b
a†
i , [bia, b

b†
j ] = δijδ

b
a (a, b = 1, 2), and

fermion operators f iα, f
α†
i , {f iα, f

β†
j } = −δijδ

β
α (α, β = 1). Notice the minus sign in the

last anticommutator; our convention is that the † stands for the adjoint, this minus sign

implies that the norm-square of any two states that are mapped onto each other by the

action of a single f iα or f
α†
i have opposite signs, and the “Hilbert” space has an indefinite

inner product (with the respect to the adjoint operation). The space V is now defined as

the subspace of states that obey the “one-particle per cite” constraints
∑

a

b†iab
a
i +

∑

α

f †
iαf

α
i = 1 (i even), (2.1)

– 10 –
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b

b b b

b b

b

b b

b

Figure 7. Example of dense loop configuration obtained as an expansion of the partition function

of supersymmetric vertex models. We also show the equivalent percolating clusters. The lattice

consists of alternating arrows going up for i odd and down for i even, where i = 1, . . . , N = 2L

corresponds to the horizontal (space) coordinate. The alternating �, �̄ representations correspond

to a lattice orientation, conserved along each loop. The system has periodic boundary conditions

in both spacial and imaginary time directions. Each closed loop carries a weight str I = 1.

∑

a

b
a†
i bia −

∑

α

f
α†
i f iα = 1 (i odd). (2.2)

The sums here and below are over a = 1, 2, and α = 1.

The generators of the Lie superalgebra gℓ(2|1) acting on each site of the chain are the

bilinear forms b†iab
b
i , f

†
iαf

β
i , b

†
iaf

β
i , f

†
iαb

b
i for i even, and correspondingly −b

b†
i bia, f

β†
i f iα,

−f
β†
i bia, −b

b†
i f iα for i odd, which for each i have the same (anti-)commutators as those for

i even.

The next step is to build, in this language, the proper interaction to reproduce the

statistical properties of percolation hulls. First, we note that for any two sites i (even), j

(odd), the combinations

∑

a

bjab
a
i +

∑

α

f jαf
α
i ,

∑

a

b†iab
a†
j +

∑

α

f †
iαf

α†
j (2.3)

are invariant under gℓ(2|1). Introduce now

ei =

(

∑

a

b†iab
a†
i+1 +

∑

α

f †
iαf

α†
i+1

)(

∑

a

bi+1,ab
a
i +

∑

α

f i+1,αf
α
i

)

(i even), (2.4)

ei =

(

∑

a

b†i+1,ab
a†
i +

∑

α

f †
i+1,αf

α†
i

)(

∑

a

biab
a
i+1 +

∑

α

f iαf
α
i+1

)

(i odd). (2.5)
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The interaction at a vertex where edges i and i + 1 meet is then simply given, by the

elementary transfer matrix

Ti = 1 + ei (2.6)

The complete transfer matrix is

T ≡ T1T3 . . . T0T2 . . . (2.7)

Finally, we note that, although we have formulated everything so far in terms of an

isotropic system, it is well known that the same universality class is obtained by choosing

different probabilities of occupancy for horizontal and vertical edges. This corresponds to

the more general choice of elementary transfer matrices

Ti = (1− pA) + pAei, (i even)

Ti = pB + (1− pB)ei, (i odd) (2.8)

with pA + pB = 1. It is in particular possible to chose a very anisotropic limit pA → 0

where the transfer matrix description is replaced by a hamiltonian description according

to T ≈ e−pAH with

H = −
∑

i

ei. (2.9)

2.3 Algebra

The interpretation of the elementary vertices in terms of contractions suggests the simple

algebraic nature of the interaction in our model. Indeed, the elementary generators ei
satisfy special relations, and provide in fact a representation of a well known algebra, the

Jones Temperley Lieb algebra. We assume the reader is familiar with the basics: more

details will be given in the next section.

An important point is that, while we have restricted so far to gℓ(2|1), a more general

gℓ(n+1|n) model can be introduced, simply by allowing everywhere the labels a, b now to

run from 1 to n+1 and α, β from 1 to n. Because each loop comes weighted with the super

trace of the fundamental (or dual fundamental), it still will come with a factor 1. There

is thus, in fact, a multiplicity of spin chains related with percolation. As discussed in [18]

these chains all describe the same geometrical objects, but the associated field theoretic

observables come with different multiplicities. This means that there is in fact an infinite

family of LCFTs at c = 0, with larger and larger degeneracies as n increases. We will, in

this paper, restrict to the case n = 1.

2.4 The sigma model description

This spin chain formulation can be used to obtain a sigma model description of the low

energy excitations: see references [45, 46] for non supersymmetric examples, and [47, 48] for

supersymmetric examples in the context of disordered systems. The target space — which

appears in the construction of the coherent state path integral — should be the symmetry

supergroup (here U(2|1)) modulo the isotropy supergroup of the highest weight state: in

our case, this gives the complex projective superspace CP1|1 = U(2|1)/(U(1)×U(1|1)). The

– 12 –
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mapping could be fully controlled by using a ‘higher spin’ generalization of the spin chain,

obtained by taking larger irreducible representations, represented by the value of the highest

weight S, with 2S integer (with S = 1
2 for the fundamental) and their duals on alternate

sites. For an appropriate family of such representations, the sigma model can be obtained

with a bare coupling constant g2σ ≈ 1/S. On top of this, for the hamiltonian (2.9), there is

a topological angle with bare value θ = 2πS mod 2π. The Lagrangian of the sigma model

involves a multiplet of fields with complex bosonic components za (a = 1, 2) and fermionic

components ξα (α = 1). These fields satisfy the constraint equation z†aza + ξ†αξα = 1,

modulo U(1) gauge transformations, so they provide a parametrization of CP1|1. In terms

of these fields, the euclidian Lagrangian density reads

L =
1

2g2σ

[

(Dµza)
†Dµz

a + (Dµξα)
†Dµξ

α
]

+
iθ

2π
εµν∂µaν , (2.10)

where aµ = i
2

(

z†a∂µza + ξ†α∂µξα − ∂µz
†
aza − ∂µξ

†
αξα

)

is a gauge potential andDµ = ∂µ+iaµ
is the covariant derivative. Finally, the beta function for the model is

dg2σ
dl

≡ β(g2σ) = g4σ +O(g6σ) (2.11)

where l = lnL is the logarithm of the length scale at which the coupling is defined. The

beta function is independent of θ, and the beta function for θ is zero, in perturbation

theory. The beta function being positive at weak coupling, it is expected that the same

fixed point CFT will be reached in the universal, large length scale, low energy limit for all

spin chains with 2S an odd integer, and in particular for S = 1
2 . This fixed point theory

is the LCFT we are trying to build in this paper. While this theory should have U(2|1)
symmetry, it is not expected to be a WZW theory, as confirmed by the early analysis of the

spectrum in [38]. This is because the general arguments promoting conformal invariance

plus continuous group symmetry into a current algebra symmetry fail in non unitary cases,

where, typically, logarithms can appear in the OPE of the currents [49].

2.5 A note on modular invariance

The partition function of our model on a torus is Z = 1. This is the only modular invariant

we will associate with our model. This does not mean that the operator content is trivial

of course. The point is, that doubly periodic boundary conditions for the geometrical

model corresponds to periodic boundary conditions for the bosonic and fermionic degrees

of freedom. Turning to a transfer matrix description, the partition function is thus the

supertrace of the appropriate power of the transfer matrix, which itself acts on a system

of periodic bosons and fermions. While the Hilbert space in which the transfer matrix

acts is non trivial, since it is of dimension
[

(2n+ 1)2
]L
, this same space has a simple

superdimension

SdimH = [Sdim(V )Sdim(V ∗)]L = 1. (2.12)

This means, as we shall see below, that all operators but the identity appear in non trivial

representations of the supersymmetry [50].
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Now, in order to identify the operators present in the model together with their associ-

ated representation content, it is convenient to consider a modified partition function [38].

This partition function is defined simply by taking, instead of the supertrace, the ordinary

trace. Of course one has

dimH = [dim(V )dim(V ∗)]L = 32L (2.13)

and now each level of the transfer matrix/hamiltonian will be counted with multiplicity

one. The modified partition function is not modular invariant, and there is no reason why it

should be. There is also no reason why it should be part of a bigger theory encompassing

both periodic and antiperiodic boundary conditions in the (imaginary) time and space

directions. The model as we define it on the lattice is perfectly local with periodic boundary

conditions, and should lead, as it is, to a local field theory in the scaling limit.

2.6 Observables

Having introduced the supersymmetric formulation of the loop model, it is fair to ask what

kind of observables we can now describe. The answer, ultimately, will be provided by the

detailed analysis of the spectrum and the operator content given below. It is easy however

to see that one should expect first all the multihull operators Ok. The two point function of

the O2 operators for instance is expressed geometrically as the probability that there exists

(at least) two lines connecting a pair of neighboring edges in ~r1 and a pair of neighboring

edges in ~r2. In order to select the appropriate diagrams in the sum over all configurations,

all one has to do is to insert the proper terms to prevent contractions of the lines. In other

words, the two-point function can be expressed as

〈

O2(~r1)O2(~r2)
〉

=
〈(

∑

ci

δ(c1, c3)δ(c2, c4)− (−1)|c1|δ(c1, c2)δ(c3, c4)
)

×
(

∑

di

δ(d1, d3)δ(d2, d4)− (−1)|d1|δ(d1, d2)δ(d3, d4)
)〉

(2.14)

where the labels are shown on figure 8. Consider for instance a diagram such as the one

shown on figure 8(b). The contraction of the lines forces d1 = d2 (while of course c3 = c1
and c4 = c2). For each such diagram, the insertion of 1 − δδ in the two point function

subtracts the diagram where the lines are contracted in ~r2. The sum over the labels with

the (−1)|d1| inserted gives the loop thus formed a weight equal to one, so, summing over

the rest of the system, the contributions arising from figures 8(b) and 8(c) exactly cancel

out. Similar reasonings show that the only diagrams that survive the sum are those where

the lines in ~r1, ~r2 are never contracted as in 8(a) but simply go through the system. This

means in turn that the two points belong to the hull of the infinite percolation cluster.

It is convenient to think of this after a conformal map onto the cylinder. Two point

functions are then evaluated in the transfer matrix language. By translation invariance, we

see that the eigenvalue in the sector with 2k through lines should then give the exponent

(hk, hk), i.e., zero spin and hk = 4k2−1
24 . It is also clear that lines connecting ~r1, ~r2 can

obviously wind around the axis. On the other hand, it is well known, within the Coulomb
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�⃗푟2 �⃗푟2

�⃗푟1

�⃗푟2

�⃗푟1 �⃗푟1

(a) (b) (c)

d1 d2

d3 d4
d1 d2

d3 d4
d1 d2

d3 d4

c1 c2

c3 c4
c1 c2

c3 c4
c1 c2

c3 c4

Figure 8. Two-point correlation functions in percolation (see text).

Figure 9. A pair of non contractible loops (a percolation ‘hull’) winding around the axis of the

cylinder.

gas formalism, that primary fields can be obtained, for a given number of through lines, by

inserting at either extremity of the cylinder additional charges, whose effect is to give an

additional phase factor z±1 for every line going clockwise/counterclockwise like in figure 9.

Setting

z = eiπα (2.15)

the critical exponents for configurations of 2k through lines are then

hk(α) =
(3α− 2k)2 − 1

24
, h̄k(α) =

(3α+ 2k)2 − 1

24
. (2.16)

A given value of z leads to many choices for α mod 1 (the sign of z is not relevant since in

the model only pairs of lines propagate), and all the corresponding operators are present

in the spectrum.

Another important fact, which occurs only for the percolation model, is that it is

impossible to define higher Ok operators without some amount of ‘mixing’ with lower ones.

This is because of the fact that the object preventing contractions among three lines:

X3 = ei + ei+1 − eiei+1 − ei+1ei (2.17)
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while it obeys indeed

X3ei = eiX3 = 0,

X3ei+1 = ei+1X3 = 0 (2.18)

cannot be normalized to become a projector. In other words, one has

X2
3 = 0. (2.19)

It follows that mixtures between the various sectors with different numbers of non con-

tractible lines must occur producing in the end complicated representations of the periodic

TL algebra. This part will be discussed more below.

3 The algebraic description: generalities

The following two subsections contain material discussed already in our earlier work on

the subject, which we prefer to reproduce here for clarity, completeness and in order to

establish notations. The reader familiar with one of our previous papers [34–36] can go

directly to section 4 where the crucial aspect of faithfulness is discussed.

3.1 The Temperley-Lieb algebras in the periodic case

We define here finite-dimensional quotients of the affine Temperley-Lieb algebra [51–54, 56]

denoted here by T
a
N (m) and spanned by particular diagrams on an annulus. A general basis

element in the algebra of diagrams corresponds to a diagram of N sites on the inner and

N on the outer boundary of the annulus (we will restrict in what follows to the case N

even, and parametrize N = 2L.) The sites are connected in pairs, and only configurations

that can be represented using lines inside the annulus that do not cross are allowed. We

will often call all such diagrams affine diagrams. Examples of affine diagrams are shown

in figure 10 for N = 4, where we draw them in a slightly different geometry: we cut

the annulus and transform it to a rectangle, which we call framing, with the sites labeled

from left to right. An important parameter is the number of through-lines, which we

denote by 2j, with j = 0, 1, . . . , L, connecting 2j sites on the inner and 2j sites on the

outer boundary of the annulus; the 2j sites on the inner boundary we call free or non-

contractible. Multiplication a · b of two affine diagrams a and b is defined in a natural way,

by joining an inner boundary of a to an outer boundary of the annulus of b, and removing

the interior sites. Whenever a closed contractible loop is produced when diagrams are

multiplied together, this loop must be replaced by a numerical factor m. We also note that

the diagrams in this algebra allow winding of through-lines around the annulus any integer

number of times, and different windings result in independent algebra elements. Moreover,

in the ideal of zero through-lines, any number of non-contractible loops (like in the fourth

diagram in figure 10) is allowed.

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
4

, , ,

Figure 10. Examples of affine diagrams for N = 4, with the left and right sides of the framing

rectangle identified. The first diagram represents the translation generator u while the second

diagram is for the generator e4 ∈ T
a
4(m). The third and fourth ones are examples of j = 0

diagrams.

In terms of generators and relations, the algebra T
a
N (m) is generated by the ei’s to-

gether with the identity, subject to the usual relations [51, 52, 56]

e2j = mej ,

ejej±1ej = ej ,

ejek = ekej (j 6= k, k ± 1), (3.1)

where j = 1, . . . , N and the indices are interpreted modulo N , and by generators u and

u−1 of translations by one site to the right and to the left, respectively. The following

additional defining relations are then obeyed,

ueju
−1 = ej+1,

u2eN−1 = e1 . . . eN−1,

and u±N is a central element. The algebra generated by the ei and u±1 together with these

relations is usually called the affine Temperley-Lieb algebra T
a
N (m).

We will consider translations by an even number of sites only, i.e., restrict to powers

of u2, and replace a non-contractible loop by a numerical factor m, as for the contractible

loops. This constraint (see 4.2.2 and 4.3.1 in [51]) together with taking a quotient by the

ideal generated by uN − 1 makes the algebra finite dimensional. We call the resulting

object the augmented Jones-Temperley-Lieb algebra JTL
au
2L(m), where recall we have set

N = 2L. This algebra is slightly bigger than the one used in [18, 35], called the Jones-

Temperley-Lieb algebra, which we denote by JTL2L(m). The difference is entirely in the

sector/ideal with zero through-lines. The algebra JTL
au
2L(m) introduced here contains in

this ideal all affine diagrams while the algebra JTL2L(m) has only planar (or usual TL)

diagrams in this sector.1 In other words, in JTL2L(m), one only keeps track of which points

are connected to which in the diagrams, while in JTL
au
2L(m), one also keeps information of

how the connectivities wind around the annulus (the ambiguity does not arise when there

are through-lines propagating). Formally, we have a covering homomorphism (surjection)

of algebras

ψ : JTLau2L(m) −→ JTL2L(m) (3.2)

1The last algebra is also known as oriented Jones annular subalgebra in the Brauer algebra [52].
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which acts non-trivially only in the zero through-lines subalgebra and maps the diagrams as

ψ−−−−→ (3.3)

The first algebra JTL
au
2L(m) has dimension (as follows from dimensions of generically

irreducible modules described below)

dim
(

JTL
au
N (m)

)

=

(

2L

L

)2

+

L
∑

j=1

j

(

2L

L− j

)2

, (3.4)

while the second algebra JTLN (m) has dimension

dim
(

JTLN (m)
)

=

((

2L

L

)

−
(

2L

L− 1

))2

+
L
∑

j=1

j

(

2L

L− j

)2

. (3.5)

We will only be concerned in this paper with the case m = 1 for which the algebra

JTL
au
2L(m) is non semi-simple; in the following we usually suppress all reference to m.

3.2 Standard and co-standard modules

It is useful to go back for a little while to the case of the full affine Temperley Lieb algebra

T
a
N (m). Set m = q+ q−1. For generic q 6= 1, the irreducible representations we shall need

are parametrized by two numbers. In terms of diagrams, the first is the number of through-

lines 2j, with j = 0, 1, . . . , L. Using the natural action (by stacking affine diagrams) of the

algebra discussed in the previous subsection, we now decide that the result of this action

is zero whenever the affine diagrams obtained have a number of through lines less than 2j.

Furthermore, for a given non-zero value of j, it is possible using the action of the algebra, to

cyclically permute the free sites: this gives rise to the introduction of a pseudomomentum

K. Whenever 2j through-lines wind counterclockwise around the annulus l times, we can

decide to unwind them at the price of a factor e2ijlK ; similarly, for clockwise winding, the

phase is e−i2jlK [51, 53]. This action gives rise to a generically irreducible module, which

we denote by Wj,e2iK . In the parametrization (t, z) chosen in [54], this corresponds to

t = 2j and the twist parameter z2 = e2iK .

The dimensions of these modules Wj,e2iK over Ta
2L(m) are then given by

d̂j =

(

2L

L+ j

)

, j > 0. (3.6)

Note that the numbers do not depend on K (but representations with different eiK are not

isomorphic). These generically irreducible modules Wj,e2iK are known also as standard (or

cell) T
a
N (m)-modules [54].

Keeping q generic, degeneracies in the standard modules appear whenever

e2iK = q2j+2k, k is a strictly positive integer. (3.7)
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and contains a submodule isomorphic to Wj+k,q2j . The quotient is generically irreducible,

with dimension d̂j − d̂j+k. The degeneracy (3.7) is well-known [53, 54].2 When q is a root

of unity, there are infinitely many solutions to the equation (3.7), leading to a complex

pattern of degeneracies to which we turn below.

The case j = 0 is a bit special. There is no pseudomomentum, but representations are

still characterized by another parameter, related with the weight given to non contractible

loops. Parametrizing this weight as z+z−1, the corresponding standard module of Ta
2L(m)

is denoted W0,z2 and has dimension
(

2L
L

)

.

We now specialize to the Jones-Temperley-Lieb algebra JTLN (m). In this case, the

rule that winding through-lines can simply be unwound means that the pseudomomentum

must satisfy jK ≡ 0 mod π [52]. All possible values of the parameter z2 = e2iK are thus

j-th roots of unity (z2j = 1, [56]). The kernel of the homomorphism ψ described by (3.2)

and (3.3) (and the ideal in T
a
N (m) generated by uN−1, in particular) acts trivially on these

modules if j > 0. In what follows, we will thus use the same notation Wj,z2 , with j > 0, for

the standard JTLN (m)-modules. We note that two standard JTLN -modules having only

different signs in the z parameter are isomorphic.

