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1 Introduction

In the standard three flavor neutrino oscillation paradigm, lepton flavor mixing is described

by the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS which is a

3 × 3 unitary matrix [1]. UPMNS contains three mixing angles θ12, θ13, θ23 and one

Dirac CP violating phase δCP . There are two more Majorana CP phases if neutrinos

are Majorana particles. With the measurement of the last mixing angle θ13 by Daya

Bay [2, 3], RENO [4] and Double Chooz [5, 6], all three lepton mixing angles have been

measured with good accuracy in neutrino oscillation experiments [7–9]. Recently T2K has

reported a slight preference for δCP close to 3π/2 [10, 11], when the data are combined with

the measurements of the reactor experiments. The present global fit to neutrino data also
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indicates nontrivial values of δCP [7–9]. However, the values of the both Majorana phases

are unknown so far. Search for leptonic CP violation via the determination of δCP is one

of the major goals of future long-baseline experiments such as the proposed LBNE [12, 13],

LBNO [14–17] and HyperKamiokande [18].

In the bottom-up approach, it is found that both neutrino and charged lepton mass

matrices have residual flavor symmetries determined by lepton flavor mixing, and vice

versa residual flavor symmetries in the mass matrices can determine the lepton mixing

matrix up to Majorana phases and permutations of rows and columns [19–21]. Inspired by

the fact, it is assumed that the residual flavor symmetries arise from a underlying flavor

symmetry group Gf which is usually chosen to be a finite and non-abelian subgroup of

U(3). In the past years, much effort has been devoted to the discussion of lepton flavor

mixing from a discrete flavor symmetry Gf and its breaking [22–25]. It is surprising that

the mixing patterns achievable in this way are quite limited, the PMNS matrix can only

be of the trimaximal form to accommodate the experimental data and the Dirac phase is

trivial [26]. On the other hand, in the so-called indirect approach [27], the family symmetry

is completely broken such that the residual flavor symmetry derived in bottom-up approach

emerges indirectly as an accidental symmetry.

Beside residual flavor symmetries, neutrino and charged lepton mass matrices have

residual CP symmetries [28, 29]. Analogous to residual flavor symmetries, residual CP

symmetries also impose strong constraints on the mass matrices and therefore allow us

to reconstruct the lepton mixing matrix [28]. A simple example is the well-known µ − τ
reflection symmetry [30–35] which predicts maximal atmospheric mixing angle θ23 and

maximal Dirac CP phase. It is natural to conjecture that there is a CP symmetry HCP

(also called generalized CP symmetry) at high energy scale, which is broken down to the

residual CP symmetries at low energy. Note that the effects of CP symmetry on the fermion

mass matrix have been discussed several decades ago [36–40].

Recently it is proposed to predict the lepton mixing angles and CP phases by combining

a discrete flavor symmetry Gf with a CP symmetry HCP [41, 42]. HCP has to be compatible

with Gf such that the possible forms of the CP transformations are strongly constrained.

It has been proved that the mathematical structure of the group comprising Gf and HCP

is in general a semi-direct product Gf oHCP [41]. In this framework, the flavor symmetry

Gf is broken down to different abelian subgroups Gν and Gl in the neutrino and charged

lepton sectors respectively, and HCP is broken into residual CP symmetry Hν
CP and H l

CP

respectively. The mismatch between the remnant symmetries Gν o Hν
CP and Gl o H l

CP

generates the PMNS matrix. Neutrinos are generically assumed to be Majorana particles.

As a consequence, Gν can only be a K4
∼= Z2 × Z2 or Z2 subgroup of Gf . In the case

that Gν = K4 and Gl is capable of distinguishing the three generations (i.e.,Gl can not be

smaller than Z3), all lepton mixing parameters including the Majorana phases would be

completely fixed by residual symmetries once the CP symmetry is considered. In this way,

both Dirac and Majorana CP violating phases are found to be conserved in the context

of ∆(6n2) family symmetry combined with generalized CP [43]. Recently a bottom up

analysis of the remnant K4 flavor symmetry and CP symmetry in the neutrino sector has

been performed [29]. On the other hand, if Gν = Z2 and a CP symmetry is preserved
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in the neutrino sector, only one column of the PMNS matrix can be fixed and all lepton

mixing parameters depend on one single real parameter θ. Along this line, the family

symmetries A4 [44], S4 [41, 45–49], T ′ [50], ∆(48) [51, 52], ∆(96) [53], ∆(3n2) [54] and

∆(6n2) [54, 55] which are combined with the corresponding generalized CP symmetries

have been investigated already. It is found that CP phases can only be trivial or maximal

in simple family symmetries A4 [44] and S4 [41, 45–49] while ∆(48) [51, 52] and ∆(96) [53]

(also ∆(3n2) and ∆(6n2) [54, 55]) family symmetries admit mixing patterns in which all CP

phases nontrivially depend on the parameter θ. In addition, some models with both flavor

and CP symmetries have been constructed [45–49, 51, 52]. Last but not least, if remnant

symmetries in the neutrino and charged lepton sectors are K4 o Hν
CP and Z2 × H l

CP

respectively, then the PMNS matrix is also predicted in terms of the parameter θ and one

row instead of one column would be fixed [49, 55].

It is known that the flavor symmetry group should be of the von Dyck type [56, 57].

The finite von Dyck groups include S3, A4, S4, A5 and dihedral groups [58]. Since S3 and

dihedral groups don’t have irreducible three dimensional representations, they are not suit-

able as flavor symmetry otherwise two mixing angles would vanish. The phenomenological

consequences of A4 and S4 flavor symmetries combined with generalized CP have been stud-

ied [41, 44–49]. In the present work, we shall investigate the A5 flavor symmetry and CP

symmetry. We shall perform a model independent analysis of possible lepton flavor mixing

obtained from breaking of the original symmetry A5 oHCP . We find five phenomenologi-

cally interesting mixing patterns summarized in table 1. The three mixing angles turn out

to depend on only one free parameter θ and good agreement with their measured values can

be achieved for certain values of θ, the Dirac CP phase is conserved or maximal and the Ma-

jorana CP phases are trivial. Furthermore, we construct a model based on A5 oHCP . The

lepton mixing is exactly the golden ratio (GR) texture at leading order (LO). A non-zero

θ13 is generated by the next-to-leading-order (NLO) corrections, and the mixing patterns

of cases III and IV discussed in the model independent analysis are generated.

The layout of the rest of this paper is as follows. In section 2, the physical CP trans-

formations compatible with the A5 family symmetry are found. In section 3, we perform a

model independent analysis of possible lepton mixing patterns achievable from the under-

lying symmetry group A5 oHCP . In section 4, we present our A5 oHCP model, the LO

structure, vacuum alignment and the NLO corrections are discussed. Section 5 concludes

the paper. In appendix A, we review the group theory of A5 and the Clebsch-Gordan co-

efficients in our working basis are reported. In appendix B, we present the possible mixing

patterns arising from the A5 flavor symmetry without CP symmetry, where the residual

flavor symmetry in the neutrino sector is either Klein or Z2 subgroup of A5. Compared

with section 3, we see that generalized CP is really a powerful method of predicting CP

phases as well as lepton mixing angles.

2 Approach

Both family symmetry and CP symmetry acts on the flavor space in a non-trivial way, and

the interplay between them should be carefully treated. In order to consistently combine
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a family symmetry Gf with a CP symmetry which is represented by unitary CP transfor-

mation matrix X, X must be related to an automorphism u : Gf → Gf . To be precise,

the CP transformation X should be a solution to the consistency equation [41, 42]

Xρ∗(g)X−1 = ρ (u(g)) , ∀g ∈ Gf , (2.1)

where ρ is a representation of Gf with ρ : G → GL(N,C), and it is generally reducible.

We can easily check that the automorphism associated with ρ(h)X for any h ∈ Gf is an

composition of u and an inner automorphism µh : g → hgh−1 with h, g ∈ Gf [49, 53].

Therefore the effects of inner automorphism can be easily included, and it is equivalent to

a family symmetry transformation. As a consequence, we could firstly focus on the outer

automorphism of Gf . In the present work, we shall consider the “minimal” theory in which

the generalized CP transforms the field ϕ ∼ r into its complex conjugate ϕ∗ ∼ r∗, and

the transformation into another field ϕ′∗ ∼ r′∗ with r′ 6= r is beyond the present scope

since both ϕ and ϕ′ would be required to be present in pairs and correlated with each

other in that case. Here r and r′ denote the irreducible representations of Gf . In addition,

the authors of ref. [59] claimed that physical CP transformations have to be class-inverting

automorphisms, such that each irreducible representation r is mapped into its own complex

conjugate under the action of generalized CP. Hence the consistency condition in eq. (2.1)

takes a more restricted form:

Xrρ
∗
r(g)X−1

r = ρr (u(g)) , ∀g ∈ Gf , (2.2)

where the subscript “r” refers to the representation space acted on. The CP transformation

X in eq. (2.1) is given by the direct sum of the Xr corresponding to the particle content

of the model. Notice that the consistency conditions of eq. (2.2) can also be derived from

the requirement that the Lagrangian is invariant under both CP symmetry and flavor

symmetry [60].

In the present work, we are interested in the family symmetry Gf = A5. The group

theory of A5, its representation and all the Clebsch-Gordan coefficients are reported in

appendix A. The structure of the automorphism group of A5 is quite simple and is very

clear in mathematica.

Z(A5) ∼= Z1, Aut(A5) ∼= S5,

Inn(A5) ∼= A5, Out(A5) ∼= Z2 , (2.3)

where Z(A5), Aut(A5), Inn(A5) and Out(A5) denote the center, automorphism group,

inner automorphism group and outer automorphism group of A5 respectively. We see that

the outer automorphism group of A5 is isomorphic to Z2. Consequently there is only one

non-trivial outer automorphism u with

S
u7−→ S, T

u7−→
(
ST 3

)2
. (2.4)

The order of u is really 2, i.e., u2 = id, where id represents the trivial automorphism

id(g) = g, ∀g ∈ A5. One can straightforwardly check that u acts on the A5 conjugacy

classes as follows

1C1
u7−→ 1C1, 15C2

u7−→ 15C2, 20C3
u7−→ 20C3, 12C5

u←→ 12C ′5 . (2.5)
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It interchanges the classes 12C5 and 12C ′5. Since the inverse of each A5 conjugacy class is

equal to itself, u is not a class-inverting automorphism. In terms of representations, the two

different three-dimensional irreducible representations 3 and 3′ are exchanged not mapped

into their conjugate under the action of u. The generalized CP symmetry related with u

can only be consistently defined if fields transforming as 3 and 3′ are absent or appear in

pairs in a model. The three left-handed leptons are assigned to a triplet 3 in this work, and

the exchange of fields transforming as 3 and 3′ is not allowed in the “minimal” theory. As

a result, we shall concentrate on the CP transformations associated with the trivial outer

automorphism (i.e., the inner automorphism) of A5 family symmetry.

Now we consider the representative inner automorphism µT 3ST 2ST 3S : (S, T )→ (S, T 4).

The corresponding generalized CP transformation X0
r is fixed by the consistency equations:

X0
rρ
∗
r(S)(X0

r )−1 = ρr(S),

X0
rρ
∗
r(T )(X0

r )−1 = ρr(T
4) . (2.6)

From the representation matrices given in appendix A, we see that for any representation

ρ∗r(S) = ρr(S), ρ∗r(T ) = ρr(T
4) . (2.7)

Therefore X0
r is an identity matrix up to an overall phase, i.e.,

X0
r = 1 . (2.8)

Including the contribution of the remaining inner automorphisms in the manner stated

below eq. (2.1), the most general CP transformation consistent with A5 family symmetry

is of the form

Xr = ρr(g)X0
r = ρr(g), g ∈ A5 . (2.9)

This means that the generalized CP transformation consistent with A5 is of the same form

as the family group transformation in our working basis while they act on a field multiplet

in different ways: ϕ(x)
g7−→ ρr(g)ϕ(x), g ∈ A5 versus ϕ(x)

CP7−→ Xrϕ
∗(xP ) = ρr(g)ϕ∗(xP ),

where xP = (t,−~x).

In this work, the phenomenological implications of A5 family symmetry combined with

the generalized CP symmetry would be investigated in a systematical and comprehensive

way. The parent symmetry is A5 oHCP at high energy scale, where the element of HCP

is the CP transformation compatible with A5 and its explicit form is given by eq. (2.9). In

this setup, lepton mixing can be predicted from A5 oHCP breaking into different remnant

symmetries Gl o H l
CP and Gν o Hν

CP in the charged lepton and neutrino masses respec-

tively, where Gl, Gν and H l
CP , Hν

CP denote residual family symmetries and residual CP

symmetries respectively. It is notable that the predictions for the lepton flavor mixing only

depend on the assumed symmetry breaking patterns and are independent of the details of

a specific implementation scheme, such as the possible additional symmetries of the model

and the involved flavon fields and their assignments etc. In practice, the three generations

of left-handed leptons doublets are embedded into the faithful three-dimensional represen-

tation 3 of A5. Since 3′ is related to 3 by the outer automorphism u, the results would

– 5 –
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be the same and no additional results would be found, if we assign the three left-handed

leptons to the representation 3′ instead. The requirement that Gl o H l
CP is preserved

by the charged lepton mass term implies that the hermitian combination m†lml must be

invariant under the remnant symmetry Gl oH l
CP , i.e.,

ρ†3(gl)m
†
lmlρ3(gl) = m†lml, gl ∈ Gl , (2.10a)

X†l3m
†
lmlXl3 = (m†lml)

∗, Xl3 ∈ H l
CP , (2.10b)

where the mass matrix ml is defined in the convention lRmllL. Once Gl and H l
CP

are specified, the most general form of m†lml can be straightforwardly constructed from

eqs. (2.10a), (2.10b). In the present work, we shall assume neutrinos are Majorana parti-

cles. In the same fashion, requiring that Gν o Hν
CP is a symmetry of the neutrino mass

matrix mν implies that mν should be invariant under the action of Gν oHν
CP ,

ρT3 (gν)mνρ3(gν) = mν , gν ∈ Gν , (2.11a)

XT
ν3mνXν3 = m∗ν , Xν3 ∈ Hν

CP , (2.11b)

which allow us to derive the explicit form of mν . Since both remnant family symmetry

and remnant CP symmetries are still preserved after symmetry breaking, they should be

compatible with each other. That is to say consistency equation similar to eq. (2.2) has

to be fulfilled,

Xνρ
∗(gνi)X

−1
ν = ρ(gνj ), gνi , gνj ∈ Gν , (2.12a)

Xlρ
∗(gli)X

−1
l = ρ(glj ), gli , glj ∈ Gl . (2.12b)

The prediction for the PMNS matrix can be obtained by further diagonalizing the

reconstructed mass matrices m†lml and mν . Please see ref. [28] for an alternative way of

directly extracting the PMNS matrix from the representation matrices of the remnant

symmetries without resorting to the mass matrices. As the order of neutrino and charged

lepton masses is indeterminate in our framework, it is only possible to determine the

PMNS matrix up to independent row and column permutations.

From the remnant symmetry invariant conditions of eqs. (2.10a), (2.10b), we can see

that Xlr and ρr(gl)Xlr with gl ∈ Gl lead to the same constraint on m†lml. Furthermore,

the residual CP transformation Xlr should be a symmetric matrix otherwise the charged

lepton masses would be restricted to be partially degenerate [28, 49]. The same comments

apply to Xνr and ρr(gν)Xνr with gν ∈ Gν . Notice that the same result for PMNS matrix

would be obtained [44, 49, 53], if a pair of subgroups {G′l, G′ν} is conjugated to the pair of

subgroups {Gl, Gν} under an element of A5, i.e.,

G′l = gGlg
−1, G′ν = gGνg

−1, g ∈ A5 . (2.13)

The reason is that remnant CP symmetries determined by restricted consistency condition

of eqs. (2.12a), (2.12b) are strongly correlated in the two cases such that lepton mass

matrices {m′†l m
′
l,m

′
ν} for the new primed residual symmetry are related to {m†lml,mν} by

a similarity transformation ρ3(g) [44, 49, 53]. In this way, it is sufficient to only discuss the

independent pairs of {Gl, Gν} which are not related by group conjugation and subsequently

all possible residual CP compatible with the residual family symmetry should be included.

– 6 –
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3 Lepton mixing from remnant symmetries of A5 oHCP

Neutrino are assumed to be Majorana particles here, therefore the remnant flavor symme-

try Gν must be a Klein four K4
∼= Z2×Z2 subgroup or a single Z2 subgroup of A5. Gl can

be any abelian subgroups of A5 with order equal or greater than 3. A complete or partial

degeneracy of the charged lepton mass spectrum would be produced if Gl had a non-abelian

character. In the case of Gν = K4, the lepton mixing matrix UPMNS is fully determined

by the mismatch between the remnant family symmetry Gl and Gν . As shown in ap-

pendix B, UPMNS can take four possible forms such as the golden ratio mixing, democratic

mixing and so on. However, none of them is compatible with experimental data. Then

we turn to the scenario of Gν = Z2. With this setting, UPMNS is partially constrained,

and only one column of the lepton mixing matrix is fixed up to reordering and rephasing

of the elements. The explicit forms of the fixed column vectors for all the independent

residual flavor symmetries are summarized in table 4. We find that four cases are viable:

(Gl, Gν) =
(
ZT5 , Z

S
2

)
, (ZT5 , Z

T 3ST 2ST 3

2 ), (ZT
3ST 2S

3 , ZST
2ST 3S

2 ) and (K
(ST 2ST 3S, TST 4)
4 , ZS2 )

lead to the mixing column vectors (−
√

κ√
5
, 1√

2
√

5κ
, 1√

2
√

5κ
)T , (

√
1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5
)T ,

( 1√
3
, 1√

3
, 1√

3
)T and (κ2 ,−

1
2 ,

κ−1
2 )T respectively, where κ = (1 +

√
5)/2 is the golden ra-

tio. The phenomenological implications of each case are explored in appendix B, and the

lepton mixing matrix UPMNS turns out to depend on two free parameters up to indeter-

minant Majorana phases. We see that the measured values of the three mixing angles

can be accommodated very well, but the allowed values of Dirac CP phase δCP scatter

in a quite large range. Furthermore, the breaking patterns with (Gl, Gν) = (Z2,K4) are

studied as well. Accordingly a row of the lepton mixing matrix UPMNS is determined to

be 1
2 (κ, 1, κ− 1) or (1, 0, 0) which are not in the experimentally preferred regions.

