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ABSTRACT: We study lepton mixing patterns which can be derived from the As family
symmetry and generalized CP. We find five phenomenologically interesting mixing patterns

for which one column of the PMNS matrix is (4/ 5‘&5/5, \/51\/5, \/51 \/B)T (the first column
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of the golden ratio mixing), ( the second column of the golden
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ratio mixing), (1,1,1)7/v/3 or (v/5 +1,-2,v/5 — 1)T/4. The three lepton mixing angles
are determined in terms of a single real parameter 6, and agreement with experimental
data can be achieved for certain values of . The Dirac CP violating phase is predicted to
be trivial or maximal while Majorana phases are trivial. We construct a supersymmetric
model based on As family symmetry and generalized CP. The lepton mixing is exactly the
golden ratio pattern at leading order, and the mixing patterns of case III and case IV are

reproduced after higher order corrections are considered.
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1 Introduction

In the standard three flavor neutrino oscillation paradigm, lepton flavor mixing is described
by the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Upy/ys which is a
3 X 3 unitary matrix [1]. Uppns contains three mixing angles 612, 613, 023 and one
Dirac CP violating phase dop. There are two more Majorana CP phases if neutrinos
are Majorana particles. With the measurement of the last mixing angle 6135 by Daya
Bay [2, 3], RENO [4] and Double Chooz [5, 6], all three lepton mixing angles have been
measured with good accuracy in neutrino oscillation experiments [7—9]. Recently T2K has
reported a slight preference for dcp close to 3w /2 [10, 11], when the data are combined with
the measurements of the reactor experiments. The present global fit to neutrino data also



indicates nontrivial values of dcp [7-9]. However, the values of the both Majorana phases
are unknown so far. Search for leptonic CP violation via the determination of dcop is one
of the major goals of future long-baseline experiments such as the proposed LBNE [12, 13],
LBNO [14-17] and HyperKamiokande [18].

In the bottom-up approach, it is found that both neutrino and charged lepton mass
matrices have residual flavor symmetries determined by lepton flavor mixing, and vice
versa residual flavor symmetries in the mass matrices can determine the lepton mixing
matrix up to Majorana phases and permutations of rows and columns [19-21]. Inspired by
the fact, it is assumed that the residual flavor symmetries arise from a underlying flavor
symmetry group Gy which is usually chosen to be a finite and non-abelian subgroup of
U(3). In the past years, much effort has been devoted to the discussion of lepton flavor
mixing from a discrete flavor symmetry Gy and its breaking [22-25]. It is surprising that
the mixing patterns achievable in this way are quite limited, the PMNS matrix can only
be of the trimaximal form to accommodate the experimental data and the Dirac phase is
trivial [26]. On the other hand, in the so-called indirect approach [27], the family symmetry
is completely broken such that the residual flavor symmetry derived in bottom-up approach
emerges indirectly as an accidental symmetry.

Beside residual flavor symmetries, neutrino and charged lepton mass matrices have
residual CP symmetries [28, 29]. Analogous to residual flavor symmetries, residual CP
symmetries also impose strong constraints on the mass matrices and therefore allow us
to reconstruct the lepton mixing matrix [28]. A simple example is the well-known p — 7
reflection symmetry [30-35] which predicts maximal atmospheric mixing angle 23 and
maximal Dirac CP phase. It is natural to conjecture that there is a CP symmetry Hop
(also called generalized CP symmetry) at high energy scale, which is broken down to the
residual CP symmetries at low energy. Note that the effects of CP symmetry on the fermion
mass matrix have been discussed several decades ago [36—40].

Recently it is proposed to predict the lepton mixing angles and CP phases by combining
a discrete flavor symmetry Gy with a CP symmetry Hep [41, 42]. Hcp has to be compatible
with Gy such that the possible forms of the CP transformations are strongly constrained.
It has been proved that the mathematical structure of the group comprising Gy and Hcop
is in general a semi-direct product Gy x Hop [41]. In this framework, the flavor symmetry
G is broken down to different abelian subgroups G, and G in the neutrino and charged
lepton sectors respectively, and Hcp is broken into residual CP symmetry H¢p and H, é P
respectively. The mismatch between the remnant symmetries G, x H¢p and G % Hép
generates the PMNS matrix. Neutrinos are generically assumed to be Majorana particles.
As a consequence, G, can only be a Ky = Zy x Zy or Zy subgroup of Gy. In the case
that G, = K4 and G is capable of distinguishing the three generations (i.e.,G; can not be
smaller than Z3), all lepton mixing parameters including the Majorana phases would be
completely fixed by residual symmetries once the CP symmetry is considered. In this way,
both Dirac and Majorana CP violating phases are found to be conserved in the context
of A(6n?) family symmetry combined with generalized CP [43]. Recently a bottom up
analysis of the remnant K4 flavor symmetry and CP symmetry in the neutrino sector has
been performed [29]. On the other hand, if G, = Z» and a CP symmetry is preserved



in the neutrino sector, only one column of the PMNS matrix can be fixed and all lepton
mixing parameters depend on one single real parameter . Along this line, the family
symmetries Ay [44], Sy [41, 45-49], T [50], A(48) [51, 52], A(96) [53], A(3n?) [54] and
A(6n2) [54, 55] which are combined with the corresponding generalized CP symmetries
have been investigated already. It is found that CP phases can only be trivial or maximal
in simple family symmetries Ay [44] and Sy [41, 45-49] while A(48) [51, 52] and A(96) [53]
(also A(3n?) and A(6n2) [54, 55]) family symmetries admit mixing patterns in which all CP
phases nontrivially depend on the parameter 6. In addition, some models with both flavor
and CP symmetries have been constructed [45-49, 51, 52]. Last but not least, if remnant
symmetries in the neutrino and charged lepton sectors are Ky x Hfp and Zz X HICP
respectively, then the PMNS matrix is also predicted in terms of the parameter ¢ and one
row instead of one column would be fixed [49, 55].

It is known that the flavor symmetry group should be of the von Dyck type [56, 57].
The finite von Dyck groups include S3, A4, Sy, A5 and dihedral groups [58]. Since S3 and
dihedral groups don’t have irreducible three dimensional representations, they are not suit-
able as flavor symmetry otherwise two mixing angles would vanish. The phenomenological
consequences of A4 and Sy flavor symmetries combined with generalized CP have been stud-
ied [41, 44-49]. In the present work, we shall investigate the Az flavor symmetry and CP
symmetry. We shall perform a model independent analysis of possible lepton flavor mixing
obtained from breaking of the original symmetry As x Hop. We find five phenomenologi-
cally interesting mixing patterns summarized in table 1. The three mixing angles turn out
to depend on only one free parameter 6 and good agreement with their measured values can
be achieved for certain values of @, the Dirac CP phase is conserved or maximal and the Ma-
jorana CP phases are trivial. Furthermore, we construct a model based on A5 x Hop. The
lepton mixing is exactly the golden ratio (GR) texture at leading order (LO). A non-zero
013 is generated by the next-to-leading-order (NLO) corrections, and the mixing patterns
of cases III and IV discussed in the model independent analysis are generated.

The layout of the rest of this paper is as follows. In section 2, the physical CP trans-
formations compatible with the A family symmetry are found. In section 3, we perform a
model independent analysis of possible lepton mixing patterns achievable from the under-
lying symmetry group As x Heop. In section 4, we present our As x Hop model, the LO
structure, vacuum alignment and the NLO corrections are discussed. Section 5 concludes
the paper. In appendix A, we review the group theory of A5 and the Clebsch-Gordan co-
efficients in our working basis are reported. In appendix B, we present the possible mixing
patterns arising from the As flavor symmetry without CP symmetry, where the residual
flavor symmetry in the neutrino sector is either Klein or Zs subgroup of As. Compared
with section 3, we see that generalized CP is really a powerful method of predicting CP
phases as well as lepton mixing angles.

2 Approach

Both family symmetry and CP symmetry acts on the flavor space in a non-trivial way, and
the interplay between them should be carefully treated. In order to consistently combine



a family symmetry Gy with a CP symmetry which is represented by unitary CP transfor-
mation matrix X, X must be related to an automorphism u : Gy — Gy. To be precise,
the CP transformation X should be a solution to the consistency equation [41, 42]

Xp*(9)X ' =p(ulg)), VgeGy, (2.1)

where p is a representation of Gy with p : G — GL(N,C), and it is generally reducible.
We can easily check that the automorphism associated with p(h)X for any h € Gy is an
composition of v and an inner automorphism sy : g — hgh™! with h,g € Gy [49, 53].
Therefore the effects of inner automorphism can be easily included, and it is equivalent to
a family symmetry transformation. As a consequence, we could firstly focus on the outer
automorphism of G ¢. In the present work, we shall consider the “minimal” theory in which
the generalized CP transforms the field ¢ ~ r into its complex conjugate p* ~ r*, and

*

the transformation into another field ¢* ~ r'* with r’ # r is beyond the present scope
since both ¢ and ¢’ would be required to be present in pairs and correlated with each
other in that case. Here r and r’ denote the irreducible representations of Gy. In addition,
the authors of ref. [59] claimed that physical CP transformations have to be class-inverting
automorphisms, such that each irreducible representation r is mapped into its own complex
conjugate under the action of generalized CP. Hence the consistency condition in eq. (2.1)

takes a more restricted form:

Xepp(9) X, ' =pe (ulg)),  VgeGy, (2.2)

where the subscript “r” refers to the representation space acted on. The CP transformation
X in eq. (2.1) is given by the direct sum of the X, corresponding to the particle content
of the model. Notice that the consistency conditions of eq. (2.2) can also be derived from
the requirement that the Lagrangian is invariant under both CP symmetry and flavor
symmetry [60].

In the present work, we are interested in the family symmetry Gy = As. The group
theory of As, its representation and all the Clebsch-Gordan coefficients are reported in
appendix A. The structure of the automorphism group of As is quite simple and is very
clear in mathematica.

Z(A5) = Zl, Aut(A5) = 55,
IDD(A5) = A5, Out(A5) = ZQ, (23)

where Z(As), Aut(As), Inn(As) and Out(As) denote the center, automorphism group,
inner automorphism group and outer automorphism group of As respectively. We see that
the outer automorphism group of As is isomorphic to Zs. Consequently there is only one
non-trivial outer automorphism u with

S5 T (ST (2.4)

The order of u is really 2, i.e., u?

= id, where id represents the trivial automorphism
id(g) = g, Vg € As. One can straightforwardly check that u acts on the As conjugacy

classes as follows

1C, — 101, 15Cy — 15C,, 2003 — 20C5, 12C5 <+ 12C% . (2.5)



It interchanges the classes 12C5 and 12C%. Since the inverse of each As conjugacy class is
equal to itself, u is not a class-inverting automorphism. In terms of representations, the two
different three-dimensional irreducible representations 3 and 3’ are exchanged not mapped
into their conjugate under the action of u. The generalized CP symmetry related with u
can only be consistently defined if fields transforming as 3 and 3’ are absent or appear in
pairs in a model. The three left-handed leptons are assigned to a triplet 3 in this work, and
the exchange of fields transforming as 3 and 3’ is not allowed in the “minimal” theory. As
a result, we shall concentrate on the CP transformations associated with the trivial outer
automorphism (i.e., the inner automorphism) of A; family symmetry.

Now we consider the representative inner automorphism pgsgregrsg: (S, T) — (S, T?).
The corresponding generalized CP transformation X0 is fixed by the consistency equations:

Xppi(S)(X) ™ = pe(9),
XPor(T) (X))~ = pe(T). (2.6)

r

From the representation matrices given in appendix A, we see that for any representation

Pr(S) = pe(S),  Pp(T) = pe(T). (2.7)
Therefore X! is an identity matrix up to an overall phase, i.e.,

XV =1. (2.8)

r

Including the contribution of the remaining inner automorphisms in the manner stated
below eq. (2.1), the most general CP transformation consistent with A5 family symmetry
is of the form

X =pe(9)X) = pe(9), g€ As. (2.9)

This means that the generalized CP transformation consistent with Ay is of the same form
as the family group transformation in our working basis while they act on a field multiplet
in different ways: ¢(z) ~ pr(g)p(2), g € As versus p(z) <5 X (wp) = pr(g)e* (wp),
where zp = (¢, —2).

In this work, the phenomenological implications of A5 family symmetry combined with
the generalized CP symmetry would be investigated in a systematical and comprehensive
way. The parent symmetry is As X Hop at high energy scale, where the element of Hop
is the CP transformation compatible with A5 and its explicit form is given by eq. (2.9). In
this setup, lepton mixing can be predicted from As X Hop breaking into different remnant
symmetries G; X ch p and G, X Hf,p in the charged lepton and neutrino masses respec-
tively, where (G;, G, and HZCP, H{.p denote residual family symmetries and residual CP
symmetries respectively. It is notable that the predictions for the lepton flavor mixing only
depend on the assumed symmetry breaking patterns and are independent of the details of
a specific implementation scheme, such as the possible additional symmetries of the model
and the involved flavon fields and their assignments etc. In practice, the three generations
of left-handed leptons doublets are embedded into the faithful three-dimensional represen-
tation 3 of As. Since 3’ is related to 3 by the outer automorphism u, the results would



be the same and no additional results would be found, if we assign the three left-handed
leptons to the representation 3’ instead. The requirement that G; x HlCP is preserved
by the charged lepton mass term implies that the hermitian combination m;'ml must be

invariant under the remnant symmetry G; » Hé ps i€,

pg(gl)m}mlpg(gl) = m}ml, q € Gy, (2.10a)

X;rgm;rlelg = (m;fml)*, Xl3 S chp, (2.10b)

where the mass matrix m; is defined in the convention lpmyl;. Once G; and Hép
are specified, the most general form of m;rml can be straightforwardly constructed from
egs. (2.10a), (2.10b). In the present work, we shall assume neutrinos are Majorana parti-
cles. In the same fashion, requiring that G, x H{p is a symmetry of the neutrino mass
matrix m, implies that m, should be invariant under the action of G, x H{.p,

P (9,)mups(gy) = mu, g €Gy, (2.11a)
XLom,X,3 =m} X3 € HYp, (2.11Db)

v

which allow us to derive the explicit form of m,. Since both remnant family symmetry
and remnant CP symmetries are still preserved after symmetry breaking, they should be
compatible with each other. That is to say consistency equation similar to eq. (2.2) has
to be fulfilled,

Xop*(90) X, = plgy,), Guss u; € G, (2.12a)
Xip*(gi) X = pgiy)s 99, € Gi. (2.12Db)
The prediction for the PMNS matrix can be obtained by further diagonalizing the

reconstructed mass matrices mzrml and m,. Please see ref. [28] for an alternative way of

directly extracting the PMNS matrix from the representation matrices of the remnant
symmetries without resorting to the mass matrices. As the order of neutrino and charged
lepton masses is indeterminate in our framework, it is only possible to determine the
PMNS matrix up to independent row and column permutations.