If j = 0, requiring the weight of the non contractible loops to be m as well leads to

the standard JTL
au
N (m)-module W0,q2 which is reducible even for generic q — it contains

a submodule isomorphic to W1,1. Meanwhile, on the standard module W0,q2 the kernel

of the homomorphism ψ is non-trivial: the standard module over JTLN (m) for j = 0 is

obtained precisely by taking the quotient W0,q2/W1,1 as in [54]. This module is now simple

for generic q, has the dimension

d̂0 =

(

2L

L

)

−
(

2L

L− 1

)

and is denoted by W0,q2 . The standard JTL
au
N -module W0,q2 is of dimension

(

2L
L

)

.

In the full construction of direct summands of our spin-chains — the tilting modules

— we shall also need a concept of so-called co-standard modules. They are defined as

the duals
(

Wj,P

)∗
or vector spaces of linear functionals on Wj,P endowed with the JTL

au
N

action by
(

Wj,P

)∗
: Av∗(·) = v∗(A∗·), with A ∈ JTL

au
N (m), v∗ ∈

(

Wj,P

)∗
, (3.8)

where ·∗ is an anti-automorphism on JTL
au
N (m) defined by interchanging the inner and outer

boundaries of the affine diagram. Equivalently, we can say that the basis in co-standards
(

Wj,P

)∗
is defined by reflecting the framing in a horizontal line. Then, the value of v∗

on Wj,P is given by the bilinear form defined in [54, Sec 2.6]. It was shown in [54] that
(

Wj,z

)∗
is generically isomorphic to Wj,z−1 . At critical values of the parameters, special

pseudomomenta K and roots of unity values of q, there is a non-trivial homomorphism

from
(

Wj,z

)∗
to Wj,z−1 controlled by the bilinear form.

2Note that the twist term in [55], which was denoted there q2t, reads in these notations as e2iK . It

corresponds to z2 in the Graham-Lehrer work [54], and to the parameter x in the work of Martin-Saleur [53].

The case where k = 1 is special, and related with braid translation of the blob algebra theory. We note that

in the JTL
au
N case, 2j lines going around the cylinder pick up a phase ei2jK = 1. In [53], this corresponds

to αh = xh = 1.
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3.3 The structure of the standard JTLauN (m) modules

A central point in representation theory of the algebras JTL
au
N (m) and JTLN (m) is their

cellular-algebra structure and the full power of cellular algebras technique [54, 57] can

be used for studying many important indecomposable modules — including the so-called

projective modules. We now review shortly these important concepts.

3.3.1 Cellular algebras and (co)cell modules

We first give a brief review of cellular algebras and general aspects of their representation

theory. These algebras were initially introduced in [57]. Roughly, cellular algebras are de-

fined as those with a special basis having particularly nice properties under multiplication.

To be more precise, a cellular algebra A over C is an associative algebra equipped with a

finite partially ordered set S (the set of weights with an order on it) and a finite set W (λ),

for any λ ∈ S, such that the algebra has a basis Cλ
i,j , where λ ∈ S and i and j run through

all elements in W (λ), with the following two properties: (i) for each a ∈ A the product

aCλ
i,j can be written as

(
∑

k∈W (λ) ca(i, k)C
λ
k,j

)

+ b, where b is a linear combination of basis

elements with upper index µ strictly smaller than λ and where the coefficients ca(i, k) do

not depend on j; (ii) there exists an anti-automorphism ·∗ on A such that its square is

the identity, and that it sends Cλ
i,j to Cλ

j,i. The diagram algebras such that the ordinary

Temperley-Lieb algebras TLN (m) are examples of cellular algebras. The special basis Cλ
i,j

in the latter case is given by Temperley-Lieb diagrams of arcs and through lines without

crossings. Elements from the set S of weights are just numbers of through lines in the

diagrams and the partial order is just the ordinary order on natural numbers. The alge-

bras JTL
au
N (m) are just another example of a class of cellular algebras. Now the weights

λ are the pairs of numbers (j, P ), with 2j is the number of through lines and P is the

exponent of the pseudomomentum. The anti-automorphims ·∗ from the definition is just

the reflection of a diagram through the horizontal axis. The proof of cellularity is rather

straightforward following the definition of the multiplication and the basis in JTL
au
N (m)

given in the previous section.

A cornerstone of cellular algebras theory is the notion of cell modules. These modules

are parametrized by elements λ from the set S of weights. A cell (or standard) module Wλ

over a cellular algebra A is a vector space with a basis {Cj | j ∈ W (λ)}, with the action of

any a ∈ A given by aCj =
∑

k∈M(λ) ca(j, k)Ck, where the numbers ca(j, k) are those from

the definition of the cellular algebras. Similarly, we introduce co-cell modules as duals

to the cell modules, and defined with the use of the algebra anti-automorphism ·∗. The

modules Wj,P , with P being all j-th roots of unity, introduced in the previous section give

all the cell modules for JTL
au
N (m). The co-cell modules are given by the corresponding

costandards described in the end of section 3.2.

A cellular algebra itself and its projective modules are filtered by the cell modules,

or in other words, can be constructed as appropriate glueings or extensions between cell

modules. Precise statements about projective modules will be given below. Now, we go

into details for the class of the diagram algebras JTLauN (m).
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3.3.2 The partial order on cell JTLauN -modules weights

We now turn to the details of the representation theory of JTLN (1), which we will then

apply to the study of our super-spin chain. We first analyze the representation theory for

the augmented algebra JTL
au
N (1) - which is technically easier — and then restrict ourselves

to the JTLN (1) algebra.

The subquotient structure of the cell JTLauN (1) modules can be easily obtained using

results of [54]. The set of weights for the cell JTLauN (m)-modules Wj,P is

S =
{

(0, q2), (j, P )| 1 ≤ j ≤ N, P = e
2iπ
j

l
, 1 ≤ l ≤ j

}

. (3.9)

We introduce a (weak) partial order � (due to [54]) on this set of weights such that

(j1, P1) � (j2, P2) if j2 − j1 = k for a non-negative integer k and the pairs (j1, P1) and

(j2, P2) satisfy

P1 = q2ǫj2 and P2 = q2ǫj1 , ǫ = ±1. (3.10)

Note that the partial order � generates equivalence classes on the set of the weights

(j, P ) — two weights are in the same equivalence class if and only if they are in the

relation �. The result of [54] is that there exist non-trivial homomorphisms only between

cell (or standard) modules having weights from the same equivalence class. The idea thus

is that simple JTL modules can be glued with each other (or extended by each other) non-

trivially only if their weights are from the same equivalence class. There are non-trivial

classes (containing two or more weights) only when q is a root of unity. In this case, many

cell modules are reducible but indecomposable.

We give now several examples of the partial order on the set of weights. For the case

q = i, the equivalence classes (generated by the partial order �) are given by the disjoint

oriented graphs on the diagram on figure 11, where it is apparent that there are two non-

trivial classes, denoted by arrows of different types. For the case q = e
iπ
3 , the equivalence

classes are given in the diagram on figure 12. In this case, we also have only two non-trivial

equivalence classes containing two and more weights, while all the other classes (that is,

all the nodes without in- and out-going arrows) are trivial, and contain only one weight.

For a trivial class, the corresponding cell module is simple. The non-trivial class with

dashed arrows on the figure contains all weights (j, 1) with j mod 3 = 0 and each node has

a single in-going or out-going arrow. We call this class singly critical. The second class

(with solid arrows) involves the weights (0, q2) and (j, 1) with j mod 3 ∈ {1, 2} and (j, q±2)

whenever j mod 3 = 0 and j > 0. Nodes in this class have double arrows and we call it

doubly critical. As we shall see below, the cell modules from the singly critical class are

of chain type while the cell modules having weights from the doubly critical class have a

“braid-type” subquotient structure.

Each cell module Wj,P is known to be indecomposable: we denote its top simple

subquotient — the quotient by its maximal submodule — by Xj,P ; we will also use the

short hand notation [j, P ]. Using the partial order � on S described earlier, the simple-

module content of the cell JTLauN (1)-modules can be deduced [54]

[Wj,P ] =
⊕

(j′,P ′)�(j,P )

[j′, P ′], (3.11)
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[0,−1] [1, 1] [2, 1] [3, 1] [4, 1] [5, 1] [6, 1] . . .

[2,−1] [3, e
2iπ
3 ] [4, i] [5, e

2iπ
5 ] [6, e

iπ
3 ] . . .

[3, e
4iπ
3 ] [4,−1] [5, e

4iπ
5 ] [6, e

2iπ
3 ] . . .

[4,−i] [5, e
6iπ
5 ] [6,−1] . . .

[5, e
8iπ
5 ] [6, e

4iπ
3 ] . . .

[6, e
5iπ
3 ] . . .

Figure 11. The partial order � on the set of weights at q = i. Two nodes a and b are connected

by an arrow a → b if and only if a � b.

[0, e
2iπ
3 ] [1, 1] [2, 1] [3, 1] [4, 1] [5, 1] [6, 1] . . .

[2,−1] [3, e
2iπ
3 ] [4, i] [5, e

2iπ
5 ] [6, e

iπ
3 ] . . .

[3, e
4iπ
3 ] [4,−1] [5, e

4iπ
5 ] [6, e

2iπ
3 ] . . .

[4,−i] [5, e
6iπ
5 ] [6,−1] . . .

[5, e
8iπ
5 ] [6, e

4iπ
3 ] . . .

[6, e
5iπ
3 ] . . .

Figure 12. The partial order � on the set of weights at q = e
iπ

3 . Two nodes a and b are connected

by an arrow a → b if and only if a � b.

where the notation [Wj,P ] means that the corresponding module, as a vector space, is

given by the right hand side, and that it has the simple subquotients denoted by [j, P ]

that appear in the sum. We have thus described the structure of Wj,P up to glueings or

arrows between simple subquotients. The information about arrows can be also deduced

from results of [54]: the cell modules over JTL
au
N (1) have a sequence of embeddings (see

the description of injective homomorphisms from Thm. 3.4 and also the proof of Thm. 5.1

in [54])

Wj1,P1 →֒ Wj2,P2 →֒ . . . →֒ Wjn,Pn (3.12)
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•[0,q
2]

•
[1,1]

•
[2,1]

•[3,q2] • [3,q−2]

•
[4,1]

•
[5,1]

•[6,q2] • [6,q−2]

. . . . . .

•
[L1,P1] •

[L2,P2]

•[0,q
2]

•
[1,1]

•
[2,1]

•[3,q2] • [3,q−2]

•
[4,1]

•
[5,1]

•[6,q2] • [6,q−2]

. . . . . .

•[L,1]

•
[j,1]

•
[j+3,1]

•
[j+6,1]

•
[j+9,1]

. . .

•[L̄−3,1]

•[L̄,1]

Figure 13. The structure of the cell JTLauN -modules Wj,P with 2j through lines at q = e
iπ

3 . The

two modules on the left are cell modules from the doubly critical class: on the first one Li = L−2+i

and Pi = 1 when L mod 3 = 2, and Li = L, P1 = q2, and P2 = q−2 when L mod 3 = 0; the second

module is for the case L mod 3 = 1; the rightmost module corresponds to the doubly critical class

(with j mod 3 = 0 and L̄ = L− L mod 3). We denote simple subquotients by their weights [j, P ].

for any sequence of weights (j1, P1) � (j2, P2) � . . . � (jn, Pn) in figure 12. This sequence

of embeddings tells us that modules corresponding to the doubly-critical class have a braid-

type subquotient structure, that can be extracted from figure 13, showing the subquotient

structure for the JTLauN (1)-module W0,q2 . The other Wj,P , with P = 1 for j mod 3 ∈ {1, 2}
and P = q±2 when j mod 3 = 0, are obtained as the submodules ‘emanating’ from the

corresponding simple subquotient. The cell modules Wj,1, with j mod 3 = 0, from the

singly critical class are also presented in figure 13 and are of chain type.

We note now that the cell modules over the quotient JTLN (1) (and not JTLauN (1)) for

j > 0 are given by the same diagrams in figure 13 and we use the same notation Wj,P for

them. The only difference is for j = 0. The cell JTLN (1)-module with the weight (0, q2) is

given by the quotient W0,q2/W1,1, as we discussed previously, and has only two irreducible

subquotients: W0,q2 = [0, q2] → [2, 1].

We conclude this subsection with a comment on the structure of the costandard mod-

ules
(

Wj,P

)∗
introduced at the end of section 3.2. Generically, these modules are isomor-

phic to Wj,P−1 while for our choice of q and parameters P we have only homomorphisms

ψj,P : Wj,P−1 →
(

Wj,P

)∗
that map the irreducible head Xj,P−1 to the (unique) irreducible

submodule in
(

Wj,P

)∗
and the kernel of ψj,P can be studied using the bilinear form in [54,

Sec 2.6]. We thus have that the diagrams for W∗
j,1 (with j mod 3 equal 1 or 2) have in the

bottom the irreducible submodule Xj,1 and all the arrows reversed while modules W∗
j,q±2

(with j mod 3 = 0) have in the bottom the irreducible submodule Xj,q∓2 .

– 23 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
4

3.4 Dimensions of simple JTL modules

The subquotient structure of the standard modules allows us to compute the dimensions

of all simple JTL modules. It will be convenient in what follows to introduce the notation

d̂′0 =

(

2L

L

)

(3.13)

and to recall the notation d̂j from (3.6) for dimensions of the cell modules. Dimensions of

the corresponding simples will be denoted as

d̂
(0)
j,P ≡ dimXj,P .

Using the subquotient structure from figure 13, we can write immediately the dimension

of the simple associated with j = 0 and e2iK = e2iπ/3:

dimX0,q2 ≡ d̂
(0)

0,e2iπ/3 = d̂′0 − d̂1 − d̂2 + 2d̂3 − d̂4 − d̂5 . . .

=
∞
∑

n=0

(dn − dn+2), (3.14)

where dj = d̂j − d̂j+1, with j > 0, and d0 = d̂′0 − d̂1 = d̂0 are the dimensions of the cell

modules for the ordinary Temperley-Lieb algebra. We thus see that d̂
(0)
0 coincides with the

dimension of the simple for j = 0 in the open or TL case:

d̂
(0)

0,e2iπ/3 = d00 = 1. (3.15)

From the diagrams in figure 13 one can obviously derive the following more general results:

d̂
(0)
2+3n,1 = d̂2+3n − d̂3+3n − d̂

(0)

3+3n,e2iπ/3 ,

d̂
(0)

3+3n,e±2iπ/3 = d̂3+3n − d̂4+3n − d̂
(0)
5+3n,1.

The final result can be thus obtained recursively. Comparing these relations with those in

the open TL case [1] we see that

d̂
(0)
2+3n,1 = d02+3n,

d̂
(0)

3+3n,e±2iπ/3 = d03+3n,

where d0j are dimensions of simple TL modules corresponding to tops of the cell modules

with 2j through lines.

4 The periodic sℓ(2|1) spin chain and its decomposition

Recall that in section 2.2 we introduced a family of periodic supersymmetric spin chains

with nearest neighbour interaction ej given by (2.4) and (2.5) and the Hamiltonian is

defined in (2.9). In the rest of the paper, we will consider only the first member of this

family — the sℓ(2|1) (or gℓ(2|1)) spin-chain which is an alternating tensor product of
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the fundamental representation C
2|1 on even sites and its dual on odd sites. We refer

to appendix A for the definition of sℓ(2|1) and basics of its representation theory. The

interaction operators ej together with a translation operator give a representation of the

JTL algebra JTLN (1), see an explicit matrix representation in more general context of

periodic sℓ(n+m|n) spin chains in appendix B.

In this section, we describe a decomposition of the periodic sℓ(2|1) spin chain onto

indecomposable JTLN (1) modules. The important difference from the gℓ(1|1) spin chain,

as a representation of the JTL algebra JTLN (0), studied in [34, 35] is that the sℓ(2|1) one
turns out to be a faithful representation of JTLN (1), i.e. the kernel of the representation is

trivial. We give a proof of this fact including higher-rank cases, i.e., all sℓ(n+m|n) spin-
chains with n,m ≥ 1, in appendix B. The faithfulness of our spin chains motivates the study

of projective modules for JTLN (1): because of the triviality of the kernel, all projective

covers have to appear as submodules in the periodic sℓ(2|1) spin chain. We give a brief

review of this important concept (projectivity and projective covers). We then describe

the structure of projective covers using general results in the theory of cellular algebras.

4.1 Indecomposable modules: general definitions

We collect in this subsection the definitions of several important mathematical concepts

that are needed in order to fully appreciate the rest of this paper, such as projectiveness,

self-duality, and tilting modules.

We begin with a definition of what is called an injective hull of a simple module. It is

the maximal indecomposable that can contain this simple module as a submodule. Then,

any injective module is by definition a direct sum of injective hulls and if a submodule in

a bigger module is injective then it is a direct summand. In contrast, projective modules

are defined as direct sums of projective covers, where the projective cover of a simple

module is the unique (for finite-dimensional algebras) indecomposable module of maximal

dimension that can cover the simple module, i.e., the projective cover contains it as a top

subquotient. Then, if a subquotient of a bigger module is projective then it is a direct

summand. Note that the distinction between the notions subquotient and submodule is

crucial here. Therefore, the projectiveness property does not necessarily imply injectiveness

and vice-versa.

Projective modules appear as direct summands of free modules like the regular repre-

sentation of an algebra, but for spin chains — and thus presumably LCFTs — the direct

summands are, more generally, tilting modules which are defined and discussed in de-

tails below. In some cases, the tiltings are also indecomposable projective, but this is not

necessarily the case. In general, there are tilting modules which are not projective, and

projective modules which are not tilting.

In the theory of cellular algebras [57, 58], there is a general theorem that allows one

to obtain the subquotient structure of projective covers knowing the subquotient structure

of the standard (cell) modules. The essential part of this theorem can be expressed as

a reciprocity property of projectives. Let [W : X] and [P : W] denote the number of

appearance of X in a diagram for a standard module W and the number of appearance of W
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in a diagram for the projective cover P, respectively. Then, the reciprocity property reads

[P : W] = [W : X], (4.1)

i.e., the projective cover P that covers X is composed of those standard modules W that

have the simple module X as a subquotient. This statement can be deduced from the proof

of Thm. 3.7 in [57].

Having an indecomposable (and reducible) module M , we call socle its maximum

semisimple submodule — in terms of nodes and arrows in the subquotient diagram for M ,

the socle is the direct sum of all nodes having only ingoing arrows. Similarly, the top of a

module M is the maximal subquotient with respect to the property that a quotient of M

is a semisimple module, i.e., it is the subquotient of M having only outgoing arrows.

The spin-chains we consider have a non-degenerate bilinear form given explicitly, for

example, in terms of spins. These spin-chains provide a special class of representations with

two essential properties: (i) they are filtered by standard modules and (ii) they are self-dual,

i.e., H∗
N

∼= HN . Direct summands in such representations are called tilting modules.

We define a tilting module over a cellular algebra as a module that has a filtration by

standard modules — these are Wj,P in our case — and an inverse filtration by the corre-

sponding duals — the costandard modules
(

Wj,P

)∗
, which have reversed arrows in their

subquotient diagram. Note that both standard and costandard modules are introduced in

the context of the JTL algebras in section 3.2 and their structure is described in section 3.3.