In order to be able to predict the values of CP phases, we extend the A5 family symme-

try to include the generalized CP. In the following, we shall perform a thorough analysis of

lepton mixing patterns for the possible residual symmetries GloH l
CP and GνoHν

CP in the

charged lepton and neutrino sectors, where the remnant family symmetries Gl andGν would

be restricted to the four viable cases listed in table 4, and the remnant CP symmetries H l
CP

and Hν
CP are determined by consistency condition of eqs. (2.12a), (2.12b). In this setup,

UPMNS as well as all mixing angles and all CP phases generically depend on a free parame-

ters θ whose value can be fixed by the measured value of θ13. As a consequence, all observ-

ables are strongly correlated. For the concerned A5 family symmetry, the Dirac phase would

be predicted to be trivial or maximal while both Majorana phases are trivial after general-

ized CP symmetry is imposed. In order to evaluate how well the predicted mixing patterns

agree with the experimental data on mixing angles, we shall perform a usual χ2 analysis

which uses the global fit results of ref. [7]. We begin to discuss all possible cases one by one.

3.1 Gl = ZT5 , Gν = ZS2

In this case, the parent symmetry A5oHCP is broken down to ZT5 oH l
CP and ZS2 ×Hν

CP sub-

groups in the charged lepton and neutrino sectors, respectively. The residual CP symmetry

H l
CP must be consistent with the residual flavor symmetry ZT5 in the charged lepton sector.

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

That is to say the element Xlr of H l
CP should fulfill the consistency equation of eq. (2.12b),

Xlrρ
∗
r(T )X−1

lr = ρr(g
′), g′ ∈ ZT5 . (3.1)

Then we find only 10 choices out of the 60 CP transformations of HCP listed in eq. (2.9)

are acceptable

H l
CP =

{
ρr(1), ρr(T ), ρr(T

2), ρr(T
3), ρr(T

4), ρr(ST
2ST 3S), ρr((T

2S)2T 3S),

ρr(T
3ST 2ST 3S), ρr(T

4ST 2ST 3S), ρr(ST
3ST 2S)

}
. (3.2)

As shown in eq. (2.10a), the residual family symmetry ZT5 impose the following constraint

on the charged lepton mass matrix:

ρ†3(T )m†lmlρ3(T ) = m†lml . (3.3)

In our working basis, the representation matrix of the generator T is diagonal with

ρ3(T ) = diag(1, ω5, ω
4
5). Consequently the hermitian combination m†lml of charged lepton

mass matrix is also diagonal, i.e.,

m†lml = diag
(
m2
e,m

2
µ,m

2
τ

)
, (3.4)

where me, mµ and mτ represent the electron, muon and tau masses respectively.

Furthermore, we can check that the remnant CP invariant condition of eq. (2.10b) is

automatically satisfied for Xlr = ρr(1), ρr(T ), ρr(T
2), ρr(T

3), ρr(T
4). However, the mass

degeneracy mµ = mτ arises for the remaining values Xlr = ρr(ST
2ST 3S), ρr((T

2S)2T 3S),

ρr(T
3ST 2ST 3S), ρr(T

4ST 2ST 3S), ρr(ST
3ST 2S). The reason is that all remnant CP

transformations except ρr(T
3ST 2ST 3S) are not symmetric. Generally speaking, any rem-

nant CP transformation must be a symmetric matrix to avoid degenerate masses [28, 49].

This case is obviously not viable, and will be disregarded hereafter.

Now we turn to the neutrino sector. The residual CP transformations Xνr of Hν
CP is

specified by the consistency condition:

Xνrρ
∗
r(S)X−1

νr = ρr(S) , (3.5)

which can be easily obtained by applying the general consistency condition of eq. (2.12a).

We see that the CP transformation Xνr commutes with flavor symmetry transformation

ρr(S), and therefore remnant symmetry is ZS2 × Hν
CP in the neutrino sector in this case.

Notice that the semi-direct product structure between residual flavor and CP symmetries

generally reduces to a direct product if the residual flavor symmetry is a Z2 subgroup [44,

45]. It is easy to check that Xνr can only take 4 possible values,

Hν
CP = {ρr(1), ρr(S), ρr(T

3ST 2ST 3), ρr(T
3ST 2ST 3S)} . (3.6)

The neutrino mass matrix mν respects the residual symmetry ZS2 ×Hν
CP , satisfying

ρT3 (S)mνρ3(S) = mν ,

– 8 –
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XT
ν3mνXν3 = m∗ν , Xν3 ∈ Hν

CP . (3.7)

We find that the most general neutrino mass matrix invariant under the residual family

symmetry ZS2 , takes the following form

mν =α


1 0 0

0 0 1

0 1 0

+
β√
2


−2
√

2 3 3

3 0
√

2

3
√

2 0

+γ


2 0 0

0 3 −1

0 − 1 3

+δ


0 −

√
2
√

2

−
√

2 − 2κ 0
√

2 0 2κ

 ,

(3.8)

where α, β, γ and δ are generally complex parameters, and they are further constrained to

be real or pure imaginary by residual CP. This neutrino mass matrix mν can be simplified

into a quite simple form by performing a golden ratio transformation,

m′ν = UTGRmνUGR =


α− (3κ− 1)β + 2γ 0 0

0 α+ (3κ− 2)β + 2γ 2
√

2 + κ δ

0 2
√

2 + κ δ −α− β + 4γ

 , (3.9)

where

UGR =


−
√

κ√
5

√
1√
5κ

0√
1

2
√

5κ

√
κ

2
√

5
− 1√

2√
1

2
√

5κ

√
κ

2
√

5
1√
2

 , (3.10)

is the golden ratio mixing pattern [61, 62] which can be naturally derived in A5 models [63–

67]. The neutrino mass matrix m′ν is further diagonalized by a unitary rotation U ′ν in the

(2,3)-plane,

U ′Tν m
′
νU
′
ν = diag(m1,m2,m3) . (3.11)

The next step is to explore the constraint of remnant CP on mν . Two different phenomeno-

logical predictions arise for the four possibe Xνr shown in eq. (3.6), as ρr(S)Xνr and Xνr

lead to the same predictions.

(I) Xνr = ρr(1), ρr(S).

Obviously we have mν = m∗ν such that all the four parameters α, β, γ and δ are real.

As a consequence, the neutrino mass matrix m′ν is a real symmetric matrix. The unitary

transformation U ′ν is of the form:

U ′ν =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

Kν . (3.12)

where Kν is a diagonal phase matrix with elements equal to ±1 or ±i which makes the

neutrino masses m1,2,3 positive. The effect of Kν is a possible change of the Majorana

phases by π, and it would be omitted hereinafter for the other cases. The parameter θ is

given by

tan 2θ = − 4
√

2 + κ δ

2(α− γ) + (3κ− 1)β
. (3.13)
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The light neutrino mass eigenvalues are

m1 = |α− (3κ− 1)β + 2γ| ,

m2 =
1

2

∣∣∣∣3(κ− 1)β + 6γ +
2(α− γ) + (3κ− 1)β

cos 2θ

∣∣∣∣ ,
m3 =

1

2

∣∣∣∣3(κ− 1)β + 6γ − 2(α− γ) + (3κ− 1)β

cos 2θ

∣∣∣∣ . (3.14)

Given the diagonal charged lepton mass matrix, the lepton mixing matrix takes the form

UPMNS = UGRU
′
ν =


−
√

κ√
5

√
1√
5κ

cos θ
√

1√
5κ

sin θ√
1

2
√

5κ

√
κ

2
√

5
cos θ + sin θ√

2

√
κ

2
√

5
sin θ − cos θ√

2√
1

2
√

5κ

√
κ

2
√

5
cos θ − sin θ√

2

√
κ

2
√

5
sin θ + cos θ√

2

Kν . (3.15)

One can straightforwardly extract the lepton mixing angles and CP phases as follows,

sin2 θ13 =
3− κ

5
sin2 θ , sin2 θ12 =

1 + cos 2θ

3 + 2κ+ cos 2θ
,

sin2 θ23 =
1

2
−

√
2 + κ sin 2θ

3κ− 1 + (κ− 1) cos 2θ
, sin δCP = sinα21 = sinα31 = 0 , (3.16)

where δCP is the Dirac CP phase, α21 and α31 are the Majorana CP phases in the standard

parameterization [1]. There is no CP violation in this case as the neutrino mass matrix

is real. Expressing θ in terms of θ13, correlations among the three mixing angles follow

immediately,

sin2 θ12 =
3− κ

5
− 2 + κ

5
tan2 θ13 ,

sin2 θ23 =
1

2
± κ tan θ13

√
1− (1 + κ) tan2 θ13 . (3.17)

For the measured reactor mixing angles sin2 θ13 ' 0.0234 [7], we have sin2 θ23 ' 0.258 or

0.742 which is outside of the experimentally favored 3σ region [7] although sin2 θ12 ' 0.259

is acceptable. As a consequence, this mixing pattern isn’t viable. This point remains even

after permutation of rows and columns is considered.

(II) Xνr = ρr(T
3ST 2ST 3), ρr(T

3ST 2ST 3S).

Solving the residual CP invariant condition in eq. (3.7), we find α, β and γ are real while

δ is pure imaginary. The unitary diagonalization matrix U ′ν is

U ′ν =


1 0 0

0 cos θ sin θ

0 − i sin θ i cos θ

 , (3.18)

where the diagonal matrix Kν multiplied from the right-hand side has been omitted, and

the rotation angle θ fulfills

tan 2θ = − 4i
√

2 + κ δ

3(κ− 1)β + 6γ
. (3.19)
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The three neutrino masses are given by

m1 = |α− (3κ− 1)β + 2γ| ,

m2 =
1

2

∣∣∣∣2α+ (3κ− 1)β − 2γ +
3 ((κ− 1)β + 2γ)

cos 2θ

∣∣∣∣ ,
m3 =

1

2

∣∣∣∣2α+ (3κ− 1)β − 2γ − 3 ((κ− 1)β + 2γ)

cos 2θ

∣∣∣∣ . (3.20)

All the four parameters α, β, γ and δ are involved in the three neutrino masses. As a result,

the measured mass squared differences δm2 ≡ m2
2 − m2

1 and ∆m2 ≡ m2
3 − (m2

1 + m2
2)/2

can be easily accommodated [7], the absolute neutrino mass scale can not be fixed, and

the neutrino mass spectrum can be either normal ordering (NO) or inverted ordering (IO).

The PMNS matrix takes the following form:

UPMNS =


−
√

κ√
5

√
1√
5κ

cos θ
√

1√
5κ

sin θ√
1

2
√

5κ

√
κ

2
√

5
cos θ + i sin θ√

2

√
κ

2
√

5
sin θ − i cos θ√

2√
1

2
√

5κ

√
κ

2
√

5
cos θ − i sin θ√

2

√
κ

2
√

5
sin θ + i cos θ√

2

 . (3.21)

Note that the first column vector of this mixing pattern coincides with the first column of

the GR mixing. The lepton mixing angles and CP phases can be read out as1

sin2 θ13 =
3− κ

5
sin2 θ , sin2 θ12 =

1 + cos 2θ

3 + 2κ+ cos 2θ
,

sin2 θ23 =
1

2
, |sin δCP | = 1 , sinα21 = sinα31 = 0 . (3.22)

Here we present the absolute value of sin δCP , since the sign of sin δCP depends on the

ordering of rows and columns. We see that both atmospheric angle θ23 and Dirac CP

phase δCP are maximal while Majorana phases are conserved. Given the weak evidence

of δCP ∼ 3π/2 from T2K [10, 11], this pattern is slightly preferred. The prediction of

maximal Dirac CP can be tested by next generation long-baseline neutrino oscillation ex-

periments such as the proposed LBNE [12, 13], LBNO [14–17] and HyperKamiokande [18],

which aim to search for leptonic CP violation. Moreover, the correlation between θ13

and θ12 is of the same form as that of case I, and it is plotted in figure 1. The results of

the χ2 analysis are reported in table 1. We see that the experimental data [7] on lepton

mixing angles can be accommodated very well. Notice that the solar mixing angle θ12

is predicted to be around the present 3σ lower bound. As far as we known, the JUNO

experiment can measure θ12 with high accuracy [72]. If significant deviations sin2 θ12

from 0.259 was detected, this mixing pattern would be excluded. It is well-known that

leptonic CP phases can play a crucial role in the rare process neutrinoless double beta

((ββ)0ν−) decay. The dependence of the (ββ)0ν−decay amplitude on the neutrino mixing

parameters is characterized by the effective Majorana mass |mee| [1] with the definition:

|mee| =
∣∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iα21 +m3 sin2 θ13e
i(α31−2δCP )

∣∣∣ . (3.23)

1In the case of sin 2θ = 0, either θ12 or θ13 vanishes, consequently the value of δCP can not be determined

uniquely.
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Figure 1. The correlation between sin2 θ12 and sin θ13 (left panel) and the allowed values of the

effective mass |mee| (right panel) in case II. On the left panel, the best fitting value is labelled with

a red pentagram, and the points for θ = 0, π/6, π/3 and π/2 are marked with a cross to guide

the eye. The 1σ and 3σ ranges of the mixing angles are taken from ref. [7]. On the right panel,

the orange and green bands denote the 3σ regions for inverted ordering and normal ordering mass

spectrum respectively. The red and purple areas are the predictions for the lepton mixing matrix

in eq. (3.21). The present most strict bound |mee| < (0.120 − 0.250) eV from EXO-200 [68, 69]

combined with KamLAND-ZEN [70] is represented by the horizontal dashed line, and the upper

limit on mmin from the latest Planck result m1 +m2 +m3 < 0.230 eV at 95% confidence level [71]

is shown by vertical dashed line.

For the predicted mixing parameters in eq. (3.22), we have

|mee| =
1√
5

∣∣κm1 + κ−1k2m2 cos2 θ + κ−1k3m3 sin2 θ
∣∣ , (3.24)

where k2, k3 = ±1 originates from the ambiguity of the matrix Kν . The prediction for the

effective mass |mee| with respect to the lightest neutrino mass is shown figure 1. We find

that |mee| is close to 0.022eV or the upper bound 0.045eV in case of IO neutrino mass

spectrum, which are within the future sensitivity of planned (ββ)0ν−decay experiments.

However, in case of NO spectrum, |mee| strongly depends on lightest neutrino mass mmin,

and it can even be approximately vanishing for particular value of mmin.

3.2 Gl = ZT5 , Gν = ZT
3ST 2ST 3

2

The charged lepton sector preserves the same remnant symmetry ZT5 oH l
CP as that dis-

cussed in section 3.1. Therefore the charged lepton mass is subject to the same constraint,

and m†lml should be diagonal as well. In neutrino sector, the residual CP symmetry Hν
CP

has to be compatible with the residual family symmetry Gν = ZT
3ST 2ST 3

2 , i.e.,

Xνrρ
∗
r(T

3ST 2ST 3)X−1
νr = ρr(T

3ST 2ST 3) . (3.25)
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Analytic expression Best fitting

sin2 θ13 sin2 θ12 sin2 θ23 θbf χ2
min sin2 θ13 sin2 θ12 sin2 θ23

II

IO
3−κ
5

sin2 θ 2 cos2 θ
3+2κ+cos 2θ

1
2

0.295 8.468 0.0234 0.259 0.5

NO 1
2

0.292 11.88 0.0229 0.259 0.5

III

IO

κ√
5
sin2 θ 4−2κ

5−2κ+cos 2θ

1
2
−
√
3−κ sin 2θ

3κ−2+κ cos 2θ

0.182 4.851 0.0236 0.283 0.404 (θ23<45◦)

2.958 3.165 0.0240 0.283 0.597 (θ23>45◦)

NO

0.179 4.087 0.0230 0.283 0.406 (θ23<45◦)

2.965 24.88 0.0224 0.283 0.593 (θ23>45◦)

IV

IO 1
2

0.183 2.232 0.0241 0.283 0.5

NO 1
2

0.181 5.802 0.0235 0.283 0.5

V

IO
1−sin 2θ

3
1

2+sin 2θ

1
2

0.976 3.987 0.0238 0.341 0.5

NO 1
2

0.973 7.480 0.0233 0.341 0.5

VII

IO

(cos θ−κ sin θ)2

4κ2

(κ cos θ+sin θ)2

4κ2−(cos θ−κ sin θ)2

(κ2 cos θ−sin θ)2

4κ2−(cos θ−κ sin θ)2
0.286 1.626 0.0242 0.329 0.486 (θ23<45◦)

κ2(cos θ+κ sin θ)2

4κ2−(cos θ−κ sin θ)2
0.286 1.751 0.0242 0.329 0.513 (θ23>45◦)

NO

(κ2 cos θ−sin θ)2

4κ2−(cos θ−κ sin θ)2
0.293 3.503 0.0229 0.330 0.480 (θ23<45◦)

κ2(cos θ+κ sin θ)2

4κ2−(cos θ−κ sin θ)2
0.282 6.958 0.0248 0.329 0.510 (θ23>45◦)

Table 1. Summary of the predictions for the lepton mixing angles and their best fitting values for

all viable cases in the framework of A5 oHCP . In case VII, the mixing patterns for θ23 in the first

and second octant are related through the exchange of the second and third rows of the PMNS

matrix. Notice that all the three CP phases are independent of θ in all cases: Dirac phase is trivial

or maximal, and both Majorana phases are trivial.