From the remnant symmetry invariant conditions of eqs. (2.10a), (2.10b), we can see
that X and pr(g;) Xjr with g; € G; lead to the same constraint on mzrml. Furthermore,
the residual CP transformation X;. should be a symmetric matrix otherwise the charged
lepton masses would be restricted to be partially degenerate [28, 49]. The same comments
apply to X,r and pr(g,)Xyr with g, € G,. Notice that the same result for PMNS matrix
would be obtained [44, 49, 53], if a pair of subgroups {G}, G } is conjugated to the pair of
subgroups {Gj, G, } under an element of As, i.e.,

Gi=gGig", G,=9gGyg ',  ge€As. (2.13)

The reason is that remnant CP symmetries determined by restricted consistency condition
of egs. (2.12a), (2.12b) are strongly correlated in the two cases such that lepton mass

Tm;, m,,} for the new primed residual symmetry are related to {mlel, my} by

matrices {m;
a similarity transformation pz(g) [44, 49, 53]. In this way, it is sufficient to only discuss the
independent pairs of {G}, G, } which are not related by group conjugation and subsequently

all possible residual CP compatible with the residual family symmetry should be included.



3 Lepton mixing from remnant symmetries of A5 x Hgp

Neutrino are assumed to be Majorana particles here, therefore the remnant flavor symme-
try G, must be a Klein four K4 = Zs X Zs subgroup or a single Zs subgroup of As. G; can
be any abelian subgroups of A5 with order equal or greater than 3. A complete or partial
degeneracy of the charged lepton mass spectrum would be produced if G; had a non-abelian
character. In the case of G, = K4, the lepton mixing matrix Uppsng is fully determined
by the mismatch between the remnant family symmetry G; and G,. As shown in ap-
pendix B, Uppsns can take four possible forms such as the golden ratio mixing, democratic
mixing and so on. However, none of them is compatible with experimental data. Then
we turn to the scenario of G, = Z5. With this setting, Upjrng is partially constrained,
and only one column of the lepton mixing matrix is fixed up to reordering and rephasing
of the elements. The explicit forms of the fixed column vectors for all the independent

residual flavor symmetries are summarized in table 4. We find that four cases are viable:
(G, G.) = (74, 25), (28, 23" 57°5T°), (237577, ZST25T35> and <K<ST SIS TSTY, 75)

lead to the mixing column vectors (— %, 21/5 ,/ Em /2\/5, \/;

(%,%,%)T and (5, — %,"‘T_l) respectively, where k = (1 + \f 5)/2 is the golden ra-

tio. The phenomenological implications of each case are explored in appendix B, and the

lepton mixing matrix Upyrng turns out to depend on two free parameters up to indeter-
minant Majorana phases. We see that the measured values of the three mixing angles
can be accommodated very well, but the allowed values of Dirac CP phase dcop scatter
in a quite large range. Furthermore, the breaking patterns with (G;, G,) = (Z2, K4) are
studied as well. Accordingly a row of the lepton mixing matrix Upysnyg is determined to
be % (k,1,k —1) or (1,0,0) which are not in the experimentally preferred regions.

In order to be able to predict the values of CP phases, we extend the Ag family symme-
try to include the generalized CP. In the following, we shall perform a thorough analysis of
lepton mixing patterns for the possible residual symmetries G; x H, ZC pand G, x Hf.p in the
charged lepton and neutrino sectors, where the remnant family symmetries G; and G, would
be restricted to the four viable cases listed in table 4, and the remnant CP symmetries H, lC P
and H{.p are determined by consistency condition of egs. (2.12a), (2.12b). In this setup,
Upnpns as well as all mixing angles and all CP phases generically depend on a free parame-
ters 0 whose value can be fixed by the measured value of 613. As a consequence, all observ-
ables are strongly correlated. For the concerned As family symmetry, the Dirac phase would
be predicted to be trivial or maximal while both Majorana phases are trivial after general-
ized CP symmetry is imposed. In order to evaluate how well the predicted mixing patterns
agree with the experimental data on mixing angles, we shall perform a usual x? analysis
which uses the global fit results of ref. [7]. We begin to discuss all possible cases one by one.

31 ¢=2F, G, =235

In this case, the parent symmetry As x Hop is broken down to Zg X HZCP and ZQS x H¢ p sub-
groups in the charged lepton and neutrino sectors, respectively. The residual CP symmetry
H lC p must be consistent with the residual flavor symmetry Z5T in the charged lepton sector.



That is to say the element X, of H, lC p should fulfill the consistency equation of eq. (2.12b),
Xupp (D)X = peld), g €23 (3.1)

Then we find only 10 choices out of the 60 CP transformations of Hop listed in eq. (2.9)
are acceptable

Hep = {pe(1), pe(T), pe(T?), pe(T%), pe(T*), p (ST>ST®S), pe (T?S)*T*5),
pr(TPST*ST?S), pe(T*ST?ST?S), pe(ST?ST?S)} . (3.2)

As shown in eq. (2.10a), the residual family symmetry ZZ impose the following constraint
on the charged lepton mass matrix:

p;(T)m;rmlp;;(T) = m;ml . (3.3)

In our working basis, the representation matrix of the generator T is diagonal with
ps(T) = diag(1,ws,ws). Consequently the hermitian combination mzrml of charged lepton

mass matrix is also diagonal, i.e.,

m;ml = diag (m?, mi, m?) , (3.4)

where me, m, and m, represent the electron, muon and tau masses respectively.
Furthermore, we can check that the remnant CP invariant condition of eq. (2.10b) is
automatically satisfied for Xj. = pp(1), pr(T), pr(T?), pr(T?), pr(T*). However, the mass
degeneracy m,, = m, arises for the remaining values Xj, = p,(ST2ST3S), pr((T?S)*T39),
pr(T3ST2ST3S), pp(T*ST?ST3S), pr(ST3ST?S). The reason is that all remnant CP
transformations except pp(T2ST2ST3S) are not symmetric. Generally speaking, any rem-
nant CP transformation must be a symmetric matrix to avoid degenerate masses [28, 49].
This case is obviously not viable, and will be disregarded hereafter.

Now we turn to the neutrino sector. The residual CP transformations X, of Hfp is
specified by the consistency condition:

Xorpi(9) X0 = pe(9), (3.5)

which can be easily obtained by applying the general consistency condition of eq. (2.12a).
We see that the CP transformation X,, commutes with flavor symmetry transformation
pr(S), and therefore remnant symmetry is Z5 x HYp in the neutrino sector in this case.
Notice that the semi-direct product structure between residual flavor and CP symmetries
generally reduces to a direct product if the residual flavor symmetry is a Z5 subgroup [44,
45]. Tt is easy to check that X, can only take 4 possible values,

Hp = {pe(1), pe(S), pr(T3ST2ST?), po(TOST2ST?S)} (3.6)
The neutrino mass matrix m, respects the residual symmetry ZQS x H{ p, satisfying

pg (S)mup3(S) = m,



XLom,X,3 =m:,  X,3¢€H:p. (3.7)

We find that the most general neutrino mass matrix invariant under the residual family
symmetry Zﬁq , takes the following form

100 —2v2 3 3 2 0 0 0 —-Vv2 V2

my=a| 001 +ﬁ 3 0 V2 |[+7|0 3 -1+ -vV2 —2& 0 ;
V2

010 3 V20 0 —1 3 V2.0 2k
(3.8)
where «, 3, v and § are generally complex parameters, and they are further constrained to
be real or pure imaginary by residual CP. This neutrino mass matrix m, can be simplified

into a quite simple form by performing a golden ratio transformation,

a—Bk—1)p+2y 0 0
m), = UngVUGR = 0 a+Bk—=2)+2y 2¢/2+k6 , (3.9)
0 2V2+ kK6 —a—f+4y
where
K 1 0
V5 V5K
1 K 1

2V5 K 2v/5 V2

is the golden ratio mixing pattern [61, 62] which can be naturally derived in As models [63—
67]. The neutrino mass matrix m], is further diagonalized by a unitary rotation U], in the
(2,3)-plane,

UTm! U = diag(my, ma, m3) . (3.11)
The next step is to explore the constraint of remnant CP on m,. Two different phenomeno-
logical predictions arise for the four possibe X, shown in eq. (3.6), as pr(S)X,r and X,
lead to the same predictions.

I Xopr = pr(1)9 Pr(S)'

Obviously we have m, = m, such that all the four parameters «, 3, v and  are real.
As a consequence, the neutrino mass matrix m/, is a real symmetric matrix. The unitary
transformation U], is of the form:

1 0 0
U,=|0 cosh sind | K, . (3.12)

0 —sinf cos@

where K, is a diagonal phase matrix with elements equal to £+1 or +¢ which makes the
neutrino masses mq 23 positive. The effect of K, is a possible change of the Majorana
phases by 7, and it would be omitted hereinafter for the other cases. The parameter 6 is
given by

W2+ kK6
2@ =)+ Br-1)8"

tan26 = — (3.13)



The light neutrino mass eigenvalues are

my = |a— 3k —1)B+ 2/,
2(a—7) + 3%—15

-

my =5 |3k - B+ 67+ cos 20
1 20a@—7y)+ Bk —1) ﬁ
ms = 5 ‘3(/<; 1)B + 6v p—y; (3.14)

Given the diagonal charged lepton mass matrix, the lepton mixing matrix takes the form

% \f% cosf \%,)Sin@

/1 / sin 6 / cos
UPMNS = UGRUIL = 2\/5’{ 2\/» COSH + \/i 2\/» Sln9 \/5 KV . (315)
1 sin 0 cos
e V2vs st =5 \aesint +

One can straightforwardly extract the lepton mixing angles and CP phases as follows,

>

>

.2 — K .9 . 9 14 cos26
012 = 0 0y = ———
S S Sz =g + 2K +cos 20’
1 \2 in 260
sin? fy3 = + s sindcp = sinag; = sinag; =0, (3.16)

2 3k—1+(k—1)cos20’

where dcp is the Dirac CP phase, a1 and ag; are the Majorana CP phases in the standard
parameterization [1]. There is no CP violation in this case as the neutrino mass matrix
is real. Expressing 6 in terms of 0,3, correlations among the three mixing angles follow

immediately,
3— 2
sin2 019 = 5 r_ _; n tan2 013 s
1
sin? O3 = 5 + Kktan 913\/1 — (1+ &) tan? 63 . (3.17)

For the measured reactor mixing angles sin? 613 ~ 0.0234 [7], we have sin? fa3 ~ 0.258 or
0.742 which is outside of the experimentally favored 3o region [7] although sin® 615 ~ 0.259
is acceptable. As a consequence, this mixing pattern isn’t viable. This point remains even
after permutation of rows and columns is considered.

(I1) X,r = pe(T3ST2ST3), p.(T3ST2ST3S).

Solving the residual CP invariant condition in eq. (3.7), we find «, 8 and ~ are real while
d is pure imaginary. The unitary diagonalization matrix U], is

1 0 0
U,=10 cosb sinf | , (3.18)
0 —isinf icosh

where the diagonal matrix K, multiplied from the right-hand side has been omitted, and
the rotation angle 6 fulfills

4iv/2+ K6

99— WVETRO
tan 2 = e 16 1 6y

(3.19)

~10 -



The three neutrino masses are given by

my = la = @3k =1) 5+ 2/,

1 3((k—=1)B+27)
my = 5 |20 +Br—-1)p—2v+ !
1 3((k =1)B+27)
ms = 5 2+ Bk — 1) — 2y — p—y (3.20)

All the four parameters «, 3, v and J are involved in the three neutrino masses. As a result,
the measured mass squared differences dm? = m3 — m? and Am? = m3 — (m? + m3)/2
can be easily accommodated [7], the absolute neutrino mass scale can not be fixed, and
the neutrino mass spectrum can be either normal ordering (NO) or inverted ordering (10).

The PMNS matrix takes the following form:

% 1/\[L5cos«9 ,/f%siné?
UpMNs = ‘/2\/1511 /2fcosﬁ+li‘/%g \/;smﬁ—zc\;%e . (3.21)

1 isin @ jcosf
e — —£_gin
2v5 Kk 2\/5 cos § V2 2\/5 sinf + V2

Note that the first column vector of this mixing pattern coincides with the first column of

the GR mixing. The lepton mixing angles and CP phases can be read out as'

3—kK 1+ cos 26
. 9 ) : 2
S Y13 5 SIm-o St 12 34+ 2Kk +cos20’
1
sin? O3 = 5 |sindop| =1, sinap; = sinaz; = 0. (3.22)

Here we present the absolute value of sin dop, since the sign of sindop depends on the
ordering of rows and columns. We see that both atmospheric angle #o3 and Dirac CP
phase dcp are maximal while Majorana phases are conserved. Given the weak evidence
of d¢p ~ 3m/2 from T2K [10, 11], this pattern is slightly preferred. The prediction of
maximal Dirac CP can be tested by next generation long-baseline neutrino oscillation ex-
periments such as the proposed LBNE [12, 13], LBNO [14-17] and HyperKamiokande [18],
which aim to search for leptonic CP violation. Moreover, the correlation between 63
and 6o is of the same form as that of case I, and it is plotted in figure 1. The results of
the x? analysis are reported in table 1. We see that the experimental data [7] on lepton
mixing angles can be accommodated very well. Notice that the solar mixing angle 619
is predicted to be around the present 3o lower bound. As far as we known, the JUNO
experiment can measure 1o with high accuracy [72]. If significant deviations sin? 61y
from 0.259 was detected, this mixing pattern would be excluded. It is well-known that
leptonic CP phases can play a crucial role in the rare process neutrinoless double beta
((BB)oy—) decay. The dependence of the (5/3)o,—decay amplitude on the neutrino mixing
parameters is characterized by the effective Majorana mass |mee| [1] with the definition:

|Mee| = |m1 c0s? 015 cos? B3 + ma sin? 019 cos? H15¢'*?1 + mg sin® 91361(0‘31_26“’) . (3.23)

n the case of sin 20 = 0, either 612 or 613 vanishes, consequently the value of cp can not be determined
uniquely.
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Figure 1. The correlation between sin? f15 and sin 013 (left panel) and the allowed values of the
effective mass |me.| (right panel) in case II. On the left panel, the best fitting value is labelled with
a red pentagram, and the points for § = 0, 7/6, 7/3 and 7/2 are marked with a cross to guide
the eye. The 1o and 30 ranges of the mixing angles are taken from ref. [7]. On the right panel,
the orange and green bands denote the 30 regions for inverted ordering and normal ordering mass
spectrum respectively. The red and purple areas are the predictions for the lepton mixing matrix
in eq. (3.21). The present most strict bound |me.| < (0.120 — 0.250) eV from EXO-200 [68, 69]
combined with KamLAND-ZEN [70] is represented by the horizontal dashed line, and the upper
limit on My, from the latest Planck result mj 4+ ma + ms < 0.230eV at 95% confidence level [71]
is shown by vertical dashed line.