We recall that a filtration of an A-module M by A-modules Wi, with 0 ≤ i ≤ n − 1, is a

sequence of embeddings

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mi ⊂ · · · ⊂ Mn−1 ⊂ Mn = M (4.2)

such that the quotient Mi+1/Mi of “neighbor” submodules (called the ith section) is iso-

morphic to Wi, or in simple words we can say that M is a glueing of Wi’s. The tilting

modules are thus self-dual by our definition. Several explicit examples will be given below.

We will also show that tilting JTL modules satisfy a uniqueness property: one can

introduce the tilting module Tj,P generated from a standard module Wj,P as the indecom-

posable tilting module containing this standard module as a submodule. This property of

having a standard submodule uniquely defines the tilting module, up to an isomorphism.

One should replace each simple subquotient of this standard module by a costandard mod-

ule having this simple module in its socle — the unique simple subquotient that has only

incoming arrows. The result is then automatically a tilting module, by construction.

Before discussing spin-chains and the reasons why tilting modules are more important

objects for applications, we give some results about projective modules for the JTL algebra.

4.2 The projective modules over JTLN(1)

We first describe the cell content of projective covers for all simple modules over JTLN (1).

Let � be the partial order on the set S of weights of cell modules introduced above and

let greek letters (λ, µ, ν) denote the weights [j, P ] for simplicity. The projective cover Pλ
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of a simple module Xλ has the cell content

[Pλ] =
⊕

ν�λ

[Wν : Xλ]Wν , (4.3)

where by [Wν : Xλ] we denote the multiplicity of the appearance of the simple module Xλ

in Wν , i.e. [Wν : Xλ] = dimHom(Pλ,Wν). The cell content (4.3) of the projective covers

is actually a consequence of the general reciprocity result [Wν : Xλ] = [Pλ : Wν ] discussed

above. Note that using the subquotient structure of the cell modules given in figure 13 we

see that all the numbers [Wν : Xλ] are zero or one.

Moreover, the projective module Pλ has a filtration by cell modules respecting the

cell-filtration of the cellular algebra, i.e. the cell modules with the lowest weight (w.r.t. to

the order �) are submodules; quotienting by them gives a module with cell submodules

corresponding to the next-to-lowest weight and so on. This general property of the cell

filtrations of projective covers allows now to describe subquotient structure of the projective

covers Pλ in terms of cell modules. We assume for simplicity that N mod 3 = 0. Then,

the subquotient structure of PL,q±2 , where we set N = 2L, in terms of cell modules, is as

simple as on the left of figure 14. Further, the cell filtration of the projective covers Pj,P ,

with j 6= 0, 2, is obtained from figure 14 (taking N = 2L ≥ M) as the submodule generated

from Wj,P .

Now, it is easy to see that the projective covers have a sequence of embeddings (opposite

of the one in (3.12))

Pj1,P1 ←֓ Pj2,P2 ←֓ . . . ←֓ Pjn,Pn (4.4)

for any sequence of weights (j1, P1) � (j2, P2) � . . . � (jn, Pn) in figure 12 with jk 6= 0, 2.

The projective JTLN -modules P1,1 and P0,q2 are isomorphic to the cell modules W1,1 and

W0,q2 , respectively; the module P2,1 is given in the middle diagram in figure 14.

The diagrams allow us to conclude that the indecomposable projectives Pj,P (excepting

P2,1 for N = 6) are not self-dual because their socles contain the direct sum [L, 1]⊕ [L, 1]

when L mod 3 = 1 or 2[L, 1]⊕ 2[L− 1, 1] when L mod 3 = 2 or the sum 2[L, q2]⊕ 2[L, q−2]

when L mod 3 = 0. Therefore, the projective modules are not injective hulls and can be

embedded into larger (of course decomposable) modules.

We will see below that the spin-chain representation is a self-dual JTL module and

is decomposed onto a special class of so-called tilting modules. On the other hand it is

a faithful representation and thus all projective covers should appear in the spin-chain,

though not as direct summands. It turns out that the projective covers are embedded into

a direct sum of tilting (self-dual) modules.

4.3 Self-duality of the spin chain representation HN

In this section, we show that the faithful representation of JTLN (1) on the periodic sℓ(2|1)
spin chain HN is in addition self-dual. To show this we use a non-degenerate bilinear form

(·, ·) on HN ×HN , which can be given explicitly in the Fock space realization [18]. Recall

that the representation and even a large family of representations πm,n of JTLN (m) are

explicitly defined in appendix B using this Fock realization. Our case corresponds to π1,1
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•
WL,q±2

•
WL−1,1 •

WL−2,1

•
WL−3,q2 •

WL−3,q−2

•
WL−4,1 •

WL−5,1

•
WL−6,q2 •

WL−6,q−2

. . . . . .

•
W2,1 •

W1,1

W2,1

W0,q2

•
Wj,1

•
Wj−3,1

•
Wj−6,1

•
Wj−9,1

. . .

•
W6,1

•
W3,1

Figure 14. The cell-filtraion of projective JTLN (1)-modules Pj,P . The two modules on the left are

projective covers from the doubly critical class: a projective cover Pj,P , with j 6= 0, 2, is the sub-

module generated from Wj,P on the left-most diagram given for 2L mod 3 = 0; the second module

is P2,1; the right-most projective module corresponds to the singly critical class with j mod 3 = 0.

which we will denote simply by π. The generators ej of JTLN (1) are self-adjoint with

respect to the bilinear form, i.e. π(ej)
† = π(ej). The adjoint of the translation operator

π(u2) is the inverse π(uN−2). Together with non-degeneracy of the bilinear form, this

means that the representation π is isomorphic to the dual one on the space H∗
N of linear

functionals. Indeed an isomorphisms ψ between JTLN (1)-modules HN and H∗
N is given by

ψ : HN → H∗
N , ψ(v)(·) = (v, ·), (4.5)

where the JTLN (1)-action on H∗
N is defined as

Av∗(·) = v∗(π(A)† ·), with A ∈ JTLN (1), v∗ ∈ H∗
N ,

and · stands for an argument. The non-degeneracy of the bilinear form implies that the

kernel of ψ is zero. The statement on the self-duality is obviusly true in the general case

of πm,n representations.

Self-duality of the module HN implies that the subquotient structure (with simple

subquotients) is not affected by reversing all the arrows representing the JTLN -action.

On the other hand, the faithfullness of the representation of JTLN (1) implies that all the

projective covers of simples should be present in the spin-chain decomposition. As we

saw above, the projective JTLN (1)-modules (those which are not simple) are not self-dual

and therefore they are not injective modules and can in principle be non-direct-summand

submodules in some ‘bigger’ modules. These bigger and self-dual JTLN -modules indeed
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exist: they turn up to be tilting modules, and we show below that the projectives can

be embedded into a direct sum of tilting modules. We can thus say that, for our needs

at least, the tilting modules are more fundamental objects than projective modules in the

sense that tilting modules are the building blocks (direct summands) of the spin-chains.

4.4 Tilting modules over JTLN(1)

Recall that a tilting module T is a module (over a cellular algebra) with a filtration by cell

modules W and with the dual filtration by the duals to the cell modules — the co-cell (or

costandard) modules W∗. The tilting modules are thus self-dual modules by this definition,

i.e. T ∗ ∼= T .

For any weight (j, P ) ∈ S, we define a tilting JTL
au
N -module Tj,P generated from the

cell module Wj,P as the indecomposable tilting module containing this cell module as a

submodule. We will see that if such a tilting module exists this property indeed fixes it

uniquely, see Thm. 4.5 below. In most cases, our results on the structure of the tilting

modules generated from a cell module can be expressed by very simple rules: to construct

Tj,P we take the cell module Wj,P and each simple subquotient Xj′,P ′ (in the diagram for

Wj,P ) replace by its co-cell module W∗
j′,P ′ such that different co-cells are glued following

the pattern for the diagram for the original cell module Wj,P . The result is then obviously

a module with a filtration by the duals to cell modules. We then check the dual filtration

and the module is what we call the tilting module Tj,P .
It will be shown below that tilting modules Tj,P indeed exist and exhaust all possible

indecomposable tilting modules (of course up to an isomorphism). We will now describe

our results on the subquotient structure. The diagrams in figure 15 describe cell and co-cell

filtrations of the ‘biggest’ tilting modules T1,1 and T2,1. The structure of T1,1 is given just

by the substitution 2 → 1. The two tilting modules correspond to the cases when L mod 3

equals 2 or 0: in the first case Li = L− 2+ i and Pi = 1, in the second — Li = L, P1 = q2,

and P2 = q−2. The tilting module T2,1 in the case L mod 3 = 1 is obtained by identifying

the two nodes WL1,P1 and WL2,P2 with WL,1 (with their two arrows) at the top on the left

and similarly for duals at the bottom on the right.

An important consistency check for the existence of these tilting modules (in addition

to their self-duality) is that the projective modules Pj,P defined above in figure 14 cover

any cell-subquotient in the tiltings, where the kernel of the projection is isomorphic to

W1,1. The tiltings T1,1 and T2,1 themselves can be alternatively obtained as a quotient of

the projective module PL1,P1 ⊕ PL2,P2 .

A tilting module Tj,P with j > 2 and appropriate P can be extracted also from figure 15.

It is the submodule generated from the subquotient W∗
j,P on the right diagram or, dually,

it is the corresponding quotient containing all Wj′,P ′ , with [j′, P ′] � [j, P ], on the left

diagram. The tilting modules from the singly critical class with j mod 3 = 0 and P = 1

are constructed in a similar way and they are of chain type.

A peculiarity happens with the tilting JTLN -module containing the cell submodule

W0,q2 . If we were to proceed with the construction used so far, we would get a non

self-dual module with the subquotient structure W∗
0,q2 → W∗

2,1, so it does not work in

this case (meanwhile, the construction would still work for the former algebra JTL
au
N (1)).
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•
WL1,P1 •

WL2,P2

. . . . . .

•
W6,q2 •

W6,q−2

•
W4,1 •

W5,1

•
W3,q2 •

W3,q−2

•W2,1

∼=

•
W∗

2,1

•
W∗

3,q2 •
W∗

3,q−2

•
W∗

4,1 •
W∗

5,1

•
W∗

6,q2 •
W∗

6,q−2

. . . . . .

•
W∗

L1,P1 •
W∗

L2,P2

Figure 15. The structure of the tilting JTLN -module T2,1 with the co-cell modules filtration on

the right. The two isomorphic modules correspond to Li = L−2+ i and Pi = 1 if L mod 3 = 2, and

Li = L, P1 = q2, and P2 = q−2 when L mod 3 = 0; the tilting module T2,1 in the case L mod 3 = 1

is obtained by identifying the two nodes WL1,P1
= WL2,P2

with WL,1 and the two arrows at the

top on the left and their duals at the bottom on the right. The structure of T1,1 is given just by

the substitution 2 → 1.

However, there turns out to be a universal construction of tilting modules [59, 60] that

requires knowledge of extension groups associated with indecomposable modules. This

construction suggests to begin with a glueing (an extension) corresponding to an exact

non-split sequence

0 → W0,q2 → M → W2,1 → 0, (4.6)

i.e., the first step of the universal construction produces a module that has a submod-

ule isomorphic to W0,q2 and as a top W2,1 with multiplicity given by dimension of

Ext1
JTLN

(W2,1,W0,q2). We know from the structure of the projective cover for W2,1 (see

above) that this dimension equals 1. In the second step, we should compute the extension

group Ext1
JTLN

(W3,q±2 ,M). We checked on the first few values of N that a JTLN -module

havingM as a submodule and with a cell filtration containing sections isomorphic toW3,q±2

can not be self-dual, and actually can not have a filtration by duals to cell modules. For

example, it is quite easy to see that at N = 6 a JTLN -module with the subquotient struc-

ture (n+W3,q2 ⊕ n−W3,q−2) → M is self-dual if and only if n± = 0 (see also the example

below). Hence, we can conjecture that the extension groups Ext1
JTLN

(W3,q±2 ,M) are triv-

ial. It turns out that for N = 8, the only self dual module having cell and co-cell filtrations

is the one having the subquotient structure W4,1 → M (see examples for N = 8 below).

We call this module M ′. Then, we repeat our analysis for N = 10 and we get a module

M ′′ = W5,1 → M ′, etc. So, the only way we see that the tilting JTLN -module T0,q2 con-

taining W0,q2 as a submodule might have cell as well as co-cell filtrations is the one given

on figure 16. We checked for N ≤ 18 that a module with this cell filtration is self-dual and
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T0,q2 =

•
WL1,P1 •

WL2,P2

. . . . . .

•
W6,q2 •

W6,q−2

•
W4,1 •

W5,1

•W2,1

•W0,q2

∼=

•W
∗
0,q2

•
W∗

2,1

•
W∗

4,1 •
W∗

5,1

•
W∗

6,q2 •
W∗

6,q−2

. . . . . .

•
W∗

L1,P1 •
W∗

L2,P2

Figure 16. The structure of the tilting JTLN -module T0,q2 with its filtration by cell modules on

the left side and the co-cell modules filtration on the right.

we believe that its existence can be proved by taking a quotient of the projective module

PL1,P1 ⊕P2,1 ⊕PL2,P2 (see definition of Li, Pi above). Note also that this module contains

the projective cover P2,1, which is an important module for our spin-chain.

Finally, we claim that the tilting modules just described exhaust all indecomposable

tilting modules over JTLN (1). To show this we use the important result about the JTLN (1)

algebra that it is a quasi-hereditary algebra. We first recall the corresponding defini-

tion [61–63].

Definition Let A be a finite dimensional associative algebra over C, S an indexing

set for the isomorphism classes of simple A-modules with correspondence λ → Xλ, and ≤
a partial order on S. We say that (A,≤) or simply A is a quasi-hereditary algebra if and

only if for all λ ∈ S there exists a left A-module, Wλ, called a standard module such that

• there is a surjection Wλ → Xλ and the composition factors (subquotients), Xµ, of the

kernel satisfy µ < λ.

• the indecomposable projective cover Pλ of Xλ maps onto Wλ via a map ψ : Pλ → Wλ

whose kernel is filtered by modules Wλ with µ > λ.

In our setting, the cell modules Wj,z2 for JTLN (1) are the standard modules with the

weight λ = (j, z2). Using our results on the projective JTL modules described above and

choosing for the quasi-hereditarity partial order ≤ the one opposite to the cellular partial

order �, i.e., if ≤=�, we readily see that JTLN (1) is a quasi-hereditary algebra (it is

actually quasi-hereditary for any q 6= i). Then, as for any quasi-hereditary algebra [59, 60],

we have a key theorem on tiliting JTL modules:3

3We note that a similar theorem appears for reductive algebraic groups over a finite field [64].
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Theorem 4.5.

• For any weight [j, P ] ∈ S, there is a unique indecomposable tilting module Tj,P such

that [Tj,P : Wj,P ] = 1 and Wj,P is a submodule in Tj,P , and
[

Tj,P : Wj′,P ′

]

6= 0 only if [j′, P ′] � [j, P ]; (4.7)

• Any indecomposable tilting module is isomorphic to some Tj,P .

This theorem guarantees existence and uniqueness of indecomposable tilting JTLN -

modules generated from a cell module. It also gives a good criteria on whether a given

cell module appears in the cell filtration of a tilting module: if [j′, P ′] ≺ [j, P ] then the

multiplicity
[

Tj,P : Wj′,P ′

]

= 0. Using also the subquotient structure of projective covers

for cell modules, it is easy to see that the numbers
[

Tj,P : Wj′,P ′

]

are less than 2 (0 or 1)

if [j′, P ′] ≻ [j, P ]. Further, the structure for Tj,P modules we proposed above does give a

filtration by cell and duals to the cell modules, as indicated in figure 15 and figure 16. To

prove that these modules for j > 0 are indeed indecomposable we observe, using the uni-

versal construction as we did for T0,q2 above, that if one of the multiplicities
[

Tj,P : Wj′,P ′

]

is 0, for [j′, P ′] ≻ [j, P ], the corresponding module would not be able to have a filtration

by co-cell modules. We thus have the criteria (4.7) with the stronger condition “if and

only if”. By uniqueness we finally obtain that the modules with the subquotient structure

proposed are indecomposable.4

4.6 Centralizer and formal decomposition

In our previous works [34–36] on the gℓ(1|1) spin chain, the analysis of the spin chain and

the scaling limit properties was based on the structure of the centralizer of the JTLN (0)

algebra, dubbed Uodd
q sℓ(2). The centralizer was found in a rather straightforward way

as a proper subalgebra of the open-case centralizer — Uqsℓ(2) at q = i. The subalgebra

Uodd
q sℓ(2) was identified with appropriate polynomials in the finite number of generators

of Uqsℓ(2). Unfortunately, the centralizer A2|1(N) for the open sℓ(2|1) spin-chains is not

explicitly described in terms of generators and defining relations: it is not Uqsℓ(2) at

q = eiπ/3 but only a Morita equivalent algebra. At best, we have only its cellular basis

description [18] and it is complicated to identify in a straightforward way a subalgebra in

A2|1(N) that commutes only with elements from JTLN (1). The lack of suitable description

of the open-case centralizer thus makes the centralizer approach used in the gℓ(1|1) case

less promising in the present case of faithful representations of JTL algebras.

Although the faithfulness makes, at first glance, the analysis of the periodic spin chains

much harder than in the non-faithful case of gℓ(1|1) spin chains, it also provides many

advantages. First of all, we know what kind of ‘complexity’ of JTL modules we might

expect in the decompositions. They should be as complicated as the projective covers Pj,z2

4We have to note that our definition for tilting modules is slightly stronger than the one for quasi-

hereditary algebras [59, 60]. Tiltings are usually not required to have necessary dual or opposite filtration

by co-standrard modules, just any filtration by co-standards. It turned out that our tiltings do have a

filtration by co-standards opposite to the one by the standard or cell modules.

– 32 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
4

described above. So, the structure of the periodic sℓ(2|1) spin chain is apparently much

more involved than the one described in [35]. Further, we have seen that projective covers

are still not good candidates for direct summands in the spin chain, since they are non-self

dual. The best candidates are the tilting JTL modules which contain the projective covers

as submodules. Once again, each indecomposable tilting module is self-dual and ‘smaller’

than a projective cover but we can always find two non-isomorphic tilting modules that

contain the projective cover in their direct sum, as follows from their structure. It is

thus quite reasonable to expect that the periodic spin chain, as a self-dual and faithful

JTLN -module, is decomposed onto tilting modules.

We should emphasize that the important missing step in this new analysis of periodic

spin chains based on the theory of tilting modules is a proof5 that our spin-chain is a full

tilting module. To show this point one should prove that the periodic sℓ(2|1) spin chain

indeed has a filtration by cell modules: using the fact that all ej ’s are self-adjoint operators,

it would be then straightforward to show that the full spin chain is a full tilting module.

There are strong arguments suggesting that the spin chain has a filtration by cell modules.

In particular, the spin chain is deeply related with a generic loop model, which is defined

for arbitrary values of q [38]. In this model, non contractible loops get the weight m if they

wind around the small (space) cycle, and a modified weight q′ + q′−1 if they wind around

the long (imaginary time) cycle (the particular case we are interested in corresponds to

m = 1 and q′+ q′−1 = 3). For generic values of q, it is possible to show that the generating

function of levels expands only on traces over cell modules, so the corresponding ‘spin chain’

has a filtration by cell modules indeed. However, this argument cannot be made rigorous

because, for q generic, there is in fact no such spin chain, and the generating function of

levels is only a formal object. Hence the existence of a filtration by cell modules cannot be

proven by ‘analytic continuation’ (see the appendix of [66], however).