It is easy to check that only 4 generalized CP transformations are acceptable,

Hν
CP =

{
ρr(1), ρr(S), ρr(T

3ST 2ST 3), ρr(T
3ST 2ST 3S)

}
. (3.26)

Straightforward calculations demonstrate that the most general neutrino mass matrix in-

variant under ZT
3ST 2ST 3

2 is of the form

mν =α


1 0 0

0 0 1

0 1 0

+
β√
2


−2
√

2 3 3

3 0
√

2

3
√

2 0

+γ


2 0 0

0 3 −1

0 − 1 3

+δ


0
√

2κ −
√

2κ
√

2κ −2 0

−
√

2κ 0 2

 ,

(3.27)
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where the parameters α, β, γ and δ are generically complexes, and they are further con-

strained by the remnant CP. After performing a GR transformation, mν becomes

m′ν = UTGRmνUGR =


α− (3κ− 1)β + 2γ 0 2

√
2 + κ δ

0 α+ (3κ− 2)β + 2γ 0

2
√

2 + κ δ 0 −α− β + 4γ

 . (3.28)

In the following, we proceed to investigate the constraints imposed by the remnant CP

transformations shown in eq. (3.26). The four possible Xνr can be divided into two classes.

(III) Xνr = ρr(1), ρr(T
3ST 2ST 3).

In this case, the residual flavor and residual CP transformations are of the same form. As

a result, the four parameters α, β, γ and δ are all real. The neutrino mass matrix m′ν can

be diagonalized by a unitary transformation

U ′ν =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (3.29)

with

tan 2θ = − 4
√

2 + κ δ

2(α− γ)− (3κ− 2)β
, (3.30)

The three neutrino masses are

m1 =
1

2

∣∣∣∣−3κβ + 6γ +
2(α− γ)− (3κ− 2)β

cos 2θ

∣∣∣∣ ,
m2 = |α+ (3κ− 2)β + 2γ| ,

m3 =
1

2

∣∣∣∣−3κβ + 6γ − 2(α− γ)− (3κ− 2)β

cos 2θ

∣∣∣∣ . (3.31)

The absolute neutrino mass scale can not be predicted. Then the PMNS matrix reads

UPMNS = UGRU
′
ν =


−
√

κ√
5

cos θ
√

1√
5κ

−
√

κ√
5

sin θ

cos θ√
2
√

5κ
+ sin θ√

2

√
κ

2
√

5
sin θ√
2
√

5κ
− cos θ√

2

cos θ√
2
√

5κ
− sin θ√

2

√
κ

2
√

5
sin θ√
2
√

5κ
+ cos θ√

2

 . (3.32)

Note that the second column vector is

(√
1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5

)T
which coincides with the

second column of the GR mixing. The lepton mixing parameters are predicted to be

sin2 θ13 =
κ√
5

sin2 θ , sin2 θ12 =
4− 2κ

5− 2κ+ cos 2θ
,

sin2 θ23 =
1

2
−
√

3− κ sin 2θ

3κ− 2 + κ cos 2θ
, sin δCP = sinα21 = sinα31 = 0 . (3.33)
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Figure 2. The correlation among sin2 θ12, sin2 θ23 and sin θ13 (the former three panels) and the

allowed values of the effective mass |mee| (the last panel) in case III. The global minimum of the χ2

function is labelled with a red pentagram, and the points for θ = 0, π/6, π/3, π/2, 2π/3 and 5π/6

are marked with a cross to guide the eye. The 1σ and 3σ ranges of the mixing angles are taken from

ref. [7]. In the last panel, the orange and green bands denote the 3σ regions for inverted ordering

and normal ordering mass spectrum respectively. The red and purple areas are the predictions for

the lepton mixing matrix in eq. (3.32). The present most strict bound |mee| < (0.120 − 0.250) eV

from EXO-200 [68, 69] combined with KamLAND-ZEN [70] is represented by the horizontal dashed

line, and the upper limit on mmin from the latest Planck result m1 + m2 + m3 < 0.230 eV at 95%

confidence level [71] is shown by vertical dashed line.
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We see that θ23 deviates from maximal mixing and all the three CP violating phases are

trivial due to a common CP transformation ρr(1) of the charged lepton and neutrino

sectors. The mixing angles θ12, θ13 and θ23 only depend on the parameter θ, and they

fulfill the following relations,

sin2 θ12 cos2 θ13 =
3− κ

5
, sin2 θ23 =

1

2
± (κ− 1) tan θ13

√
1 + (κ− 2) tan2 θ13 , (3.34)

which are plotted in figure 2. Obviously the mixing angles can be very close to their

measured values for certain values of the parameter θ. The global minimum of the χ2

function is rather small, as shown in table 1. The predictions for the effective mass |mee|
are also displayed in figure 2.

(IV) Xνr = ρr(S), ρr(T
3ST 2ST 3S).

Invariance of the neutrino mass matrix mν under the action of these residual CP trans-

formations implies that α, β, γ are real while δ is pure imaginary. The diagonalization

matrix of m′ν is

U ′ν =


i cos θ 0 i sin θ

0 1 0

− sin θ 0 cos θ

 , (3.35)

where

tan 2θ = −4i
√

2 + κ δ

3(κβ − 2γ)
. (3.36)

The neutrino masses are given by

m1 =
1

2

∣∣∣∣−2α+ (3κ− 2)β + 2γ +
3(κβ − 2γ)

cos 2θ

∣∣∣∣ ,
m2 = |α+ (3κ− 2)β + 2γ| ,

m3 =
1

2

∣∣∣∣−2α+ (3κ− 2)β + 2γ − 3(κβ − 2γ)

cos 2θ

∣∣∣∣ . (3.37)

The PMNS matrix is of the form

UPMNS = UGRU
′
ν =


−i
√

κ√
5

cos θ
√

1√
5κ
−i
√

κ√
5

sin θ

i cos θ√
2
√

5κ
+ sin θ√

2

√
κ

2
√

5
i sin θ√
2
√

5κ
− cos θ√

2

i cos θ√
2
√

5κ
− sin θ√

2

√
κ

2
√

5
i sin θ√
2
√

5κ
+ cos θ√

2

 . (3.38)

The second column has the same form as for the GR mixing. The lepton mixing angles

and CP phases are determined to be

sin2 θ13 =
κ√
5

sin2 θ , sin2 θ12 =
4− 2κ

5− 2κ+ cos 2θ
,

sin2 θ23 =
1

2
, |sin δCP | = 1 , sinα21 = sinα31 = 0 . (3.39)

We see that both θ23 and δCP are maximal and the two Majorana CP phases α21 and α31

are trivial. Similar to case III, the relation sin2 θ12 cos2 θ13 = (3− κ)/5 is satisfied as well.

The best fitting results for the three mixing angles are listed in table 1. The predictions

for the (ββ)0ν−decay effective mass |mee| are shown in figure 3.
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Figure 3. The (ββ)0ν−decay effective mass |mee| with respect the lightest neutrino mass mmin

in case IV. The orange and green bands denote the 3σ regions for inverted ordering and normal

ordering mass spectrum respectively. The red and purple areas are the predictions for the lepton

mixing matrix in eq. (3.38). The present most strict bound |mee| < (0.120− 0.250) eV from EXO-

200 [68, 69] combined with KamLAND-ZEN [70] is represented by the horizontal dashed line, and

the upper limit on mmin from the latest Planck result m1 +m2 +m3 < 0.230 eV at 95% confidence

level [71] is shown by vertical dashed line. Note that the correlation between sin2 θ12 and sin θ13 is

the same as that of case III and can be found in figure 2.

3.3 Gl = ZT
3ST 2S

3 , Gν = ZST
2ST 3S

2

In the charged lepton sector, the remnant CP transformation H l
CP is determined by the

consistency condition

Xlrρ
∗
r(T

3ST 2S)X−1
lr = ρr(g

′), g′ ∈ ZT 3ST 2S
3 . (3.40)

We find that there are 6 possible solutions for Xlr, i.e.,

H l
CP = {ρr(ST 3), ρr(ST

3S), ρr(T
3), ρr(T

3S), ρr(T
3ST 2ST 3), ρr(T

3ST 2ST 3S)} . (3.41)

The charged lepton mass matrix should respect both the remnant family symmetry ZT
3ST 2S

3

and the remnant CP symmetry H l
CP :

ρ†3(T 3ST 2S)m†lmlρ3(T 3ST 2S)=m†lml, X†l3m
†
lmlXl3=(m†lml)

∗, Xl3∈H l
CP . (3.42)

Notice that the three residual CP transformations Xlr =ρr(ST
3), ρr(T

3S),

ρr(T
3ST 2ST 3S) lead to degenerate charged lepton masses since both ρr(ST

3) and ρr(T
3S)

are not symmetric. For the remaining ones Xlr =ρr(ST
3S), ρr(T

3), ρr(T
3ST 2ST 3), the
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hermitian combination m†lml is constrained to take the following form

m†lml =


a 2

(
κb+

√
2(2κ− 3)c

)
e−

3πi
5 2κbe−

2πi
5

2
(
κb+

√
2(2κ− 3)c

)
e

3πi
5 a+

√
2
κ b+ (8κ− 14)c 2(κ− 1)ce

πi
5

2κbe
2πi
5 2(κ− 1)ce−

πi
5 a−

√
2
κ (b+

√
2c)

 ,

(3.43)

where a, b and c are real parameters. It can be diagonalized by the unitary matrix

Ul =


√

7−4κ
15 e−

2πi
5

√
2
√

5κ
15 e

3πi
5

√
2
√

5κ
15 e−

2πi
5√

2
√

5κ
15 e−

4πi
5

1
2

(
1−

√
7−4κ

15

)
e
πi
5

1
2

(
1 +

√
7−4κ

15

)
e
πi
5√

2
√

5κ
15

1
2

(
1 +

√
7−4κ

15

)
1
2

(
1−

√
7−4κ

15

)
 , (3.44)

with U †l m
†
lmlUl = diag(m2

e,m
2
µ,m

2
τ ), where the charged lepton masses are

m2
e = a− 4(κ− 1)c, m2

µ = a−
√

6(2 + κ) b−
(

8− 5κ+
√

3(47− 29κ)
)
c ,

m2
τ = a+

√
6(2 + κ) b+

(
5κ− 8 +

√
3(47− 29κ)

)
c . (3.45)

The symmetry group A5 oHCP is broken into ZST
2ST 3S

2 ×Hν
CP in the neutrino sector. By

solving the restricted consistency equation of eq. (2.12a), we find

Hν
CP =

{
ρr(T

2), ρr(TST ), ρr(T
3ST 2ST 3S), ρr((ST

2)2S)
}
. (3.46)

The neutrino mass matrix preserving the remnant family symmetry Gν = ZST
2ST 3S

2 is of

the form

mν = α


1 0 0

0 0 1

0 1 0

+β


2 0 0

0 3e−
4πi
5 −1

0 −1 3e
4πi
5

+γ


0 e

3πi
5 e−

3πi
5

e
3πi
5
√
2e

πi
5 0

e−
3πi
5 0

√
2e−

πi
5

+δ


2
√
2 e−

2πi
5 e

2πi
5

e−
2πi
5
√
2e

πi
5 −

√
2

e
2πi
5 −

√
2
√
2e−

πi
5

 ,

(3.47)

where parameters α, β, γ and δ are generally complex, and they are further constrained to

be either real or imaginary by CP symmetry. It is convenient to firstly perform a constant

unitary transformation UGRP and yield

m′ν = UTGRPmνUGRP

=


α+ 2β −

√
2(1 + κ) γ 0 −

√
10 δ

0 −α+ 4β −
√

2 γ 0

−
√

10 δ 0 α+ 2β +
√

2(2− κ) γ

 , (3.48)

where

UGRP =


√

1√
5κ

0 −
√

κ√
5√

κ
2
√

5
e

2πi
5

1√
2
e−

3πi
5

1√
2
√

5κ
e

2πi
5√

κ
2
√

5
e−

2πi
5

1√
2
e−

2πi
5

1√
2
√

5κ
e−

2πi
5

 . (3.49)

Next we discuss the constraints of the residual CP symmetry on the neutrino mass matrix

mν .
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(V) Xνr = ρr(T
2), ρr(T

3ST 2ST 3S).

In this case, α, β, γ and δ are determined to be real. Then neutrino mass matrix m′ν is a real

symmetric matrix, and it can be diagonalized by a rotation matrix U ′ν in the (2,3) sector,

U ′ν =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , (3.50)

with

tan 2θ = 2δ/γ . (3.51)

The three light neutrino masses are given by

m1 =
1

2

∣∣∣∣∣2α+ 4β −
√

2γ −
√

10γ

cos 2θ

∣∣∣∣∣ ,
m2 =

∣∣∣−α+ 4β −
√

2γ
∣∣∣ ,

m3 =
1

2

∣∣∣∣∣2α+ 4β −
√

2γ +

√
10γ

cos 2θ

∣∣∣∣∣ . (3.52)

The lepton mixing matrix is of the form

UPMNS = U †l UGRPU
′
ν =

1√
3


cos θ + sin θ 1 cos θ − sin θ

e
2πi
3 cos θ − e

πi
3 sin θ 1 e

4πi
3 cos θ − e

2πi
3 sin θ

e
4πi
3 cos θ + e

2πi
3 sin θ 1 e

2πi
3 cos θ + e

πi
3 sin θ

 . (3.53)

We see that the second column of the PMNS matrix is (1, 1, 1)T /
√

3, which frequently

appears in discrete flavor symmetry models. The leptonic mixing parameters read as2

sin2 θ13 =
1

3
(1− sin 2θ), sin2 θ12 =

1

2 + sin 2θ
, sin2 θ23 =

1

2
,

|sin δCP | = 1, sinα21 = sinα31 = 0 . (3.54)

Both Dirac CP phase and θ23 are maximal while Majorana CP phases are conserved in this

case. In common with all trimaximal mixings, θ12 and θ13 are related with each other by

3 sin2 θ12 cos2 θ13 = 1 . (3.55)

The measured 3σ range 0.0176 ≤ sin2 θ13 ≤ 0.0295 [7] gives rise to 0.339 ≤ sin2 θ12 ≤ 0.343

which can be directly tested by JUNO in near future [72]. The correlation between θ12

and θ13 and the predictions for the (ββ)0ν−decay are displayed in figure 4. All the three

mixing angles can agree within 3σ with the experimental data for certain values of θ. The

best fitting results are listed in table 1, and the minimum values of the χ2 functions are

3.987 and 7.480 for IO and NO, respectively.

2For cos 2θ = 0, we have sin θ13 = 0 or cos θ12 = 0 so that δCP cannot be determined uniquely.
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Figure 4. Results for sin2 θ12 and sin θ13 (left panel) and the allowed values of the effective mass

|mee| (right panel) in case V. On the left panel, the best fitting value is labelled with a red pentagram,

and the points for θ = 0, π/6 and 2π/3 are marked with a cross to guide the eye. The 1σ and 3σ

ranges of the mixing angles are taken from ref. [7]. On the right panel, the orange and green bands

denote the 3σ regions for inverted ordering and normal ordering mass spectrum respectively. The

red and purple areas are the predictions for the lepton mixing matrix in eq. (3.53). The present most

strict bound |mee| < (0.120−0.250) eV from EXO-200 [68, 69] combined with KamLAND-ZEN [70]

is represented by the horizontal dashed line, and the upper limit on mmin from the latest Planck

result m1 +m2 +m3 < 0.230 eV at 95% confidence level [71] is shown by vertical dashed line.

(VI) Xνr = ρr(TST ), ρr((ST
2)2S).

The requirement of real α, β, γ and pure imaginary δ follows immediately from the

remnant CP invariant condition. In the same way as previous cases, the PMNS mixing

matrix is found to be

UPMNS =
1√
3


e

5πi
6 cos θ + e

2πi
3 sin θ 1 e

2πi
3 cos θ − e

5πi
6 sin θ

e
πi
6 cos θ − e

πi
3 sin θ 1 e

4πi
3 cos θ + e

7πi
6 sin θ

sin θ − i cos θ 1 cos θ + i sin θ

 , (3.56)

The expressions for the lepton mixing parameters are as follows,

sin2 θ13 =
1

3
−
√

3 sin 2θ

6
, sin2 θ12 =

2

4 +
√

3 sin 2θ
,

sin2 θ23 =
2 +
√

3 sin 2θ

4 +
√

3 sin 2θ
, |sin δCP | =

∣∣∣∣∣ 8 cos 2θ +
√

3 sin 4θ

2(2 +
√

3 sin 2θ)
√

4− 2
√

3 sin 2θ

∣∣∣∣∣ ,
|sinα21| =

∣∣∣∣∣2 sin 2θ +
√

3

2 +
√

3 sin 2θ

∣∣∣∣∣ , ∣∣sinα′31

∣∣ =

∣∣∣∣∣ 4
√

3 cos 2θ

5 + 3 cos 4θ

∣∣∣∣∣ , (3.57)

where α′31 = α31 − 2δCP . It is remarkable that all the three CP violating phases

nontrivially depend on the parameter θ. However, we see that in case of θ = π/4 the
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minimum value of θ13 is obtained with sin2 θ13|θ=π/4 = (2 −
√

3)/6 ' 0.0447 which is

outside the 3σ range [7]. Furthermore, we note that the atmospheric angle θ23 is the

complementary angle of θ12 or is equal to θ12 if the second and the third rows of the

PMNS matrix is interchanged. As a result, this mixing pattern is not compatible with

experimental data and consequently we don’t included it in table 1.