For the predicted mixing parameters in eq. (3.22), we have

1
[Mee| = 7 |/1m1 + k" komy cos® 6 + kL kgma sin? 6 | (3.24)

7
where ko, ks = +1 originates from the ambiguity of the matrix K,. The prediction for the
effective mass |me.| with respect to the lightest neutrino mass is shown figure 1. We find
that |me| is close to 0.022eV or the upper bound 0.045¢V in case of 10 neutrino mass
spectrum, which are within the future sensitivity of planned (303)p,—decay experiments.
However, in case of NO spectrum, |mee| strongly depends on lightest neutrino mass mp;n,
and it can even be approximately vanishing for particular value of mpyiy.

3.2 G, =27, G, = zI’ST*sT®

The charged lepton sector preserves the same remnant symmetry Z5T x H lC p as that dis-
cussed in section 3.1. Therefore the charged lepton mass is subject to the same constraint,
and m;rml should be diagonal as well. In neutrino sector, the residual CP symmetry H{ p
— Z%“3STQST3

has to be compatible with the residual family symmetry G, , l.e.,

X pi(T3ST?ST X, = pe(T3ST?ST?). (3.25)
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Analytic expression Best fitting
sin? 013 sin? 012 sin? 023 Ovy X?nin sin? 613 sin? 012 sin? 023
1
10 -k Gin? g 3_,_203_32929 5 0.295]8.468( 0.0234 | 0.259 0.5
II o K-1COs
NO % 0.292|11.88| 0.0229 | 0.259 0.5
0.182]4.851| 0.0236 | 0.283 |0.404 (023 <45°)
10
- % B 3‘/3277’””‘ 20 2.958(3.165| 0.0240 | 0.283 |0.597 (023 >45°)
k—2+k cos 20
0.179(4.087| 0.0230 | 0.283 |0.406 (023 <45°)
NO % sin” ¢ 572112025 20
2.965(24.88| 0.0224 | 0.283 |0.593 (023 >45°)
10 % 0.18312.232| 0.0241 | 0.283 0.5
v
NO % 0.181]5.802| 0.0235 | 0.283 0.5
10 1—sin 20 1 % 0.976]3.987( 0.0238 | 0.341 0.5
s 3 2+4sin 260
NO % 0.973|7.480| 0.0233 | 0.341 0.5
(P eos0osin0)” 1 96611 626] 0.0242 | 0.329 [0.486 (fos <45°
4k2—(cos@—rsin0)2 | 7" . . : : 23 < )
10 2 (cos 0+r sin 0)> ) 0 45°
) ) R m 0 86 1751 00242 0329 0513( 23> 5 )
(cos #—ksin 6) (K cos 8+sin )
Vi 4rK2 4k2—(cos 0—r sin 0)2 (k2 cos O—sin )2 o
Tn%—(cos 0—rsin )2 0.293|3.503| 0.0229 | 0.330 |0.480 (f23<45°)
NO K2 (cosOtrsin)® 16 98916 958] 0.0248 | 0.329 [0.510 (fas > 45°
4k2—(cos O—rsin0)2 | ° . . . . 23> )

Table 1. Summary of the predictions for the lepton mixing angles and their best fitting values for
all viable cases in the framework of A5 X Hop. In case VII, the mixing patterns for 693 in the first
and second octant are related through the exchange of the second and third rows of the PMNS
matrix. Notice that all the three CP phases are independent of 6 in all cases: Dirac phase is trivial
or maximal, and both Majorana phases are trivial.

It is easy to check that only 4 generalized CP transformations are acceptable,
Hép = {pe(1), pe(S), pe(T3ST?ST?), pe(T?ST?ST3S) } . (3.26)

Straightforward calculations demonstrate that the most general neutrino mass matrix in-

. 3 2 3 .
variant under ZZ 57°5T" is of the form

100 -2v/2 3 3 2 0 0 0 V26 —V2k
my=al| 001 +£ 3 0 V2 ]|+yl0 3 —1]|+6]| Vor -2 0 ,
V2
010 3 V20 0 -1 3 V2K 0 2
(3.27)
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where the parameters «, 8, v and § are generically complexes, and they are further con-
strained by the remnant CP. After performing a GR transformation, m, becomes

a—(3k—1)8+ 2y 0 2V2+ kK0
m!, = Ukrm,Ugr = 0 a+ (3k—2)8+2y 0 . (3.28)
2V2+ K6 0 —a—f+4y

In the following, we proceed to investigate the constraints imposed by the remnant CP
transformations shown in eq. (3.26). The four possible X, can be divided into two classes.
(II1) X,» = pr(1), pe(T3ST2ST3).

In this case, the residual flavor and residual CP transformations are of the same form. As
a result, the four parameters «, 8, v and § are all real. The neutrino mass matrix m,, can
be diagonalized by a unitary transformation

cosf 0 siné
U, = 0 1 0 , (3.29)

—sinf 0 cos@

with SR
42+ kK 6
tan 20 = — , 3.30
2o =) - (r— 2B (3.50)
The three neutrino masses are
_ 1 2(a—7)— (B —2)8
m1—2’ 3K6 + 67 + 0520 )
my = |a+ 3k —2)8+ 29|,
1 20 —~v) — (3k — 2
ms = ’3/¢B+6v (a=7) = B~ )B‘. (3.31)

2 cos 260

The absolute neutrino mass scale can not be predicted. Then the PMNS matrix reads

— /%cos@ 1/ﬁ — /%sin@
sin 6 K cosf

0 in6
Unnins =UorUy = | =t V8 as e~ |- (332
cos 0 sin 0 K sin 0 cos 0

V25 V2 Tx/g 25 K V2

T
Note that the second column vector is (, /ﬁ, . /ﬁ, , /2\’““/5> which coincides with the

second column of the GR mixing. The lepton mixing parameters are predicted to be

102 K. 9 .. 92 4 — 2K
05 = ——sin20 Org = — — =
s~ Uis \/5 S1n s S1m- U192 5 — 2% & cos 20 s
1 V/3—rsin20
sin® By = 5 — o J’::?OS 5 sindcp = sin g = sinag; = 0. (3.33)
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Figure 2. The correlation among sin® 61, sin® 653 and sin 63 (the former three panels) and the
allowed values of the effective mass |m..| (the last panel) in case III. The global minimum of the x>
function is labelled with a red pentagram, and the points for § = 0, 7/6, /3, 7/2, 27/3 and 57/6
are marked with a cross to guide the eye. The 1o and 30 ranges of the mixing angles are taken from
ref. [7]. In the last panel, the orange and green bands denote the 30 regions for inverted ordering
and normal ordering mass spectrum respectively. The red and purple areas are the predictions for
the lepton mixing matrix in eq. (3.32). The present most strict bound |mee| < (0.120 — 0.250) eV
from EXO-200 [68, 69] combined with KamLAND-ZEN [70] is represented by the horizontal dashed
line, and the upper limit on my;, from the latest Planck result m; + ms + mg < 0.230eV at 95%
confidence level [71] is shown by vertical dashed line.
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We see that 03 deviates from maximal mixing and all the three CP violating phases are
trivial due to a common CP transformation py(1) of the charged lepton and neutrino
sectors. The mixing angles 019, 613 and 623 only depend on the parameter 8, and they
fulfill the following relations,

3—K

1
sin? 015 cos? 013 = . sin®fg3 = B + (k—1)tanbi3 \/1 +(k—2)tan?613, (3.34)

which are plotted in figure 2. Obviously the mixing angles can be very close to their
measured values for certain values of the parameter . The global minimum of the x?
function is rather small, as shown in table 1. The predictions for the effective mass |me|
are also displayed in figure 2.

(IV) Xur = pe(S), pr(T3ST2ST3S).
Invariance of the neutrino mass matrix m, under the action of these residual CP trans-
formations implies that «, [, v are real while ¢ is pure imaginary. The diagonalization
matrix of m/, is
icosf 0 isinf
U, = 0 1 0 , (3.35)

—sin@® 0 cos6

where 5
4i/2 4+ K
tan20 = ————— . 3.36
355 27) (3.36)
The neutrino masses are given by
1 3(kB —27)
= —[-2 -2 2 _r
mi = g a+ Bk —2)f+2v+ 520 ,
me = la+ 3k —2)B + 29|,
3(kpB —2v)
=~ (=2 35k —2 2y — ——4| . 3.37
m3 = 5| =20+ (3k = 2)5 + 27 -y (3.37)
The PMNS matrix is of the form
—1 /%cos@ ﬁ —L/%sin@
1cos 0 sin @ K isin @ cosf
Upmns =UcrU, = | =12 35 avsr V2 (3.38)
K isin @ cos 6

icosf sin 0
2

Vo V2 V2B avse T Ve

The second column has the same form as for the GR mixing. The lepton mixing angles

and CP phases are determined to be

) K . 9 .9 4 — 2k
013 = —=sin? 0, Op= — |
St V5 i S =y o + cos 20
1
sin? 0y = — |sindcp| =1, sinag; = sinag; = 0. (3.39)

57
We see that both #o3 and dop are maximal and the two Majorana CP phases ag; and as;
are trivial. Similar to case III, the relation sin® f5 cos? 613 = (3 — k) /5 is satisfied as well.
The best fitting results for the three mixing angles are listed in table 1. The predictions
for the (88)o,—decay effective mass |me.| are shown in figure 3.
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Figure 3. The (88)o,—decay effective mass |m..| with respect the lightest neutrino mass mmin
in case IV. The orange and green bands denote the 30 regions for inverted ordering and normal
ordering mass spectrum respectively. The red and purple areas are the predictions for the lepton
mixing matrix in eq. (3.38). The present most strict bound |mee| < (0.120 — 0.250) eV from EXO-
200 [68, 69] combined with KamLAND-ZEN [70] is represented by the horizontal dashed line, and
the upper limit on my,;, from the latest Planck result my +mo +m3 < 0.230eV at 95% confidence
level [71] is shown by vertical dashed line. Note that the correlation between sin? 015 and sin ;5 is
the same as that of case III and can be found in figure 2.

T3ST? T2ST3
3.3 Gy =2zI"5T°5, G, = z5T°51°5

In the charged lepton sector, the remnant CP transformation chp is determined by the

consistency condition
Xppt(T3ST2S) X' = pelg)), ¢ € ZI*ST*S. (3.40)
We find that there are 6 possible solutions for Xj., i.e.,

HLp = {pe(ST?), pe(ST3S), pe(T?), pe(T3S), pe(T3ST?ST?), pe (T3ST2ST3S)}. (3.41)

The charged lepton mass matrix should respect both the remnant family symmetry Zg SST?S

and the remnant CP symmetry ch p:
p;(TSST2S)m2rmlp3(T3ST25’):mzrml, XlT3mlele3:(m;rml)*, XiseHLp. (3.42)

Notice that the three residual CP transformations X; =pp(ST?), pe(T35),
pr(T3ST?ST3S) lead to degenerate charged lepton masses since both pp(ST?3) and p.(T2S)
are not symmetric. For the remaining ones X;. =p.(ST3S), pr(T3), pr(T3ST?2ST?), the
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hermitian combination mzrml is constrained to take the following form

a 2 (kb + v2(2k — 3)c) e 5 2kbe™ 5
m;rmz = | 2(kb+ v2(2k — 3)c) s a+ %b + (8xk — 14)c 2k —1)ces ;
2be s 2k —1)ce™ 5 a— g(b +v/2¢)
(3.43)
where a, b and c are real parameters. It can be diagonalized by the unitary matrix
U= | 2fs% 1 (1 = gﬂ) ¥ L (1 + 4“) 3 I W7

SR ) 0-)

with Ule;mlUl diag(m2, mi, m2), where the charged lepton masses are

m2=a—d(k—1)e, mi=a—\/6(2+r) b (8 — 5K+ \/3(4T — 29;<;)) c
m2 = a+/6(2+r) b+ (55— 8+ /347 — 29,4;)) c. (3.45)

The symmetry group As X Hop is broken into Z§T2ST3S X HY p in the neutrino sector. By
solving the restricted consistency equation of eq. (2.12a), we find

Htp = {pe(T?), pe(TST), pe(T3ST?ST?S), pe ((ST?)%S)} . (3.46)

_ZST ST3S

The neutrino mass matrix preserving the remnant family symmetry G, is of

the form
100 2 0 0 0 % % 2V2 e 5 F
my=a|l 001 |[+8]0 3¢5 -1 [+7] €% V25 0 16 e E V2T -3 |,
010 0 -1 3 0 V2 ¥ B V2 Ve
(3.47)
where parameters «, 3, v and § are generally complex, and they are further constrained to

be either real or imaginary by CP symmetry. It is convenient to firstly perform a constant
unitary transformation Uggrp and yield

/ T
m,, = UgrpmvUGrp

a+28—/201+k)y 0 —V104
= 0 —a+48 -2y 0 , (3.48)
—/106 0 a+28+4++/2(2—k)y

where
1 0 _ K
V V5K NG
27\'1 1 _ 3w 1 27
Ucrp = /2\[ il me 5 ) (3.49)

2mi 1 —2mi 1 _2mi
[Le™5 ——e 5 e 5
245 V2 25k

Next we discuss the constraints of the residual CP symmetry on the neutrino mass matrix

my,.
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(V) Xor = pe(T?), pe(T3ST2ST3S).
In this case, a, 3, v and  are determined to be real. Then neutrino mass matrix m/, is a real

symmetric matrix, and it can be diagonalized by a rotation matrix U], in the (2,3) sector,

cosf 0 —sinf
U, = 0 1 0 , (3.50)
sin@ 0 cos@
with
tan20 =25/ . (3.51)

The three light neutrino masses are given by

1 v 10
my = - 2a+48 — V2y - T,
2 cos 26
mo = |—a + 45 — \@’y s
1 v 10y
= —12 48 — V2 3.52
s =g 48— V2 + cos 26 (3:52)
The lepton mixing matrix is of the form
. cosf +sin @ 1 cosf —sin @
Upnns = Ul UgrpU, = T cosf—eT sind 1 e3 cosf—es sinfd | . (3.53)

— e 3 Cos
\/g 471

4mi 2mi 2mi i
e3 cosf+e3 sinf 1 e3 cosf+es sinf

We see that the second column of the PMNS matrix is (1,1, l)T /\/3, which frequently
appears in discrete flavor symmetry models. The leptonic mixing parameters read as?