Assuming this crucial assumption about cell-modules filtration however, we see that the

spin-chain itself should be a full tilting module, and the decomposition, up to multiplicities,

follows from the foregoing discussion of these modules.

The next step in our analysis is to obtain the multiplicity of each tiliting module.

Since we know the structure of all tilting modules in terms of standard modules, and

taking into account Thm. 4.5, we could compute each of these multiplicities iteratively if

we knew the numbers [HN : Wj,z2 ] of appearance of each JTL standard module in the

full spin-chain. For example, the multiplicity of T0,q2 equals [HN : W0,q2 ] because the

subquotient isomorphic to W0,q2 is contained only in T0,q2 . Then the multiplicity of T2,1
equals [HN : W2,1] − [HN : W0,q2 ] because subquotients isomorphic to W2,1 were already

counted in the T0,q2 modules [HN : W0,q2 ] times, etc.

The numbers [HN : Wj,z2 ] can in fact be computed assuming the possibility of an

analytical continuation from semi-simple cases where these numbers are known [18]. We

have an infinite family of super-symmetric spin chains defined in the same way as in the

sℓ(2|1) case but with the sℓ(n+m|n) symmetry such thatm > 2 and n ≥ 1, see appendix B.

5We believe that one could repeat steps in the Martin’s paper [65] for the mirror spin-chains which are

representations of the blob algebra (also some quotient of affine TL). The crucial technical problem is that

one should find a proper embedding of JTLau
N into JTL

au
N+1 for any N .
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The nearest neighbour coupling or the projection onto a singlet for these spin chains also

defines a faithful representation of the JTLN (m) algebra with q + q−1 = m > 2. The

decomposition of the spin chains for these cases can be written as6

HN = W0,q2 ⊕
⊕

j>0

D̂′
j,0 Wj,1 ⊕

⊕

j>0,M>1
M |j

⊕

0<p<M
p∧M=1

D̂′
j,πp

M
Wj,e2iπp/M (4.8)

where we have used the notation D̂′
j,K , with K = πp/M , for the dimensions of the irre-

ducible representations of the centralizer Ân+m|n(2L). This centralizer is discussed in [18]

for the semi-simple cases. We will discuss it briefly below, and for now just recall the

dimensions

D̂′
j,K =

1

j

j−1
∑

r=0

e2iKrw(j, j ∧ r), (4.9)

where j ∧ r is the greatest common divisor, j ∧ 0 = j and

w(j, d) =
(

q2d + q−2d
)

δj/d≡0 +
(

q′2d + q′−2d
)

δj/d≡1, (4.10)

with congruences being taken modulo 2 and we set q′ + q′−1 = m+ 2n.

Let us give a few examples of these multiplicities. For the case 2L = 6, the decompo-

sition of the semisimple Hilbert space reads

H6 = W0,q2 ⊕ D̂′
1,0W1,1 ⊕ D̂′

2,0W2,1 ⊕ D̂′
3,0W3,1 ⊕ D̂′

2,π
2
W2,−1

⊕ D̂′
3,π

3
W3,e2iπ/3 ⊕ D̂′

3, 2π
3

W3,e4iπ/3 . (4.11)

We can actually think about the expression (4.9) formally as a polynomial in the

complex variable q. We note then that the multiplicities are well defined in the critical

cases when q+q−1 equals 0, 1 or 2, i.e., the polynomials D̂′
j,K give positive integer numbers

for q = i, eiπ/3 and 1 as well. Of course, we will not have a direct sum decomposition as

in (4.11) at these critical values of q. Some of the direct summands become reducible but

indecomposable and they are glued with other direct summands in (4.11) in order to make

a self-dual module (recall that our space of states HN is always a self-dual module). We

should thus think about the number D̂′
j,K as the number of appearance of (subquotients

isomorphic to)Wj,e2iK in the full space of statesHN . In other words we assume the equality

[HN : Wj,e2iK ] = D̂′
j,K . (4.12)

It will be shown below (by a numerical analysis) that this assumption indeed gives correct

results on the number of higher-rank Jordan cells, in particular.

So, in the sℓ(n+1|n) case we get the following filtration by cell modules Wj,z2 , setting

l ≡ 2n+ 1:

[

H6

]

= W0,q2 + (l2 − 1) W1,1 +
1

2
(l4 − 4l2 + 1) W2,1 +

1

3
(l6 − 6l4 + 11l2 − 6) W3,1

+
1

2
(l4 − 4l2 + 3)W2,−1 +

1

3
(l6 − 6l4 + 8l2)

(

W3,e2iπ/3 +W3,e4iπ/3

)

, (4.13)

6We note that it is known [52] that the JTL algebras are semisimple when q + q−1 > 2, though the

Hamiltonian is not critical for these values of q.
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where by
[

HN

]

we denote a formal decomposition on cell modules modulo glueings (this

is why we do note use here the direct sum ‘⊕’ symbol).7

For l = 3 meanwhile (that is, the sℓ(2|1) spin-chain) we get

[

H6

]

=W0,q2+8 W1,1+23 W2,1+24W2,−1+112 W3,1+105
(

W3,e2iπ/3+W3,e4iπ/3

)

. (4.14)

Having these filtrations (or formal decompositions) by cell modules, we already see

that the tilting module T0,q2 appears always with the multiplicity one (it is the trivial

sℓ(2|1) module) which is quite important for our analysis — it means that we have only

one ground state. The sℓ(2|1) content of the other multiplicities in front of Tj,z2 will be

discussed below.

We now give examples for N = 6, 8, 14 detailing the subquotient structure (with simple

subquotients) of the tilting modules Tj,P .

4.6.1 N = 6 example

We begin with a simple example on N = 6 sites. We give first the structure of indecom-

posable tiltings, using figure 15 and figure 13.

T2(1),1 : •
W3,q2

•
W3,q−2

◦W2(1),1

=

•[3,q2] • [3,q−2]

◦[2(1),1]

◦[3,q2] ◦ [3,q−2]

T0,q2 : •
W2,1

◦W0,q2

=

•
[2,1]

•[3,q2] ◦[0,q2] • [3,q−2]

◦[2,1]

where different types of nodes denoted by • and ◦ show the cell-filtration of the tilting

modules: symbols are assigned to cell modules that appear on the left from equalities and

all simple subquotients (on the right) from a particular cell module are denoted by the

corresponding symbol. Here, the notation 2(1) means that any of the two numbers 2 or 1

can be the first index in the subscript. All other tiltings over JTL6(1) are irreducible. We

thus get the following dimensions

dim T0,q2 = 11, dim T1,1 = 17, dim T2,1 = 8, dim T2,−1 = 6, dim T3,q±2 = 1. (4.15)

7More formally,
[

HN

]

is the image of HN in the Grothendieck group GrN generated by cell modules:

let FN be the free abelian group with generators the isomorphism classes of JTLN -modules filtered by cell

modules, and let [V ] be the element of FN corresponding to a module V , then GrN is the quotient of FN

by the relations [W ] = [U ] + [V ] for all short exact sequences 0 → U → W → V → 0 of JTLN -modules U ,

V , W having cell filtration. We also abused notations denoting [Wj,K ] simply by Wj,K .
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Using the diagrams we also obtain that the only nontrivial homomorphisms between the

tiltings are
Hom(T2,1, T0,q2) = C, Hom(T0,q2 , T2,1) = C,

Hom(T2,1, T3,q±2) = C, Hom(T1,1, T3,q±2) = C,
(4.16)

Hom(T3,q±2 , T2,1) = C, Hom(T3,q±2 , T1,1) = C. (4.17)

Next, using the filtration of HN by cell modules given in (4.14) and the subquotient

structure of tiltings we deduce the spin-chain decomposition for N = 6 over the tilting

modules Tj,P :

H6 = T0,q2 ⊕ 8T1,1 ⊕ 22T2,1 ⊕ 24T2,−1 ⊕ 112T3,1 ⊕ 75T3,q±2 . (4.18)

Together with (4.15)–(4.17), this gives the dimensions of simple modules over the centralizer

of JTL6(1) and its indecomposable tiltings. Because the centralizer is bigger than the sℓ(2|1)
symmetry, the multiplicities in (4.18) arise in general from direct sums of atypical/typical

representations of sℓ(2|1).
Let us describe the sℓ(2|1) content of these multiplicities here. Using the formulas

in [67, 68], we find the following decomposition of the Hilbert space over sℓ(2|1)

H6|sℓ(2|1) = {0, 0} ⊕ {0, 3} ⊕ {±1, 2} ⊕ 2 {±1/2, 5/2} ⊕ 9 {0, 2} ⊕ 9 {±1/2, 3/2}
⊕ 18 {0, 1} ⊕ 2P±(1/2)⊕ 5P (0), (4.19)

where we use the notations of appendix A. Recall that the dimension of typicals {b, j},
with b 6= ±j, is 8j, while the projective sℓ(2|1)-modules P±(j) have dimension 16j + 4 for

j > 0 and 8 for j = 0.

First of all, it is clear that the multiplicity 1 in front of T0,q2 in (4.18) corresponds to

the trivial atypical sℓ(2|1)-module {0, 0}. This is because T0,q2 contains the groundstate of

the Hamiltonian which transforms trivially with respect to sℓ(2|1). This accounts for the

direct summand {0, 0} in the sum (4.19) plus the 5 copies of the top of P (0) and the 5

copies of the (bottom) submodule {0, 0} ⊂ P (0) — we have thus counted 11 copies which

is precisely the dimension of T0,q2 , see (4.15). The multiplicity 8 of T1,1 corresponds to the

adjoint sℓ(2|1) representation {0, 1}: we shall see in the following that the scaling limit of

this tilting module contains the Noether currents associated with the sℓ(2|1) symmetry.

This accounts for 17 out of the 18 {0, 1} modules in the decomposition (4.19).

Interpreting the multiplicity 22 in front of T2,1 is a bit more difficult. We use the

decomposition on 4 sites,

H4|sℓ(2|1) = {0, 0} ⊕ 4 {0, 1} ⊕ {0, 2} ⊕ {±1/2, 3/2} ⊕ P (0), (4.20)

where this multiplicity also appears in front of T2,1, and observe that it is enough to look

at the bimodule for JTL and its centralizer — this gives many constraints for the sℓ(2|1)
content. The bimodule can be easily constructed using the subquotient structure of the

tilting modules and information about possible non trivial Hom spaces between them, as

those in (4.16). This way, we find that the multiplicity 22 corresponds to {0, 2} ⊕ {1
2}+ ⊕
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{1
2}−. Meanwhile, the multiplicity 24 in front of T2,−1 corresponds to {±1/2, 3/2}: this we

obtained because the only remaining sℓ(2|1) representations are {±1/2, 3/2} indeed.

Now, the remaining multiplicities 112 and 2 × 75 on 6 sites must be interpreted in

terms of the sℓ(2|1) representations

{0, 3}⊕ {0, 2}⊕ {0, 1}⊕{±1, 2}⊕ 2 {±1/2, 5/2}⊕ 3 {±1/2, 3/2}⊕ 4{0}⊕ 2{1}±⊕
{

1

2

}

±
(4.21)

where the last pieces come from breaking up the projectives P±(1/2). One can check that

the dimension indeed corresponds to 262 = 112 + 2 × 75. Since we expect the results for

the two multiplicities 75 to be somewhat symmetric, it is reasonable to expect that the

part {0, 3}⊕{0, 2}⊕{0, 1} that cannot be cut in half should contribute to the multiplicity

112. From the bimodule analysis, as we did for N = 4, and asuming the symmetry for 75

we thus get

112 = {0, 3} ⊕ {0, 2} ⊕ {0, 1} ⊕
{

±1

2
,
3

2

}

⊕ {±1, 2} ⊕ P (0) .

It means that the remaining 2 × 75 multiplicities are given by ‘taking a half of’ the 150-

dimensional representation

75 =

{

±1

2
,
3

2

}

⊕
{

±1

2
,
5

2

}

⊕ {0} ⊕ {1}±. (4.22)

Note that we obtained that both multiplicities 75 correspond to isomorphic sℓ(2|1) modules;

they are non-isomorphic only as modules over the JTL’s centralizer.

4.7 General structure of tilting modules and Hamiltonians’s Jordan cells

In this section, we give more examples of the subquotient structure of tilting modules,

and provide finally the corresponding general pattern. We also discuss some of our results

on Jordan cells for the spin chain Hamiltonian H. Remarkably, we not only observe the

Jordan cells of rank higher than 2, but in fact show that the maximum rank in the spin

chain grows with the number of sites.

4.7.1 N = 8 example

We analyze first the more interesting case of 8 sites, where Jordan cells of rank 3 appear for

the first time. They involve now states in the simple subquotients X4,1. To justify this, we

describe the structure of indecomposable tiltings with simple subquotients, using figure 15
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and figure 13.

T2(1),1 :

�

W4,1

•
W3,q2

•
W3,q−2

◦W2(1),1

=

�
[4,1]

•[3,q2] • [3,q−2]

•[4,1] ◦[2(1),1] • [4,1]

◦[3,q2] ◦ [3,q−2]

◦[4,1]

T0,q2 :

�

W4,1

•
W2,1

◦W0,q2

=

•
[2,1]

�

[4,1]

•[3,q2] ◦[0,q2] • [3,q−2]

◦[2,1] •
[4,1]

where different types of nodes denoted by �, • and ◦ show the cell-filtration of the tilting

modules: symbols are assigned to cell modules that appear on the left from equalities

while all simple subquotients (on the right) from a particular cell module are denoted by

the corresponding symbol. The notation 2(1) means that any of the two numbers 2 or 1

can occur as the first index in the subscript.

Given this structure for the tilting modules T2(1),1, we expect the Hamiltonian H to

show rank-3 Jordan cells involving (generalized) eigenstates from simple subquotients [4, 1].

Note that this is not a rigorous result, since the indecomposability does not necessarily

mean that all elements of the algebra have Jordan cells — only that some might do.

Nevertheless, there is overwhelming evidence that, from an algebraic point of view, the

Hamiltonian behaves in a very ‘generic’ fashion, as we now verify numerically. On N = 8

sites for instance, the module X4,1 is one-dimensional and corresponds to the eigenvalue 0.

Since the tilting modules T1,1 and T2,1 appear with multiplicities 8 and 22 respectively, we

would expect the Hamiltonian H on 8 sites to show 22+8 = 30 rank-3 Jordan cells for the

eigenvalue 0. Using a formal computation software (Mathematica c©), we have computed

exactly the null-spaces Ker H, Ker H2, Ker H3 on various sℓ(2|1) sectors labeled by the

quantum numbers (B,Sz). This gives us all the information with need on the Jordan

cell structure for the eigenvalue 0. For instance, in the sector (B,Sz) = (0, 0), we find

dim Ker H = 155, dim Ker H2 = 170, and dim Ker H3 = 174, 174 being the multiplicity

of the eigenvalue 0 in that sector. Hence, once can clearly see that there are 4 rank-3 Jordan

cells in that sector, which is exactly what is expected from our analysis as (B,Sz) = (0, 0)

occurs once in the multiplicity 8 = {0, 1} of T1,1, and three times in the multiplicity

22 = {0, 2} ⊕ {1
2}+ ⊕ {1

2}− of T2,1. We have actually checked the presence of the 30

rank-3 Jordan cells in the whole spectrum. Note that we have also carefully analyzed the

multiplicities of the rank-2 Jordan cells on small sizes, and found a perfect agreement with

our algebraic results.
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T3,q±2 :

[7, 1] rank-4

[6, q2] [6, q−2]

[7, 1] [4, 1] [5, 1] [7, 1]

[6, q2] [6, q−2] [3, q±2] [6, q−2] [6, q2]

[7, 1] [4, 1] [5, 1] [7, 1]

[6, q2] [6, q−2]

[7, 1]

Figure 17. The structure of the tilting JTLN -module T3,q±2 for N = 14. These modules allow

Jordan cells of rank 4 for the hamiltonianH acting on states from simple subquotients [7, 1] indicated

in bold.

4.7.2 N = 14 example

We next analyze the case of 14 sites where Jordan cells of rank 4 should appear for states

from simple subquotients X7,1. The first time rank 4 Jordan cells for the Hamiltonian might

appear is actually for N = 12 but diagrams for subquotient structure in the case of N = 14

look somewhat nicer and we have decided to discuss this case instead. As above, using the

structure of tilting modules in figure 15 given in terms of cell modules from figure 13, we

can describe the structure of indecomposable tiltings in terms of simple subquotients. For

this, one should also use self-duality arguments. An example is given in figure 17 for T3,q±2 .

We also notice in the diagram a pattern of appearance of isomorphic simple subquo-

tients. From the previous case we learned that these subquotients at different sections

(levels) of the diagram are connected by the action of our Hamiltonian. For example, sim-

ple subquotients X7,1 indicated in bold appear 6 times but at 4 levels. So, we expect that

these modules allow Jordan cells for the Hamiltonian H of (at least) rank 4.

Next, the tilting JTLN -modules T2,1 and T1,1 for N = 14 allow Jordan cells of rank 5

for the Hamiltonian H acting on states from simple subquotients X7,1. The rank is actually

stabilized, e.g., for all N > 14 the maximum rank on the whole spin chain (and at least for

first low lying states) for subquotients X4,1 is 3, for X7,1 is 5, etc.

Finally, we give the structure of the “vacuum” (we call it so since it contains the
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vacuum state of the spin chain) tilting module T0,q2 at N = 14

◦
[7,1]

•[6,q−2] •[6,q
2]

•
[7,1]

�

[4,1]

•
[2,1]

�

[5,1]

•
[7,1]

�[6,q−2] �[6,q2] •[3,q2] ◦[0,q2] •[3,q−2] � [6,q−2] � [6,q2]

�
[7,1]

•[4,1] ◦
[2,1]

• [5,1] �
[7,1]

•
[6,q−2]

•
[6,q2]

•
[7,1]

(4.23)

where ◦’s denote simple subquotients from the standard modulesW0,q2 andW7,1, •’s denote
subquotients from W2,1 and W6,q±2 , and �’s are for the standard modules W4,1 and W5,1.

Using these notations, one can easily see the filtration by standard modules proposed

before. One can also note that the structure of T0,q2 is essentially (but not completely)

fixed by the filtration proposed and the self-duality requirement. The structure (4.23) for

the tilting module T0,q2 is obviously invariant under the duality operation. We drew only

the minimum number of arrows between the simple subquotients — those fixed by the

duality — though there might be additional arrows, for example, between X7,1 and X6,q±2 .

One can also check that the projective covers found in previous sections, see figure 14,

indeed cover any submodule in T0,q2 . For example, the top node/subquotient X7,1 is covered

by the projective module P7,1 in the following way: the kernel of the map P7,1 → T0,q2
contains the submodule W1,1, the maximum proper submodule of W2,1 (considered itself

as a submodule in P7,1, see figure 14) and a linear combination of the maximal proper

submodules in the two subquotients W3,q2 and W3,q−2 as they are presented in figure 14.

We finally note in this example, that the vacuum tilting module T0,q2 has two irreducible
tops — the subquotients X7,1 marked by ‘◦’ and X2,1 marked by ‘•’. This happens because
we can not have arrows connecting the nodes [6, q±2], lying higher in the diagram, with the
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node [2, 1] — otherwise the projective modules P6,q±2 could not cover submodules growing

from these nodes [6, q±2] which is a contradiction. Similarly, one can exclude many other

arrows and end up with the diagram we present in (4.23). This property that the states

from X2,1 and the vacuum state from X0,q2 are somehow disconnected from the rest of the

module is peculiar to the vacuum tilting module. All other indecomposable tiltings for

N = 14 have a unique top subquotient.