3.4 Gl = K
(ST 2ST 3S,TST 4)
4 , Gν = ZS2

In the last case, the residual symmetries are assumed to be K
(ST 2ST 3S,TST 4)
4 o H l

CP in

the charged lepton sector and ZS2 ×Hν
CP in the neutrino sector. For the remnant family

symmetry K
(ST 2ST 3S,TST 4)
4 to hold, the mass matrix m†lml has to fulfill

ρ†3(ST 2ST 3S)m†lmlρ3(ST 2ST 3S) = m†lml, ρ†3(TST 4)m†lmlρ3(TST 4) = m†lml . (3.58)

Then m†lml is constrained to take the form

m†lml =
1

2
√

5


2(κa+ (κ− 1)c)

√
2(a− c)e 3πi

5

√
2(a− c)e− 3πi

5

√
2(a− c)e− 3πi

5 (κ− 1)a+
√

5b+ κc
(
(κ− 1)a−

√
5b+ κc

)
e

4πi
5

√
2(a− c)e 3πi

5

(
(κ− 1)a−

√
5b+ κc

)
e−

4πi
5 (κ− 1)a+

√
5b+ κc

 ,

(3.59)

where a, b and c are real. It is diagonalized by the unitary matrix

Ul =


√

κ√
5

0
√

1√
5κ

1√
2
√

5κ
e−

3πi
5

1√
2
e−

πi
10

√
κ

2
√

5
e

2πi
5

1√
2
√

5κ
e

3πi
5

1√
2
e
πi
10

√
κ

2
√

5
e−

2πi
5

 , (3.60)

with U †l m
†
lmlUl = diag(m2

e,m
2
µ,m

2
τ ) where

m2
e = a, m2

µ = b, m2
τ = c . (3.61)

In order to obtain the observed charged lepton mass hierarchies, the relation a : b : c '
λ4
c : λ2

c : 1 with λc ' 0.23 should be fulfilled. This required hierarchy among a, b and c

can usually be achieved by introducing Froggatt-Nielsen U(1) symmetry or auxiliary cyclic

symmetry ZN in a specific model. A typical scenario is that the three parameters a, b and c

arise from the charged lepton mass terms containing three, two and one flavon fields respec-

tively [22–25, 44, 45, 48, 49]. Furthermore, the additional U(1) or ZN symmetry generally

helps to eliminate dangerous couplings and to ensure the needed vacuum alignment [22–25].

The mass matrix m†lml is also subject to the constraint of the residual CP symmetry

H l
CP . It is straightforward to determine that H l

CP can take the value

H l
CP = {ρr(ST 2ST ), ρr((ST

2)2S), ρr(ST
3), ρr(T

2), ρr((T
2S)2T 3), ρr(T

2ST 4), ρr(T
3S),

ρr(T
3(ST 2)2), ρr(T

3ST 2ST 3S), ρr(T
4ST 2), ρr(TST

2S), ρr(TST )} . (3.62)

The twelve CP transformations can be classified into two categories. For Xlr =

ρr((ST
2)2S), ρr(T

2), ρr(T
3ST 2ST 3S), ρr(TST ), the remnant CP invariant condition

– 21 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

X†l3m
†
lmlXl3 = (m†lml)

∗ is automatically satisfied, and therefore no additional constraint

is produced. Nevertheless, the remaining eight CP transformations Xlr = ρr(ST
2ST ),

ρr(ST
3), ρr((T

2S)2T 3), ρr(T
2ST 4), ρr(T

3S), ρr(T
3(ST 2)2), ρr(T

4ST 2) and ρr(TST
2S)

are not viable, as they require a = b = c so that the charged lepton mass spectrum is com-

pletely degenerate with m2
e = m2

µ = m2
τ = a. In neutrino sector, the remnant symmetry

ZS2 × Hν
CP and its phenomenological implications have been studied in section 3.1. The

neutrino mass matrix mν is found to be given by eq. (3.8), where the parameters α, β and γ

are real while δ is real or pure imaginary depending on the residual CP transformation Xνr.

(VII) Xνr = ρr(T
3ST 2ST 3), ρr(T

3ST 2ST 3S).

In this case, the neutrino mass matrix is diagonalized by the unitary matrix in eq. (3.21).

Combining the unitary transformation Ul in eq. (3.60) from the charged lepton sector, we

obtain the lepton flavor mixing matrix:

UPMNS =
1

2


κ cos θ + (κ− 1) sin θ (κ− 1) cos θ − sin θ

−1 (κ− 1) cos θ + κ sin θ κ cos θ − (κ− 1) sin θ

κ− 1 sin θ − κ cos θ cos θ + κ sin θ

 , (3.63)

where the parameter θ is specified by eq. (3.19). The lepton mixing parameters are pre-

dicted to be

sin2 θ13 =
(cos θ − κ sin θ)2

4κ2
, sin2 θ12 =

(κ cos θ + sin θ)2

4κ2 − (cos θ − κ sin θ)2
,

sin2 θ23 =
(κ2 cos θ − sin θ)2

4κ2 − (cos θ − κ sin θ)2
, sin δCP = sinα21 = sinα31 = 0 . (3.64)

We find all the three CP violating phases δCP , α21 and α31 are conserved, this is be-

cause that a common CP transformation ρr(T
3ST 2ST 3S) is shared by the neutrino and

charged lepton sectors. In addition, θ23 deviates from maximal value. After some tedious

calculations, we find the following relations between the mixing angles

4 cos2 θ12 cos2 θ13 = 1 + κ ,

5 sin2 θ23 = 3−κ+(1+2κ) tan2 θ13±2κ tan θ13

√
2+κ−(2+3κ) tan2 θ13 , (3.65)

which is plotted in figure 5. For the 3σ interval 0.0176 ≤ sin2 θ13 ≤ 0.0295 [7], we have

0.326 ≤ sin2 θ12 ≤ 0.334 and 0.454 ≤ sin2 θ23 ≤ 0.511, which are in the experimentally

favored ranges [7]. The global minimum of the χ2 function is rather small 3.503 (1.626)

for NO (IO) neutrino mass spectrum, therefore this mixing pattern can describe the ex-

perimental data very well. Moreover, we note that the best fitting value of θ23 is in the

first octant with sin2 θ23(θbf ) = 0.480 (0.486) for NO (IO) spectrum. Agreement with

experimental data can also be achieved if the second and third rows of the PMNS matrix

in eq. (3.63) are exchanged. Then the atmospheric mixing angle θ23 changes to

sin2 θ23 =
κ2(cos θ + κ sin θ)2

4κ2 − (cos θ − κ sin θ)2
, (3.66)
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and the predictions for the other mixing parameters remain as eq. (3.64). The al-

lowed region of sin2 θ23 becomes 0.489 ≤ sin2 θ23 ≤ 0.546 with the best fitting value

sin2 θ23(θbf ) = 0.510 (0.513) for NO (IO) spectrum. Obviously θ23(θbf ) is in the second

octant. Comparing with other mixing patterns shown in table 1, we see that this case

gives rise to the smallest χ2
min for both NO and IO. The above predictions for solar and

atmospheric mixing angles could be tested directly in near future, since the next gener-

ation neutrino oscillation experiments are expected to reduce the experimental error on

θ12 and θ23 to few degrees. The theoretical results for the (ββ)0ν−decay effective mass

|mee| are displayed in figure 5. Note that interchanging the second and third rows does’t

matter since |mee| is independent of θ23. Again, the predictions for IO neutrino spectrum

are within the sensitivity of forthcoming experiments.

(VIII) Xνr = ρr(1), ρr(S).

The neutrino mass matrix is diagonalized by the unitary transformation in eq. (3.15). The

PMNS matrix is found to take the following form

UPMNS =
1

2


sin θ − iκ cos θ cos θ + iκ sin θ κ− 1

i cos θ + (κ− 1) sin θ (κ− 1) cos θ − i sin θ κ

i(κ− 1) cos θ + κ sin θ κ cos θ − i(κ− 1) sin θ −1

 , (3.67)

up to permutations of rows and columns. The lepton mixing angles and CP phases can be

read off as

sin2 θ13 =
3−
√

5

8
'0.0955, sin2 θ12 =

1

2
−
√

5

10
cos 2θ, sin2 θ23 =

5+
√

5

10
'0.724 ,

|sin δCP | =

∣∣∣∣∣
√

10 sin 2θ√
9− cos 4θ

∣∣∣∣∣ , |sinα21| =
∣∣∣∣ 8 sin 2θ

9− cos 4θ

∣∣∣∣ , ∣∣sinα′31

∣∣ =

∣∣∣∣ 2 sin 2θ√
5 + cos 2θ

∣∣∣∣ .
(3.68)

We see that the solar mixing angle θ12 has a lower bound given by sin2 θ12 ≥ (5−
√

5)/10 '
0.276, and the experimental data on θ12 can be accommodated for particular values

of θ. Both θ13 and θ23 are independent of θ, and they are outside the 3σ ranges [7].

Furthermore, 6× 6 =36 possible permutations of rows and columns of this mixing pattern

are considered. However, none of them can give rise to three mixing angles in the

experimentally preferred 3σ range [7].

4 Model building

In previous section, we have performed a model-independent analysis of the lepton mixing

patterns which can be derived from A5 oHCP . As summarized in table 1, we find five new

mixing patterns which are compatible with current experimental data. In this section, we

shall construct a concrete model with both A5 family symmetry and generalized CP symme-

try, the symmetry breaking patterns studied in section 3.2 are implemented, and therefore

the lepton flavor mixings given by eqs. (3.32), (3.38) in case III and case IV are realized.
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Figure 5. The results for sin2 θ12, sin2 θ23 and sin θ13 (the former three panels) and the allowed

values of the effective mass |mee| (the last panel) in case VII. The global minimum of the χ2 function

is labelled with a red pentagram, and the points for θ = 0, π/6, π/3, π/2, 2π/3 and 5π/6 are marked

with a cross to guide the eye. The black solid lines and blue dashed lines in the upper-right and

lower-left panels represent the two solutions for θ23 shown in eq. (3.64) and eq. (3.66) respectively.

The corresponding PMNS matrices are related through a exchange of the second and third rows. The

1σ and 3σ ranges of the mixing angles are taken from ref. [7]. In the last panel, the orange and green

bands denote the 3σ regions for inverted ordering and normal ordering mass spectrum respectively.

The red and purple areas are the predictions for the lepton mixing matrix in eq. (3.63). The present

most strict bound |mee| < (0.120 − 0.250) eV from EXO-200 [68, 69] combined with KamLAND-

ZEN [70] is are represented by the horizontal dashed line, while the upper limit on mmin from the

latest Planck result m1 +m2 +m3 < 0.230 eV at 95% confidence level [71] is shown by dashed line.
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Field l νc ec µc τ c hu,d ϕ φ ψ ξ ζ χ ρ ∆ σ0 φ0 ψ0 ξ0 χ0 ρ0 ∆0

A5 3 3 1 1 1 1 3 3′ 5 1 1 3 3′ 5 1 4 5 1 3 3 5

Z3 ω3 1 ω2
3 ω2

3 ω2
3 1 1 1 1 ω2

3 ω3 ω3 ω3 ω2
3 1 1 1 ω3 1 1 ω3

Z4 −1 1 −1 −1 −1 1 1 1 1 −1 i i −i −1 1 1 1 −1 i −i −1

Z6 1 1 ω6 ω2
6 ω5

6 1 ω6 ω2
6 ω2

6 1 1 1 1 1 ω4
6 ω3

6 ω4
6 1 1 1 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2

Table 2. The matter fields, flavon fields, driving fields and their transformation properties under

the family symmetry A5 × Z3 × Z4 × Z6 and U(1)R, where the phase ω3 = e
2iπ
3 and ω6 = e

iπ
3 .

Note that it would be also interesting to implement other cases such as case VII in a model.

In the present model, both the three generations of left-handed lepton doublets l and the

three generations of right-handed neutrinos νc are assigned to transform as A5 triplet 3,

while the right-haned charged leptons ec, µc and τ c are all invariant under A5. In discrete

flavor symmetry model building, either cyclic Zn or continuous U(1) symmetry is frequently

introduced to eliminate unwanted operators, to ensure the required vacuum alignment and

to reproduce the observed charged lepton mass hierarchies. The auxiliary symmetry is

taken to be Z3 × Z4 × Z6 in this model. The A5 family symmetry and CP symmetry

are broken by some flavons in a proper manner. All the flavon fields are standard model

gauge singlets. As anticipated, we formulate our model in the framework of supersymmetry

(SUSY). A U(1)R symmetry related to R−parity and the presence of driving fields in the

flavon superpotential are common features of supersymmetric formulations. The field con-

tent of the model and their classification under the symmetry are listed in table 2. In the

following, we first discuss the vacuum alignment of the model, then specify the structure of

the model at leading order and next-to-leading order. As we shall show, the lepton mixing is

exactly the GR at LO, and a non-vanishing value of the reactor mixing angle θ13 is generated

by higher order corrections. Consequently θ13 is naturally of the correct order in our model.

4.1 Vacuum alignment

We utilize the standard supersymmetric driving field mechanism [73] to solve the vacuum

alignment problem. A global U(1)R continuous symmetry is assumed in this approach, and

the usual R−parity is a discrete group of this U(1)R. The matter fields have R−charge

equal to one, both flavon fields and Higgs are chargeless and the driving fields carry two

units of R−charge. At LO the most general driving superpotential wd invariant under

A5 × Z3 × Z4 × Z6 with R = 2 can be written as

wd = wld + wνd , (4.1)

with

wld = f1σ
0(ϕϕ)1 + f2(φ0(ϕφ)4)1 + f3(φ0(ϕψ)4)1 +Mψ(ψ0ψ)1 + f4(ψ0(ϕϕ)5)1 , (4.2)

wνd = Mξξ
0ξ + g1ξ

0ζ2 + g2ξ
0(χχ)1 + g3ξ

0(ρρ)1 + g4ξ(χ
0χ)1 + g5(χ0(χ∆)3)1

+g6(ρ0(ρ∆)3)1 +M∆(∆0∆)1 + g7(∆0(χχ)5)1 + g8(∆0(ρρ)5)1 , (4.3)
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where (. . .)R denotes a contraction into the A5 irreducible representation R according

to the Clebsch-Gordan coefficients listed in appendix A. Notice that all the couplings

fi(i = 1, . . . , 4), gi (i = 1, . . . , 8) and the mass parameters Mψ, Mξ, M∆ are real, since

the theory is invariant under the generalized CP defined in eq. (2.9). In the SUSY limit,

the vacuum alignment is achieved via the requirement of vanishing F−terms of the driving

fields. In the charged lepton sector, the equations for the vanishing of the derivatives of

wld with respect to each component of the driving fields are:

∂wld
∂σ0

= f1(ϕ2
1 + 2ϕ2ϕ3) = 0,

∂wld
∂φ0

1

= f2(ϕ2φ3 +
√

2ϕ3φ1)− f3(2
√

2ϕ1ψ5 + ϕ2ψ4 −
√

6ϕ3ψ1) = 0,

∂wld
∂φ0

2

= −f2(
√

2ϕ1φ3 + ϕ2φ2) + f3(
√

2ϕ1ψ4 + 3ϕ2ψ3 − 2ϕ3ψ5) = 0,

∂wld
∂φ0

3

= −f2(
√

2ϕ1φ2 + ϕ3φ3)− f3(
√

2ϕ1ψ3 − 2ϕ2ψ2 + 3ϕ3ψ4) = 0,

∂wld
∂φ0

4

= f2(
√

2ϕ2φ1 + ϕ3φ2) + f3(2
√

2ϕ1ψ2 −
√

6ϕ2ψ1 + ϕ3ψ3) = 0,

∂wld
∂ψ0

1

= Mψψ1 + 2f4(ϕ2
1 − ϕ2ϕ3) = 0,

∂wld
∂ψ0

2

= Mψψ5 − 2
√

3f4ϕ1ϕ3 = 0,

∂wld
∂ψ0

3

= Mψψ4 +
√

6f4ϕ
2
3 = 0,

∂wld
∂ψ0

4

= Mψψ3 +
√

6f4ϕ
2
2 = 0,

∂wld
∂ψ0

5

= Mψψ2 − 2
√

3f4ϕ1ϕ2 = 0 , (4.4)

We find one solution to those equations,

〈ϕ〉 =


0

1

0

 vϕ, 〈φ〉 =


0

1

0

 vφ, 〈ψ〉 =



0

0

1

0

0


vψ , (4.5)

up to A5 family symmetry transformations, where the vacuum expectation values (VEVs)

vϕ, vφ and vψ are related by

vφ = −3
√

6f3f4

Mψf2
v2
ϕ, vψ = −

√
6f4

Mψ
v2
ϕ , (4.6)
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with vϕ undetermined. A common order of magnitude for the VEVs (scaled by the cutoff Λ)

is expected. In order to generate the mass hierarchies among the charged lepton, we assume

vϕ
Λ
∼
vφ
Λ
∼
vψ
Λ
∼ O(λ2

c) , (4.7)

where λc ' 0.23 is the Cabibbo angle [1]. In the neutrino sector, the minimization

equations for the vacuum are

∂wνd
∂ξ0

= Mξξ + g1ζ
2 + g2(χ2

1 + 2χ2χ3) + g3(ρ2
1 + 2ρ2ρ3) = 0,

∂wνd
∂χ0

1

= g4ξχ1 − g5(2χ1∆1 −
√

3χ2∆5 −
√

3χ3∆2) = 0,

∂wνd
∂χ0

2

= g4ξχ3 + g5(
√

3χ1∆5 −
√

6χ2∆4 + χ3∆1) = 0,

∂wνd
∂χ0

3

= g4ξχ2 + g5(
√

3χ1∆2 + χ2∆1 −
√

6χ3∆3) = 0,

∂wνd
∂ρ0

1

= g6(
√

3ρ1∆1 + ρ2∆4 + ρ3∆3) = 0,

∂wνd
∂ρ0

2

= g6(ρ1∆5 −
√

2ρ2∆3 −
√

2ρ3∆2) = 0,

∂wνd
∂ρ0

3

= g6(ρ1∆2 −
√

2ρ2∆5 −
√

2ρ3∆4) = 0,

∂wνd
∂∆0

1

= M∆∆1 + 2g7(χ2
1 − χ2χ3) + 2g8(ρ2

1 − ρ2ρ3) = 0,

∂wνd
∂∆0

2

= M∆∆5 − 2
√

3g7χ1χ3 +
√

6g8ρ
2
2 = 0,

∂wνd
∂∆0

3

= M∆∆4 +
√

6g7χ
2
3 − 2

√
3g8ρ1ρ3 = 0,

∂wνd
∂∆0

4

= M∆∆3 +
√

6g7χ
2
2 − 2

√
3g8ρ1ρ2 = 0,

∂wνd
∂∆0

5

= M∆∆2 − 2
√

3g7χ1χ2 +
√

6g8ρ
2
3 = 0 . (4.8)