1 1 1
Sil’l2 913 = 3(1 — sin 29), Sin2 012 = m7 Sin2 923 = 5 s
|sindcp| =1, sin ) =sinas; =0. (3.54)

Both Dirac CP phase and 023 are maximal while Majorana CP phases are conserved in this
case. In common with all trimaximal mixings, 612 and 613 are related with each other by

3sin® o cos? O3 = 1. (3.55)

The measured 30 range 0.0176 < sin? 613 < 0.0295 [7] gives rise to 0.339 < sin? 612 < 0.343
which can be directly tested by JUNO in near future [72]. The correlation between 612
and 613 and the predictions for the (53)p,—decay are displayed in figure 4. All the three
mixing angles can agree within 30 with the experimental data for certain values of 6. The
best fitting results are listed in table 1, and the minimum values of the x? functions are
3.987 and 7.480 for 10 and NO, respectively.

2For cos 20 = 0, we have sin#13 = 0 or cos#12 = 0 so that dcp cannot be determined uniquely.

~19 —



—_

0.8

0.6

sin2 01 2

0.4

0.2

o

—y
IS

|
@
IS}
=)

0.2 0.4 ) 0.6 0.8
sin 63 Wlmi,n(ev)

Figure 4. Results for sin #5 and sin ;3 (left panel) and the allowed values of the effective mass
|mee| (right panel) in case V. On the left panel, the best fitting value is labelled with a red pentagram,
and the points for § = 0, 7/6 and 27/3 are marked with a cross to guide the eye. The 1o and 30
ranges of the mixing angles are taken from ref. [7]. On the right panel, the orange and green bands
denote the 30 regions for inverted ordering and normal ordering mass spectrum respectively. The
red and purple areas are the predictions for the lepton mixing matrix in eq. (3.53). The present most
strict bound |m..| < (0.120 —0.250) eV from EXO-200 [68, 69] combined with KamLAND-ZEN [70]
is represented by the horizontal dashed line, and the upper limit on my;, from the latest Planck
result my + mg + mg < 0.230eV at 95% confidence level [71] is shown by vertical dashed line.

(VI) Xor = pe(TST), p:((ST?)%S).

The requirement of real «, B, v and pure imaginary ¢ follows immediately from the
remnant CP invariant condition. In the same way as previous cases, the PMNS mixing
matrix is found to be

e6 cosf+e3 sinf 1 e3 cosf—e 6 sinf
1 T T 4mi Tmi
Upmns = 7 e6 cosf) —e3 sinf 1 e3 cosf+es sinf |, (3.56)

sinf — 7 cos@ 1 cosf + isinf

The expressions for the lepton mixing parameters are as follows,

.y 1 /3sin26 ey 2
i = — — i =
573 6 2T 4 /Bsin20
.9 2 + /3 sin 26 . 8 cos 20 + /3 sin 40
Sin 923 =, |Sln(SC’P| - ’
4 4+ +/3sin 260 2(2+\/§sin20)\/4—2\/§sin20
i | 2sin20 + /3 ‘ .y ’ 4+/3 cos 26 (3.57)
sinagy| = |————|, sinag | = |————1 , .
2 2 +1/3sin 260 31 5+ 3cos46
where of; = ag1 — 20cp. It is remarkable that all the three CP violating phases

nontrivially depend on the parameter §. However, we see that in case of § = 7 /4 the
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minimum value of 63 is obtained with sin®63lg_r/s = (2 — v/3)/6 ~ 0.0447 which is
outside the 3o range [7]. Furthermore, we note that the atmospheric angle 23 is the
complementary angle of 615 or is equal to 615 if the second and the third rows of the
PMNS matrix is interchanged. As a result, this mixing pattern is not compatible with
experimental data and consequently we don’t included it in table 1.

2 3 4
3.4 G = K‘gST ST3S,TST ), G, — Zzs

. . ST2ST3S,TST* .
In the last case, the residual symmetries are assumed to be K i ) % Hép in

the charged lepton sector and Z2S X Hfp in the neutrino sector. For the remnant family

2 3 4
symmetry K iST STESTSTT) v, hold, the mass matrix mlel has to fulfill

p;r,,(STQST?’S)ermlpg(STQST?’S) = mzrml, p;(TST4)mlelp3(TST4) = mzrml. (3.58)

Then m;ml is constrained to take the form

) 2(ka+ (k — 1)c) V2(a —c)e’s V2(a —c)e= %
m}ml =——| V2(a—ce % (k — 1)a + /5b + ke ((k — 1)a — V/5b + kc) eS|,
2‘\/5 3mi 4mi
V2(a—c)es  ((k—1)a—5bb+ ke)e 5 (k — L)a+ V/5b + Kc
(3.59)
where a, b and c are real. It is diagonalized by the unitary matrix
K 1
\V V5 0 Vb ik
U= | A= Le B [E A (3.60)
P Vevee 2 25 ’ :
1 3mi 1 m o 2mi
2\/5;{6 5 —2@ 10 ﬁe 5
with Ule}LmlUl = diag(mZ, mz,, m2) where
m? = a, mi =b, mi=c. (3.61)

In order to obtain the observed charged lepton mass hierarchies, the relation a : b : ¢ ~
A2 A2 11 with A\, ~ 0.23 should be fulfilled. This required hierarchy among a, b and c
can usually be achieved by introducing Froggatt-Nielsen U(1) symmetry or auxiliary cyclic
symmetry Zy in a specific model. A typical scenario is that the three parameters a, b and ¢
arise from the charged lepton mass terms containing three, two and one flavon fields respec-
tively [22-25, 44, 45, 48, 49]. Furthermore, the additional U(1) or Zx symmetry generally
helps to eliminate dangerous couplings and to ensure the needed vacuum alignment [22-25].

The mass matrix mzrml is also subject to the constraint of the residual CP symmetry
H, lC p- It is straightforward to determine that HlC p can take the value

Hip = {pe(ST?ST), pe((ST?)?S), pe(ST?), pe(T?), pe((T*S)*T?), pe(T?ST*), pu(T?S),
pr(T3(ST?)?), pe(T3ST2ST?S), pr(T*ST?), pr(TST?S), pr(TST)} . (3.62)

The twelve CP transformations can be classified into two categories. For X; =
pr((ST?)2S), pe(T?), pe(T3ST?ST3S), p(TST), the remnant CP invariant condition
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X lgmzrlelg = (mjml)* is automatically satisfied, and therefore no additional constraint

is produced. Nevertheless, the remaining eight CP transformations X;. = p.(ST2ST),
pe(ST), pel((T2S)*T%), pe(T2STY), pu(T3S), pe(T3(ST?)2), pe(TAST?) and pe(TST2S)
are not viable, as they require a = b = ¢ so that the charged lepton mass spectrum is com-
i = m2 = a. In neutrino sector, the remnant symmetry

Zﬁq X H{p and its phenomenological implications have been studied in section 3.1. The

pletely degenerate with m2 = m

neutrino mass matrix m,, is found to be given by eq. (3.8), where the parameters a, 8 and v
are real while § is real or pure imaginary depending on the residual CP transformation X,,.
(VII) X, = p(T3ST?ST?3), p.(T3ST?ST3S).

In this case, the neutrino mass matrix is diagonalized by the unitary matrix in eq. (3.21).
Combining the unitary transformation U; in eq. (3.60) from the charged lepton sector, we
obtain the lepton flavor mixing matrix:

. K cosf + (k—1)sinf (k—1)cosf —sinf
UPMNS:§ -1 (k—1)cosf+ ksinf kcosh — (k—1)sinf | , (3.63)

k—1 sinf — kcosf cosf + ksin 6

where the parameter 6 is specified by eq. (3.19). The lepton mixing parameters are pre-
dicted to be

(cos B — ki sin 0)? . 9 (k cos  + sin §)?
’ S 912 = . ;
4K? 4k? — (cosf — K sin 6)?
(k2 cos § — sin §)?
4k2 — (cosf — K sin0)?’

sin2 913 =

sin? fy3 = sindcp = sinag; = sinag; = 0. (3.64)
We find all the three CP violating phases dcp, as1 and «g; are conserved, this is be-
cause that a common CP transformation p,(T3ST2ST3S) is shared by the neutrino and
charged lepton sectors. In addition, 23 deviates from maximal value. After some tedious
calculations, we find the following relations between the mixing angles

4cos?015c082 013 = 1+ K,

5sin? fy3 = 3—k+(1+2k) tan® 01342k tan O3 \/2+/<c— (2+3k) tan? 013 , (3.65)

which is plotted in figure 5. For the 3¢ interval 0.0176 < sin?#;3 < 0.0295 [7], we have
0.326 < sin?6;5 < 0.334 and 0.454 < sin? f23 < 0.511, which are in the experimentally
favored ranges [7]. The global minimum of the y? function is rather small 3.503 (1.626)
for NO (IO) neutrino mass spectrum, therefore this mixing pattern can describe the ex-
perimental data very well. Moreover, we note that the best fitting value of 63 is in the
first octant with sin? fa3(0p) = 0.480 (0.486) for NO (IO) spectrum. Agreement with
experimental data can also be achieved if the second and third rows of the PMNS matrix
in eq. (3.63) are exchanged. Then the atmospheric mixing angle 6,3 changes to

k%(cos 0 + rsin6)?
4k2 — (cosf — ksinf)?’

sin? fy3 = (3.66)
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and the predictions for the other mixing parameters remain as eq. (3.64). The al-
lowed region of sin? fa3 becomes 0.489 < sin?6y3 < 0.546 with the best fitting value
sin? 023 (fpf) = 0.510 (0.513) for NO (I0) spectrum. Obviously 623(fyf) is in the second
octant. Comparing with other mixing patterns shown in table 1, we see that this case
gives rise to the smallest Xﬁﬁn for both NO and IO. The above predictions for solar and
atmospheric mixing angles could be tested directly in near future, since the next gener-
ation neutrino oscillation experiments are expected to reduce the experimental error on
012 and 023 to few degrees. The theoretical results for the (53)p,—decay effective mass
|mee| are displayed in figure 5. Note that interchanging the second and third rows does’t
matter since |me| is independent of fa3. Again, the predictions for IO neutrino spectrum
are within the sensitivity of forthcoming experiments.

(VIII) Xor = pe(1), pe(S).
The neutrino mass matrix is diagonalized by the unitary transformation in eq. (3.15). The

PMNS matrix is found to take the following form

. sin @ — ik cos 0 cosf + ik sin 0 Kk —1
Upmuns = B icosf+ (k—1)sinf (k—1)cosf —isinf & , (3.67)

i(k—1)cosf + ksinf rkcos —i(k —1)sinf —1

up to permutations of rows and columns. The lepton mixing angles and CP phases can be

read off as
3—v5 1 5 5 5
sin’ 3 = 8\[ ~0.0955, sin®fy = 3 \1€ cos20,  sin®fy3 = —;8[ ~(0.724,
| s | 4v/10sin 26 ‘ . | ) 8 sin 20 ' ‘ .y ‘ 2sin 26 ’
sin = |-, sinagy| = |———|, sinag | = | ——m—1| .
or v9 — cos 40 21 9 — cos 40 31 V5 + cos 20
(3.68)

We see that the solar mixing angle 65 has a lower bound given by sin? 615 > (5—+/5)/10 ~
0.276, and the experimental data on 612 can be accommodated for particular values
of 8. Both 613 and 623 are independent of #, and they are outside the 30 ranges [7].
Furthermore, 6 x 6 =36 possible permutations of rows and columns of this mixing pattern
are considered. However, none of them can give rise to three mixing angles in the
experimentally preferred 30 range [7].

4 Model building

In previous section, we have performed a model-independent analysis of the lepton mixing
patterns which can be derived from As X Hop. As summarized in table 1, we find five new
mixing patterns which are compatible with current experimental data. In this section, we
shall construct a concrete model with both A5 family symmetry and generalized CP symme-
try, the symmetry breaking patterns studied in section 3.2 are implemented, and therefore
the lepton flavor mixings given by eqs. (3.32), (3.38) in case III and case IV are realized.
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Figure 5. The results for sin? 615, sin? 53 and sin 3 (the former three panels) and the allowed
values of the effective mass |me.| (the last panel) in case VII. The global minimum of the y? function
is labelled with a red pentagram, and the points for § = 0, /6, 7/3, 7/2, 27 /3 and 57 /6 are marked
with a cross to guide the eye. The black solid lines and blue dashed lines in the upper-right and
lower-left panels represent the two solutions for fa3 shown in eq. (3.64) and eq. (3.66) respectively.
The corresponding PMNS matrices are related through a exchange of the second and third rows. The
1o and 30 ranges of the mixing angles are taken from ref. [7]. In the last panel, the orange and green
bands denote the 30 regions for inverted ordering and normal ordering mass spectrum respectively.
The red and purple areas are the predictions for the lepton mixing matrix in eq. (3.63). The present
most strict bound |me.| < (0.120 — 0.250) eV from EX0-200 [68, 69] combined with KamLAND-
ZEN [70] is are represented by the horizontal dashed line, while the upper limit on my;, from the
latest Planck result m +mq+ms < 0.230eV at 95% confidence level [71] is shown by dashed line.
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Field | I |v¢] e | p¢ | 7¢ |hya| @ | & |0 | € X | p| A a% ¢ 90| €0 |x°]p° |A”
As [3|3|1|1|1|1|3|3|5|1|1|3|3|5|1|4|(5|1|3|3|5
Z3 |ws| 1l w§ w% w§ 1 (1111 w% w3 |ws | w3 wg 1 w3 w3
Zy |—1]1|=1|=1|=1| 1 [ 1|1 |1 |=1|d|i|—=i|=21[1 |1 |1 ]|=1]d]|—i]-1
Zg | 1|1 |we|wd|wd| 1 |we|wd|wd| 1|1[1]1 |1 |wilwd|wi| 1]|1|1]1
Ulg| 1|11 1|10 |0o|0ofl0|O]|0O|0O]O0O|O|2]|2]|2]2]2]|2]2

Table 2. The matter fields, flavon fields, driving fields and their transformation properties under
the family symmetry As x Z3 x Zy x Zg and U(1) g, where the phase ws = e’5 and wg = €5 .