4.7.3 General structure for T0,q2 and Jordan cells for H

We now discuss the general structure of the vacuum tilting module in terms of irreducible

subquotients. It turns out that this structure is best formulated through the example of

N = 18. Using the same ideas as before, we obtain the diagram for the structure of T0,q2
presented in figure 18, where ◦’s denote simple subquotients from the standard modules

W0,q2 , W7,1 and W8,1, the •’s denote subquotients from W2,1 and W6,q±2 , and �’s are

for the standard modules W4,1, W5,1 and W9,q±2 . Using these notations, one can easily

see the filtration by standard modules proposed before. We see that in general we have

two cones: one consisting of •’s, and the other reflected in the horizontal line containing

X0,q2 . The vacuum irreducible subquotient X0,q2 lives in the intersection of the cones while

the boundaries of these cones give bounds for the appearance of simple subquotients Xj,P ,

with j > 2. We denote this particular structure of the vacuum tilting module the “Eiffel

tower” structure.

Now for larger number of sites N , the vacuum tilting module T0,q2 has essentially

the same pattern of nodes and arrows between them,8 the increasing values of N simply

giving rise to longer and longer ‘ladders’ on the left and right sides of the corresponding

“Eiffel tower”.

Finally, we give a short comment on the other tilting modules Tj,P with j > 0 that

belong to the doubly critical class, i.e., those corresponding to the weights [2, 1], [3, q±2],

etc. Though it is not easy to write down a general diagram for their subquotient structure

in terms of irreducible subquotients (one can imagine a “ladder-of-ladders” structure, of

course), the most important is actually their general diagram in figure 15 in terms of

cell modules.

On Jordan cells. Having now a better understanding on how the diagrams for tilting

modules are organized in terms of simple subquotients (at least for the vacuum tilting mod-

ule) we are ready to discuss the possible structure of Jordan cells for the spin chain Hamil-

tonian H. Indeed, following the discussion at the end of section 4.7.1 and section 4.7.2, and

in agreement with numerical experimentation, the rank of the Hamiltonian Jordan cells

involving states of a particular (generalized) eigenvalue can be estimated by counting, in

the diagram for a given module, the horizontal levels that contain the simple subquotients

to which these states belong. So, for general values of N , we believe that the Hamiltonian

Jordan cells involving states from Xj,P subquotients in T0,q2 have rank at least as large as

the number of appearance of Xj,P on the left (or right) part of the corresponding diagram

8A slight difference is only for cases N
2

mod 3 = 1 where the diagram follows the pattern from (4.23)

with one node at the top and one at the bottom.
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�

[9,q−2]

�

[9,q2]

◦[7,1] ◦ [8,1]

◦[9,q−2] ◦[9,q2] •[6,q−2] • [6,q2] ◦[9,q−2] ◦ [9,q2]

•[8,1] •[7,1] �

[4,1]

•
[2,1]

�

[5,1]

• [7,1] • [8,1]

•[9,q−2] •[9,q2] �[6,q−2] �[6,q2] •[3,q2] ◦[0,q2] •[3,q−2]� [6,q−2]� [6,q2] •[9,q−2] • [9,q2]

�[8,1] �[7,1] •[4,1] ◦
[2,1]

• [5,1] � [7,1] � [8,1]

�[9,q−2] �[9,q2] •[6,q−2] • [6,q2] � [9,q−2]� [9,q2]

•
[7,1]

•
[8,1]

•
[9,q−2]

•
[9,q2]

Figure 18. Subquotient structure “Eiffel tower” of the vacuum tilting JTL18-module T0,q2 . Here,

◦’s denote simple subquotients from the standard modules W0,q2 , W7,1 and W8,1, the •’s denote

subquotients from W2,1 and W6,q±2 , and �’s are for the standard modules W4,1, W5,1 and W9,q±2 .
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of T0,q2 . Once again, to obtain the diagram for larger values of N > 18 one should extend

the one in figure 18 in a rather obvious way, and, for values N < 18, just remove nodes for

subquotients with the j index greater than N/2. We also note that we do not assume that

the Hamiltonian is diagonalizable in each simple JTL. There are recent results [69] stating

that the Hamiltonian H =
∑N

i=1 ei has Jordan cells of rank 2 in cell (standard) modules

for the periodic Temperley-Lieb algebra, which is rather surprising comparing to the open

case. It could thus be that counting the horizontal levels in the diagram only gives lower

bounds on the rank Jordan cells. We give our conjecture on these bounds below.

Using the general diagram in figure 15 and taking into account the fact that an irre-

ducible subquotient [j′, P ′] appears in a cell moduleWj,P only if j′ > j and with multiplicity

one, see figure 13, we can estimate lower bounds for the rank of the Hamiltonian Jordan

cells in each tilting module. We should just count the number of levels (also called Loewy

layers) where a particular irreducible subquotient [j′, P ′] appears. So, at large enough N

the Jordan cell rank for states from [j′, P ′] in Tj,P with j′ ≥ j is bounded by the number of

(horizontal) levels counted from the level of the diagram in figure 15 containing the node

Wj,P up to the level containing the node Wj′,P ′ . One can easily compute this number. For

example, the highest rank Jordan cells for j′ > 2 should be in T2,1 and T1,1 and states from

[j′, P ′] subquotients are expected to be involed into Jordan cells of H of rank at least given

by the following number:

rank ofH in T2(1),1 ≥
{

2
⌈ j′−2

3

⌉

, j′ mod 3 = 0, P ′ = q±2,

2
⌈ j′−2

3

⌉

+ 1, j′ mod 3 = 1 or 2, P ′ = 1.
(4.24)

Further, using the structure of T0,q2 presented in figure 16, we also expect that the lower

bound for states from X2,1 subquotients is 2, and for states from X3,q±2 is 1. For the other

subquotients with j′ > 3 we have that the value for the lower bound of the Jordan cells

rank differs by one from that in (4.24). It is because the diagram for T0,q2 in terms of cell

modules has no nodes W3,q±2 and thus, the number of corresponding horizontal levels or

Loewy layers is lowered by one unit.

Tilting modules in the singly critical case where the corresponding cell modules have

a chain structure can be studied in a similar fashion. We do not describe explicitly their

structure here and we refer the interested reader to [21] where very similar modules were

encountered in the context of the blob algebra.

5 Taking the continuum limit of the sℓ(2|1) spin chain

We now turn to the scaling (continuum) limit of the sℓ(2|1) spin chain: our goal is to infer

from the foregoing algebraic analysis results about the representations of the product of

left and right Virasoro algebras that act on the low energy states, and ultimately, all the

properties of the corresponding LCFT. This is a difficult task, which we will only begin in

this paper.

A major difference with the case of gℓ(1|1) studied in [34, 36] is that the sℓ(2|1) spin
chain is not free. It cannot be diagonalized using free fermions (or a combination of free
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fermions and free bosons), and therefore, we have much less control on the (generalized)

eigenstates and eigenvalues, and consequently, on the scaling limit.

Many properties of the sℓ(2|1) spin chain can nevertheless be obtained exactly, by

combining the algebraic analysis with the Bethe ansatz. It is important at this stage to

stress that our chain is not the integrable alternating spin chain one would obtain [50]

from the general inverse scattering construction. To obtain, for instance, the (generalized)

eigenvalues of the Hamiltonian, what one must do is observe that, since the chain provides

a representation of the Jones-Temperley-Lieb algebra, the eigenvalues in each standard

module can be obtained using the results from another, Bethe ansatz solvable chain, where

the same modules appear — in our case, the twisted XXZ spin chain (we also refer to [66]

where the spectrum problem for the periodic sℓ(2|1) spin chain was also studied.)

Focussing now on the continuum limit, we are interested in the generating function of

gaps for each standard JTL module. Since we know the decomposition of the spin chain over

tilting modules, and each summand consists of a glueing of many standard JTL modules,

the generating function for gaps in our spin chain — which will then give information on

the Virasoro content — will be obtained using results of the previous section. To start,

we thus describe the scaling limit of the twisted XXZ models, where each spin sector is

isomorphic to a standard module over the affine TL at generic values of parameters and

the asymptotics (at large N) of the generating functions is known.

5.1 Twisted XXZ spin chain and continuum limit

It is well known that the 6-vertex model (or the XXZ spin-chain) provides a natural rep-

resentation of the affine Temperley-Lieb algebra, where the generators read

ei = I⊗ I⊗ · · · ⊗











0 0 0 0

0 q−1 −1 0

0 −1 q 0

0 0 0 0











⊗ · · · ⊗ I, (5.1)

acting on (i, i + 1)th tensor components or spins {↑↑, ↑↓, ↓↑, ↓↓} of the “Hilbert” space

HXXZ = (C2)⊗2N and 1 ≤ i ≤ 2N − 1. In the basis of the last and the first spins, the last

generator e2N is










0 0 0 0

0 q−1 −eiφ 0

0 −e−iφ q 0

0 0 0 0











, (5.2)

where of course it is implied that e2N acts as the identity operator on all the other spins.

The resulting Hamiltonian H = −∑

i ei reads, up to an irrelevant constant

H =
1

2

2N
∑

i=1

(

σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q+ q−1

2
σz
i σ

z
i+1

)

+
eiφ

4
σ+
2Nσ−

1 +
e−iφ

4
σ−
2Nσ+

1 . (5.3)

We shall refer to this model as the twisted XXZ spin chain. The choice of the twist

eiφ = e2iK allows to select specific generically irreducible representations of the affine TL
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algebra. For j 6= 0, the Hilbert space of this model in the sector with the total spin Sz = j

is isomorphic to the standard module W|j|,e±2iK , where ‘+’ is for positive j and ‘−’ is for

negative value of j. This can be easily checked using the translation generator u of the

affine TL represented in the twisted chain as

u = ei
φ
2
σz
1s1s2 . . . s2N−1, (5.4)

where the si’s are the permutations of the ith and (i+ 1)th sites.

The scaling limit of each sector can be inferred using the basic fact [70] that the

generating function of the energy and momentum spectra is related to conformal spectra

(for the critical Hamiltonian at |q| = 1) as

Tr e−βR(H−Ne0)e−iβIP N→∞−−−−→ Tr qL0−c/24q̄L̄0−c/24, (5.5)

where H and P are the lattice hamiltonian (normalized such that the velocity of sound is

unity) and momentum, e0 is the ground state energy per site in the thermodynamic limit,

we also set q(q̄) = exp
[

−2π
N (βR ± iβI)

]

with βR,I real and βR > 0, and N is the length of

the chain. The trace on the left is taken over the states of the spin chain in a given sector,

and the trace on the right over the states occurring in this sector in the continuum limit.

The traces of the scaling hamiltonian in the generic irreducible representations are

easily worked out using the XXZ hamiltonian, to which methods such as the Bethe ansatz

or Coulomb gas mappings can be readily applied [55]. Let us introduce the usual notations

for the central charge and the conformal weights

c = 1− 6

x(x+ 1)
, (5.6a)

hr,s =
[(x+ 1)r − xs]2 − 1

4x(x+ 1)
, (5.6b)

where with this parametrization q = eiπ/(x+1). For x = 2 or c = 0 the conformal weights

hr,s are arranged in the Kac table in figure 19.

The trace on the left hand side of (5.5) taken over the subspace Hj of spin projection

Sz = j, with −L ≤ j ≤ L, in the XXZ chain of length N = 2L has the limit [55, 71, 72]

TrHj e
−βR(HXXZ(K)−2Le0)e−iβIPXXZ(K) N→∞−−−−→ Fj,e2iK (5.7)

where K = π
M p and

Fj,e2iK =
q−c/24q̄−c/24

P (q)P (q̄)

∑

n∈Z
qhn+p/M,−j q̄hn+p/M,j , (5.8)

and

P (q) =
∞
∏

n=1

(1− qn) = q−1/24η(q). (5.9)

We note that the expression (5.8) is a formally infinite sum over products of characters

kr,s =
qhr,s−c/24

P (q)
, kr,s =

q̄hr,s−c/24

P (q̄)
(5.10)
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Figure 19. Kac table for c = 0.

of the Verma representations of the Virasoro algebra.

Recall that Wj,e2iK modules over the JTLN algebra are irreducible at generic values

of q, where the pseudomomenta e2iK are now taken as jth roots of unity, and we have an

isomorphism Hj
∼= Wj,e2iK for j > 0 and the choice of the twist φ = 2K. Therefore, the

generating function of levels in the scaling limit of the JTL modules Wj,e2iK , can be simply

written as

TrW
j,e2iK

qL0−c/24q̄L̄0−c/24 ≡ Fj,e2iK , (5.11)

where we used same notations for the modules Wj,e2iK and their scaling limits.9 The

character formulas for the scaling limit of the JTL simple modules at generic q shows that

the scaling limit of the JTLN algebra should be an operator algebra containing vir⊕ vir as

a proper subalgebra.

The case j = 0 requires more care as one has to be careful about the loops that wrap

around the spatial direction due to the periodic boundary conditions which would get a

weight 2 if φ = 0 in (5.2). One then needs to introduce a twist eiφ = q2 to account for

this.10 In this case, the sector Sz = 0 corresponds to the standard module11 H0 ≃ W0,q2 =

W0,q2 → W1,1. The trace over the scaling limit of the representation W0,q2 thus reads

TrW0,q2
qL0−c/24q̄L̄0−c/24 = F0,q2 − F1,1, (5.12)

or introducing the character of the Kac representation

Kr,s =
qhr,s − qhr,−s

P (q)
, (5.13)

9By the scaling limit of modules, we mean an appropriate inductive limit of them corresponding to

N → ∞. Though in general, it is very hard to construct such limits explicitly, see some examples of a

rigorous construction in [36].
10It is indeed easy to check that within our twisted XXZ representation, non-contractible loops carry a

weight 2 cos φ
2
.

11We note that choosing the twist as eiφ = q−2 givesH0 as the costandard moduleW∗
0,q2 = W1,1 → W0,q2 .
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we have

Tr W0,q2
qL0−c/24q̄L̄0−c/24 = F0,q2 − F1,1 =

∑

r≥1

Kr,1K̄r,1. (5.14)

Note that we have

F0,e2iK = F0,e−2iK . (5.15)

Finally, we quote a formula that will play a fundamental role later:

Fj,q2j+2k − Fj+k,q2j =
∞
∑

r=1

Kr,kK̄r,k+2j (5.16)

with, recall, q = eiπ/(x+1). Of course, (5.14) is just a particular case where j = 0 and k = 1.

We note that the pseudomomenta (jth roots of unity) for our JTL modules appear in this

formula only at integer values of x.

The generating functions of standard modules in (5.8) can be obviously written in

terms of the characters kr,s of Virasoro Verma modules. Even at generic values of x or the

central charge c, it does not mean, of course, that the scaling limit of the corresponding

JTL modules is a direct sum of products of Verma modules. For example, the Feigin-Fuchs

(FF) module Fr,s has the same character kr,s as the Verma module of weight hr,s, but is not

Verma (see a review on FF modules in appendix D). Actually, it is known that XXZ chains

are closely related to the Coulomb Gas model [55]. Given that FF modules are constructed

directly from a free boson picture, it is rather natural to expect our characters to describe

the product of FF modules instead of Verma modules. We will actually see later directly

at c = 0 that assuming (a filtration by) Virasoro Verma modules in the scaling limit of

the JTL standards will be in contradiction with the algebraic structure, while Feigin-Fuchs

modules give a consistent picture.

We also note that it is not clear whether at generic values of q the scaling limit of each

JTL standard (also simple) module Wj,e2iK considered as a vir ⊕ vir module is self-dual.

This is related with the question of whether loop models at generic values of q (or x) are

“physical”, that is, described by consistent local bulk CFTs.12 The answer is not clear,

because for generic q, there exists no (supersymmetric) spin chain formulation, no self-dual

‘Hilbert space’, etc. Self-duality of the limits of Wj,e2iK , as vir ⊕ vir modules, at generic

values of q on the other hand would have very important practical consequences: this will

be discussed elsewhere.

6 Operator content of simple JTL modules

We start our analysis by discussing the vir⊕ vir content of the simple JTLN (1) modules in

the continuum limit for c = 0. By this, we mean the representation content of the states

that contribute to the scaling limit in the JTLN modules. It is convenient for this purpose

12Recall that one of consistency conditions for bulk CFTs is a non-degeneracy of the two-point function

that is defined as the Virasoro-algebra invariant bilinear form on the space H of all non-chiral fields. The

non-degeneracy condition implies that the space of linear forms on H is isomorphic to H itself, as vir⊕ vir

modules, or in other words H has to be self-dual.
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to first evaluate the generating functions of levels in some of the JTLN modules we have

encountered previously.

6.1 Characters for the limit of JTL simple modules

There are two possible situations, apart from the fully non degenerate one. The first

occurs for pairs (j, e2iK) = (0 mod 3, e2iπ/3), (j, e2iK) = (0 mod 3, e4iπ/3), (1 mod 3, 1)

or (2 mod 3, 1). In this case, the structure of submodules is represented by the first two

diagrams on figure 13.

The characters of the corresponding JTL simples Xj,P in the limit

F
(0)
j,P ≡ TrXj,P

qL0−c/24q̄L̄0−c/24 (6.1)

are obtained by a series of subtractions and additions, just like in the computation of di-

mensions for finite chains: the only difference is that the series is infinite — but convergent.

As an example, we consider

F
(0)

0,e2iπ/3 = F0,e2iπ/3 − F1,1 − F2,1 + F3,e2iπ/3 + F3,e4iπ/3 − F4,1 − F5,1 + . . .

=
∞
∑

n=0

F3n,e2iπ/3 − F3n+1,1 −
∞
∑

n=0

(

F3n+2,1 − F3n+3,e4iπ/3

)

. (6.2)

We now use the basic identities

F3n,e2iπ/3 − F3n+1,1 =
∞
∑

r=1

Kr,1K̄r,6n+1,

F3n+2,1 − F3n+3,e4iπ/3 =
∞
∑

r=1

Kr,1K̄r,6n+5 (6.3)

together with, for l = 1, 2,

K2k−1,l = χ2k−1,l + χ2k+1,l,

K2k,l = χ2k,l,

where the χ’s are as usual characters of the Virasoro algebra simples. By straightforward

manipulations we find first

F
(0)

0,e2iπ/3 =
∞
∑

r=1

Kr1

∞
∑

n=0

(

K̄r,6n+1 − K̄r,6n+5

)

= χ11χ̄11 = 1 (6.4)

as was expected because the dimension of X0,q2 is one for any even number of sites. Note

also that χ12 = χ11 = 1.

We then find

F
(0)
1,1 =

∞
∑

k=1

χ2k,2χ̄2k,2 + (χ2k−1,2 + χ2k+1,2) (χ̄2k−1,2 + χ̄2k+1,2)− χ1,1χ̄1,1,

F
(0)
2,1 =

∞
∑

k=1

χ2k,1χ̄2k,1 + (χ2k−1,1 + χ2k+1,1) (χ̄2k−1,1 + χ̄2k+1,1)− χ1,1χ̄1,1. (6.5)
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Interestingly, we can for instance rewrite

F
(0)
1,1 =

∞
∑

k=1

χ2k,2χ̄2k,2 + χ2k+1,1 (χ̄2k−1,2 + 2χ̄2k+1,2 + χ̄2k+3,2)

=
∞
∑

k=1

χ2k,2χ̄2k,2 + (χ2k−1,2 + 2χ2k+1,2 + χ2k+3,2) χ̄2k+1,2. (6.6)

We give in appendix C explicit formulas for many other Fj,e2iK in terms of the left and

right Virasoro characters.