A solution to those equations with each flavon acquiring non-zero VEV is given by

〈ξ〉 = vξ, 〈ζ〉 = vζ , 〈χ〉 =


√

2
κ

1

1

 vχ, 〈ρ〉 =


−
√

2κ

1

1

 vρ, 〈∆〉 =



−
√

2
3κv1

v1

−(1 + κ)v1

−(1 + κ)v1

v1


. (4.9)

These VEVs are related through

vξ =
10(κ− 3)g5g7

g4M∆
v2
χ, v2

ζ =
2(κ− 3) [(g2g8 + g3g7)g4M∆ − 5g5g7g8Mξ]

g1g4g8M∆
v2
χ,
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v2
ρ =

(2− κ)g7

g8
v2
χ, v1 =

√
30(2− κ)g7

M∆
v2
χ , (4.10)

where vχ is undetermined. It is easy to check that the VEVs of ξ, ζ and ∆ break the

A5 family symmetry down to K
(S,T 3ST 2ST 3)
4 while the subgroup ZT

3ST 2ST 3

2 is preserved

by vacuum of χ and ρ. Furthermore, eq. (4.10) implies that v2
ζ , v

2
χ, v2

ρ, vξ and v1 have

the same phase up to π, since all couplings are real. In our model, the GR mixing is

reproduced exactly and a non-zero reactor mixing angle θ13 is generated after subleading

order contributions are included. In order to obtain the correct size of θ13, we could choose

vξ
Λ
∼
vζ
Λ
∼ vχ

Λ
∼ vρ

Λ
∼ v1

Λ
∼ O(λc) . (4.11)

4.2 Leading order results

The charged lepton mass terms, which are invariant under the imposed family symmetry

A5 × Z3 × Z4 × Z6, can be written as

wl =
yτ
Λ
τ c(lϕ)1hd +

yµ1
Λ2

µc(l(φψ)3)1hd +
yµ2
Λ2

µc(l(ψψ)3)1hd +
ye1
Λ3

ec(lϕ)1(φφ)1hd

+
ye2
Λ3

ec((lϕ)5(φφ)5)1hd +
ye3
Λ3

ec((lϕ)3(φψ)3)1hd +
ye4
Λ3

ec((lϕ)5(φψ)5)1hd

+
ye5
Λ3

ec(lϕ)1(ψψ)1hd +
ye6
Λ3

ec((lϕ)3(ψψ)3)1hd +
ye7
Λ3

ec((lϕ)5(ψψ)51)1hd

+
ye8
Λ3

ec((lϕ)5(ψψ)52)1hd + . . . , (4.12)

where dots stand for higher dimensional operators which will be discussed later. Note that

all couplings here are real due to the generalized CP symmetry. After the electroweak and

flavor symmetries breaking by the VEVs shown in eq. (4.5), we obtain a diagonal charged

lepton mass matrix, and the three charged lepton masses are

me =
√

2

∣∣∣∣∣3ye2 v2
φvϕ

Λ3
+ (ye3 −

√
3ye4)

vφvϕvψ
Λ3

+ 3ye8
vϕv

2
ψ

Λ3

∣∣∣∣∣ vd,
mµ =

√
2
∣∣∣yµ1 vφvψΛ2

∣∣∣ vd, mτ =
∣∣∣yτ vϕ

Λ

∣∣∣ vd , (4.13)

We see that the realistic mass hierarchies me : mµ : mτ ' λ4
c : λ2

c : 1 is generated for the

order of magnitude of the flavon VEVs in eq. (4.7). Furthermore, as both ml and ρ3(T ) are

diagonal, obviously we have ρ†3(T )m†lmlρ3(T ) = m†lml, i.e., the residual flavor symmetry

of m†lml is ZT5 . Next let’s discuss the neutrino sector. Neutrino masses are generated by

type I see-saw mechanism in this work. The LO superpotential for neutrino masses is

wν =
y1

Λ
ξ(νcl)1hu +

y2

Λ
((νcl)5∆)1hu +M(νcνc)1 , (4.14)

where the coupling constants y1, y2 and the mass M are enforced to be real by the gen-

eralized CP symmetry. The Dirac mass matrix is obtained from the first two terms in

eq. (4.14) and it is given by

mD = a


1 0 0

0 0 1

0 1 0

 vu + b


−2
√

2κ −3 −3

−3 −3
√

2(κ+ 1)
√

2κ

−3
√

2κ −3
√

2(κ+ 1)

 vu , (4.15)
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where vu = 〈hu〉, and the parameters a, b are

a = y1
vξ
Λ
, b = y2

v1√
3Λ

. (4.16)

The common phase of a and b can be absorbed by field redefinition, consequently both a

and b can considered as real. The last term of eq. (4.14) leads to the Majorana mass matrix:

mM = M


1 0 0

0 0 1

0 1 0

 . (4.17)

Therefore the three right-handed neutrinos are completely degenerate with mass equal to

M . The light neutrino mass matrix is then given by the see-saw relation:

mν = −mT
Dm

−1
M mD = α


1 0 0

0 0 1

0 1 0

+
β√
2


−2
√

2 3 3

3 0
√

2

3
√

2 0

+ γ


2 0 0

0 3 −1

0 −1 3

 , (4.18)

where

α = −
[
a2 + 40(1 + κ)b2

] v2
u

M
,

β = 2
[√

2ab− (3 + 4κ)b2
] v2

u

M
,

γ =
[
2
√

2(1 + κ)ab+ (1 + 8κ)b2
] v2

u

M
. (4.19)

We find that the neutrino mass matrix mν in eq. (4.18) is of the same form as the general

mass matrix in eq. (3.27) with δ = 0. Therefore mν is exactly diagonalized by the GR

mixing pattern, i.e.,

UTGRmνUGR = diag(m1,m2,m3) , (4.20)

where the phase matrix Kν which encodes the CP parity of the neutrino state, has been

omitted. The mass eigenvalues m1,2,3 are

m1 =
∣∣∣a2 − 2

√
2(3− κ)ab+ 10(2− κ)b2

∣∣∣ v2
u

M
,

m2 =
∣∣∣a2 − 10

√
2κab+ 50(1 + κ)b2

∣∣∣ v2
u

M
,

m3 =
∣∣∣a2 + 2

√
2(3 + 4κ)ab+ 10(5 + 8κ)b2

∣∣∣ v2
u

M
. (4.21)

Since the charged lepton mass matrix is diagonal in LO, the lepton mixing is exactly the GR

mixing pattern. Here the reason why the GR mixing is produced is because that the flavor

symmetry A5 is broken to K
(S,T 2ST 2ST 3)
4 subgroup by the VEVs of ξ and ∆. Furthermore,

we see that three neutrino masses m1,2,3 only depend on two real parameters a and b which

can be fixed by the measured values of the mass-squared difference δm2 ≡ m2
2 −m2

1 and

∆m2 ≡ m2
3−(m2

1+m2
2). For the best fitting values δm2 = 7.54×10−5eV2 and ∆m2 = 2.43×

10−3eV2 [7], we find the neutrino mass spectrum can only be NO, and the absolute values

of the neutrino masses are m1 = 4.81× 10−4eV, m2 = 8.70× 10−3eV and m3 = 0.0497eV.

– 29 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

4.3 Next-to-leading-order corrections

At LO our model gives rise to the GR mixing pattern UGR which predicts a vanishing

reactor mixing angle (θ13 = 0◦). Hence substantial next-to-leading-order corrections are

needed to bring the model to agree with the experimental data on θ13. We will demonstrate

in the following that a non-zero θ13 can be obtained after the NLO contributions are

included. Moreover, the LO remnant symmetry K
(S,T 3ST 2ST 3)
4 of neutrino sector is further

broken down to ZT
3ST 2ST 3

2 such that the mixing patterns of case III and case IV discussed

in section 3.2 are realized. Firstly we consider the corrections to the flavon superpotential

wld in eq. (4.2) which determines the vacuum alignment of the charged lepton sector. The

symmetry allowed NLO operators are of the following form

δwld = ((φ0ϕ)5(ϕϕ)5)1/Λ + (Ψ0
l ΨlΨ

2
νΨ′νρ)1/Λ

3 , (4.22)

where all possible A5 contractions should be considered, and all dimensionless coupling

constants are omitted with Ψ0
l ≡ {σ0, ψ0}, Ψl ≡ {φ, ψ}, Ψν ≡ {ξ,∆} and Ψ′ν ≡ {ζ, χ}.

Note that δwld is suppressed by λ2
c with respect to the LO superpotential wld in eq. (4.2).

The NLO vacuum configuration is determined by searching for the zeros of the F−terms

of wld + δwld with respect to the driving fields σ0, φ0 and ψ0. We find that the NLO

vacuum of ϕ, φ and ψ are given by

〈ϕ〉 =


ε1λ

2
c

1

ε2λ
2
c

 vϕ, 〈φ〉 =


ε3λ

2
c

1 + ε4λ
2
c

ε5λ
2
c

 vφ, 〈ψ〉 =



ε6λ
2
c

ε7λ
2
c

1 + ε8λ
2
c

ε9λ
2
c

ε10λ
2
c


vψ , (4.23)

where εi (i = 1, . . . , 10) are general complex numbers with absolute values of order one.

The higher dimensional operators contributing to the charged lepton masses are:

δwl = µc(lϕ2Ψl)hd/Λ
3 + ec(lϕ3Ψl)/Λ

4 . (4.24)

The charged lepton mass matrix can be obtained by inserting the NLO VEVs of eq. (4.23)

into the LO mass terms plus the contribution of δwl evaluated with the LO VEVs of

eq. (4.5). We find that the NLO charged lepton mass matrix is of the following form:

ml '


me λ2

cme λ
2
cme

λ2
cmµ mµ λ2

cmµ

λ2
cmτ λ

2
cmτ mτ

 . (4.25)

Therefore the contributions of charged lepton sector to the lepton mixing angles is of order

λ2
c and can be neglected.

We proceed to discuss the subleading corrections in the neutrino sector. The higher

order corrections to the flavon superpotential of ξ, ζ, χ, ρ and ∆ read

δwνd =
g9

Λ
ζ2(χ0χ)1 +

g10

Λ
ζ(χ0(χχ)3)1 +

g11

Λ
(χ0χ)1(χχ)1 +

g12

Λ
((χ0χ)3(χχ)3)1
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+
g13

Λ
((χ0χ)5(χχ)5)1 +

g14

Λ
(χ0χ)1(ρρ)1 +

g15

Λ
((χ0χ)5(ρρ)5)1

+
g16

Λ
((ρ0ρ)5(χχ)5)1 +

g17

Λ
((ρ0ρ)5(ρρ)5)1 , (4.26)

where all couplings gi (i = 9, . . . , 17) are real because of the generalized CP symmetry.

The resulting contributions to the F−terms of the driving fields σ0, ρ0, χ0 and ∆0 are

suppressed by 〈Ψ〉/Λ ∼ λc (Ψ ≡ {ζ, χ, ρ}) compared to the contribution from the LO

terms in eq. (4.3). Hence they induce shifts in the VEVs of ξ, ζ, χ, ρ and ∆ at relative

order λc with respect to the LO results. After some straightforward algebra, the new

vacuum configuration can be written as

〈ξ〉 = vξ + δvξ, 〈ζ〉 = vζ + δvζ , 〈χ〉 =


√

2
κ vχ

vχ

vχ

 ,

〈ρ〉 =


−
√

2κ(vρ + δvρ)

vρ + δvρ

vρ + δvρ

 , 〈∆〉 =



√
2
3 (−κv1 + (1 + 2κ) δv∆)

v1 + δv∆

− (1 + κ) v1 + 2κδv∆

− (1 + κ) v1 + 2κδv∆

v1 + δv∆


, (4.27)

where

δvξ = −X1 + g5X2

g4g6Λ
, δvζ =

g8MξX1 + (g5g8Mξ − g3g4M∆)X2

2g1g4g6g8Λvζ
,

δvρ =
2(κ− 2)g16M∆v

2
χ + 2g17M∆v

2
ρ

4g6g8Λvρ
, δv∆ =

2
√

6((κ− 1)g16v
2
χ − κg17v

2
ρ)

g6Λ
, (4.28)

with

X1 = g6

(
g9v

2
ζ + 2(3− κ)(g11 + 4g13)v2

χ + 2
√

5κ(g14 + g15)v2
ρ

)
,

X2 = 2(κ− 3)g16v
2
χ + 2

√
5κg17v

2
ρ . (4.29)

Obviously the vacuum of χ is kept intact, 〈ρ〉 acquires O(λc) corrections in the same

direction, while the alignment of ∆ is tilted. Moreover, from the relations in eq. (4.10), we

see that the shifts δvξ, δvζ , δvρ and δv∆ carry the same phase as vξ, vζ , vρ and v1 up to π,

respectively.

The light neutrino mass matrix receives corrections from both the modified vacuum and

the higher dimensional operators in the superpotential wν . It is easy to check that the NLO

corrections to the Majorana mass terms are suppressed by 1/Λ4 which can be safely ne-

glected. The subleading operators contributing to the neutrino Dirac masses are as follows

δwν =
y3

Λ2
ζ2(lνc)1hu +

y4

Λ2
ζ((lνc)3χ)1hu +

y5

Λ2
(lνc)1(χχ)1hu +

y6

Λ2
((lνc)3(χχ)3)1hu

+
y7

Λ2
((lνc)5(χχ)5)1hu +

y8

Λ2
(lνc)1(ρρ)1hu +

y9

Λ2
((lνc)5(ρρ)5)1hu . (4.30)

– 31 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

As a consequence, the corrected Dirac mass matrix becomes

mD = a


1 0 0

0 0 1

0 1 0

 vu + b


2
√

2 −3 −3

−3 0 −
√

2

−3 −
√

2 0

 vu + c


2
√

2 0 0

0 3
√

2 −
√

2

0 −
√

2 3
√

2

 vu

+d


0 1 −1

−1 0
√

5−1√
2

1 1−
√

5√
2

0

 vu , (4.31)

where the four parameters a, b, c and d are

a = y1
vξ + δvξ

Λ
+ y3

v2
ζ

Λ2
+ 2(3− κ)y5

v2
χ

Λ2
+ 2
√

5κy8

v2
ρ

Λ2
,

b =
y2√

3

v1 + δv∆

Λ
− 2
√

2(κ− 1)y7

v2
χ

Λ2
+
√

2y9

v2
ρ

Λ2
,

c = − y2√
3

(1 + κ) v1 − 2κδv∆

Λ
+
√

2y7

v2
χ

Λ2
+ 2
√

2κy9

v2
ρ

Λ2
, d = y4

vζvχ
Λ2

. (4.32)

Notice that the three parameters a, b and c have the same phase with v2
χ up to π,

while the phase difference between d and v2
χ is 0, π or ±π

2 depending on the product

g1M∆

[
(g2g8 + g3g7)g2

4g8M∆ − 5g4g5g7g
2
8Mξ

]
being positive or negative. Since the phase

of vχ can be factorized out as an overall phase of the neutrino mass matrix mν , the VEV

vχ can be taken to be real without loss of generality. As a result, a, b and c are all real

and the parameter d is real for g1M∆

[
(g2g8 + g3g7)g2

4g8M∆ − 5g4g5g7g
2
8Mξ

]
< 0 or pure

imaginary for g1M∆

[
(g2g8 + g3g7)g2

4g8M∆ − 5g4g5g7g
2
8Mξ

]
> 0. In addition, we see that

d are suppressed by λc with respect to a, b and c, i.e.,

a ∼ b ∼ c ∼ O(λc), d ∼ O(λ2
c) . (4.33)

Utilizing the see-saw formula, we find the light neutrino mass matrix mν is of the same

form as eq. (3.27) with

α = −
[
3a2 + 24(2b2 + bc+ 2c2)− 4(3− κ)d2

] v2
u

3M
,

β =
[
6b(
√

2a+ b+ 4c)− 2(κ− 1)d2
] v2

u

3M
,

γ = −
[
6
√

2ac+ 3(3b+ 2c)(b− 2c) + d2
] v2

u

3M
,

δ = −3d [b+ 2(κ− 1)c]
v2
u

M
. (4.34)

Note that the term proportional to δ spoils the LO GR mixing, and it is of relative order

λc compared with α, β and γ since it is induced by the NLO corrections. Therefore the

correct size of the reactor mixing angle θ13 can be naturally achieved in our model. After

extracting the overall phase of vχ, the parameters α, β and γ are real while δ is real or pure
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imaginary. In the case of g1M∆

[
(g2g8+g3g7)g2

4g8M∆−5g4g5g7g
2
8Mξ

]
< 0, δ is real such that

the neutrino mass matrix mν has the most general form compatible with the preservation

of the remnant symmetry ZT
3ST 2ST 3

2 × Hν
CP with Hν

CP = {ρr(1), ρr(T
3ST 2ST 3)}. This

is the case III investigated in the model independent analysis of section 3.2. The lepton

mixing matrix UPMNS and the corresponding preditions for the lepton mixing parameters

are given by eq. (3.32) and eq. (3.33) respectively. There is no CP violation in this case.