Note that it would be also interesting to implement other cases such as case VII in a model.
In the present model, both the three generations of left-handed lepton doublets [ and the
three generations of right-handed neutrinos v¢ are assigned to transform as As triplet 3,
while the right-haned charged leptons e, u¢ and 7¢ are all invariant under As. In discrete
flavor symmetry model building, either cyclic Z,, or continuous U(1) symmetry is frequently
introduced to eliminate unwanted operators, to ensure the required vacuum alignment and
to reproduce the observed charged lepton mass hierarchies. The auxiliary symmetry is
taken to be Z3 x Zy X Zg in this model. The Aj family symmetry and CP symmetry
are broken by some flavons in a proper manner. All the flavon fields are standard model
gauge singlets. As anticipated, we formulate our model in the framework of supersymmetry
(SUSY). A U(1)r symmetry related to R—parity and the presence of driving fields in the
flavon superpotential are common features of supersymmetric formulations. The field con-
tent of the model and their classification under the symmetry are listed in table 2. In the
following, we first discuss the vacuum alignment of the model, then specify the structure of
the model at leading order and next-to-leading order. As we shall show, the lepton mixing is
exactly the GR at LO, and a non-vanishing value of the reactor mixing angle 613 is generated
by higher order corrections. Consequently 613 is naturally of the correct order in our model.

4.1 Vacuum alignment

We utilize the standard supersymmetric driving field mechanism [73] to solve the vacuum
alignment problem. A global U(1)g continuous symmetry is assumed in this approach, and
the usual R—parity is a discrete group of this U(1)r. The matter fields have R—charge
equal to one, both flavon fields and Higgs are chargeless and the driving fields carry two
units of R—charge. At LO the most general driving superpotential wy invariant under
As X Z3 X Zy X Zg with R = 2 can be written as

wg = wh +wY, (4.1)
with
wh = fie%(ee)1 + f2(6°(0d)a)1 + f3(6° (1) a)1 + My (¥O%)1 + fa(¥°(00)s5)1, (4.2)

wl = M€+ g1€°C% + 92€° (xx)1 + 93€° (pp)1 + 946 (X"X)1 + 95(X° (xA)3)1
+96(p°(pA)3)1 + MA(A°A)1 + g7(A%(xx)s)1 + 9s(A%(pp)5)1 (4.3)
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where (...)r denotes a contraction into the Aj irreducible representation R according
to the Clebsch-Gordan coefficients listed in appendix A. Notice that all the couplings
fili =1,...,4), g; (i = 1,...,8) and the mass parameters My, Mg, Ma are real, since
the theory is invariant under the generalized CP defined in eq. (2.9). In the SUSY limit,
the vacuum alignment is achieved via the requirement of vanishing F'—terms of the driving
fields. In the charged lepton sector, the equations for the vanishing of the derivatives of
wil with respect to each component of the driving fields are:

0oV
Owy
99
oul
099
oul
999
8wfi

& = fo(V20201 + 302) + f3(2V20102 — V6ot + psi3) =0,

= fi(p] + 2p2p3) = 0,

= falpadhs + V2p301) — f3(2V20115 + pathy — Vbp3ih1) =0,
= —f2(V2p1¢3 + 0202) + f3(V2p1%4 + 3paths — 203¢5) = 0,

= —f2(V2p102 + ©303) — f3(V 200103 — 20212 + Bep3thy) = 0,

0 = My + 2f1(pT — p2p3) = 0,
—& = Myips — 2v/3fa0103 =0,
0 = Myvy+ V6103 =0,

—d = Myps + V6103 =0,

I
ow,

200 = Myths — 2V3 fap12 = 0, (4.4)

We find one solution to those equations,

0
0 0 0
=11 v (D=1 ]vs W)= ]|1]vy, (4.5)
0 0 0
0

up to As family symmetry transformations, where the vacuum expectation values (VEVs)
vy, vy and vy, are related by

 3V6f3fs V6
_oVDJ3J4 v — —

2
4.6
Vg Z‘L/;fQ ©? P Z\[w Uy s ( )
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with v, undetermined. A common order of magnitude for the VEVs (scaled by the cutoff A)
is expected. In order to generate the mass hierarchies among the charged lepton, we assume

Yo Ve Y o2
oL B o), (47)

where A, ~ 0.23 is the Cabibbo angle [1]. In the neutrino sector, the minimization
equations for the vacuum are

owY

853 = Me&+ g1C% + g2(xF + 2x2x3) + g3(pT + 2p2p3) = 0,

owY

axg = ga€x1 — g5(2x1A1 — V3x2A5 — V3x3A9) = 0,
1

owy

N 916x3 + 95(V3X145 — VBx2A4 + x3A1) = 0,
2

owy

N 9a€x2 + g5(V3x1 A9 + X2 A1 — V6x3A3) =0,
3

owy,

a0 96(V3p1A1 + p2lAy + p3Az) = 0,
1

owy

an 96(p1A5 — V2p2 A3 — V2p3Ag) = 0,
2

owy

950 96(p182 — V2pa A5 — V2p3Ag) = 0,
3

dwy 2 2

oA0 — Madi+ 2g7(x1 — x2X3) + 2g8(p7 — p2p3) =0,
1

owy 9

A0 — MaAs5 — 2v/3g7x1x3 + V6gsp3 = 0,
2

owy, 9

A0 = MaA; +V6g7x3 — 2V3gspips = 0,
3

owy 9

SAG = Mals+ V6grx3 — 2V3gsp1p2 = 0,
i

owy 9

A0 — MaAs = 2v3g7x1x2 + V6gsp; = 0. (4.8)
5

A solution to those equations with each flavon acquiring non-zero VEV is given by

—\/gm)l
V2 —V2kK vy
) =ve, () =v, )= 1 Jve =] 1 fu (B)=f-(1+r)v |- (49)
1 1 —(14+ k)

U1
These VEVs are related through

Ug _ 2(k — 3) [(9298 + 9397)gaMA — 5959793 M¢] .2

10(k — 3)g597 .2
919498 Ma X

gaMa X7

ng
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2 (2—K)gr 5 \/%(2 —K)g7 o

vy = TUX, v = Vx vy (4.10)

where v, is undetermined. It is easy to check that the VEVs of &, ¢ and A break the
3 2 3 ; p

As family symmetry down to K, (STESTEST®) While the subgroup ZT55T25T5 is preserved

by vacuum of y and p. Furthermore, eq. (4.10) implies that UC’ , , ve and v1 have
the same phase up to =, since all couplings are real. In our model the GR mixing is
reproduced exactly and a non-zero reactor mixing angle 613 is generated after subleading
order contributions are included. In order to obtain the correct size of 6;3, we could choose
Ve U U Y Yoy
A A A A A (Ae).-

4.2 Leading order results

(4.11)

The charged lepton mass terms, which are invariant under the imposed family symmetry
As X Z3 X Zy X Zg, can be written as

wi = L7019 ha + P ut(U($)a)1ha + o n (U(6)s)1ha + S5 e (1)1 (90)1ha

A

2 e ((1)5(00)s)uha + 5 e ((10)a(0)a)1ha + Bote“(10)5 (61)s)1ha
+22 e ()1 (V) ha + S5 (10)s(¥)s)tha + 55 ¢ ((Lo)s (V)5 )1

e e (1) (V)5 )1ha + - (4.12)

where dots stand for higher dimensional operators which will be discussed later. Note that
all couplings here are real due to the generalized CP symmetry. After the electroweak and
flavor symmetries breaking by the VEVs shown in eq. (4.5), we obtain a diagonal charged
lepton mass matrix, and the three charged lepton masses are

2
www 3 UpUy,

Me = f yeg A3

3y62 A3 + (y63 \fy&l) Ud,
VU
mu—\f‘ym oy Vd, my =

We see that the realistic mass hierarchies m, : m, : m; ~ )\4 )\2 1 is generated for the

%%W’ (4.13)

order of magnitude of the flavon VEVs in eq. (4.7). Furthermore, as both m; and p3(7T') are
diagonal, obviously we have pg(T )mlelpg(T) = m;rml, i.e., the residual flavor symmetry
of m;ml is ng. Next let’s discuss the neutrino sector. Neutrino masses are generated by

type I see-saw mechanism in this work. The LO superpotential for neutrino masses is
1 Y2
Wy = X (Vcl)lhu+X((

where the coupling constants 31, yo and the mass M are enforced to be real by the gen-

l/cl)5A)1hu + M(I/cl/c)l , (414)

eralized CP symmetry. The Dirac mass matrix is obtained from the first two terms in
eq. (4.14) and it is given by

100 —2V2k -3 -3
mp=a|[ 001 |vy+0b -3 =3V2(k+1) V25 Vu (4.15)
010 -3 V2K —3v2(k + 1)
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where v, = (hy,), and the parameters a, b are
Ve (%1}
a =19y, b= .
Y1 A Y2 V3A

The common phase of a and b can be absorbed by field redefinition, consequently both a

(4.16)

and b can considered as real. The last term of eq. (4.14) leads to the Majorana mass matrix:
100

my=M]001|. (4.17)
010

Therefore the three right-handed neutrinos are completely degenerate with mass equal to
M. The light neutrino mass matrix is then given by the see-saw relation:

100 —-2v/2 3 3 20 0
m, = —mpmyimp=a| 001 +\% 30 V2 [+y[03 -1, (418
010 3 V20 0-1 3
where
2 2 vy
S 40(1 u
a [a® + 40( +/€)b]M,
\[ 2 Ug
,6_2[ 2ab—(3+4m)b]ﬂ,
’1)2
y = [2\/5(1+&)ab+(1+8m)b2}ﬂu. (4.19)

We find that the neutrino mass matrix m, in eq. (4.18) is of the same form as the general
mass matrix in eq. (3.27) with § = 0. Therefore m, is exactly diagonalized by the GR
mixing pattern, i.e.,

UL pm,Ugr = diag(my, ma, m3), (4.20)
where the phase matrix K, which encodes the CP parity of the neutrino state, has been
omitted. The mass eigenvalues mq o3 are
2

my = |a® —2V2(3 — k)ab+10(2 — Ii)b2’ UM“,
2
my = |a® — 10v/2kab + 50(1 + Iﬁ)b2‘ ;\)7“,
2
ms = |a2 + 2v2(3 + dr)ab + 10(5 + 8/<;)b2‘ ”M“ . (4.21)

Since the charged lepton mass matrix is diagonal in LO, the lepton mixing is exactly the GR
mixing pattern. Here the reason why the GR mixing is produced is because that the flavor
K iS’TststS) subgroup by the VEVs of € and A. Furthermore,
we see that three neutrino masses my 2 3 only depend on two real parameters a and b which

symmetry Ay is broken to

can be fixed by the measured values of the mass-squared difference dm? = m3 — m? and
Am? = m2—(m2+m3). For the best fitting values dm? = 7.54x107°eV? and Am? = 2.43x
107 3eV? [7], we find the neutrino mass spectrum can only be NO, and the absolute values
of the neutrino masses are m; = 4.81 x 107%eV, mg = 8.70 x 1073eV and ms = 0.0497¢V.
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4.3 Next-to-leading-order corrections

At LO our model gives rise to the GR mixing pattern Ugr which predicts a vanishing
reactor mixing angle (613 = 0°). Hence substantial next-to-leading-order corrections are
needed to bring the model to agree with the experimental data on 613. We will demonstrate
in the following that a non-zero 613 can be obtained after the NLO contributions are

S,T3ST2ST3)

included. Moreover, the LO remnant symmetry K i of neutrino sector is further

broken down to Zg ST*ST® guch that the mixing patterns of case III and case IV discussed
in section 3.2 are realized. Firstly we consider the corrections to the flavon superpotential
wé in eq. (4.2) which determines the vacuum alignment of the charged lepton sector. The

symmetry allowed NLO operators are of the following form

swl = ((0°¢)s(0)s)1/A + (PPU WL, p)1 /A? (4.22)

where all possible A5 contractions should be considered, and all dimensionless coupling
constants are omitted with ¥ = {0, ¢}, ¥, = {¢,9}, ¥, = {{, A} and ¥/, = {¢,x}.
Note that 5w£l is suppressed by A? with respect to the LO superpotential wfi in eq. (4.2).
The NLO vacuum configuration is determined by searching for the zeros of the F'—terms
of wé + 5wé with respect to the driving fields ¢°, ¢° and ¥°. We find that the NLO
vacuum of ¢, ¢ and 1 are given by

€6A\?
1N €32 €72
(p) = 1 Ve, (@) = | 14+ eN? | v, W)y = | 1+eA? | vy, (4.23)
€\ €5\ €9A?
€10\
where € (i = 1,...,10) are general complex numbers with absolute values of order one.

The higher dimensional operators contributing to the charged lepton masses are:
Sw; = p(1p* W) hq /A3 + e¢(1p3W;) /AL (4.24)

The charged lepton mass matrix can be obtained by inserting the NLO VEVs of eq. (4.23)
into the LO mass terms plus the contribution of dw; evaluated with the LO VEVs of
eq. (4.5). We find that the NLO charged lepton mass matrix is of the following form:

Me )\gme )\gme
mp = | Nm, m, Nm, |- (4.25)
)\zmT )\ng mr
Therefore the contributions of charged lepton sector to the lepton mixing angles is of order
A2 and can be neglected.

We proceed to discuss the subleading corrections in the neutrino sector. The higher
order corrections to the flavon superpotential of £, (, x, p and A read

sy = TCOM01+ S 000+ 010001 + T2 (00008
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+g/\£((x0x)5(xx)5)1 + %(XOX)l(pp)l * %((XOX)S('OPMI

J16 917
+54 (0°P)s (xx)s)1 +T((p p)s(pP)s)1 , (4.26)
where all couplings ¢; (i = 9,...,17) are real because of the generalized CP symmetry.