We note that the leading conformal weighs in F
(0)
2n+1,1 are (h, h̄) = (h1,2, h3+4n,2) and

the same with h ↔ h̄. In F
(0)
2n+2,1 we have (h1,1, h3+4n,1). In F

(0)

3n,e2iπ/3 we get (h1,1, h1+4n,2)

and (h1+4n,1, h1,2), in F
(0)

3n,e4iπ/3 we get (h1,2, h1+4n,1) and (h1+4n,2, h1,1) (recall h1,1 = h1,2
so we have left-right symmetry).

6.2 Left-right Virasoro structure of simple JTL modules

We stress that so far we only computed characters Fj,e2iK of the (scaling limit of) the

simple JTL modules Xj,e2iK : an additional analysis is required to see whether each of the

modules Xj,e2iK is a direct sum of simples over left-right Virasoro vir ⊕ vir, as was in the

case of gℓ(1|1) spin chains [36]. Unfortunately, we give strong arguments below that JTL

simples (those belonging to an indecomposable block of JTL modules) in the case of the

sℓ(2|1) spin chain are not, in general, direct sums of Virasoro simples — and involve instead

reducible but indecomposable modules. This suggests that the analysis of the scaling limit

should involve a bigger algebra than just vir⊕ vir — in other words, that the scaling limit

of the JTL algebra is more than vir⊕ vir. This will be discussed in the conclusion, and in

subsequent work.

We begin our analysis with the standard module W0,q2 . We note that this JTL module

is well-defined for generic q or x. For such values of x, using the character (5.14) and the

fact that weights hr,1 do not differ by an integer for different integer values of r, the scaling

limit of the vacuum standard module, which we will denote by the same symbol W0,q2 as

for a finite lattice, is decomposed over the left-right Virasoro onto the direct sum of simple

vir⊕ vir-modules

W0,q2 =
⊕

r≥1

Kr,1 ⊠ K̄r,1 (6.7)

where Kr,s are Virasoro modules with the Kac characters Kr,s given in (5.13) and we

also introduce the corresponding anti-chiral modules K̄r,s. These modules are simple at

generic central charges c or generic values of our parameter q. Moreover, there cannot be

glueings/extensions among the modules Kr,1 in such generic cases, so the limit of W0,q2

must be a direct sum.

Note that the first term K1,1 ⊠ K̄1,1 contains the identity (or the vacuum state of

dimension (0, 0)), for any x, and its descendants with respect to left-right Virasoro, while

the next term K2,1 ⊠ K̄2,1 is spanned by the descendants of the primary field of conformal

dimension
(

3+x
4x , 3+x

4x

)

(or (58 ,
5
8) at c = 0), the term K3,1 ⊠ K̄3,1 is spanned by the primary

field of dimension
(

2+x
x , 2+x

x

)

(which equals (2, 2) at c = 0) and its descendants, etc.
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In contrast, when q = eiπ/3 or c = 0, the vacuum standard module (scaling limit of

W0,q2) is not a direct sum of simple Virasoro modules anymore. The subsequent analysis

requires, for the time being, a series of natural assumptions that we spell out below. These

assumptions are checked a posteriori by the consistency of the full picture.

When q = eiπ/3, or c = 0, each module Kr,1, for odd values of r, becomes indecompos-

able but reducible with the subquotient structure

Kr,1 :

◦
hr,1

◦
hr+2,1

(6.8)

and each tensor product Kr,1 ⊠ K̄r,1 in (6.7), assuming the decomposition for q = eiπ/3

involves the ‘continuation’ of the modules present for q generic, becomes the following

left-right Virasoro module

Kr,1 ⊠ K̄r,1 :

◦
(hr,1,h̄r,1)

◦(hr,1,h̄r+2,1) ◦ (hr+2,1,h̄r,1)

◦
(hr+2,1,h̄r+2,1)

(6.9)

Moreover, these diamonds could be in principle glued with each other: what we can

say at this stage of our analysis is that the vacuum standard module has a filtration by the

left-right Virasoro modules Kr,1 ⊠ K̄r,1 (recall our definition of the filtration around (4.2)).

This means that K1,1 ⊠ K̄1,1 is a Virasoro submodule (as it contains the vacuum and we

expect the trivial action of positive modes on the identity and energy-momentum tensors),

that there might be arrows due to positive Virasoro modes action from K3,1 ⊠ K̄3,1 into

K1,1 ⊠ K̄1,1, and so on. Modulo the arrows connecting different diamonds we have the

structure of the full vacuum module W0,q2 :

W0,q2 :

◦
X0,q2

•
X2,1

N→∞−−−−−→

◦
(0,0)

•
(0,2)

•
(2,0)

•
(2,2)

⊕

•
(2,2)

•
(2,7)

•
(7,2)

•
(7,7)

⊕ . . .

⊕
(

5

8
,
5

8

)

⊕
(

33

8
,
33

8

)

⊕ . . . (6.10)

Note once again that these diamonds are just products of the indecomposable Kac modules

Kr,1 at the logarithmic c = 0 point, and that the existence of a filtration by these prod-

ucts of Kac modules follows from the generic point decomposition (6.7). All the modules

Kr,1 can be equivalently obtained as quotients/submodules of the Feigin-Fuchs modules
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introduced in appendix D. We see from this filtration that the scaling limit of the simple

JTL module X2,1 is not a direct sum of simples over the Virasoro algebra but a direct sum

of indecomposable but reducible modules with subquotients marked by ‘•’, and of those

having fractional conformal dimensions.

Note that the module X0,q2 is always one dimensional; it is spanned by the vacuum

state, and its scaling limit is marked by ‘◦’ and corresponds to the trivial Virasoro rep-

resentation. The two states generating subquotients (2, 0) and (0, 2) are respectively the

chiral T and anti-chiral T̄ energy-momentum tensors, and the state generating (2, 2) is

their product T T̄ . Note finally that we could assume a filtration of W0,q2 by products

of modules dual to the Kac ones, i.e. by those with reversed arrows in their subquotient

structure (the character would be the same). In our case however, the unique vacuum

state would be a descendent of the energy-momentum tensors T and T̄ . Of course, this is

not allowed.

We now discuss the scaling limit of all other JTL standardsWj,z2 and the corresponding

simples. For these purposes it is technically easier at x = 2 (or c = 0) to introduce

intermediate modules which are quotients similar to W0,q2 :

Wj,q2j+2k = Wj,q2j+2k/Wj+k,q2j , j ≥ 0, k ∈ {1, 2}. (6.11)

Now, each module Wj,q2j+2k is a glueing of two JTL simples. For example, we have

W1,1 = X1,1 → X3,q4 , W2,1 = X2,1 → X3,q2 , (6.12)

W3,q2 = X3,q2 → X5,1, W3,q4 = X3,q4 → X4,1, (6.13)

W4,1 = X4,1 → X6,q4 , W5,1 = X5,1 → X6,q2 , (6.14)

etc. In terms of these modules, we can now describe the structure of all JTL standards by

a chain structure

W2,1 = W2,1 → W3,q4 → W5,1 → . . . . (6.15)

The important thing is that the intermediate JTL modules Wj,z2 have nice scaling

limit properties. To start, we can consider the characters

TrW
j,q2j+2k

qL0−c/24q̄L̄0−c/24 = Fj,q2j+2k − Fj+k,q2j =
∞
∑

r=1

Kr,kK̄r,k+2j . (6.16)

with the right hand side a sum of products of (Virasoro) Kac modules characters. For

example, the generating functions for the scaling limit of W1,1, W2,1, and W3,q2 obey

TrW1,1
qL0−c/24q̄L̄0−c/24 =

∞
∑

r=1

Kr,2K̄r,4, (6.17)

TrW2,1
qL0−c/24q̄L̄0−c/24 =

∞
∑

r=1

Kr,1K̄r,5, (6.18)

TrW3,q2
qL0−c/24q̄L̄0−c/24 =

∞
∑

r=1

Kr,1K̄r,7. (6.19)
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We can again say here that the scaling limit of the modules W1,1, W2,1, W3,q2 , etc.,

is filtered by the product of indecomposable Virasoro modules Kr,n having the character

equal Kr,n (the Kac character), i.e., the first term in the sums corresponds to a submodule,

the third term is glued by positive Virasoro modes action to the first one, and so on. The

only difference from the case W0,q2 is that the anti-chiral modules K̄r,n, with n > 3, (they

are generically irreducible) are more complicated in the case c = 0. To obtain the character

Kr,n, the singular vector in the corresponding Verma module to be set to zero is at the

level nr. For example, the module K3,4 has the same highest weight h3,4 = 0 as K1,1, but

its subquotient structure has six nodes (not two) corresponding to Virasoro irreducibles.

The module K5,7 has the same highest weight and its structure is even more complicated,

and so on. The other problem is that the limit Kr,n of generically irreducible Virasoro

modules might not be a quotient of the corresponding Verma modules. Indeed, we will see

below that they are actually quotients/submodules of Feigin-Fuchs modules.13 Note also

that the first component in the sum (6.16) is always Kr,1 or Kr,2 and the corresponding

modules have two subquotients only and they are indeed Kac modules (quotients of the

Verma modules) and at the same time quotients of the Feigin-Fuchs modules.

To show the complexity of the scaling limit of the quotient JTL modules Wj,z2 we

describe the left-right Virasoro structure of several terms in the character sum (6.18) cor-

responding to W2,1. The first term K1,1K̄1,5 has the diamond structure on the left part of

figure 20, i.e., four subquotients, a situation encountered before; the next term K2,1K̄2,5

corresponds to the left-right Virasoro module of a chain type (58 ,
5
8) → (58 ,

21
8 ). The first

interesting term is K3,1K̄3,5. If we assumed that the corresponding module at c = 0 was

the product of two Kac modules (quotients of Verma) then the corresponding structure

would be
(2,0)•

(7,0)◦ (2,1)◦ (2,2)•

(7,1)◦ (7,2)• (2,5)◦ (2,7)•

(7,5)◦ (7,7)• (2,12)◦

(7,12)◦

(6.20)

where the down-left arrows describe the chiral Virasoro action and down or down-right

ones are for the antichiral part. We also denote simple Virasoro subquotients contributing

to the scaling limit of X2,1 by ‘•’ and those from the limit of X3,q2 by ‘◦’. We used here the

corresponding Virasoro character expressions in (6.5) and (C.4). As we can see from the

diagram in (6.20), there would be a problem then — there are arrows ◦ → • mapping states

from X3,q2 to states in X2,1 and this contradicts to the structure of W2,1 : X2,1 → X3,q2 .

13Recall that Feigin-Fuchs modules are defined by Virasoro-module sructure on the Fock spaces in the

Coulomb gas formalism or modified free-boson theory.
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K1,1 ⊠ K̄1,5 :

•
(0,2)

◦
(0,5)

•
(2,2)

◦
(2,5)

K3,1 ⊠ K̄3,5 :

(2,0)•

(7,0)◦ (2,1)◦ (2,2)•

(7,1)◦ (7,2)• (2,5)◦ (2,7)•

(7,5)◦ (7,7)• (2,12)◦

(7,12)◦

Figure 20. Structure of the first two terms in the filtration of W2,1.

To solve this problem we should actually assume that K̄3,5, instead of a Kac module, is

the quotient of a Feigin-Fuchs module, where half the arrows in the corresponding Verma

module are reversed. We then obtain the consistent structure shown on the right of figure 20

We see once again from this analysis that the scaling limit of JTL simple modules is a direct

sum of Virasoro indecomposable but reducible modules.

Actually, all the terms K3+2n,1K̄3+2n,5, with n ≥ 0, in the character sum (6.18) corre-

spond to the modules K3+2n,1K̄3+2n,5 with this 2 × 6-subquotient structure, and they are

products of quotients of the Feigin-Fuchs modules, or of the duals to them. So, there is

a sort of stabilization in the structure of diagrams. Nevertheless, the diagrams for terms

having the chain-type structure seem to be growing: the module K4,1K̄4,5 has the structure

(338 ,
1
8) ←−− (338 ,

33
8 ) −−→ (338 ,

65
8 ), where we again used the Feigin-Fuchs pattern of arrows,

the module K6,1K̄6,5 has 4 subquotients and so on.

As a first interesting result of our analysis, we get the Virsoro structure of the simple

JTL module X2,1 in the scaling limit by comparing its filtrations, in (6.10) and the one

described in figure 20. Note that in the two diagrams the nodes (2, 0), (0, 2) and twice

(2, 2) labeled by •’s are connected in different ways (both diagrams do not contradict to

each other; they would if we had used Verma and not Feigin-Fuchs structure). Therefore,

all these arrows should be present in the structure for X2,1. Further, to complete the

diagram for X2,1 we should recall that the only known existing indecomposable Virasoro

module involving irreducible subquotients with the weights 2 twice, 0, and 7 is the staggered
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module [73]

2

0 7

2

(6.21)

This observation and similar arguments for the antichiral part of the action give us all the

additional arrows in the final struture

X2,1 :

(2, 2) . . . . . .

(0, 2) (2, 0) (2, 7) (7, 2) . . .

(2, 2) (7, 7) . . .

(6.22)

plus a direct sum of terms with non-integer (rational) weights. The dots in the diagram

mean higher terms like (7, 7), etc. Following this structure, we also conclude that there is a

Jordan cell of rank 2 for the Hamiltonian in the scaling limit of X2,1. We note that both the

indecomposability parameters b and b̄ equal 5
6 for the states with conformal weights (2, 2).

Using similar analysis, we can in principle obtain vir ⊕ vir subquotient structure for

the scaling limit of all other JTL simples. For example, the structure for X3,q2 is

X3,q2 :

(2, 5) . . . . . .

(0, 5) (2, 1) (2, 12) (7, 5) . . .

(2, 5) (7, 12) . . .

(6.23)

Similarly, the structure for X3,q−2 is obtained just by replacing (h, h̄) by (h̄, h).

Our conclusion in this section is that the scaling limit of the JTL simples involved in

the doubly critical class (containing X2,1, X3,q±2 , X4,1, etc) gives vir ⊕ vir-modules with

non-trivial Jordan cells of rank 2 for the Hamiltonian L0 + L̄0. It may have escaped the

reader at the end of this long discussion that these Jordan cells are not present on the

lattice14 and they only arise in the scaling limit. This is definitely unpleasant, although

perfectly possible: the existence of Jordan cells for all system sizes indicates a Jordan cell

in the continuum theory as well, but the converse does not have to be true. Nevertheless,

such phenomenon did not occur for boundary theories, or for the gℓ(1|1) spin chain. It

implies, in particular, that the lattice algebraic analysis by itself can only provide lower

bounds to the size of the Jordan cells.

14The corresponding states on a finite lattice have different eigenvalues of H and thus can not be in a

non-trivial Jordan cell. The two eigenvalues tend to the same value only in the limit N → ∞.
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Multiplicities

(h, h) T0,q2 T1,1 T2,1 T2,−1 T3,1 T3,q2 T3,q−2 Total sℓ(2|1) representation
(0, 0) 1 0 0 0 0 0 0 1 {0, 0}
(1, 0) 0 1 0 0 0 0 0 8 {0, 1}
(0, 1) 0 1 0 0 0 0 0 8 {0, 1}
(1, 1) 0 2 0 0 0 0 0 16 2 {0, 1}
(18 ,

1
8) 0 1 0 0 0 0 0 8 {0, 1}

(18 ,
9
8) 0 1 0 0 0 0 0 8 {0, 1}

(98 ,
1
8) 0 1 0 0 0 0 0 8 {0, 1}

(98 ,
9
8) 0 1 0 0 0 0 0 8 {0, 1}

(58 ,
5
8) 2 0 1 0 0 0 0 24 {0, 2} ⊕ P (0)

(58 ,
13
8 ) 2 0 1 0 0 0 0 24 {0, 2} ⊕ P (0)

(138 ,
5
8) 2 0 1 0 0 0 0 24 {0, 2} ⊕ P (0)

(138 ,
13
8 ) 2 0 1 0 0 0 0 24 {0, 2} ⊕ P (0)

( 7
32 ,

39
32) 0 0 0 1 0 0 0 24

{

−1
2 ,

3
2

}

⊕
{

1
2 ,

3
2

}

(3932 ,
7
32) 0 0 0 1 0 0 0 24

{

−1
2 ,

3
2

}

⊕
{

1
2 ,

3
2

}

(3932 ,
39
32) 0 0 0 2 0 0 0 48 2

{

−1
2 ,

3
2

}

⊕ 2
{

1
2 ,

3
2

}

(3524 ,
35
24) 0 0 0 0 1 0 0 112 eq. (6.24)

(2, 0) 2 1 1 0 0 0 0 32 {0, 1} ⊕ {0, 2} ⊕ P (0)

(0, 2) 2 1 1 0 0 0 0 32 {0, 1} ⊕ {0, 2} ⊕ P (0)

(2, 1) 1 4 2 0 0 1 0 152 eq. (6.26)

(1, 2) 1 4 2 0 0 0 1 152 eq. (6.26)

(2, 2) 6 6 6 0 0 1 1 336 eq. (6.27)

Table 1. Operator content up to (h, h̄) = (2, 2). We show the multiplicities of each fields in the

various tilting modules, together with the total multiplicity with which they appear in the Hilbert

space. The way they transform with respect to sℓ(2|1) is also given in the last column.

6.3 The field content up to level (2, 2)

Before turning to the indecomposable structure of the full LCFT, we describe the operator

content of our theory up to level (h, h̄) = (2, 2) [38], and analyze the multiplicities with

respect to the sℓ(2|1) supersymmetry, using the analysis of section 4.6. The results are

gathered in table 1.

First of all, the groundstate (h, h̄) = (0, 0) is non-degenerate, and transforms trivially

under sℓ(2|1). We also find 8 Noether currents (h, h̄) = (1, 0) living in the adjoint rep-

resentation {0, 1} of sℓ(2|1), as expected. An important point is that these currents do

not generate an affine Lie superalgebra [38], as in that case, we would get 64 weight (1, 1)

states. Instead, the multiplicity of these (1, 1) fields turn out to be 16, and they form two

adjoint representations.

The one-hull operators O1, with conformal weights (h, h̄) = (18 ,
1
8), form an adjoint

representation as well, so they appear with multiplicity 8. More interesting are the two-

hulls operators O2 with (h, h̄) = (58 ,
5
8) as one of these fields is the logarithmic partner

of the energy operator — the relevant thermal perturbation of our critical theory. These
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fields appear twice in T0,q2 and once in T2,1, they therefore transform as 24 = {0, 2}⊕P (0).

The energy field lives at the bottom of the indecomposable module P (0), it is invariant

under sℓ(2|1).
The three-hull operators O3 with conformal weights (h, h̄) = (3524 ,

35
24) appear once in the

standard module W3,1 — or in the tilting module T3,1. They thus come with a multiplicity

112 in the full Hilbert space our theory, and transform as

112 = {0, 3} ⊕ {0, 2} ⊕ {0, 1} ⊕
{

±1

2
,
3

2

}

⊕ {±1, 2} ⊕ P (0), (6.24)

under sℓ(2|1).
Of particular interest are the fields with conformal weights (h, h̄) = (2, 0), as they

include for example the stress energy tensor T (z), and its logarithmic partner t(z, z̄). There

are 32 fields with such conformal weights in the spectrum, and they transform according

to {0, 1} ⊕ {0, 2} ⊕ P (0) under sℓ(2|1). The piece {0, 1} corresponds to descendants of the

currents so we will discard them in the following. Meanwhile, the fields T and t live at the

bottom and at the top, respectively, of the projective cover P (0)

{0}

{1
2}− {1

2}+

{0}

(6.25)

We also find 152 fields with conformal weights (h, h̄) = (2, 1) (resp. (h, h̄) = (1, 2)),

living in the modules T0,q2 , T1,1, T2,1 and T3,q2 (resp. T3,q−2). With respect to the sℓ(2|1)
supersymmetry, they transform as

152 = 4 {0, 1} ⊕ 2 {0, 2} ⊕
{

±1

2
,
3

2

}

⊕
{

±1

2
,
5

2

}

⊕ P

(

1

2

)

±
. (6.26)

and one can check that the dimensions match since 4×8+2×16+2×12+2×20+2×12 = 152.