In the case of g1M∆

[
(g2g8+g3g7)g2

4g8M∆−5g4g5g7g
2
8Mξ

]
> 0, the parameter δ becomes

imaginary. The origin symmetry A5 o HCP is broken down to ZT
3ST 2ST 3

2 × Hν
CP with

Hν
CP = {ρr(S), ρr(T

3ST 2ST 3S)} in the neutrino sector. The neutrino mass matrix mν

has the same form as that of case IV discussed in section 3.2. Both atmospheric mixing

angle and Dirac CP phase are predicted to be maximal while Majorana CP phases are

conserved, as shown in eq. (3.39). In short, our model reproduces the GR mixing at LO,

and realistic value of θ13 is obtained after higher order contributions are taken into account.

Depending on the overall sign of the product g1M∆

[
(g2g8 + g3g7)g2

4g8M∆− 5g4g5g7g
2
8Mξ

]
,

either case III or case IV can be realized.

5 Conclusions

Combining a discrete flavor symmetry with a CP symmetry is a very promising approach

of predicting both lepton mixing angles and CP phases. In this work we have performed a

comprehensive analysis of the A5 family symmetry and CP symmetry. Since the inverse of

each conjugacy class of A5 is equal to itself, all the inner automorphisms of A5 are class-

inverting while the unique nontrivial outer automorphism of A5 is not. In this work, we

have focused on the CP transformations defined by the inner automorphisms, since fields

transforming as 3 and 3′ are required to be present in pairs and they are interchanged

if one would like to consistently impose the CP symmetry associated with the nontrivial

outer automorphism of A5. In our working basis, the CP transformations are found to be

of the same form as the family symmetry transformations.

Assuming neutrinos are Majorana particles, we have analyzed the possible symmetry

breaking patterns of A5 oHCP and the corresponding predictions for the PMNS matrix as

well as the lepton mixing parameters in a model independent way. We find five phenomeno-

logically interesting mixing patterns summarized in table 1, and one column of the PMNS

matrix is fixed to be (−
√

κ√
5
, 1√

2
√

5κ
, 1√

2
√

5κ
)T , (

√
1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5
)T , ( 1√

3
, 1√

3
, 1√

3
)T or

(κ2 ,−
1
2 ,

κ−1
2 )T , where κ = (1 +

√
5)/2 is the golden ratio. All the three mixing angles

are determined in terms of a single real parameter θ, and their measured values can be

accommodated for certain values of θ. In particular, the Dirac CP violating phase δCP is

predicted to be trivial or maximal while the Majorana phases are trivial. In contrast, δCP
is quite weakly constrained and Majorana phases can not be predicted if CP symmetry

is not considered, as shown in appendix B. Our theoretical predictions can be tested by

forthcoming long-baseline neutrino oscillation experiments such as LBNE, LBNO and Hy-

perKamiokande. The predicted mixing patterns would be ruled out, if significant deviations

of δCP from trivial and maximal values were detected. Furthermore, the phenomenolog-

ical predictions for the (ββ)0ν−decay are investigated. The present experimental bounds
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are saturated, and the effective mass |mee| is found to be within the sensitivity of future

(ββ)0ν−decay experiments for inverted ordering neutrino mass spectrum.

Guided by above model independent analysis, we construct a flavor model with both

A5 flavor symmetry and generalized CP symmetry. The lepton mixing is exactly the GR

pattern at LO, the observed mass hierarchies among charged lepton are generated, and

the three light neutrino masses effectively depend on two real parameters which can be

fixed by the measured values of the mass-squared splittings. Therefore the neutrino mass

spectrum can only be normal ordering and the absolute neutrino masses are predicted.

The model is built in such a way that the GR mixing is modified by NLO contributions

and only the second column of GR mixing matrix is kept. A non-vanishing value of θ13

is generated at NLO and it is naturally of the correct order λc in our model. In case of

g1M∆

[
(g2g8+g3g7)g2

4g8M∆−5g4g5g7g
2
8Mξ

]
< 0, Dirac CP phase δCP is 0 or π, consequently

the mixing pattern of case III of general analysis in section 3.2 is reproduced exactly. In case

of g1M∆

[
(g2g8 + g3g7)g2

4g8M∆ − 5g4g5g7g
2
8Mξ

]
> 0, Dirac CP phase δCP is maximal with

δCP = ±π/2, the mixing pattern of case IV is generated. In other words, our model provides

an explicit dynamical realization of the assumed symmetry breaking pattern in section 3.2.

It is interesting to implement any of the remaining cases II, V and VII in table 1 in

a concrete model. Moreover, the group I ′, which is the double cover of A5, may deserve

to be studied in a similar fashion. Since I ′ has doublet representations [74], quark masses

and mixing should be easily reproduced.
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A Group theory of A5

A5 is the group of even permutations of five objects, and it has 5!/2 = 60 elements.

Geometrically it is the symmetry group of a regular icosahedron. A5 group can be generated

by two generators S and T which satisfy the multiplication rules [75]:

S2 = T 5 = (ST )3 = 1 . (A.1)

The 60 element of A5 group are divided into 5 conjugacy classes:

1C1 : 1

15C2 : ST 2ST 3S, TST 4, T 4(ST 2)2, T 2ST 3, (T 2S)2T 3S, ST 2ST, S, T 3ST 2ST 3,

T 3ST 2ST 3S, T 3ST 2, T 4ST 2ST 3S, TST 2S, ST 3ST 2S, T 4ST, (T 2S)2T 4
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20C3 : ST, TS, ST 4, T 4S, TST 3, T 2ST 2, T 2ST 4, T 3ST, T 3ST 3, T 4ST 2, TST 3S, T 2ST 3S,

T 3ST 2S, ST 2ST 3, ST 3ST, ST 3ST 2, (T 2S)2T 2, T 2(T 2S)2, (ST 2)2S, (ST 2)2T 2

12C5 : T, T 4, ST 2, T 2S, ST 3, T 3S, STS, TST, TST 2, T 2ST, T 3ST 4, T 4ST 3

12C ′5 : T 2, T 3, ST 2S, ST 3S, (ST 2)2, (T 2S)2, (ST 3)2, (T 3S)2, (T 2S)2T 3,

T 3(ST 2)2, T 3ST 2ST 4, T 4ST 2ST 3 , (A.2)

where nCk denotes a class with n elements which have order k. The group structure of

A5 has been elaborately analyzed in ref. [75]. Following the convention of ref. [75], we

find that A5 group has thirty-six abelian subgroups in total: fifteen Z2 subgroups, ten Z3

subgroups, five K4 subgroups and six Z5 subgroups. In terms of the generators S and T ,

the concrete forms of these abelian subgroups are as follows:

• Z2 subgroups.

ZST
2ST3S

2 = {1, ST 2ST 3S}, ZTST
4

2 = {1, TST 4}, Z
T4(ST2)2

2 = {1, T 4(ST 2)2},

ZT
2ST3

2 = {1, T 2ST 3}, Z
(T2S)2T3S
2 = {1, (T 2S)2T 3S}, ZST

2ST
2 = {1, ST 2ST},

ZS2 = {1, S}, ZT
3ST2ST3

2 = {1, T 3ST 2ST 3}, ZT
3ST2ST3S

2 = {1, T 3ST 2ST 3S},

ZT
3ST2

2 = {1, T 3ST 2}, ZT
4ST2ST3S

2 = {1, T 4ST 2ST 3S}, ZTST
2S

2 = {1, TST 2S},

ZST
3ST2S

2 = {1, ST 3ST 2S}, ZT
4ST

2 = {1, T 4ST}, Z
(T2S)2T4

2 = {1, (T 2S)2T 4}.

All the above fifteen Z2 subgroups are conjugate to each other.

• Z3 subgroups.

ZT
3ST 2S

3 = {1, T 3ST 2S, ST 3ST 2}, ZTST
3S

3 = {1, TST 3S, (ST 2)2T 2},

ZT
3ST

3 = {1, T 3ST, T 4ST 2}, ZST3 = {1, ST, T 4S},

Z
(T 2S)2T 2

3 = {1, (T 2S)2T 2, (ST 2)2S}, ZTST
3

3 = {1, TST 3, T 2ST 4},

ZT
2ST 2

3 = {1, T 2ST 2, T 3ST 3}, ZTS3 = {1, TS, ST 4},

ZST
3ST

3 = {1, ST 3ST, T 2(T 2S)2}, ZST
2ST 3

3 = {1, ST 2ST 3, T 2ST 3S}.

The ten Z3 subgroups are related with each other by group conjugation.

• K4 subgroups.

K
(ST 2ST 3S,TST 4)
4 ≡ ZST

2ST 3S
2 × ZTST 4

2 = {1, ST 2ST 3S, TST 4, T 4(ST 2)2},

K
(T 2ST 3,ST 2ST )
4 ≡ ZT

2ST 3

2 × ZST 2ST
2 = {1, T 2ST 3, (T 2S)2T 3S, ST 2ST},

K
(S,T 3ST 2ST 3)
4 ≡ ZS2 × ZT

3ST 2ST 3

2 = {1, S, T 3ST 2ST 3, T 3ST 2ST 3S},

K
(T 3ST 2,TST 2S)
4 ≡ ZT

3ST 2

2 × ZTST 2S
2 = {1, T 3ST 2, T 4ST 2ST 3S, TST 2S},

K
(ST 3ST 2S,T 4ST )
4 ≡ ZST

3ST 2S
2 × ZT 4ST

2 = {1, ST 3ST 2S, T 4ST, (T 2S)2T 4}.

All the five K4 subgroups are conjugate as well.
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• Z5 subgroups.

ZSTS5 = {1, STS, ST 2S, ST 3S, TST}, ZST
3

5 = {1, ST 3, T 2S, (ST 3)2, (T 2S)2},

ZT
2ST

5 = {1, T 2ST, T 4ST 3, T 3(ST 2)2, T 4ST 2ST 3}, ZT5 = {1, T, T 2, T 3, T 4},

ZTST
2

5 = {1, TST 2, T 3ST 4, (T 2S)2T 3, T 3ST 2ST 4}, ZST
2

5 = {1, ST 2, T 3S, (ST 2)2, (T 3S)2}.

All the six Z5 subgroups are related to each other under group conjugation.

Here the superscript of a subgroup denotes its generator (generators). The A5 group

has five irreducible representations: one singlet representation 1, two three-dimensional

representations 3 and 3′, one four-dimensional representation 4 and one five-dimensional

representation 5. In the present work, we choose the same basis as that of ref. [75]. The

explicit forms of the generators S and T in the five irreducible representations are as follows

1 : S=1 , T =1 ,

3 : S= 1√
5


1 −

√
2 −

√
2

−
√

2 − κ κ− 1

−
√

2 κ− 1 − κ

 , T =


1 0 0

0 ω5 0

0 0 ω4
5

 ,

3′ : S= 1√
5


−1

√
2

√
2

√
2 1− κ κ
√

2 κ 1− κ

 , T =


1 0 0

0 ω2
5 0

0 0 ω3
5

 ,

4 : S= 1√
5


1 κ− 1 κ − 1

κ− 1 − 1 1 κ

κ 1 − 1 κ− 1

−1 κ κ− 1 1

 , T =


ω5 0 0 0

0 ω2
5 0 0

0 0 ω3
5 0

0 0 0 ω4
5

 ,

5 : S= 1
5



−1
√

6
√

6
√

6
√

6
√

6 (κ−1)2 − 2κ 2(κ−1) κ2

√
6 − 2κ κ2 (κ−1)2 2(κ−1)
√

6 2(κ−1) (κ−1)2 κ2 − 2κ
√

6 κ2 2(κ−1) − 2κ (κ−1)2


, T =



1 0 0 0 0

0 ω5 0 0 0

0 0 ω2
5 0 0

0 0 0 ω3
5 0

0 0 0 0 ω4
5


,

(A.3)

where ω5 = e
2πi
5 . The character table of A5 group is reported in table 3. We can straight-

forwardly obtain the Kronecker products between various representations:

1⊗R = R⊗ 1 = R, 3⊗ 3 = 1⊕ 3⊕ 5, 3′ ⊗ 3′ = 1⊕ 3′ ⊕ 5, 3× 3′ = 4⊕ 5,

3⊗ 4 = 3′ ⊕ 4⊕ 5, 3′ ⊗ 4 = 3⊕ 4⊕ 5, 3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5,

3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5, 4⊗ 4 = 1⊕ 3⊕ 3′ ⊕ 4⊕ 5, 4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52,

5⊗ 5 = 1⊕ 3⊕ 3′ ⊕ 41 ⊕ 42 ⊕ 51 ⊕ 52. (A.4)

– 36 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

Conjugacy Classes

1C1 15C2 20C3 12C5 12C ′5

1 1 1 1 1 1

3 3 −1 0 κ 1− κ
3′ 3 −1 0 1− κ κ

4 4 0 1 −1 −1

5 5 1 −1 0 0

Table 3. The character table of the A5 group, where κ = 1+
√
5

2 .

where R represents any irreducible representation of A5, and 41, 42, 51 and 52 stand for

the two 4 and two 5 representations that appear in the Kronecker products.

We now list the Clebsch-Gordan coefficients for our basis. We use the notation αi (βi)

to denote the elements of the first (second) representation. The subscript “S” (“A”) refers

to symmetric (antisymmetric) combinations.

3⊗ 3 = 1S ⊕ 3A ⊕ 5S 3′ ⊗ 3′ = 1S ⊕ 3′A ⊕ 5S 3⊗ 3′ = 4⊕ 5

1S : α1β1 + α2β3 + α3β2 1S : α1β1 + α2β3 + α3β2

3A :


α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

 3′A :


α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

 4 :



√
2α2β1 + α3β2

−
√

2α1β2 − α3β3

−
√

2α1β3 − α2β2

√
2α3β1 + α2β3



5S :



2α1β1−α2β3−α3β2

−
√

3(α1β2 + α2β1)
√

6α2β2

√
6α3β3

−
√

3(α1β3 + α3β1)


5S :



2α1β1−α2β3−α3β2

√
6α3β3

−
√

3(α1β2 + α2β1)

−
√

3(α1β3 + α3β1)
√

6α2β2


5 :



√
3α1β1

α2β1 −
√

2α3β2

α1β2 −
√

2α3β3

α1β3 −
√

2α2β2

α3β1 −
√

2α2β3


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3⊗ 4 = 3′ ⊕ 4⊕ 5 3′ ⊗ 4 = 3⊕ 4⊕ 5

3′ :


−
√

2(α2β4 + α3β1)
√

2α1β2 − α2β1 + α3β3√
2α1β3 + α2β2 − α3β4

 3 :


−
√

2(α2β3 + α3β2)
√

2α1β1 + α2β4 − α3β3√
2α1β4 − α2β2 + α3β1



4 :


α1β1 −

√
2α3β2

−α1β2 −
√

2α2β1

α1β3 +
√

2α3β4

−α1β4 +
√

2α2β3

 4 :


α1β1 +

√
2α3β3

α1β2 −
√

2α3β4

−α1β3 +
√

2α2β1

−α1β4 −
√

2α2β2



5 :



√
6(α2β4 − α3β1)

2
√

2α1β1 + 2α3β2

−
√

2α1β2 + α2β1 + 3α3β3√
2α1β3 − 3α2β2 − α3β4

−2
√

2α1β4 − 2α2β3


5 :



√
6(α2β3 − α3β2)

√
2α1β1 − 3α2β4 − α3β3

2
√

2α1β2 + 2α3β4

−2
√

2α1β3 − 2α2β1

−
√

2α1β4 + α2β2 + 3α3β1



3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5

3 :


−2α1β1 +

√
3α2β5 +

√
3α3β2√

3α1β2 + α2β1 −
√

6α3β3√
3α1β5 −

√
6α2β4 + α3β1

 3 :


√

3α1β1 + α2β4 + α3β3

α1β2 −
√

2α2β5 −
√

2α3β4

α1β5 −
√

2α2β3 −
√

2α3β2



3′ :


√

3α1β1 + α2β5 + α3β2

α1β3 −
√

2α2β2 −
√

2α3β4

α1β4 −
√

2α2β3 −
√

2α3β5

 3′ :


−2α1β1 +

√
3α2β4 +

√
3α3β3√

3α1β3 + α2β1 −
√

6α3β5√
3α1β4 −

√
6α2β2 + α3β1



4 :


2
√

2α1β2 −
√

6α2β1 + α3β3

−
√

2α1β3 + 2α2β2 − 3α3β4√
2α1β4 + 3α2β3 − 2α3β5

−2
√

2α1β5 − α2β4 +
√

6α3β1

 4 :


√

2α1β2 + 3α2β5 − 2α3β4

2
√

2α1β3 −
√

6α2β1 + α3β5

−2
√

2α1β4 − α2β2 +
√

6α3β1

−
√

2α1β5 + 2α2β3 − 3α3β2



5 :



√
3(α2β5 − α3β2)

−α1β2 −
√

3α2β1 −
√

2α3β3

−2α1β3 −
√

2α2β2

2α1β4 +
√

2α3β5

α1β5 +
√

2α2β4 +
√

3α3β1


5 :



√
3(α2β4 − α3β3)

2α1β2 +
√

2α3β4

−α1β3 −
√

3α2β1 −
√

2α3β5

α1β4 +
√

2α2β2 +
√

3α3β1

−2α1β5 −
√

2α2β3


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4⊗ 4 = 1S ⊕ 3A ⊕ 3′A ⊕ 4S ⊕ 5S 4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52

1S : α1β4 + α2β3 + α3β2 + α4β1 3 :