The resulting contributions to the F—terms of the driving fields ¢, p°, x° and A are
suppressed by (¥)/A ~ A\, (¥ = {(,x,p}) compared to the contribution from the LO
terms in eq. (4.3). Hence they induce shifts in the VEVs of &, (, x, p and A at relative
order A. with respect to the LO results. After some straightforward algebra, the new
vacuum configuration can be written as

%”x
<§> = V¢ + 57)&7 <C> = U¢ + 57}(7 <X> = Uy 5
Ux
\/g(—m)l + (1 + 2k) dva)
—ﬁm(vp + 6v,) v1 + dvA
(p) = vy + 0V, , (A) = — (14 k) v1 + 2K6vA ) (4.27)
v, + v, — (1 + k) v1 + 2KdvA
v1 + dva
where
Sve — X1+ 95Xy Son — g8 Me X1 + (9598 Mg — g3gaMa) Xo
¢ gage\ ¢ 291949698\ v¢ ’
2(I€ — 2)g16MA’U>2( + 2g17MA'I}/2) 2\/6((I£ — 1)916U>2< - /<;gl7v/2,)
dv, = ,  ova = ,  (4.28)
4g698Av, g6\
with
X1 = gs <g9vg +2(3 = £)(g11 + 4g13)v} + 2VBk(g14 + 915)Uz> :
Xo = 2(k — 3)g16v>2< + 2\/5/{91721% . (4.29)

Obviously the vacuum of x is kept intact, (p) acquires O(A.) corrections in the same
direction, while the alignment of A is tilted. Moreover, from the relations in eq. (4.10), we
see that the shifts dvg, dve, dv, and dva carry the same phase as ve, v, v, and vy up to ,
respectively.

The light neutrino mass matrix receives corrections from both the modified vacuum and
the higher dimensional operators in the superpotential w,. It is easy to check that the NLO
corrections to the Majorana mass terms are suppressed by 1/A* which can be safely ne-
glected. The subleading operators contributing to the neutrino Dirac masses are as follows

S, = B (1) 1hy + A2<<<w 301 + 2 (1v); (xx)lh 2 ()5 00081k

A2<<w> S0008) 1 + 25 (1)1 (pp)aha + 5 (1) (pp)s b (4:30)
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As a consequence, the corrected Dirac mass matrix becomes

100 2v/2 -3 -3 2v/2 0 0
mp=al 001 |va+bdb| =3 0 —vV2 |vu+tec 0 3v2 —v2 |uw
010 -3 —vV2 0 0 —+v2 3V2

0o 1 -1
+d| -1 0 \/3;1 O, (4.31)
1 =6

where the four parameters a, b, ¢ and d are

2 2 2
ve + v
@ =y "ty *C+2(3—f<)ysp+2fﬁys/\2,

A S A2
+6
bzﬂu_2\/> _|_\ny

\ﬁ A (’Li - 1)3/7

y2 (14 K)v1 — 260vA )
c=——= +2\f/<;
\/g A y7 Y95

Notice that the three parameters a, b and ¢ have the same phase with vi up to m,

Az’
v?

AQ’

d=yi X (4.32)

while the phase difference between d and U>2< is 0, m or &5 depending on the product
g1 Ma [(9298 + 9397)93gs Ma — 5g4g5g7g§M§] being positive or negative. Since the phase
of v, can be factorized out as an overall phase of the neutrino mass matrix m,, the VEV
v, can be taken to be real without loss of generality. As a result, a, b and ¢ are all real
and the parameter d is real for gt Ma [(gggg + g397)939s Ma — 5g4g5g7g§M5] < 0 or pure
imaginary for g1 Ma[(g29s + 9397)939sMa — 59ag59793 Me] > 0. In addition, we see that
d are suppressed by A, with respect to a, b and ¢, i.e.,

a~br~ce~0ON),  de~O(N). (4.33)

Utilizing the see-saw formula, we find the light neutrino mass matrix m, is of the same
form as eq. (3.27) with

a=— [3@2 + 24(20% + be 4 2¢%) — 4(3 — )d2] ?\2‘4
2
8= [61)(\[@ b4 de) — 2k — 1)d2} ;]\12
2
v = {6\fac +3(3b+ 2¢)(b — 2¢) + dQ] 312\“4
02
§d = -=3d[b+2(k — 1) Mu (4.34)

Note that the term proportional to § spoils the LO GR mixing, and it is of relative order
Ae compared with «, 8 and ~ since it is induced by the NLO corrections. Therefore the
correct size of the reactor mixing angle 613 can be naturally achieved in our model. After
extracting the overall phase of v,, the parameters «, 8 and +y are real while ¢ is real or pure
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imaginary. In the case of g1 Ma [(g29s+9397) 9398 Ma—594959793 Me| < 0, 6 is real such that
the neutrino mass matrix m, has the most general form compatible with the preservation
of the remnant symmetry ZQTSSTQST3 x H¢.p with Hép = {pe(1), pe(T3ST?*ST3)}. This
is the case III investigated in the model independent analysis of section 3.2. The lepton
mixing matrix Uppsnys and the corresponding preditions for the lepton mixing parameters
are given by eq. (3.32) and eq. (3.33) respectively. There is no CP violation in this case.

In the case of g1 Ma [(gggg+ggg7)gzggMA—5g4g5g7g§M§] > 0, the parameter § becomes
imaginary. The origin symmetry As x Hcp is broken down to Z7 SSTST? H{ p with
HYp = {pr(S), pe(T3ST?ST3S)} in the neutrino sector. The neutrino mass matrix m,
has the same form as that of case IV discussed in section 3.2. Both atmospheric mixing
angle and Dirac CP phase are predicted to be maximal while Majorana CP phases are
conserved, as shown in eq. (3.39). In short, our model reproduces the GR mixing at LO,
and realistic value of 613 is obtained after higher order contributions are taken into account.
Depending on the overall sign of the product gy Ma [(gggg + 9397)g39s M — 5g4g5g7g§M§],
either case III or case IV can be realized.

5 Conclusions

Combining a discrete flavor symmetry with a CP symmetry is a very promising approach
of predicting both lepton mixing angles and CP phases. In this work we have performed a
comprehensive analysis of the A5 family symmetry and CP symmetry. Since the inverse of
each conjugacy class of As is equal to itself, all the inner automorphisms of As are class-
inverting while the unique nontrivial outer automorphism of As is not. In this work, we
have focused on the CP transformations defined by the inner automorphisms, since fields
transforming as 3 and 3’ are required to be present in pairs and they are interchanged
if one would like to consistently impose the CP symmetry associated with the nontrivial
outer automorphism of As. In our working basis, the CP transformations are found to be
of the same form as the family symmetry transformations.

Assuming neutrinos are Majorana particles, we have analyzed the possible symmetry
breaking patterns of A5 x Hop and the corresponding predictions for the PMNS matrix as
well as the lepton mixing parameters in a model independent way. We find five phenomeno-
logically interesting mixing patterns summarized in table 1, and one column of the PMNS
matrix is fixed to be (— %, \/ﬁ, \/ﬁ)T, (\/\/%N, \/2—\”/5, \/ﬁ)T, (%, %, %)T or
(&, -1 22T where £ = (1 + v/5)/2 is the golden ratio. All the three mixing angles

2072072
are determined in terms of a single real parameter 8, and their measured values can be

accommodated for certain values of 6. In particular, the Dirac CP violating phase d¢cp is
predicted to be trivial or maximal while the Majorana phases are trivial. In contrast, dcp
is quite weakly constrained and Majorana phases can not be predicted if CP symmetry
is not considered, as shown in appendix B. Our theoretical predictions can be tested by
forthcoming long-baseline neutrino oscillation experiments such as LBNE, LBNO and Hy-
perKamiokande. The predicted mixing patterns would be ruled out, if significant deviations
of §cp from trivial and maximal values were detected. Furthermore, the phenomenolog-
ical predictions for the (5/3)o,—decay are investigated. The present experimental bounds
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are saturated, and the effective mass |me.| is found to be within the sensitivity of future
(B8B)oy—decay experiments for inverted ordering neutrino mass spectrum.

Guided by above model independent analysis, we construct a flavor model with both
As flavor symmetry and generalized CP symmetry. The lepton mixing is exactly the GR
pattern at LO, the observed mass hierarchies among charged lepton are generated, and
the three light neutrino masses effectively depend on two real parameters which can be
fixed by the measured values of the mass-squared splittings. Therefore the neutrino mass
spectrum can only be normal ordering and the absolute neutrino masses are predicted.
The model is built in such a way that the GR mixing is modified by NLO contributions
and only the second column of GR mixing matrix is kept. A non-vanishing value of 63
is generated at NLO and it is naturally of the correct order A, in our model. In case of
91 Ma[(9298+9397)9398Ma—594959795 Me| < 0, Dirac CP phase d¢p is 0 or 7, consequently
the mixing pattern of case III of general analysis in section 3.2 is reproduced exactly. In case
of g1 Ma [(gggg + 9397)93gs Ma — 5g4g5g7g§M§] > 0, Dirac CP phase §op is maximal with
dcp = £m/2, the mixing pattern of case IV is generated. In other words, our model provides
an explicit dynamical realization of the assumed symmetry breaking pattern in section 3.2.

It is interesting to implement any of the remaining cases II, V and VII in table 1 in
a concrete model. Moreover, the group Z’, which is the double cover of A5, may deserve
to be studied in a similar fashion. Since Z’ has doublet representations [74], quark masses
and mixing should be easily reproduced.
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A Group theory of Aj

As is the group of even permutations of five objects, and it has 5!/2 = 60 elements.
Geometrically it is the symmetry group of a regular icosahedron. As group can be generated
by two generators S and 7" which satisfy the multiplication rules [75]:

S2=T°=(ST)*=1. (A1)
The 60 element of A5 group are divided into 5 conjugacy classes:

101: 1
15Cy : ST2ST3S,TST*, T4(ST?)%, T?ST3, (T28)*13S, ST?ST, S, T3ST?ST?,
T3ST?ST3S, T3ST?, T ST*ST3S, TST?S, ST3ST*S, T*ST, (1?S)*T*
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20Cs : ST, TS,ST* TS, TST3, T?ST? T?ST*, T3ST, T3ST3, T*ST?, TST3S, T*ST3S,
T3ST?S, ST?ST3, ST3ST, ST3ST?, (T%8)*T?, T*(T?8)?, (ST?)%S, (ST?)*T>
12Cs : T,T* ST? T%S,ST3, 73S, STS, TST, TST?, T?>ST, T3ST*, T*ST?
12C% : T2,T3,8T2S, ST3S, (ST?)?, (T28)?, (ST3)%, (T35)?, (T%S)T3,
T3(ST?)*, T3ST*ST*, T*ST*ST?, (A.2)

where nC;, denotes a class with n elements which have order k. The group structure of
As has been elaborately analyzed in ref. [75]. Following the convention of ref. [75], we
find that A5 group has thirty-six abelian subgroups in total: fifteen Zs subgroups, ten Z3
subgroups, five K, subgroups and six Z5 subgroups. In terms of the generators S and 7T,
the concrete forms of these abelian subgroups are as follows:

e Z5 subgroups.

Z5TISTS — (1, ST?ST S}, 75T = (1, 78T, ZIN ST - 1, T (sT%)%,
737570 = (1,178, 7S (1 (178)* 17 8}, Z5TST = (1,ST°STY},
75 ={1,5}, ZIPSTESTY (1, 788T2ST?Y,  Z20STISTYS — (1, T8 ST?ST? S},
ZI°ST — (1, 1887y, ZESTISTYS — (1, 7S TS TS, ZTST § — {1,TST?S},
Z5TSTS — (1, 8T°ST? S}, ZI'ST = (1, 78T}, ZETTT Z 1 (129)° T},

All the above fifteen Z5 subgroups are conjugate to each other.

e /3 subgroups.

ZIST*S — {1 T35T2S, ST3ST?}, ZTSTBS {1,TST3S, (ST?)*T?},
ZT3ST {1, T3ST, T*ST?}, = {1,8T,T*5},

ZT 11 (128)2T2, (ST?)%SY, ZTST3 = {1,TST3, T2ST"},
ZIST? — {1, T2ST?, T*ST?}, TS — {1,T8, ST},
Z5T°ST — {1, ST3ST, T*(T%S)?}, ZST25T3 = {1,ST?ST?, T2ST?S}.

The ten Z3 subgroups are related with each other by group conjugation.

¢ K, subgroups.

KiSTQST3S,TST4) = Z§TQST3S ZTST4 — {1 STQST3S TST4,T4(ST2)2},

g{TSTSTEST) o gIPSTE o g STPST _ 1 12573 (T28)2T3S, ST2ST?,
KT = 78 ZISTISTY _ (1S, T3ST2 ST, T3ST2ST?S),

K(T3ST2 TSTQS) 2T3ST2 ZTST S = {1, T3 ST2 TAST29T3 S, TST2 S,

R{STISTESTIST) — ZSTESTES o gTUST _ (1 ST3ST?S, TAST, (T25)*T*}.

All the five K4 subgroups are conjugate as well.
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e Zs5 subgroups.

7878 — (1,8TS, ST*S, ST*S, TST?, Z8T° = {1,8T%, TS, (ST®)?, (TS)?},
Z7ST — 11, 7°ST, T*ST?, T%(ST%)?, T*ST*ST?}, z& ={1,1T,7%,1° 1},
ZEST = (1, 7ST?, T3ST*, (128)°T°, T3 ST2ST*Y, 257" = {1,872, 1T°S, (ST*)?, (T°*S)?}.

All the six Z5 subgroups are related to each other under group conjugation.