Finally, we find that the fields with conformal weights (h, h̄) = (2, 2) — including for

example the field T T̄ — transform as

336 = 6 {0, 1} ⊕ 6 {0, 2} ⊕ 2

{

±1

2
,
3

2

}

⊕ 2

{

±1

2
,
5

2

}

⊕ 2P (0)⊕ 2P

(

1

2

)

±
, (6.27)

where one can check similarly that 6×8+6×16+2×2×12+2×2×20+2×8+2×2×12 = 336

indeed.

– 56 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
4

. . . . . .

. . . •W6,q2 • W6,q−2 . . .

. . . •W7,1 �W4,1 � W5,1 • W8,1 . . .

. . . •W9,q2 �W6,q2 ◦W3,q2 ◦W3,q−2 �W6,q−2 �W9,q−2 . . .

. . . �W7,1 ◦W4,1 •W2,1 ◦ W5,1 � W8,1 . . .

. . . ◦W6,q2 •W3,q−2 ◦W6,q−2 . . .

. . . •W5,1 . . .

. . .

Figure 21. The structure of the tilting module T2,1 in the scaling limit, where the character of

each Wj,P is given in (6.16).

7 Content of indecomposable tilting modules: the full LCFT

In the previous section, we discussed left-right Virasoro content in the scaling limit of

simple JTL modules and we learned that the simples correspond to (a direct sum of)

indecomposable Virasoro modules. We also learned that (reducible) quotients Wj,P of

JTL standard modules are filtered in the limit by products (of quotients or submodules) of

Feigin-Fuchs modules and they have quite simple Virasoro character expressions (6.16). To

proceed, it is thus useful to express the structure of tilting modules in the scaling limit in

terms of the quotient modules Wj,P . We begin with the structure of the tilting module T2,1
presented in figure 21. For simplicity and readability of the diagram, we do not show all

the arrows — only the minimum number needed for consistency (for example, there might

also be arrows like
W6,q2

� −→
W5,1◦ and

W8,1• −→
W6,q2

� , and so on). In other words, one can

translate all arrows on the top surface of the “cube” in figure 21 down along the lattice to

recover all the arrows for the limit of T2,1. The structure for T1,1 is obtained by replacing

the central line in the diagram by W1,1 → W3,q2 → W4,1 → . . . . All the other tilting

modules Tj,P with the relations (j, P ) � (2, 1) can be similarly presented by the “cubic”

diagrams.

Finally, the structure of the vacuum tilting module T0,q2 in the limit in terms of Wj,P

looks slightly different and it can be obtained using the cell filtration in figure 16 and using
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description of each of Wj,P in terms of quotients Wj′,P ′ . As this vacuum tilting module is

very important for applications, we give below a more detailed analysis of its structure in

terms of irreducible Virasoro algebra subquotients.

7.1 The indecomposable tilting module for the stress tensor

We now give a more detailed analysis for the vacuum tilting module T0,q2 in the scaling

limit N → ∞. The subquotients structure in terms of JTL simples can be obtained in this

limit by continuing the “Eiffel tower” diagram from figure 18 where the general pattern

is quite clear: one should simply continue “ladders” on the left and right parts of the

diagram without restrictions on N . Of course, each JTL simple in the limit is a direct sum

of complicated indecomposables over the left-right Virasoro algebra vir⊕vir at c = 0 (as we

just discussed previously), and it is actually very hard to give a full picture. Nevertheless,

to describe the field content for the first few excited levels it is enough to consider only the

“kernel” part of the vacuum tilting module from figure 18. We depict this part in terms of

JTL simples as

•
[2,1]

•[3,q2] ◦[0,q2] • [3,q−2]

◦[2,1]

(7.1)

It is important to note that there are no arrows in T0,q2 coming to
[2,1]• and no arrows

going from the bottom
[2,1]◦ , as we learned from the lattice analysis, for any N , and thus it

should be true in the limit. We also note that the full field content up to the level (2, 2) is

contained in this kernel part.

Now, the idea is to use vir⊕vir-module diagrams for irreducible JTL subquotients and

compose these pieces into a crucial part of the vacuum tilting module — the part that would

contain energy momentum tensors and all their logarithmic partners and all the necessary

vir ⊕ vir suquotients that admit the indecomposability parameters b = b̄ = −5 measured

in [32]. We recall that the vir⊕ vir structure of these pieces (scaling limit of JTL simples)

was discussed in section 6.2. Combining the diagrams for subquotients in (7.1) (represented

in (6.22) and (6.23)) as vir⊕ vir-modules, joining nodes from different pieces15 we obtain

in figure 1 the subquotient structure of a part (of the whole vacuum tilting module) that

we call the physically crucial part. We empasize that a vir ⊕ vir-module corresponding to

this diagram is not a submodule or a quotient of the scaling limit of T0,q2 but it is an (non-

irreducible) self-dual vir⊕ vir-subquotient in the full vacuum tilting module. Therefore, in

the full picture, there should be additional arrows coming from above to and going out of

this diagram. We do not draw them for simplicity.

15Doing this one should keep the rule that action of vir can connect only a node (h, h̄) with (h′, h̄), that

is it should commute with vir, and vice versa for vir. There are also obvious restrictions on possible values

of these h and h′ coming from the structure of Verma Virasoro modules.
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We also note that Ridout’s “Ockham’s razor” for a non-chiral staggered vir ⊕ vir-

module [33] with indecomposability parameters b = b̄ = −5 is only a submodule in figure 1.

This submodule is generated by states from the two nodes (2, 0) and (0, 2) at the fourth

layer if counted from below (second layer counted from the top).

The structure for the “kernel” part of the vacuum tilting module involving fields of

dimensions up to (2, 2) deserves a more detailed analysis. This structure is described

diagrammatically on figure 2. We note that at our level of analysis it is hard to state

whether this part of the vacuum module is indecomposable or not. Most probably the

rightmost subquotient (2, 2) and its descendants like (2, 7), etc., are decoupling from the

vacuum module. After glueing two indecomposables, the final module can in principle be

a direct sum of non-trivial indecomposables (even infinitely many of them if we talk about

Virasoro algebra modules). Arrows coming in and out of this node (2, 2) are thus depicted

in a dotted style. Recall that T and T̄ denote states corresponding to chiral and anti-chiral

energy momentum tensors while t and t̄ are their logarithmic partners, respectively. The

state ψ is for the descendant At̄ = Āt, with the operator A = L−2 − 3
2L

2
−1. Following this

diagram we thus expect a Jordan cell of rank 2 for the fields in (0, 2) and (2, 0), and of

rank 3 for those from (2, 2). In particular, the field T T̄ should be involved into a Jordan

cell of rank 3. This will be discussed in more detail in a subsequent paper.

7.2 Higher rank Jordan cells for L0 + L̄0

Here, we discuss Jordan cells of ranks higher than 3. These cells involve fields of higher

conformal dimensions from the vacuum tilting module. Recall first the structure of T0,q2
with irreducible subquotients in figure 18 and its continuation to N → ∞. It has infinite

‘ladders’ on the left and right sides of the corresponding “Eiffel tower”. Using this diagram

and the finite lattice analysis in section 4.7 on the structure of Hamiltonian’s Jordan cells

(see in particular the discussion at the end of section 4.7.1), we can conjecture lower

bounds (of the maximally16 possible rank in a given subquotient) for Jordan cells of the

Hamiltonian L0 + L̄0 in the corresponding bulk LCFT. These bounds are given by the

number of appearance of the subquotients [j, P ] on the left or right part. And note that

this number is finite for a fixed j and was already computed from the lattice (since it

stabilizes at large enough N) at the end of section 4.7.3.

We also mentioned above that due to additional degenerations in the Hamiltonian’s

eigenvalues at N → ∞ we have additional Jordan cells of rank 2 in the scaling limit of JTL

simples, at least for those from the doubly critical class. Actually, using rather natural

assumptions we were able to see these additional Jordan cells directly in the scaling limit

for states having integer conformal weights. We also saw in figure 2 that the two Jordan

cells are combined into a Jordan cell of maximum rank 3 and not 4. This happens because

the bottom part of the upper cell is at the same (Loewy) layer as the top of the lower

Jordan cell and they thus can not be connected by vir⊕ vir action. So, we obtain that the

maximum rank of Jordan cells for states from X2,1 is 3. Similarly, we expect that states

16there might be states of non-integer conformal dimensions involved in Jordan cells of a rank less than

the bound.
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from X3,q±2 in T0,q2 are in rank 2 maximum (and not 1, as one could expect using only

the lattice analysis), states from X4,1 are in rank 3 (and not 2), states from X6,q±2 are

in rank 4 maximum (and not 3), etc. In other words, we expect the ranks of the lattice

Hamiltonian Jordan cells discussed in section 4.7.3 (see the results (4.24) and below (4.24))

to be increased by one in the scaling limit, giving rise to the following conjecture on the

rank of Jordan cells for L0 + L̄0 in the vacuum tilting module.

Conjecture 7.2.1. In the scaling limit of JTL tilting modules T0,q2 , states from (limits of)

irreducible Xj,P subquotients should be involved in Jordan cells of the Hamiltonian L0+ L̄0

of maximum rank given by the following number:

max rank ofL0 + L̄0 in T0,q2 =















3, j = 2, P = 1,

2
⌈ j−2

3

⌉

, j mod 3 = 0 and P = q±2, j > 0

2
⌈ j−2

3

⌉

+ 1, j mod 3 = 1 or 2 and j > 2 and P = 1.

(7.2)

Note that the statement here is about maximum rank because there are states of

non-integer conformal dimensions in Xj,P subquotients which might be in cells of lower

rank. The rank for those states in the vacuum tilting module that have integer conformal

dimensions is expected to be given precisely by (7.2).

Since the vir ⊕ vir characters of the scaling limit of the JTL simples Xj,P are known

(section 6.1 and App C), this conjecture gives possible values of ranks of Jordan cells

involving corresponding fields of conformal weights (h, h̄).

Note finally, that similar results on ranks of Jordan cells can be formulated for other

tilting modules. For example, states from (limits of) Xj,P subquotients in T2,1, for j > 2,

should be involved in Jordan cells of maximum rank greater given by those in (7.2) plus one.

8 Conclusion

The first obvious conclusion is that the situation seems more complicated than one may

have expected. If the lattice analysis makes the understanding of titling modules possible,

the fact that JTL simples do not correspond to direct sums of vir⊕vir simples forces a very

delicate discussion, and a proliferation of arrows of doubtful use. We believe this simply

means simply that vir ⊕ vir is not the proper object to analyze the continuum limit of

our spin chain — and probably LCFTs in general. The proper object should be the full

scaling limit of the JTL algebra, which contains vir ⊕ vir, but extends it, giving rise to

what we called in [36] the interchiral algebra. We did discuss this algebra in the case of

gℓ(1|1), showing that it was generated by the additional inclusion of the field Φ2,1Φ̄2,1 of

weights h = h̄ = 1. We expect that an analogous interchiral algebra appears in the scaling

limit of JTL(1) represented in the sℓ(2|1) spin chain, and is probably generated by the field

Φ2,1Φ̄2,1 again. Note however that now this field has non integer dimensions h = h̄ = 5
8 . It

is likely that each simple JTL module goes over, in the scaling limit, to a simple module

over this interchiral algebra, and that the analysis in terms of these modules simplifies

considerably. We leave the corresponding discussion for a subsequent paper however. Our

– 60 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
4

algebraic results also have interesting physical consequences: for instance, the field T̄ T

with conformal weights (2, 2) is found to lie at the bottom of a Jordan cell of rank 3. It

would be very interesting to understand how this Jordan cell arises in the c → 0 limit of

operator product expansions.

We also would like to briefly comment that the LCFT obtained as the scaling limit of

the sℓ(2|1) spin chain differs fundamentally from previous proposals at c = 0: in both [74]

and [31], the vacuum indeed appears with multiplicity greater than one. Moreover, a

detailed analysis of the conformal weights and their multiplicities shows that the operator

contents of these proposed theories are not at all compatible with the one we obtained

here. It is not clear to us whether there might be other lattice models whose scaling limit

would correspond to the theories in these references, of whether the corresponding LCFTs

are really consistent.17

It is probably useful to reiterate here that the only modular invariant our theory is

associated with is the trivial invariant Z = 1. See the discussion in section 2 of this paper.

There are certainly many aspects we did not discuss much. Among these is the cen-

tralizer and the corresponding bimodule structure. While this played a crucial role in our

analysis of the gℓ(1|1) spin chain, it turned out to be not so important here since the sℓ(2|1)
provides a faithful representation of the JTL algebra, and other tools could then be used.

But the nature of the centralizer (the ‘symmetry’ of the theory) in the sℓ(2|1) spin chain

and what it becomes in the continuum limit remains to be understood.

We also note that, according to our analysis, indecomposable tilting module Tj,P can

be considered in the scaling limit, under the algebra vir ⊕ vir, as a (complicated) glueing

of an infinite number of Feigin-Fuchs modules. This is reminiscent of the construction

in [75], where full LCFTs are obtained as glueings of many copies of free-boson theories

via the introduction of extra zero modes. In general, understanding the “naturalness” of

the (scaling limit of) the tilting modules and how to obtain them in terms of some free

field representation would be, we believe, a great progress. This would probably require a

thorough numerical examination.
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A The Lie superalgebra sℓ(2|1) and some of its representations

In this appendix, we gather some well-known results about the Lie superalgebra sℓ(2|1).
In particular, we give an explicit Fock space formulation of the fundamental and dual

representations used to construct our Temperley-Lieb spin chain. We also recall some

properties of several finite-dimensional representations that shall be used throughout this

paper. We follow here [67, 68].

A.1 The Lie superalgebra sℓ(2|1)

We define the Lie superalgebra g = sℓ(2|1) by the commutation relations of its 8 generators.

Its bosonic part is g0 = u(1)⊕ sl(2), that is

[B,Q±] = [B,Qz] = 0, (A.1)

[Q+, Q−] = 2Qz, [Qz, Q±] = ±Q±. (A.2)

The fermionic generators obey the simple relations

{F±, F∓} = {F̄±, F̄∓} = 0, (A.3)

{F±, F̄±} = Q±, {F±, F̄∓} = B ∓Qz. (A.4)

Finally, we have

[Qz, F±] = ±1

2
F±, [Qz, F̄±] = ±1

2
F̄±, (A.5)

[B,F±] =
1

2
F±, [B, F̄±] = −1

2
F̄±, (A.6)

[Q±, F±] = [Q±, F̄±] = 0, [Q±, F∓] = −F±, [Q±, F̄∓] = F̄±. (A.7)

Note that there is a subalgebra gℓ(1|1) spanned by the generators Ψ+ = F+,Ψ− = F−, E =

B −Qz and N = B +Qz.

A.2 Fundamental and dual representations in Fock space

Three-dimensional representations of this superalgebra are readily obtained using creation

and annihilation operators. To construct what we will refer to as fundamental represen-

tation �, we introduce two boson operators [bσ, b
†
σ′ ] = δσ,σ′ , where σ ∈ {↑, ↓}, and one

fermion {f, f †} = 1. The generators read18

B = f †f +
1

2
(b†↑b↑ + b†↓b↓), Qz =

1

2
(b†↑b↑ − b†↓b↓), Q+ = b†↑b↓, Q− = b†↓b↑, (A.8)

F+ = f †b↑, F− = f †b↓, F̄+ = b†↓f, F̄− = b†↑f. (A.9)

These generators furnish a representation of sℓ(2|1) in the space C
2|1 ≃ � ≡

Span{b†↑ |0〉 , b
†
↓ |0〉 , f † |0〉}. One can also construct the so-called dual representation �̄ ≡

18We use the same notation for the generators and their representation in the Fock space.
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Span{b̄†↑ |0〉 , b̄
†
↓ |0〉 , f̄ † |0〉}, where [b̄σ, b̄

†
σ′ ] = δσ,σ′ and {f̄ , f̄ †} = −1. The generators act as

B = f̄ †f̄ − 1

2
(b̄†↑b̄↑ + b̄†↓b̄↓), Qz =

1

2
(b̄†↑b̄↑ − b̄†↓b̄↓), Q+ = −b̄†↑b̄↓, Q− = −b̄†↓b̄↑, (A.10)

F+ = b̄†↑f̄ , F− = b̄†↓f̄ , F̄+ = f̄ †b̄↓, F̄− = f̄ †b̄↑. (A.11)

Note also that the operator

e = (b̄†↑b
†
↓ + b̄†↓b

†
↑ + f̄ †f †)(b↑b̄↓ + b↓b̄↑ + ff̄) (A.12)

is the projector onto the singlet in the tensor product representation �⊗�̄. This expression

will be used as a definition of the Temperley-Lieb generator.

A.3 Finite dimensional representations

We also recall some usual notations for the finite dimensional representations of sℓ(2|1).
We begin with the irreducible representations. Except for the trivial representation {0} of

dimension 1, the irreducible atypical representations {j}± are labeled by the half-integer

j = 1
2 , 1, . . . ; they have dimension 4j+1. There are also typical representations {b, j} (with

dimension 8j and b 6= ±j) where b is a U(1) charge, they are also projective. When b = ±j,

the modules {±j, j} become indecomposable. Using these notations, the fundamental and

dual representations are � = {1
2}+ and �̄ = {1

2}−; and the adjoint representation is {0, 1}.
We will also be interested in atypical projective covers P±(j) (with dimension 16j + 4

for j 6= 0 and dimension 8 if j = 0). The projective covers P±(j) have the following

subquotient structure (left diagram for j 6= 0, whereas P (0) is given by the right diagram):

{j}±

{j − 1
2}± {j + 1

2}±

{j}±

{0}

{1
2}− {1

2}+

{0}

The arrows represent here the action of the generators of sℓ(2|1). We shall not describe

the tensor product of all these representations here, and refer the interested reader to

ref. [67]. Using those results, one can decompose the Hilbert space H = (� ⊗ �̄)⊗N

onto projective representations only (except for the fundamental). In particular, we have

�⊗ �̄ = {0} ⊕ {0, 1}.

B Faithfulness of JTLN(m) representations on super-spin chains

We discuss in this appendix the more general case of periodic spin-chains with sℓ(m+n|n)
symmetry. The sℓ(m+n|n) super-spin chain [18] is the tensor product HN = ⊗N

j=1Vj , with

Vj
∼= C

m+n|n, which consists of N = 2L sites labelled j = 1, . . . , 2L with the fundamental

representation of sℓ(m + n|n) on even sites and its dual on odd sites. We choose a basis
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〈vi, 1 ≤ i ≤ m+2n〉 in each Vj such that the range 1 ≤ i ≤ m+n corresponds to the grade-0

(bosonic) subspace and the vi with m+ n < i ≤ m+ 2n span the fermionic subsapce.