2
√

2α1β5 −
√

2α2β4 +
√

2α3β3 − 2
√

2α4β2

−
√

6α1β1 + 2α2β5 + 3α3β4 − α4β3

α1β4 − 3α2β3 − 2α3β2 +
√

6α4β1



3A :


−α1β4 + α2β3 − α3β2 + α4β1

√
2(α2β4 − α4β2)

√
2(α1β3 − α3β1)


3′ :



√
2α1β5 + 2

√
2α2β4 − 2

√
2α3β3 −

√
2α4β2

3α1β2 −
√

6α2β1 − α3β5 + 2α4β4

−2α1β3 + α2β2 +
√

6α3β1 − 3α4β5



3′A :


α1β4 + α2β3 − α3β2 − α4β1

√
2(α3β4 − α4β3)

√
2(α1β2 − α2β1)


4 :



√
3α1β1 −

√
2α2β5 +

√
2α3β4 − 2

√
2α4β3

−
√

2α1β2 −
√

3α2β1 + 2
√

2α3β5 +
√

2α4β4

√
2α1β3 + 2

√
2α2β2 −

√
3α3β1 −

√
2α4β5

−2
√

2α1β4 +
√

2α2β3 −
√

2α3β2 +
√

3α4β1



4S :



α2β4 + α3β3 + α4β2

α1β1 + α3β4 + α4β3

α1β2 + α2β1 + α4β4

α1β3 + α2β2 + α3β1


51 :



√
2α1β5 −

√
2α2β4 −

√
2α3β3 +

√
2α4β2

−
√

2α1β1 −
√

3α3β4 −
√

3α4β3

√
3α1β2 +

√
2α2β1 +

√
3α3β5

√
3α2β2 +

√
2α3β1 +

√
3α4β5

−
√

3α1β4 −
√

3α2β3 −
√

2α4β1



5S :



√
3(α1β4 − α2β3 − α3β2 + α4β1)

−
√

2α2β4 + 2
√

2α3β3 −
√

2α4β2

−2
√

2α1β1 +
√

2α3β4 +
√

2α4β3

√
2α1β2 +

√
2α2β1 − 2

√
2α4β4

−
√

2α1β3 + 2
√

2α2β2 −
√

2α3β1


52 :



2α1β5 + 4α2β4 + 4α3β3 + 2α4β2

4α1β1 + 2
√

6α2β5

−
√

6α1β2 + 2α2β1 −
√

6α3β5 + 2
√

6α4β4

2
√

6α1β3 −
√

6α2β2 + 2α3β1 −
√

6α4β5

2
√

6α3β2 + 4α4β1


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5⊗ 5 = 1S ⊕ 3A ⊕ 3′A ⊕ 4S,1 ⊕ 4A,2 ⊕ 5S,1 ⊕ 5S,2

1S : α1β1 + α2β5 + α3β4 + α4β3 + α5β2

3A :


α2β5 + 2α3β4 − 2α4β3 − α5β2

−
√

3α1β2 +
√

3α2β1 +
√

2α3β5 −
√

2α5β3√
3α1β5 +

√
2α2β4 −

√
2α4β2 −

√
3α5β1


3′A :


2α2β5 − α3β4 + α4β3 − 2α5β2√

3α1β3 −
√

3α3β1 +
√

2α4β5 −
√

2α5β4

−
√

3α1β4 +
√

2α2β3 −
√

2α3β2 +
√

3α4β1



4S,1 :


3
√

2α1β2 + 3
√

2α2β1 −
√

3α3β5 + 4
√

3α4β4 −
√

3α5β3

3
√

2α1β3 + 4
√

3α2β2 + 3
√

2α3β1 −
√

3α4β5 −
√

3α5β4

3
√

2α1β4 −
√

3α2β3 −
√

3α3β2 + 3
√

2α4β1 + 4
√

3α5β5

3
√

2α1β5 −
√

3α2β4 + 4
√

3α3β3 −
√

3α4β2 + 3
√

2α5β1



4A,2 :


√

2α1β2 −
√

2α2β1 +
√

3α3β5 −
√

3α5β3

−
√

2α1β3 +
√

2α3β1 +
√

3α4β5 −
√

3α5β4

−
√

2α1β4 −
√

3α2β3 +
√

3α3β2 +
√

2α4β1√
2α1β5 −

√
3α2β4 +

√
3α4β2 −

√
2α5β1



5S,1 :



2α1β1 + α2β5 − 2α3β4 − 2α4β3 + α5β2

α1β2 + α2β1 +
√

6α3β5 +
√

6α5β3

−2α1β3 +
√

6α2β2 − 2α3β1

−2α1β4 − 2α4β1 +
√

6α5β5

α1β5 +
√

6α2β4 +
√

6α4β2 + α5β1



5S,2 :



2α1β1 − 2α2β5 + α3β4 + α4β3 − 2α5β2

−2α1β2 − 2α2β1 +
√

6α4β4

α1β3 + α3β1 +
√

6α4β5 +
√

6α5β4

α1β4 +
√

6α2β3 +
√

6α3β2 + α4β1

−2α1β5 +
√

6α3β3 − 2α5β1


.

B Lepton flavor mixing from A5 family symmetry without CP

In this section, we investigate the possible lepton mixing patterns which can be derived from

only A5 family symmetry without CP symmetry imposed. As usual, the three generations

of left-handed leptons are assigned to the triplet representation 3, and A5 is broken into

two different abelian subgroups Gl and Gν in the charged lepton and neutrino sector

respectively. The residual flavor symmetry Gν can only be a Z2 or K4 subgroup of A5

since we assume neutrinos are Majorana particles here. In this approach, the PMNS matrix

can be obtained by simply diagonalizing the representation matrices of the generators of

Gl and Gν without resorting to the mass matrix [19–21, 76, 77]. For Gν = K4 and Gl is
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capable of distinguishing the three generations of charged lepton, i.e., the eigenvalues of the

generators of Gl aren’t degenerate, the PMNS matrix would be completely fixed up to row

and column permutations. However, only one column would be fixed by the remnant flavor

symmetries Gl and Gν in case of Gν = Z2. In the following, the scenario of Gl = Z2 and

Gν = K4 shall be discussed as well, and one row would be fixed instead. It is noteworthy

that two pairs of subgroups (Gl, Gν) and (G′l, G
′
ν) lead to the same result for the PMNS

matrix, if they are conjugate under an element of the A5 group.

B.1 Gν = K4

From appendix A, we know that Gl can be a Z3, Z5 or K4 subgroup of A5. In case of Gl =

Z5, all 6× 5 = 30 possible combinations of Gl and Gν give rise to the same mixing matrix

UPMNS =


−
√

κ√
5

√
1√
5κ

0√
1

2
√

5κ

√
κ

2
√

5
− 1√

2√
1

2
√

5κ

√
κ

2
√

5
1√
2

 ≡ UGR , (B.1)

which is the well-known golden ratio mixing pattern. The mixing angles are determined

to be sin2 θ12 = (3− κ) /5 ' 0.276, sin2 θ23 = 1/2 and sin2 θ13 = 0. Obviously θ13 should

acquire moderate corrections to accommodate the measured non-vanishing value of the

reactor angle although θ12 and θ23 are in the experimentally favored 3σ ranges [7].

In case of Gl = Z3, we find two mixing patterns can be obtained. For the representative

symmetries Gl = ZT
3ST 2S

3 and Gν = K
(ST 2ST 3S,TST 4)
4 , the elements of Gl and Gν generate

an A4 subgroup instead of the full flavor symmetry group A5. The resulting mixing matrix

is given by the familiar democratic mixing in which all elements have the same absolute

value [78, 79], i.e.,

UPMNS =
1√
3


1 1 1

e
2πi
3 1 −e

πi
3

−e
πi
3 1 e

2πi
3

 ≡ UDM . (B.2)

The mixing angles are sin2 θ12 = sin2 θ23 = 1/2 and sin2 θ13 = 1/3. Large corrections to θ12

and θ13 are needed to be compatible with experimental data. For another representative

symmetries Gl = ZT
3ST 2S

3 and Gν = K
(S,T 3ST 2ST 3)
4 , the parent group A5 can be generated

by Gl and Gν . The mixing matrix is found to be of the form:

UPMNS =
1√
6


√

2κ
√

2(1− κ) 0

κ− 1 κ −
√

3

κ− 1 κ
√

3

 ≡ UST , (B.3)

which leads to the following mixing angles: sin2 θ12 = (2− κ) /3 ' 0.127, sin2 θ23 = 1/2

and sin2 θ13 = 0. Notice that both θ12 and θ13 are outside of the 3σ ranges [7]. The same

results have been obtained in refs. [77, 80]. For the last case of Gl = K4, where Gν and Gl
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are not the same Klein group, only one mixing pattern can be derived,

UPMNS =
1

2


κ − 1 κ− 1

−1 1− κ κ

κ− 1 κ 1

 ≡ URC . (B.4)

We can extract the mixing angles: sin2 θ12 = (3− κ) /5 ' 0.276, sin2 θ23 = (2 + κ) /5 '
0.724 and sin2 θ13 = (2− κ) /4 ' 0.0955. Both θ13 and θ23 are too large to be acceptable.

This mixing pattern has also been found in ref. [77]. In summary, no mixing matrix in

agreement with experimental data can be obtained if the full Klein symmetry is preserved

by the neutrino mass matrix. In the following, we consider the situation with a single

residual Z2 flavor symmetry in the neutrino sector or in the charged lepton sector.

B.2 Gν = Z2 or Gl = Z2

In this case, only one column or one row of the PMNS matrix would be determined up

to permutations and phases of its elements by the remnant flavor symmetries Gl and

Gν [56, 57, 81, 82]. This method generally allows us to obtain relations between mixing

parameters and a non-zero θ13. We have scanned all independent combinations of Gl and

Gν , and the corresponding explicit forms of the fixed column or row vector are presented

in table 4. Comparing with the present 3σ confidence level ranges of the moduli of the

elements of the leptonic mixing matrix [7]

|UPMNS |3σ =


0.789→ 0.853 0.501→ 0.594 0.133→ 0.172

0.194→ 0.558 0.408→ 0.735 0.602→ 0.784

0.194→ 0.558 0.408→ 0.735 0.602→ 0.784

 , (B.5)

we find that neither of the two possible row vectors can be accommodated by the

data, and only four cases are viable. The remnant symmetries can be chosen to be

(Gl, Gν) =
(
ZT5 , Z

S
2

)
, (ZT5 , Z

T 3ST 2ST 3

2 ), (ZT
3ST 2S

3 , ZST
2ST 3S

2 ) and (K
(ST 2ST 3S,TST 4)
4 , ZS2 )

without loss of generality, and the fixed column are (−
√

κ√
5
, 1√

2
√

5κ
, 1√

2
√

5κ
)T ,

(
√

1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5
)T , 1√

3
(1, 1, 1)T and 1

2(κ,−1, κ − 1)T respectively. These column

vectors can fit the first or the second column of the PMNS matrix. The resulting lepton

mixing matrix can be obtained from UGR, UDM and URC by multiplying a unitary matrix

U23 or U13 from the right-hand side with

U13 =


cos θ 0 sin θe−iδ

0 1 0

− sin θeiδ 0 cos θ

 , U23 =


1 0 0

0 cos θ sin θe−iδ

0 − sin θeiδ cos θ

 , (B.6)

where θ and δ are real, and a arbitrary phase matrix in the right-hand side of U13 and U23

is omitted, since they can be absorbed into the Majorana phases which are not constrained

by flavor symmetry. The multiplication of U13 (U23) corresponds to performing a unitary

linear transformation of the 1st (2nd) and 3rd columns. In the following, we shall discuss

the predictions for the PMNS matrix and lepton mixing parameters in each case.
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Gl Gν Fixed column or row

ZT5

ZS2 (−
√

κ√
5
, 1√

2
√

5κ
, 1√

2
√

5κ
)T 3

ZT
3ST 2ST 3

2 (
√

1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5
)T 3

ZT
3ST 2ST 3S

2 (0,− 1√
2
, 1√

2
)T 7

ZT
3ST 2S

3

ZS2 (0,− 1√
2
, 1√

2
)T 7

ZT
3ST 2ST 3

2 (1−κ√
3
, κ√

6
, κ√

6
)T 7

ZT
3ST 2ST 3S

2 ( κ√
3
, κ−1√

6
, κ−1√

6
)T 7

ZT
3ST 2S

3 ZST
2ST 3S

2 ( 1√
3
, 1√

3
, 1√

3
)T 3

K
(ST 2ST 3S, TST 4)
4 ZS2 (κ2 ,−

1
2 ,

κ−1
2 )T 3

K
(ST 2ST 3S, TST 4)
4 ZTST

4

2 (1, 0, 0)T 7

ZS2 K
(ST 2ST 3S, TST 4)
4 (κ2 ,

1
2 ,

κ−1
2 ) 7

ZTST
4

2 K
(ST 2ST 3S, TST 4)
4 (1, 0, 0) 7

Table 4. The possible form of one column (row) of the PMNS matrix determined by the residual

flavor symmetry Gν = Z2 (Gl = Z2) within the framework of A5 flavor symmetry. The notation

“3” denotes that the relevant lepton mixing is compatible with the experimental data at 3σ level [7].

The notation “7” implies the resulting mixing is not viable.

B.2.1 Gl = ZT5 , Gν = ZS2

The lepton mixing matrix UPMNS is predicted to have one column

(−
√

κ√
5
, 1√

2
√

5κ
, 1√

2
√

5κ
)T , which coincides with the first column of the GR mixing.

The other two columns should be orthogonal to it, and they can be obtained by making a

unitary rotation of the 2nd and 3rd columns of UGR.

UPMNS = UGRU23 =


−
√

κ√
5

√
1√
5κ

cos θ
√

1√
5κ

sin θe−iδ

1√
2
√

5κ

√
κ

2
√

5
cos θ + sin θ√

2
eiδ

√
κ

2
√

5
sin θe−iδ − cos θ√

2

1√
2
√

5κ

√
κ

2
√

5
cos θ − sin θ√

2
eiδ

√
κ

2
√

5
sin θe−iδ + cos θ√

2

 . (B.7)
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This form of modification to the GR mixing has been discussed in a phenomenological way

in ref. [83–85]. Here we show that this mixing pattern can be naturally reproduced from

the A5 flavor symmetry. The mixing angles can be straightforwardly extracted as follows,

sin2 θ13 =
3− κ

5
sin2 θ , sin2 θ12 =

2 cos2 θ

3 + 2κ+ cos 2θ
,

sin2 θ23 =
1

2
−
√

3 + 4κ sin 2θ cos δ

3 + 2κ+ cos 2θ
. (B.8)

Wee see that the solar and reactor mixing angles are related by

5 cos2 θ12 cos2 θ13 = 2 + κ . (B.9)

Given the 3σ ranges 1.76×10−2 ≤ sin2 θ13 ≤ 2.95×10−2 and 0.259 ≤ sin2 θ12 ≤ 0.359 from

global analysis [7], θ13 and θ12 are further constrained to be in the intervals of 1.76×10−2 ≤
sin2 θ13 ≤ 2.35 × 10−2 and 0.259 ≤ sin2 θ12 ≤ 0.263 by this correlation. The well-known

Jarlskog invariant JCP [86], which measures the size of the CP violation, is written as

JCP = −
√

3− κ
20

sin 2θ sin δ . (B.10)

The Dirac CP violating phase δCP is expressed in terms of θ and δ as

sin δCP = −
√

2(3 + 2κ+ cos 2θ)sign(sin 2θ) sin δ√
4(3 + 2κ) cos 2θ + (7 + 8κ)(3 + cos 4θ)− 4(3 + 4κ) cos 2δ sin2 2θ

, (B.11)

In order to see how well the lepton mixing angles can be described by this mixing pattern

and its prediction for δCP , we perform a numerical analysis. The free parameters θ and δ

are scattered in their whole allowed ranges of 0 ≤ θ < 2π and 0 ≤ δ < 2π. The correlations

and the possible values of the mixing parameters are plotted in figure 6. Furthermore, the

experimental data of three mixing angles θ12, θ13 and θ23 at 3σ level [7] are considered,

accordingly the allowed values of the mixing parameters would generically be constrained

in small regions. Here and herafter, we perform numerical analysis and present results

only for normal ordering neutrino mass spectrum. The results would change a little bit

for the inverted ordering case. From figure 6, we can read that sin2 θ12 is predicted to be

around 0.26, any value of θ23 within the 3σ range can be achieved and δCP is restricted

in the range of [0.990, 2.152] ∪ [4.131, 5.293]. Recalling that if both A5 family symmetry

and generalized CP are imposed, as discussed in section 3.1, the parameter δ can only be

π/2 (case II) rather than free. Note that case I is not viable. As a consequence, the Dirac

CP δCP would be maximal. Therefore we conclude that the generalized CP symmetry is

a quite effective method of predicting the CP violating phases.