Here the superscript of a subgroup denotes its generator (generators). The As group
has five irreducible representations: one singlet representation 1, two three-dimensional
representations 3 and 3’, one four-dimensional representation 4 and one five-dimensional
representation 5. In the present work, we choose the same basis as that of ref. [75]. The
explicit forms of the generators .S and T in the five irreducible representations are as follows

1: S=1, T=1,
1 —V2 -2 1 0 0
3: S:% V2 -k k-—1]1, T=10 ws 0],
V2 k=1 —& 0 0 wi
-1 V2 V2 1 0 0
3 S’:%r) V2 1-k & , T=10 wg 01,
V2 ok 1-k 0 0 wi
1 k—1 & -1 ws 0 0 0 (A.3)
4 g1 |x-1 -1 1 K |0 wi 0 0
Vil ok 1 -1 k-1 0 0 wd 0]’
-1k k-1 1 0 0 0 wi
-1 V6 V6 V6 V6 10 0 0 0
V6 (k=12 —2k 2(k—1) K2 0ws 0 0 O
5: S=1|v6 -2« k2 (k=12 2(k-1)|, T=[0 0 w2 0 0|,
V6 2(k—1) (k=12 K2 — 2K 00 0 wi 0
V6 K2 2(k—1) =2k (k—1)2 00 0 0 wi

where ws = ¢’5". The character table of As group is reported in table 3. We can straight-
forwardly obtain the Kronecker products between various representations:

13R=R®1=R, 3®3=103305, 323 =103¢5 3x3 =405,
34=3 0495, 3®4=30405 35=303 0405,
325=3030405, 44=10303 ©4d5, 45=303 P40 51D 5o,
505 =130303 d41 B4y ® 51 P 5. (A.4)
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Conjugacy Classes

1Cy | 15Cy | 20C5 | 12C5 | 12C%
1 1 1 1 1

3 3 -1 K 1-k
3| 3 -1 0 11—k K
4 4 0 1 -1 —1
5 5 1 -1 0 0

Table 3. The character table of the A5 group, where k =

where R represents any irreducible representation of As, and 41, 42, 57 and 55 stand for

1+v5
CRE

the two 4 and two 5 representations that appear in the Kronecker products.

We now list the Clebsch-Gordan coefficients for our basis. We use the notation «; (5;)
to denote the elements of the first (second) representation. The subscript “S” (“A”) refers

to symmetric (antisymmetric) combinations.

3®3=1s@® 3 D 5s

3 ®3 =15 ® 3, © 55

33 =405

1g : o181 + a3 + a3z

aofl3 — a3 B2
a1 | aqBe — agfy

azfi — a1 f3

201 81— o B3 — a3 B
—V3(a1fa + azfh)
9s : V6azBs
V6asfs
—V3(1 B3 + azfh)

1s : 151 + a283 + azf2

201 81— o B3 — a3 B
V6as3

Bs | —V3(a1f2 + azfh)

—V3(a1Bs + azfh)
V6as3

aofl3 — a3 B2
8a | a1f —ash 4:
agfi — a1 f3

V20231 + azfa
—V2a18; — asps
—V2a1 83 — azfe

V231 + 23

V3ai18
a2l — V203
a1 — V2033
13 — V2023

04351 - \EOKQBS
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34=3 @435

3®4=304®5

—V2(2Bs + azpr)
ﬂalﬁg — OéQBl + a3f33
V201 B3 + aafla — By

a1 — V2a30
—a1 B2 — V2a25
o183 + V2a34
—a1B1 + V2as3

V6(a2Bs — aspr)
2v201 81 + 20382
V20162 + a1 + 333
V20183 — 3y — a3fs
—2201 B4 — 20233

3.

—V2(2 83 + a3 fa)
3: \/ialﬁl + a2y — a3fs
V2ai1 B4 — B + asp

a1 B1 + V2asBs
a1f2 — V2as3p4
—a1B3 + V226
—a1 B4 — V20203

V6(a2fs — azfa)
V2a1B1 — 3azB4 — asfs
5: 2v201 B2 + 20354
—2v201 85 — 20231
—V20a1 84 + B + 3azf

35=303 ®4D5

325=303 ®4D5

3:

3

5:

—2a1 31 + V3azBs + V3az B
V3182 + asB — V6aszfs
V3a1 85 — V6az By + aspi

V3ai1B1 + aaBs + azfe
o183 — V2282 — V2a3B4
a1 B4 — V20283 — V20305

2v201 B2 — V602 B1 + asfBs
—V201 83 + 20282 — 33 B4
V20181 + 30283 — 20385

—2v201 85 — aafs + V6a3 51

V3(a2Bs — asfs)
—o1 B2 — V3azB1 — V2a3p3
—20183 — V2022
2011 81 + V20335
o185 + V2284 + V3ash

V3181 + anfy + a3fs
3: | a1fs — \/504255 - ﬁOéS@L
o185 — V20283 — V2389

—201 81 + V3a26s + V3a333
V3183 + asB — V6asz s
V3a18s — V6az B2 + azpi

V2a1 2 + 35 — 200384
2v/2a1 83 — V6o + a3
—2v2011 B4 — a2 By + V631
—V2a1 85 + 20283 — 3a3Be

V3(a2Bs — asfs)
201 B2 + V20384
—a1B3 — V3aaf1 — V2385
o184 + V20282 + V/3as b
—201 85 — \/50@/83

3

ot

— 38 —




424=15® 35 ® 3, D45 D 5s

45=303 D4P 5, P52

5s:

3A:

N

1s: 184 + azf3 +asfz + asf

—o1 B4 + aaf3 — asfBa + sy

V2(a2Bs — aufz)
V2(a1Bs — asph)
a1fs + azfs — azf2 — asfh
V2(asBs — aufls)
\/§(C¥1ﬁz —azp)
a2fy + azfs + ayfBa
a1 + a3fBs + s B3
4g

o182 + agfr + ayBy

a1 B3 4 afa + asfi

V3(a1fs — a2fs — asfa + aufr)
V2084 + 2V 20385 — V2045
—2v201 81 + V2361 + V20483
V20182 + V2281 — 2v204 84
—V2a1 83 + 2v20282 — V2a3 5

3

511

522

2v201 85 — V20084 + V20383 — 27/ 2004 85
—V6a1B1 + 20285 + 3azBs — B3

o181 — 3aefs — 20382 + V6au S

V2a1 B85 + 2v2a28s — 2v2a383 — V24 Ba
3a1B2 — V6azf — asfs + 20454

—2011 B3 + P2 + V6azB1 — 3auBs

V3ai B — V2985 + V2a38:s — 220435
V20182 — V3as B + 2v2a385 + V24
V20185 + 2v20282 — V3asBi — V20upBs
—2v201 B4 + V20285 — V2038 + V3

V2a185 — V2281 — V20383 + V2042
—V2a181 — V31 — V3aufs
V3ai B2 + V2981 + V3a3Bs
V3aafa + v2a3B1 + V30uBs

—V3a1B4 — V3aaBs — V204

20185 + 4By + 4az B3 + 20 B2
4o B1 + 2vV60235
—V6a;1 B2 + 2021 — V63 f5 + 26044
2600183 — V6o By + 20361 — V6P

2\/60[3ﬁ2 + 4oy B
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505 =15®3A B3, P4s1P4a2PD5s1 P Bs2

1s:a1f81 + a2fs + azfa + aaffs + as P2
25 + 20384 — 20483 — a5 P2
3a 1 | —V3Bai B + V3asBi + V2as8s — vV2as553
V31 Bs + V2281 — V20482 — V31
20085 — a3y + uffs — 2532
3a | VBaiBs — V3aspi + V20uBs — V20584
—V3a1Bs + V20283 — V20382 + V3au S
3v201 B2 + 3v202 81 — V3B + 4v/30uBs — V3asBs
3v2a183 + 4v3a282 + 3v20361 — V3auBs — V3564
3v201 85 — V3aafs — V3asBs + 3v20uB1 + 4v/3a505
3v2a1 85 — V32 + 4vV3a38s — V3au B2 + 3v2a561
V201 2 — V20281 + V3asBs — V3as 3
—V201 83 + V20381 + V3B — V3as B4
—V201 84 — V325 + V3azBa + V20ub
V20185 — V3aaBs + V3auBa — V255
20051 + aafs — 20384 — 243 + a5 B2
o1 B2 + a2 + V6asBs + V6asfs
9s,1 ¢ —201 83 + V6 Ba — 2031
—2011 B4 — 20431 + V60535
o185 + V6azBs + V6auBs + asbi
200181 — 20205 + a3fs + aufs — 2052
—20a1 82 — 20281 + V64 By
58,2 : o183 + a3 + V6auBs + V6as By
o181 + V6asBs + V6asBs + asr
—201 85 + V6a3fBs — 2051

4A,2 :

B Lepton flavor mixing from Ajs family symmetry without CP

In this section, we investigate the possible lepton mixing patterns which can be derived from
only As family symmetry without CP symmetry imposed. As usual, the three generations
of left-handed leptons are assigned to the triplet representation 3, and As is broken into
two different abelian subgroups G; and G, in the charged lepton and neutrino sector
respectively. The residual flavor symmetry G, can only be a Zs or K4 subgroup of As
since we assume neutrinos are Majorana particles here. In this approach, the PMNS matrix
can be obtained by simply diagonalizing the representation matrices of the generators of
G; and G, without resorting to the mass matrix [19-21, 76, 77]. For G, = K4 and G| is
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capable of distinguishing the three generations of charged lepton, i.e., the eigenvalues of the
generators of G; aren’t degenerate, the PMNS matrix would be completely fixed up to row
and column permutations. However, only one column would be fixed by the remnant flavor
symmetries GG; and G, in case of G, = Z5. In the following, the scenario of G; = Z5 and
G, = K4 shall be discussed as well, and one row would be fixed instead. It is noteworthy
that two pairs of subgroups (G;,Gy) and (G), G, lead to the same result for the PMNS
matrix, if they are conjugate under an element of the As group.

B1 G, =K,

From appendix A, we know that G; can be a Z3, Z5 or K4 subgroup of As. In case of G; =
Zs5, all 6 x 5 = 30 possible combinations of G; and G, give rise to the same mixing matrix

K 1
Vi Vv Y
1 K 1 —
Upmns = | \/3v5: \2vs v | =Ucr, (B.1)

1 K

1
255 25 V2

which is the well-known golden ratio mixing pattern. The mixing angles are determined
to be sin? 613 = (3 — k) /5 ~ 0.276, sin? B3 = 1/2 and sin? 613 = 0. Obviously ;3 should
acquire moderate corrections to accommodate the measured non-vanishing value of the
reactor angle although 612 and 63 are in the experimentally favored 3o ranges [7].

In case of G; = Z3, we find two mixing patterns can be obtained. For the representative
symmetries G = Zg STS and Gy = K. £5T25T3S’TST4)

an A4 subgroup instead of the full flavor symmetry group As. The resulting mixing matrix

, the elements of G; and G, generate

is given by the familiar democratic mixing in which all elements have the same absolute
value [78, 79], i.e.,

1 1
]. 27i T
Upuns=—=| e3 1 —es | =Upwm. (B.2)
\/3 T 271
—e3 1 es

The mixing angles are sin? 15 = sin? 3 = 1/2 and sin? 613 = 1/3. Large corrections to 012
and 13 are needed to be compatible with 3e}qgerignental data. For another representative
symmetries G = Z:,,TgSTQS and G, = KZES’T STEST)

by G; and G,,. The mixing matrix is found to be of the form:

, the parent group As can be generated

. V2 V2(1—kK) 0
Upmns = % k—1 K -3 | =Usr, (B.3)
k—1 K V3
which leads to the following mixing angles: sin?61y = (2 — k) /3 ~ 0.127, sin% o3 = 1/2

and sin? 63 = 0. Notice that both 615 and ;5 are outside of the 3o ranges [7]. The same
results have been obtained in refs. [77, 80]. For the last case of Gj = K4, where G, and G
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are not the same Klein group, only one mixing pattern can be derived,

Upmns = -1 1-x &k |=Urgec. (B.4)

2
We can extract the mixing angles: sin?615 = (3 — k) /5 ~ 0.276, sin? a3 = (24 k) /5 ~
0.724 and sin? 613 = (2 — K) /4 ~ 0.0955. Both 613 and a3 are too large to be acceptable.
This mixing pattern has also been found in ref. [77]. In summary, no mixing matrix in
agreement with experimental data can be obtained if the full Klein symmetry is preserved

by the neutrino mass matrix. In the following, we consider the situation with a single
residual Zs flavor symmetry in the neutrino sector or in the charged lepton sector.

B2 G,=2Zso0r Gy =2,

In this case, only one column or one row of the PMNS matrix would be determined up
to permutations and phases of its elements by the remnant flavor symmetries G; and
G, [56, 57, 81, 82]. This method generally allows us to obtain relations between mixing
parameters and a non-zero 613. We have scanned all independent combinations of G; and
G, and the corresponding explicit forms of the fixed column or row vector are presented
in table 4. Comparing with the present 30 confidence level ranges of the moduli of the
elements of the leptonic mixing matrix [7]

0.789 — 0.853 0.501 — 0.594 0.133 — 0.172
|Upnmns|30 = | 0.194 — 0.558 0.408 — 0.735 0.602 — 0.784 | , (B.5)
0.194 — 0.558 0.408 — 0.735 0.602 — 0.784

we find that neither of the two possible row vectors can be accommodated by the

data, and only four cases are viable. The remnant symmetries can er c§10sen4to be

(G1,Gy) = (28,25, (28, 21°ST*STY), (Z1°ST°S, Z5T*ST*S) and (K{*T511510), 75)

without loss of generality, and the fixed column are (—,/-, ——2— —4L_)T
g y ( V5 Javsn Novae \/Sn)

(dﬁ, /#, /ﬁ)T, %(1,1,1)T and %(E,—l,lﬁ) — 1T respectively. These column

vectors can fit the first or the second column of the PMNS matrix. The resulting lepton

)

mixing matrix can be obtained from Ugg, Upyr and Uge by multiplying a unitary matrix
Uss or Uiz from the right-hand side with

cos 0 0 sinfe ¥ 1 0 0
Uiz = 0 1 0 : U= |0 cos ) sinfe=® |, (B.6)
—sinfe® 0 cos b 0 — sinfe® cosf

where 6 and § are real, and a arbitrary phase matrix in the right-hand side of U3 and Uss
is omitted, since they can be absorbed into the Majorana phases which are not constrained
by flavor symmetry. The multiplication of Uy (Us3) corresponds to performing a unitary
linear transformation of the 1st (2nd) and 3rd columns. In the following, we shall discuss
the predictions for the PMNS matrix and lepton mixing parameters in each case.
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Gy Gy Fixed column or row
2 (_\/%’ 21/55’ 21/55)T v
Z5T ZQTi*sT2ST3 ( ﬁ’ 27:6/5’ ﬁ)T v/
Zg‘3ST2$T3S (0’_%7%? X
Z (0,—575)" X
Z?,TsSTQS ZQT3STQST3 (1_75’ %’ %)T X
Z2T3ST25T3S (%’ L\;gl’ %)T X
Zg3ST25 Zi@TQSTSS (%7%’%? v/
KiST2ST35, TST*) Zég (%’ _%, KT_l)T v
KiSTQST%‘, TST*) Z2TST4 (1,0, O)T X
Z25 KiSTQST3S, TSTY) (%7 %, RT_I) X
Z2TST4 KiST2STSS, TST*) (1,0,0) X

Table 4. The possible form of one column (row) of the PMNS matrix determined by the residual
flavor symmetry G, = Zs (G} = Z3) within the framework of A5 flavor symmetry. The notation
“v/” denotes that the relevant lepton mixing is compatible with the experimental data at 3¢ level [7].
The notation “X” implies the resulting mixing is not viable.