We consider the following representation of JTL
au
2L(m), which we denote by πm,n :

JTL
au
N (m) → EndC(HN ), with the matrix elements for ej (for even j, at least), with

1 ≤ cj , dj ≤ m+ 2n,

πm,n(ej)
d1...djdj+1...dN
c1...cjcj+1...cN =(−1)|cj |δ(cj , cj+1)δ(dj , dj+1)

∏

k 6=j,j+1

δ(ck, dk), 1 ≤ j ≤ N, (B.1)

and with matrix elements for the translation operator u2

πm,n(u
2)

d1...djdj+1...dN
c1...cjcj+1...cN = (−1)(|cN−1|+|cN |)∑N−2

k=1 |ck|δ(cN−1, d1)δ(cN , d2)
N−2
∏

k=1

δ(ck, dk+2).

(B.2)

Here, we use the basis in HN spanned by the monoms vc1 ⊗ vc2 ⊗ . . .⊗ vcN , with vcj being

the basis in each Vj
∼= C

m+n|n. The representation πm,n is equivalent to the one in [18] for

any m,n ≥ 0. In particular, for m = 1, the equation (B.1) gives the representation defined

in (2.4) and (2.5).

Obviously, the representation πm,n defines a homomorphism of JTLauN (m) to (a rep-

resentation of) the Brauer algebra. The sector of affine diagrams with N through lines

is spanned by u2j (with the relation uN = 1) and the corresponding image in the Brauer

algebra is spanned by ‘planar’ diagrams, where 2j through-lines on the right (of the funda-

mental rectangle) are going from the right to the left-top crossing the other lines and thus

picking up a sign factor (−1)
∑2j−1

l=0 |cN−l|
∑N−2j

k=1 |ck| as in (B.2). Modulo multiplication by

appropriate even powers of u, linearly independent affine diagrams in the ideal of JTLauN (m)

with number of through lines less thanN contain only arcs and through lines connecting the

inner boundary with the outer one and without ‘winding’ around the annulus (this guar-

antees that the corresponding diagram in the Brauer algebra have no intersecting through

lines). Therefore, any such diagram, sandwiched between appropriate even powers of u, is

represented by a matrix with elements obtained by the following rules:

1. each through line connecting the jth site on the inner boundary with the kth site on

the outer is replaced by the multiplier δ(cj , dk);

2. each arc connecting the jth and kth sites on the inner boundary is replaced by the

multiplier (−1)|cj |δ(cj , ck);

3. each arc connecting the jth and kth sites on the outer boundary is replaced by

δ(dj , dk).

The representation πm,n is therefore non-faithful by trivial reasons — the kernel of πm,n

contains affine diagrams in the ideal J0 (without through lines) that are not planar, i.e. the

image πm,n(J0) has the dimension
((

2L
L

)

−
(

2L
L−1

))2
and is generated by (the representation

of) the diagrams that are in bijection with the usual Temperley-Lieb diagrams without

through lines (which represented faithfully [18] for n ≥ 1 or m > 1 and n = 0). We next

give a proof that non-planar diagrams in J0 ⊂ JTL
au
N (m) exhaust the kernel of πm,n, for

m,n > 0 or n > 1. The case m = 0 and n = 1 is known to be highly non-faithful.
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Theorem B.1. For m,n > 0, the representation πm,n : JTLauN (m) → EndC(HN ) defined

in (B.1)–(B.2) has kernel spanned by non-planar affine diagrams with zero through-lines.

Proof. Our proof is essentially an adaptation of the original proof of V. Jones [52] in the

bosonic case (n = 0) to the super-symmetric case.

We have already shown above that the kernel of πm,n contains the non-planar dia-

grams19 from the ideal J0 ⊂ JTL
au
N (m) and πm,n

(

J0 ∩ TLN (m)
)

has no additional linear

relations among the planar diagrams due to the faithfullness of πm,n restricted to the sub-

algebra TLN (m). The non-planar diagrams in the kernel of πm,n span an ideal in J0 which

we denote as Jn
0 . In the following, we will thus consider only diagrams µ from the quo-

tient JTL = JTL
au
N (m)/Jn

0 (we use the simplified notation for the algebra JTLN (m)) by

this ideal.

Suppose the πm,n has a non-trivial kernel in JTL. It means there are linear relations

in EndC(HN ) among the basis diagrams µ ∈ JTL, i.e. there exists a linear combination

A =
∑

µ∈JTL
aµπm,n(µ) ≡ 0, (B.3)

where some aµ ∈ C are non-zero for a diagram with through-lines. Consider a diagram

µ (which we denote as µj,k) with non-zero aµ and containing a through-line connecting,

say, the jth site on the inner boundary of the annulus with the kth site on the outer.

Matrix elements of this diagram are given either by the ones for πm,n(u
2r), with an integer

r = |j − k|/2, in (B.2) or, following the rules 1.-3. given above,

πm,n(µj,k)
...dk...dN
...cj ...cN

= δ(cj , dk)
∏

{(j′,k′)}
δ(cj′ , dk′)

∏

{(i,l)}

∏

{(i′,l′)}
(−1)|ci|δ(ci, cl)δ(di′ , dl′), (B.4)

for appropriate pairs {(j′, k′)}, with j′ 6= j and k′ 6= k, corresponding to end points of all

the other through lines, and pairs {(i, l)}, {(i′, l′)} corresponding to end points of arcs at

the inner and outer boundaries, respectively.

Consider a projector Pj from EndC(HN ) with the kernel of Pj being the bosonic (grade-

0) subspace in the jth tensorand Vj and the fermionic (grade-1) subspace in each Vj′

with j′ 6= j (the image of Pj is thus spanned by vc1 ⊗ vc2 ⊗ . . . ⊗ vcj ⊗ . . . ⊗ vcN with

m + n + 1 ≤ cj ≤ m + 2n and 1 ≤ cj′ ≤ m + n for j′ 6= j). Then, we have the equalities

(we recall the definition (B.3))

0 = PkAPj =
∑

µ∈JTL
aµPkπm,n(µ)Pj =

∑

µj,k

aµj,k
Pkπm,n(µj,k)Pj (B.5)

while

Pkπm,n(µj,k)Pj 6= 0, (B.6)

where the last sum in (B.5) is taken over all possible affine diagrams having a through-line

connecting the jth site with the kth site. The last equality in (B.5) and inequality (B.6)

follow from a direct simple calculation using (B.4).

19actually, it contains a linear combination of non-planar and planar diagrams.
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We note that some of the aµj,k
in the last sum in (B.5) are non-zero by our construction

and the set of diagrams {µj,k} is in a bijection with planar diagrams from TLN−1; the

bijection is obtained by cutting the annulus along the through line connecting the jth site

with the kth one. We thus obtain that Pkπm,n(µj,k)Pj (after multiplying it with translation

operators by j and k sites on the right and left, respectively) represents a planar diagram

from TLN−1(m + n) on the (n copies of) sℓ(m + n)-invariant spin-chain of length N − 1.

This representation is well-known to be faithful [52], in contradiction with (B.5). This

finishes the proof.

Remark B.1.1. As a corrollary to the previous theorem we conclude that the representa-

tion πm,n can be restricted to the quotient-algebra JTLN (m) introduced before (3.5) and

this representation is faithful on the alternating super-spin chains with sℓ(m+n|n) symme-

try for m,n > 0. Faithfullness in the case m = 0 and n > 1 can be proved in a similar way.

The orthogonal projectors Pj can be chosen such that they project onto a one-dimensional

subspace in the tensorand Vj and onto the complementary subspace in each tensorand Vj′ ,

with j′ 6= j.

C Virasoro content of JTL simples

In this appendix, we gather some character formulas that give the Virasoro content of

the JTL simple modules Xj,P . We focus first on the case that corresponds to (j, e2iK) =

(0 mod 3, 1) that is, a spin multiple of three and no twist. In this case, the structure of

submodules is much simpler, and implies a single ladder given on the right of figure 13.

For instance, consider

F
(0)
3,1 = F3,1 − F6,1 =

∞
∑

r=1

Kr,3K̄r,9 (C.1)

We now have the following identities

K2k,3 = χ2,3k

K2k−1,3 = χ1,3k−3 + χ1,3k

K2k,9 = χ2,3k−6 + χ2,3k + χ2,3k+6

K2k−1,9 = χ1,3k−9 + χ1,3k−6 + χ1,3k−3 + χ1,3k + χ1,3k+3 + χ1,3k+6 (C.2)

and thus

F
(0)
3,1 = χ13 (χ̄16 + 2χ̄19 + χ̄1,12) + χ1,6 (χ̄13 + 2χ̄16 + 2χ̄1,9 + 2χ̄1,12 + χ̄1,15)

+
∞
∑

k=3

χ1,3k (χ̄1,3k−9 + 2χ̄1,3k−6 + 2χ̄1,3k−3 + . . .+ 2χ̄1,3k+6 + χ̄1,3k+9)

+χ2,3χ̄2,9 + χ2,6 (χ̄26 + χ̄2,12) +
∞
∑

k=3

χ2,3k (χ̄2,3k−6 + χ̄2,3k + χ̄2,3k+6) . (C.3)

Note that we have the symmetries

h1,3k = h2k+1,3, h2,3k = h2k,3,
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so the conformal weights here fill up the third row of the Kac table in figure 19. Similarly,

we find

F
(0)

3,e2iπ/3 = χ11χ̄52 + χ31 (χ̄32 + 2χ̄52 + χ̄72) +
∞
∑

k=1

χ2k,1 (χ̄2k−2,2 + χ̄2k+2,2)

+
∞
∑

k=0

χ2k+5,1 (χ̄2k+1,2 + 2χ̄2k+3,2 + 2χ̄2k+5,2 + 2χ̄2k+7,2 + χ̄2k+9,2)

= χ51χ̄12 + (χ31 + 2χ51 + χ71) χ̄32 +
∞
∑

k=1

(χ2k−2,1 + χ2k+2,1) χ̄2k,2

+
∞
∑

k=0

(χ2k+1,1 + 2χ2k+3,1 + 2χ2k+5,1 + 2χ2k+7,1 + χ2k+9,1) χ̄2k+5,2 (C.4)

and

F
(0)

3,e4iπ/3 = χ12χ̄51 + χ32 (χ̄31 + 2χ̄51 + χ̄71) +
∞
∑

k=1

χ2k,2 (χ̄2k−2,1 + χ̄2k+2,1)

+

∞
∑

k=0

χ2k+5,2 (χ̄2k+1,1 + 2χ̄2k+3,1 + 2χ̄2k+5,1 + 2χ̄2k+7,1 + χ̄2k+9,1)

= χ52χ̄11 + (χ32 + 2χ52 + χ72) χ̄31 +
∞
∑

k=1

(χ2k−2,2 + χ2k+2,2) χ̄2k,1

+
∞
∑

k=0

(χ2k+1,2 + 2χ2k+3,2 + 2χ2k+5,2 + 2χ2k+7,2 + χ2k+9,2) χ̄2k+5,1 (C.5)

F
(0)
4,1 = χ12χ̄7,2 + χ3,2 (χ̄5,2 + 2χ̄7,2 + χ̄9,2) + χ5,2 (χ̄3,2 + 2χ̄5,2 + 2χ̄7,2 + 2χ̄9,2 + χ̄11,2)

+
∞
∑

k=0

χ2k+5,2 (χ̄2k+1,2 + 2χ̄2k+3,2 + 2χ̄2k+5,2 + . . .+ 2χ̄2k+11,2 + χ̄2k+13,2)

+ χ22χ̄62 +
∞
∑

k=2

χ2k,2 (χ̄2k−4,2 + χ̄2k,2 + χ̄2k+4,2)

= χ7,2χ̄12 + (χ5,2 + 2χ7,2 + χ9,2) χ̄3,2 + (χ3,2 + 2χ5,2 + 2χ7,2 + 2χ9,2 + χ11,2) χ̄5,2

+
∞
∑

k=0

(χ2k+1,2 + 2χ2k+3,2 + 2χ2k+5,2 + . . .+ 2χ2k+11,2 + χ2k+13,2) χ̄2k+5,2

+ χ62χ̄22 +

∞
∑

k=2

(χ2k−4,2 + χ2k,2 + χ2k+4,2) χ̄2k,2 (C.6)

F
(0)
5,1 = χ11χ̄7,1 + χ3,1 (χ̄5,1 + 2χ̄7,1 + χ̄9,1) + χ5,1 (χ̄3,1 + 2χ̄5,1 + 2χ̄7,1 + 2χ̄9,1 + χ̄11,1)

+
∞
∑

k=0

χ2k+5,1 (χ̄2k+1,1 + 2χ̄2k+3,1 + 2χ̄2k+5,1 + . . .+ 2χ̄2k+11,1 + χ̄2k+13,1)

+ χ21χ̄61 +
∞
∑

k=2

χ2k,1 (χ̄2k−4,1 + χ̄2k,1 + χ̄2k+4,1)
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= χ7,1χ̄11 + (χ5,1 + 2χ7,1 + χ9,1) χ̄3,1 + (χ3,1 + 2χ5,1 + 2χ7,1 + 2χ9,1 + χ11,1) χ̄5,1

+
∞
∑

k=0

(χ2k+1,1 + 2χ2k+3,1 + 2χ2k+5,1 + . . .+ 2χ2k+11,1 + χ2k+13,1) χ̄2k+5,1

+ χ61χ̄21 +
∞
∑

k=2

(χ2k−4,1 + χ2k,1 + χ2k+4,1) χ̄2k,1 (C.7)

F
(0)

6,e2iπ/3 = χ11χ̄9,2 + χ3,1 (χ̄7,2 + 2χ̄9,2 + χ̄11,2) + χ5,1 (χ̄5,2 + 2χ̄7,2 + 2χ̄9,2 + 2χ̄11,2 + χ̄13,2)

+
∞
∑

k=0

χ2k+7,1 (χ̄2k+3,2 + 2χ̄2k+5,2 + 2χ̄2k+7,2 + . . .+ 2χ̄2k+13,2 + χ̄2k+15,2)

+ χ21χ̄82 + χ41 (χ̄62 + χ̄10,2) +
∞
∑

k=3

χ2k,1 (χ̄2k−6,2 + χ̄2k−2,2 + . . .+ χ̄2k+6,2)

= χ9,1χ̄12 + (χ7,1 + 2χ9,1 + χ11,1) χ̄3,2 + (χ5,1 + 2χ7,1 + 2χ9,1 + 2χ11,1 + χ13,1) χ̄5,2

+
∞
∑

k=0

(χ2k+3,1 + 2χ2k+5,1 + 2χ2k+7,1 + . . .+ 2χ2k+13,1 + χ2k+15,1) χ̄2k+7,2

+ χ81χ̄22 + (χ61 + χ10,1) χ̄42 +
∞
∑

k=3

(χ2k−6,1 + χ2k−2,1 + . . .+ χ2k+6,1) χ̄2k,2

(C.8)

while F
(0)

6,e4iπ/3 would be obtained by switching the 1 and 2 for the right character labels.

D Free field and vertex operators

We recall here basic facts about scalar free fields and Feigin-Fuchs modules. Let ϕ denote

a free scalar field with the OPE

∂ϕ(z)∂ϕ(w) =
1

(z − w)2
(D.1)

and the mode expansion

∂ϕ(z) =
∑

n∈Z
ϕnz

−n−1. (D.2)

The energy-momentum tensor is given by

T (z) =
1

2
∂ϕ(z)∂ϕ(z) +

α0

2
∂2ϕ(z) (D.3)

where we fix two coprime positive integers p+ and p− and set

α− = −
√

2p+
p−

, α+ =

√

2p−
p+

, α0 = α+ + α−. (D.4)

.

The modes of ∂ϕ(z) span the Heisenberg algebra and the modes of T (z) span the

Virasoro algebra V with the central charge

c = 1− 6

(

p+ − p−
)2

p+p−
. (D.5)
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The vertex operators are given by ej(r,s)ϕ(z) with j(r, s) = 1−s
2 α− + 1−r

2 α+, r, s ∈ Z.

Equivalently, these vertex operators can be parameterized as

Vr,s;n(z) = e
p−(1−r)−p+(1−s)+p+p−n√

2p+p−
ϕ(z)

, 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, n∈Z. (D.6)

The conformal dimension of Vr,s;n(z) assigned by the energy-momentum tensor is

∆r,s;n =
(p+s−p−r+p+p−n)2 − (p+−p−)2

4p+p−
. (D.7)

We note that

∆−r,−s;−n = ∆r,s;n, ∆r+kp+,s+kp−;n = ∆r,s;n, ∆r,s+kp−;n = ∆r,s;n+k. (D.8)

D.1 Feigin-Fuchs modules

For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, and n∈Z, let Fr,s;n denote the Fock module of the Heisenberg

algebra generated from (the state corresponding to) the vertex operator Vr,s;n(z). The zero

mode ϕ0 =
1

2iπ

∮

dz∂ϕ(z) acts in Fr,s;n by multiplication with the number

ϕ0 v =
p−(1− r)− p+(1− s) + p+p−n

√

2p+p−
v, v ∈ Fr,s;n.

We write Fr,s ≡ Fr,s;0. For convenience of notation, we identify F0,s;n ≡ Fp+,s;n+1 and

Fr,0;n ≡ Fr,p−;n−1.

Let Yr,s;n with 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, and n∈Z denote the Virasoro module that

coincides with Fr,s;n as a linear space, with the Virasoro algebra action given by (D.3)

(see [76]). As with the Fr,s;n, we also write Yr,s ≡ Yr,s;0.

The well-known structure [77] of Yr,s for 1 ≤ r ≤ p+− 1 and 1 ≤ s ≤ p−− 1 is

recalled in figure 22. We let Jr,s;n denote the irreducible Virasoro module with the highest

weight ∆r,s;n (as before, 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, and n∈Z). Evidently, Jr,s;n ≃
Jp+−r,p−−s;−n. The 1

2(p+− 1)(p−− 1) nonisomorphic modules among the Jr,s;0 with 1 ≤
r ≤ p+− 1 and 1 ≤ s ≤ p−− 1 are the irreducible modules from the Virasoro (p+, p−)
minimal model. We also write Jr,s ≡ Jr,s;0. For convenience of notation, we identify

J0,s;n ≡ Jp+,s;n+1 and Jr,0;n ≡ Jr,p−;n−1.

The Fock spaces introduced above constitute a free-field module

F =
⊕

n∈Z

p+
⊕

r=1

p−
⊕

s=1

Fr,s;n. (D.9)

It can be regarded as (the chiral sector of) the space of states of the Gaussian Coulomb

gas model compactified on the circle of radius
√
2p+p−. Note that the central charges we

consider correspond to p+ = x and p− = x+ 1.
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×
[r,s;0]

N
[p+−r,s;1] • [r,p−−s;1]

◦[r,s;2]
�

[p+−r,p−−s;2]

N
[p+−r,s;3] • [r,p−−s;3]

◦[r,s;4]
�

[p+−r,p−−s;4]

Figure 22. Subquotient structure of the Feigin-Fuchs module Yr,s. The notation is as follows.

The cross × corresponds to the subquotient Jr,s, the filled dots • to Jr,p−−s;2n+1 with n ∈ N0, the

triangles N to Jp+−r,s;2n+1 with n ∈ N0, the open dots ◦ to Jr,s;2n with n ∈ N, and the squares � to

Jp+−r,p−−s;2n with n ∈ N. The notation [a, b;n] in square brackets is for subquotients isomorphic

to Ja,b;n. The filled dots constitute the socle of Yr,s.
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