B.2.2 Gl = ZT5 , Gν = ZT
3ST 2ST 3

2

In this case, one column of UPMNS is determined to be (
√

1√
5κ
,
√

κ
2
√

5
,
√

κ
2
√

5
)T which is

exactly the second column of the GR mixing. The corresponding PMNS matrix can be
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Figure 6. Predictions for the mixing parameters sin2 θ12, sin2 θ23, JCP and δCP with respect to

sin θ13 when the remnant flavor symmetries are Gl = ZT5 and Gν = ZS2 . The corresponding PMNS

matrix is given by eq. (B.7). The pink regions denote the possible values of the parameters when

both θ and δ freely vary in the whole region of [0, 2π]. The dark green areas represent the regions

allowed by the current experimental data for three neutrino mixing angles at 3σ level [7]. The red

pentagrams refer to the best fitting values of case II discussed in section 3.1, after the generalized

CP is imposed.

obtained from UGR by multiplying U13 from right-hand side,

UPMNS = UGRU13 =


−
√

κ√
5

cos θ
√

1√
5κ

−
√

κ√
5

sin θ e−iδ

cos θ√
2
√

5κ
+ sin θ√

2
eiδ

√
κ

2
√

5
− cos θ√

2
+ sin θ√

2
√

5κ
e−iδ

cos θ√
2
√

5κ
− sin θ√

2
eiδ

√
κ

2
√

5
cos θ√

2
+ sin θ√

2
√

5κ
e−iδ

 . (B.12)

The lepton mixing parameters read

sin2 θ13 =
2 + κ

5
sin2 θ , sin2 θ12 =

2

3 + κ+ (1 + κ) cos 2θ
,
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Figure 7. Predictions for the mixing parameters sin2 θ12, sin2 θ23, JCP and δCP with respect to

sin θ13 when the remnant flavor symmetries are Gl = ZT5 and Gν = ZT
3ST 2ST 3

2 . The corresponding

PMNS matrix is given by eq. (B.12). The pink regions denote the possible values of the parameters

when both θ and δ freely vary in the whole region of [0, 2π]. The dark green areas represent the

regions allowed by the current experimental data for three neutrino mixing angles at 3σ level [7].

The red and yellow pentagrams denote the best fitting values of case III and case IV discussed

in section 3.2, where the generalized CP symmetry is considered. Notice that the red pentagrams

almost coincides with the yellow one in the first panel, since the best fitting values of sin2 θ12 and

sin θ13 are nearly the same in case III and case IV.

sin2 θ23 =
1

2
−
√

2 + κ sin 2θ cos δ

3 + κ+ (1 + κ) cos 2θ
, JCP =

√
2 + κ

20
sin 2θ sin δ,

sin δCP =

√
2(2 + κ) (3κ− 2 + κ cos 2θ) sign(sin 2θ) sin δ√

(13 + 4κ)(3 + cos 4θ) + 4(7 + 6κ) cos 2θ − 20 sin2 2θ cos 2δ
. (B.13)

We have a relation between θ12 and θ13,

5 sin2 θ12 cos2 θ13 = 3− κ . (B.14)
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The solar mixing angle θ12 is restricted by the observed value of θ13 such as 0.281 ≤
sin2 θ12 ≤ 0.285 which is in the 3σ range [7]. We display the allowed regions of the mixing

angles, JCP and δCP in figure 7. No dependence of δCP on sin θ13 is observed, and δCP
can take any value in the whole range of [0, 2π]. However, δCP can only be conserved or

maximally broken if generalized CP is considered, as shown in section 3.2. Note that the

mixing pattern in eq. (B.12) has been discussed in ref. [83, 85].

B.2.3 Gl = ZT
3ST 2S

3 , Gν = ZST
2ST 3S

2

The chosen remnant symmetry leads to a trimaximal column 1√
3

(1, 1, 1)T , and UPMNS

takes the form

UPMNS = UDCU13 =
1√
3


cos θ − eiδ sin θ 1 cos θ + e−iδ sin θ

e
2πi
3 cos θ + ei(

π
3

+δ) sin θ 1 ei(
2π
3
−δ) sin θ − e

πi
3 cos θ

−e
πi
3 cos θ − ei(

2π
3

+δ) sin θ 1 e
2πi
3 cos θ − ei(

π
3
−δ) sin θ

 .

(B.15)

Such a mixing pattern as a minimal modification to the tri-bimaximal has been widely

discussed in the literature [83, 85, 87–91], and it can also be naturally reproduced from

simple flavor symmetries A4 [44, 92] and S4 [41, 45, 92]. The predictions for the lepton

mixing parameters are given by

sin2 θ13 =
1

3
(1 + sin 2θ cos δ), sin2 θ12 =

1

2− sin 2θ cos δ
,

sin2 θ23 =
1

2
−
√

3 sin 2θ sin δ

4− 2 sin 2θ cos δ
, JCP = −cos 2θ

6
√

3
,

sin δCP =
−
√

2 cos 2θ(2− sin 2θ cos δ)√
(1− sin 2θ cos δ)(5 + 3 cos 4θ + 2 sin3 2θ cos 3δ)

. (B.16)

As expected, the following relation is fulfilled,

3 sin2 θ12 cos2 θ13 = 1 , (B.17)

which generically holds true for trimaximal mixing. Inserting the experimental bound

of θ13 [7], we obtain 0.339 ≤ sin2 θ12 ≤ 0.343. A numerical analysis similar to previous

cases is performed, as shown in figure 8. We see that no prediction for δCP can be made.

Recalling that δCP would be constrained to be maximal by generalized CP symmetry

discussed in section 3.3.

B.2.4 Gl = K
(ST 2ST 3S,TST 4)
4 , Gν = ZS2

One column is fixed to be 1
2 (κ,−1, κ− 1)T in this case, and it can only be the first column

of the PMNS matrix in order to be consistent with the experimental data. As a result,

UPMNS is of the form

UPMNS = URCU23 =
1

2


κ − cos θ − κ−1 sin θeiδ κ−1 cos θ − sin θe−iδ

−1 − κ−1 cos θ − κ sin θeiδ κ cos θ − κ−1 sin θe−iδ

κ− 1 κ cos θ − sin θeiδ cos θ + κ sin θe−iδ

 .

(B.18)
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Figure 8. Predictions for the mixing parameters sin2 θ12, sin2 θ23, JCP and δCP with respect

to sin θ13 when the remnant flavor symmetries are Gl = ZT
3ST 2S

3 and Gν = ZST
2ST 3S

2 . The

corresponding PMNS matrix is given by eq. (B.15). The pink regions denote the possible values of

the parameters when both θ and δ freely vary in the whole region of [0, 2π]. The dark green areas

represent the regions allowed by the current experimental data for three neutrino mixing angles at

3σ level [7]. The red pentagrams refer to the best fitting values of case V discussed in section 3.3,

after the generalized CP is imposed.

Then the three mixing angles read

sin2 θ13 =
κ− 1

8
(
√

5− cos 2θ − 2 sin 2θ cos δ) ,

sin2 θ12 =
3− κ+ (κ− 1)(cos 2θ + 2 sin 2θ cos δ)

5 + κ+ (κ− 1)(cos 2θ + 2 sin 2θ cos δ)
,

sin2 θ23 =
3 +
√

5 cos 2θ − 2 sin 2θ cos δ

5 + κ+ (κ− 1)(cos 2θ + 2 sin 2θ cos δ)
. (B.19)

A relation between θ12 and θ13 follows immediately

4 cos2 θ12 cos2 θ13 = 1 + κ . (B.20)
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Figure 9. Predictions for the mixing parameters sin2 θ12, sin2 θ23, JCP and δCP with respect

to sin θ13 when the remnant flavor symmetries are Gl = K
(ST 2ST 3S,TST 4)
4 and Gν = ZS2 . The

corresponding PMNS matrix is given by eq. (B.18). The pink regions denote the possible values of

the parameters when both θ and δ freely vary in the whole region of [0, 2π]. The dark green areas

represent the regions allowed by the current experimental data for three neutrino mixing angles at

3σ level [7]. The red pentagrams refer to the best fitting values of case VII with θ23(θbf ) < 45◦

discussed in section 3.4, after the generalized CP is imposed.

The solar mixing angle is predicted as 0.326 ≤ sin2 θ12 ≤ 0.334 which is in the experimental

3σ bound [7]. The Jarlskog invariant JCP is given by

JCP = − 1

16
sin 2θ sin δ . (B.21)

The Dirac CP violating phase δCP is

sin δCP =
−
√

2κ− 3(6κ+ 1 + cos 2θ + 2 sin 2θ cos δ) sin 2θ sin δ√
[5− (cos 2θ+2 sin 2θ cos δ)2] (

√
5−cos 2θ+2 sin 2θ cos δ)(3+

√
5 cos 2θ−2 sin 2θ cos δ)

.

(B.22)
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Figure 10. The correlations of sin2 θ23 and δCP with respect to sin θ13, where the PMNS matrix

arises from an exchange of the second and third rows in the pattern in eq.(B.18). The pink regions

denote the possible values of the parameters when both θ and δ freely vary in the whole region of

[0, 2π]. The dark green areas represent the regions allowed by the current experimental data for

three neutrino mixing angles at 3σ level [7]. The red pentagrams refer to the best fitting values of

case VII with θ23(θbf ) > 45◦ discussed in section 3.4, after the generalized CP is imposed.

The numerical results are displayed in figure 9. We see that δCP is predicted to be in the

range of [0, 1.043] ∪ [5.240, 2π], and the atmospheric mixing angle θ23 mostly is less than

45◦ (i.e., in the first octant) in order to be compatible with experimental data of θ13. The

scenario of θ23 in the second octant can be achieved, if the second and third rows of the

PMNS matrix in eq. (B.18) are exchanged. Then the predictions for the solar and reactor

mixing angles in eq. (B.19) remain, δCP becomes π + δCP , and θ23 becomes π/2 − θ23.

Consequently both JCP and sin δCP change into their opposite, and the expression of

sin2 θ23 in eq. (B.19) is replaced by

sin2 θ23 =
κ(
√

5− cos 2θ + 2 sin 2θ cos δ)

5 + κ+ (κ− 1)(cos 2θ + 2 sin 2θ cos δ)
. (B.23)

The predictions for sin2 θ23 and δCP versus sin θ13 are shown in figure 10. As expected, θ23 is

really larger than 45◦ to accommodate the measured values of θ13, and the CP phase δCP is

in the range of [2.099, 4.185]. Notice that generalized CP would constrain δCP to be trivial,

as studied in section 3.4. In summary, if a single Z2 subgroup of the A5 flavor symmetry

is preserved by the neutrino mass matrix, only one column of the PMNS matrix can be

determined and agreement with experimental data can be achieved. However, the Majorana

phases cannot be predicted by flavor symmetry, and the Dirac phase δCP is constrained

very weakly. On the other hand, if we extend the A5 family symmetry to include the

generalized CP, δCP is predicted to be trivial or maximal and Majorana phases are trivial.
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[67] J. Gehrlein, J.P. Oppermann, D. Schäfer and M. Spinrath, An SU(5)×A5 golden ratio

flavour model, Nucl. Phys. B 890 (2014) 539 [arXiv:1410.2057] [INSPIRE].

[68] EXO collaboration, M. Auger et al., Search for neutrinoless double-beta decay in 136Xe with

EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].

[69] EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two

years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].

[70] KamLAND-Zen collaboration, A. Gando et al., Limit on neutrinoless ββ decay of 136Xe

from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge,

Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].

[71] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological

parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

[72] JUNO experiment webpage, http://english.ihep.cas.cn/rs/fs/juno0815/.

[73] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry,

Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

[74] L.L. Everett and A.J. Stuart, The double cover of the icosahedral symmetry group and quark

mass textures, Phys. Lett. B 698 (2011) 131 [arXiv:1011.4928] [INSPIRE].

[75] G.-J. Ding, L.L. Everett and A.J. Stuart, Golden ratio neutrino mixing and A5 flavor

symmetry, Nucl. Phys. B 857 (2012) 219 [arXiv:1110.1688] [INSPIRE].

[76] R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K,

Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

– 54 –

http://dx.doi.org/10.1103/PhysRevD.87.053005
http://arxiv.org/abs/1212.2149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2149
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.023
http://arxiv.org/abs/1402.0507
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0507
http://arxiv.org/abs/1502.03105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03105
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.026
http://arxiv.org/abs/hep-ph/0306002
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0306002
http://dx.doi.org/10.1103/PhysRevD.76.117301
http://arxiv.org/abs/0705.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.4559
http://dx.doi.org/10.1103/PhysRevD.79.085005
http://arxiv.org/abs/0812.1057
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1057
http://dx.doi.org/10.1007/JHEP03(2011)101
http://arxiv.org/abs/1101.0393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0393
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.004
http://arxiv.org/abs/1110.1688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1688
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.027
http://arxiv.org/abs/1212.1066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1066
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.023
http://arxiv.org/abs/1410.2057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2057
http://dx.doi.org/10.1103/PhysRevLett.109.032505
http://arxiv.org/abs/1205.5608
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5608
http://dx.doi.org/10.1038/nature13432
http://arxiv.org/abs/1402.6956
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6956
http://dx.doi.org/10.1103/PhysRevLett.110.062502
http://arxiv.org/abs/1211.3863
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3863
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5076
http://english.ihep.cas.cn/rs/fs/juno0815/
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.015
http://arxiv.org/abs/hep-ph/0512103
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512103
http://dx.doi.org/10.1016/j.physletb.2011.02.054
http://arxiv.org/abs/1011.4928
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4928
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.004
http://arxiv.org/abs/1110.1688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1688
http://dx.doi.org/10.1016/j.physletb.2011.08.013
http://arxiv.org/abs/1107.3486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3486


J
H
E
P
0
5
(
2
0
1
5
)
1
0
0

[77] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton

mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

[78] N. Cabibbo, Time reversal violation in neutrino oscillation, Phys. Lett. B 72 (1978) 333

[INSPIRE].

[79] L. Wolfenstein, Oscillations among three neutrino types and CP-violation, Phys. Rev. D 18

(1978) 958 [INSPIRE].

[80] C.S. Lam, Group theory and dynamics of neutrino mixing, Phys. Rev. D 83 (2011) 113002

[arXiv:1104.0055] [INSPIRE].

[81] S.-F. Ge, D.A. Dicus and W.W. Repko, Z2 symmetry prediction for the leptonic Dirac CP

phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].

[82] S.-F. Ge, D.A. Dicus and W.W. Repko, Residual symmetries for neutrino mixing with a large

θ13 and nearly maximal δD, Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964]

[INSPIRE].

[83] B. Wang, J. Tang and X.-Q. Li, Study on perturbation schemes for achieving the real PMNS

matrix from various symmetric textures, Phys. Rev. D 88 (2013) 073003 [arXiv:1303.1592]

[INSPIRE].

[84] I. de Medeiros Varzielas and L. Lavoura, Golden ratio lepton mixing and nonzero reactor

angle with A5, J. Phys. G 41 (2014) 055005 [arXiv:1312.0215] [INSPIRE].

[85] S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with

discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].

[86] C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a

measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].

[87] C.H. Albright and W. Rodejohann, Comparing trimaximal mixing and its variants with

deviations from tri-bimaximal mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436]

[INSPIRE].

[88] C.H. Albright, A. Dueck and W. Rodejohann, Possible alternatives to tri-bimaximal mixing,

Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].

[89] X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett.

B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].

[90] X.-G. He and A. Zee, Minimal modification to tri-bimaximal mixing, Phys. Rev. D 84 (2011)

053004 [arXiv:1106.4359] [INSPIRE].

[91] Y. Shimizu and M. Tanimoto, Predicting CP-violation in deviation from tri-bimaximal

mixing of neutrinos, Mod. Phys. Lett. A 30 (2015) 1550002 [arXiv:1405.1521] [INSPIRE].

[92] S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4

models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].

– 55 –

http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://arxiv.org/abs/1112.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1340
http://dx.doi.org/10.1016/0370-2693(78)90132-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B72,333
http://dx.doi.org/10.1103/PhysRevD.18.958
http://dx.doi.org/10.1103/PhysRevD.18.958
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,958
http://dx.doi.org/10.1103/PhysRevD.83.113002
http://arxiv.org/abs/1104.0055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0055
http://dx.doi.org/10.1016/j.physletb.2011.06.096
http://arxiv.org/abs/1104.0602
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0602
http://dx.doi.org/10.1103/PhysRevLett.108.041801
http://arxiv.org/abs/1108.0964
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0964
http://dx.doi.org/10.1103/PhysRevD.88.073003
http://arxiv.org/abs/1303.1592
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1592
http://dx.doi.org/10.1088/0954-3899/41/5/055005
http://arxiv.org/abs/1312.0215
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0215
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.011
http://arxiv.org/abs/1405.6006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6006
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,55,1039
http://dx.doi.org/10.1140/epjc/s10052-009-1074-3
http://arxiv.org/abs/0812.0436
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0436
http://dx.doi.org/10.1140/epjc/s10052-010-1492-2
http://arxiv.org/abs/1004.2798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2798
http://dx.doi.org/10.1016/j.physletb.2006.11.055
http://dx.doi.org/10.1016/j.physletb.2006.11.055
http://arxiv.org/abs/hep-ph/0607163
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607163
http://dx.doi.org/10.1103/PhysRevD.84.053004
http://dx.doi.org/10.1103/PhysRevD.84.053004
http://arxiv.org/abs/1106.4359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4359
http://dx.doi.org/10.1142/S0217732315500029
http://arxiv.org/abs/1405.1521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1521
http://dx.doi.org/10.1007/JHEP09(2011)042
http://arxiv.org/abs/1107.5332
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5332

	Introduction
	Approach
	Lepton mixing from remnant symmetries of A(5)rtimes H(CP)
	G(l)=Z**(T)(5), G(nu)=Z**(S)(2) 
	G(l)=Z**(T)(5), G(nu)=Z**(T**3ST**2ST**3)(2)
	G(l)=Z**(T**3ST**2S)(3), G(nu)=Z**(ST**2ST**3S)(2)
	G(l)=K**((ST**2ST**3S,TST**4))(4), G(nu)=Z**(S)(2)

	Model building
	Vacuum alignment
	Leading order results
	Next-to-leading-order corrections

	Conclusions
	Group theory of A(5)
	Lepton flavor mixing from A(5) family symmetry without CP
	G(nu)=K(4)
	G(nu)=Z(2) or G(l)=Z(2)
	G(l)=Z**(T)(5),G(nu)=Z**(S)(2)
	G(l)=Z**(T)(5),G(nu)= Z**T**(3)ST**(2)ST**(3)(2)
	G(l)=Z**T**(3)ST**(2)S(3),G(nu)=Z**ST**(2)ST**(3)S(2)
	G(l)=K*(ST**(2)ST**(3)S,TST**(4))(4),G(nu)=Z**(S)(2)