B.2.1 G =2zf,G, =25

The lepton mixing matrix Uppypnys is  predicted to have one column

(— \/%, \/21@’ \/;E)T’ which coincides with the first column of the GR mixing.

The other two columns should be orthogonal to it, and they can be obtained by making a

unitary rotation of the 2nd and 3rd columns of Ugg.

— % ﬁ cos 6 ﬁ sin fe—%
1 /| K sin 0 _id /| K —id cos 0
UPMNS = UGRUQS = m 27\/5 COSH -+ W@ 27\/5 Sln9€ — \/5 (B?)
1 K __sin@ _id Ko —16 cos 6
S ,/2\/50080 5 € 2\/5$1n06 + 2
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This form of modification to the GR mixing has been discussed in a phenomenological way
in ref. [83-85]. Here we show that this mixing pattern can be naturally reproduced from
the A5 flavor symmetry. The mixing angles can be straightforwardly extracted as follows,

3—kK 2cos? 6
.2 . 2 .2
015 = —— " gin20 Qg = — 2 7
Smb1s 5 oY Sz = g + 2Kk +cos 20’
1 4K sin 20 cos O
sin2fy = ~ — 3 + 4k sin 20 cos . (B.8)

2 3+ 2Kk + cos 20

Wee see that the solar and reactor mixing angles are related by
5cos? 012 cos? O13 = 2+ k. (B.9)

Given the 30 ranges 1.76 x 1072 < sin® f13 < 2.95 x 1072 and 0.259 < sin® #15 < 0.359 from
global analysis [7], 013 and ;2 are further constrained to be in the intervals of 1.76 x 1072 <
sin? 013 < 2.35 x 1072 and 0.259 < sin?#f, < 0.263 by this correlation. The well-known
Jarlskog invariant Jop [86], which measures the size of the CP violation, is written as

3—K

20

Jop = — sin26sind . (B.10)

The Dirac CP violating phase dcp is expressed in terms of 6 and § as

V2(3 4 2k + cos 26)sign(sin 26) sin §
VA3 + 2k) cos 20 + (7 + 8k)(3 + cos 40) — 4(3 + 4k) cos 20 sin 20

Sin5cp = — (B.ll)

In order to see how well the lepton mixing angles can be described by this mixing pattern
and its prediction for dop, we perform a numerical analysis. The free parameters 6 and §
are scattered in their whole allowed ranges of 0 < 0 < 27 and 0 < § < 27. The correlations
and the possible values of the mixing parameters are plotted in figure 6. Furthermore, the
experimental data of three mixing angles 19, 013 and a3 at 30 level [7] are considered,
accordingly the allowed values of the mixing parameters would generically be constrained
in small regions. Here and herafter, we perform numerical analysis and present results
only for normal ordering neutrino mass spectrum. The results would change a little bit
for the inverted ordering case. From figure 6, we can read that sin®#;, is predicted to be
around 0.26, any value of #93 within the 30 range can be achieved and dcp is restricted
in the range of [0.990,2.152] U [4.131,5.293]. Recalling that if both As family symmetry
and generalized CP are imposed, as discussed in section 3.1, the parameter d can only be
7/2 (case II) rather than free. Note that case I is not viable. As a consequence, the Dirac
CP dcp would be maximal. Therefore we conclude that the generalized CP symmetry is
a quite effective method of predicting the CP violating phases.

B.2.2 G, =ZzT,G, = zI*5T*sT?

In this case, one column of Upy;ng is determined to be (, /ﬁ, /2"%, /ﬁ)T which is

exactly the second column of the GR mixing. The corresponding PMNS matrix can be
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Figure 6. Predictions for the mixing parameters sin? 61, sin® 63, Jop and dcp with respect to
sin 013 when the remnant flavor symmetries are G; = Z¥ and G, = Z5. The corresponding PMNS
matrix is given by eq. (B.7). The pink regions denote the possible values of the parameters when
both 6 and § freely vary in the whole region of [0,27]. The dark green areas represent the regions
allowed by the current experimental data for three neutrino mixing angles at 30 level [7]. The red
pentagrams refer to the best fitting values of case II discussed in section 3.1, after the generalized
CP is imposed.

obtained from Ugpgr by multiplying Uy from right-hand side,

—\/%COSG ﬁ — \/%sine o—i0

0 sin @ _id K cos 6 sinf _—id
U =UgrU13 = | 7= t35€° /557 - + e : B.12
PMNS GRU13 2V V2 2v/5 V2 2v/5r ( )
cosf _ sinf id K cos + sin 0 e—ié

A N N I N
The lepton mixing parameters read

24K

Sin2 0 s Sin2 912 =

.2
0 == )
S ULs 3+ K+ (1+k)cos26
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Figure 7. Predictions for the mixing parameters sin? 61, sin® 63, Jop and dcp with respect to
sin @13 when the remnant flavor symmetries are G, = ZZ and G, = 27 ST*ST® The corresponding
PMNS matrix is given by eq. (B.12). The pink regions denote the possible values of the parameters
when both 6 and ¢ freely vary in the whole region of [0,27]. The dark green areas represent the
regions allowed by the current experimental data for three neutrino mixing angles at 3o level [7].
The red and yellow pentagrams denote the best fitting values of case III and case IV discussed
in section 3.2, where the generalized CP symmetry is considered. Notice that the red pentagrams
almost coincides with the yellow one in the first panel, since the best fitting values of sin? 615 and
sin 013 are nearly the same in case III and case IV.

Lo, 1 V2 + K sin 26 cos & V2t R

sm023_—— , op = —
2 34K+ (1+k)cos26 20

Sin dgp = 2(24+ k) (3k — 2 + K cos 20) sign(sin 20) sin & B
V(13 + 4k) (3 + cos 40) + 4(7 + 6k) cos 20 — 20 sin” 26 cos 26

sin 26 sin 6,

We have a relation between 619 and 613,

5sin? 013 cos? 13 = 3 — K. (B.14)
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The solar mixing angle 65 is restricted by the observed value of 013 such as 0.281 <
sin? 15 < 0.285 which is in the 30 range [7]. We display the allowed regions of the mixing
angles, Jop and dop in figure 7. No dependence of dcp on sin#;3 is observed, and dop
can take any value in the whole range of [0,27]. However, dcp can only be conserved or
maximally broken if generalized CP is considered, as shown in section 3.2. Note that the
mixing pattern in eq. (B.12) has been discussed in ref. [83, 85].

B.2.3 G, = zI’5T*S, G, = z5T°5T°S

The chosen remnant symmetry leads to a trimaximal column % (1,1, 1)T, and Upyns

takes the form

cosf — e sin 1 cosf + e ¥ gsinf
1 27 s . 22T . s
Upvns = UpcUiz = % e3 cosh+e3Tsing 1 (5 9sing —es cosd
mi (2m ) 2mi sy .
e cosf — Tt sinh 1 €3 cosh — {579 sing

(B.15)
Such a mixing pattern as a minimal modification to the tri-bimaximal has been widely
discussed in the literature [83, 85, 87-91], and it can also be naturally reproduced from
simple flavor symmetries A4 [44, 92] and Sy [41, 45, 92]. The predictions for the lepton
mixing parameters are given by

1 1
) . )
= —(1 2 =V
sin” 613 3( + sin 26 cos §), sin” 612 SJEpERTy y—
1 V/3sin20sin § cos 260

. 9
0oy = — — Ty — 0820
S S T T 9sin20cos o’ op 6v3

S —v/2c0s26(2 — sin 26 cos 0) (B.16)
cp = ' '
d V(1 = sin 26 cos 6) (5 4 3 cos 460 + 2 sin® 26 cos 39)

As expected, the following relation is fulfilled,

3sin? 015 cos? B3 =1, (B.17)

which generically holds true for trimaximal mixing. Inserting the experimental bound
of 013 [7], we obtain 0.339 < sin?#5 < 0.343. A numerical analysis similar to previous
cases is performed, as shown in figure 8. We see that no prediction for dcp can be made.
Recalling that dcp would be constrained to be maximal by generalized CP symmetry
discussed in section 3.3.

ST2ST3S,TST*4)
) , G

B.24 G, =K} , = Z5

One column is fixed to be % (ky,—1,k — 1)T in this case, and it can only be the first column
of the PMNS matrix in order to be consistent with the experimental data. As a result,

Upnmng is of the form

K — cosf — kL sin Bet® k1 cos@ — sinfe= "
1 . .
Upuns = UpcUazz = o L klcosh — ksinfe®® kcos@ — k1 sinhe
k—1 K cos ) — sin fe®® cos 0 + k sin fe—
(B.18)
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Figure 8. Predictions for the mixing parameters sin® 65, sin® a3, Jop and dop with respect
to sinfi3 when the remnant flavor symmetries are G; = Z{3STQS and G, = ZQSTQSTgs. The
corresponding PMNS matrix is given by eq. (B.15). The pink regions denote the possible values of
the parameters when both 6 and § freely vary in the whole region of [0, 27]. The dark green areas
represent the regions allowed by the current experimental data for three neutrino mixing angles at
3o level [7]. The red pentagrams refer to the best fitting values of case V discussed in section 3.3,
after the generalized CP is imposed.

Then the three mixing angles read

—1
sin? 3 = ~ (V5 — cos 20 — 2sin 20 cos §)
. 9 3— K+ (k—1)(cos26 + 2sin 26 cos J)
S1n 912 = )
54K+ (k—1)(cos 26 + 2sin 26 cos §)
3+ /5 cos20 — 2sin 26 cos §
.2
Oo3 = . B.19
S 028 54K+ (k—1)(cos 26 + 2sin 26 cos §) ( )
A relation between 015 and 0,3 follows immediately
4cos®f1pcos’ 013 =1+ k. (B.20)
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Figure 9. Predictions for the mixing parameters sin® 65, sin® a3, Jop and dcp with respect
to sinf3 when the remnant flavor symmetries are G; = KAESTQSTSS’TSTAL) and G, = ZQS. The
corresponding PMNS matrix is given by eq. (B.18). The pink regions denote the possible values of
the parameters when both 6 and § freely vary in the whole region of [0, 27]. The dark green areas
represent the regions allowed by the current experimental data for three neutrino mixing angles at
3o level [7]. The red pentagrams refer to the best fitting values of case VII with 0o3(6pr) < 45°
discussed in section 3.4, after the generalized CP is imposed.

The solar mixing angle is predicted as 0.326 < sin? 015 < 0.334 which is in the experimental
30 bound [7]. The Jarlskog invariant Jop is given by

1
Jop = T sin 20 sin o . (B.21)

The Dirac CP violating phase dop is

—v2k — 3(6Kk + 1 + cos 26 + 2sin 26 cos 0) sin 26 sin §

\/[5 — (cos 20+2sin 20 cos §)2] (v/5—cos 2042 sin 20 cos §)(3++/5 cos 20 —2 sin 26 cos §)
(B.22)

sindgp=

— 49 —



—_

III!!|IIII|IIII|IIII|IIII 7 III!.||IIII|Illlllllllllll

W
il
L, 2 R

sin? fy3
o
(o]
.I.I....:........
|
|
|
|
|
|
|
|
|
NN
dcp
w
|

|”| lo 30

o
~

______________ il
Iyl
M
18]
0IIIIIIIIIIIIIIIIIIIIIIIIII _1 IIIIIIIIIIIIIIIIIIIIIIIIIIII

02 04 06 08 0 02 04 06 08
sin 913 sin 013

o

N
TT T T T
A A A

o
—_
—_

Figure 10. The correlations of sin® fy3 and dcp with respect to sin 63, where the PMNS matrix
arises from an exchange of the second and third rows in the pattern in eq.(B.18). The pink regions
denote the possible values of the parameters when both 8 and ¢ freely vary in the whole region of
[0,27]. The dark green areas represent the regions allowed by the current experimental data for
three neutrino mixing angles at 3o level [7]. The red pentagrams refer to the best fitting values of
case VII with 6a3(65) > 45° discussed in section 3.4, after the generalized CP is imposed.

The numerical results are displayed in figure 9. We see that dop is predicted to be in the
range of [0,1.043] U [5.240, 27], and the atmospheric mixing angle f3 mostly is less than
45° (i.e., in the first octant) in order to be compatible with experimental data of #;3. The
scenario of 693 in the second octant can be achieved, if the second and third rows of the
PMNS matrix in eq. (B.18) are exchanged. Then the predictions for the solar and reactor
mixing angles in eq. (B.19) remain, dcp becomes 7 + dcp, and €3 becomes /2 — fog.
Consequently both Jop and sindcop change into their opposite, and the expression of
sin? fa3 in eq. (B.19) is replaced by

(V5 — cos 20 + 2sin 26 cos §)
5+ K+ (k—1)(cos26 + 2sin 260 cosd) -

SiIl2 923 == (B23)
The predictions for sin? f3 and d¢cp versus sin 613 are shown in figure 10. As expected, 63 is
really larger than 45° to accommodate the measured values of 63, and the CP phase §cop is
in the range of [2.099, 4.185]. Notice that generalized CP would constrain dcp to be trivial,
as studied in section 3.4. In summary, if a single Z subgroup of the Aj flavor symmetry
is preserved by the neutrino mass matrix, only one column of the PMNS matrix can be
determined and agreement with experimental data can be achieved. However, the Majorana
phases cannot be predicted by flavor symmetry, and the Dirac phase dop is constrained
very weakly. On the other hand, if we extend the As family symmetry to include the
generalized CP, dcop is predicted to be trivial or maximal and Majorana phases are trivial.
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