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Abstract: We propose the eikonal approximation as a simple and reliable tool to analyze

relativistic high-energy processes, provided that the necessary subtleties are accounted

for. An important subtlety is the need to include eikonal phases for a rapidity-dependent

collection of particles, as embodied by the Balitsky-JIMWLK rapidity evolution equation.

In the first part of this paper, we review how the phenomenon of gluon reggeization and the

BFKL equations can be understood simply (but not too simply) in the eikonal approach.

We also work out some previously overlooked implications of BFKL dynamics, including

the observation that starting from four loops it is incompatible with a recent conjecture

regarding the structure of infrared divergences. In the second part of this paper, we propose

that in the strict planar limit the theory can be developed to all orders in the coupling with

no reference at all to the concept of “reggeized gluon.” Rather, one can work directly with

a finite, process-dependent, number of Wilson lines. We demonstrate consistency of this

proposal by an exact computation in N=4 super Yang-Mills, which shows that in processes

mediated with two Wilson lines the reggeized gluon appears in the weak coupling limit as a

resonance whose width is proportional to the coupling. We also provide a precise operator

definition of Lipatov’s integrable spin chain, which is manifestly integrable at any value of

the coupling as a result of the duality between scattering amplitudes and Wilson loops in

this theory.
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1 Introduction

High-energy processes subject to the strong interactions have received continuous attention

from the theory community over the past decades. Some of the most intriguing questions,

historically and presently, involve processes with large spreads in rapidity. One example

is the total hadronic cross-section [1, 2], and, by extension, the physics of the elastic

amplitude at small angles as well as the single- and double-diffractive amplitudes. With

today’s experimental program, which also includes proton-ion and ion-ion collisions where

saturation effects have been argued to play an important role [3, 4], the demands placed

on the theory community become particularly strong.

A most natural tool to analyze high-energy processes with small angular deflection is

the eikonal approximation. This approximation is well known in the context of nonrel-

ativistic systems [5], where it amounts to neglecting a projectile’s deflection and simply

dress each classical trajectory by a phase factor. These trajectories are labelled by a two-

dimensional impact parameter. The method is naturally adapted to gauge theories, and in

this context the eikonal approximation is generally understood as the replacement of a fast

or heavy particle by a Wilson line following its classical trajectory. These Wilson lines, for

example, form an essential ingredient of heavy quark effective theory [6] and soft-collinear

effective theory [7].

For ultrarelativistic forward scattering, a simple question demonstrates that a single

Wilson line cannot be the final answer. The reason is that the wavefunction of a relativistic

particle necessarily contains a large number of virtual particles, which, at high energies,

can be easily liberated. For all intents and purposes these virtual particles are as real as

the “original” one. Which trajectory should be dressed?

Any relativistic version of the eikonal approximation, which satisfactorily addresses

this question in the context of forward scattering, must necessarily keep track of an un-

bounded number of trajectories. This insight was formalized in the nineties through work

by Mueller [8], Balitsky [9], Kovchegov [10] and Jalilian-Marian, Iancu, McLerran, Weigert,

Leonidov and Kovner (“JIMWLK”, for short) [11–13]. These authors obtained, in various

forms, evolution equations describing how the effective partonic content of a projectile, or

equivalently the set of Wilson lines which represents it, depends on its rapidity. The most

complete form of these equations, known as the Balitsky-JIMWLK equation, describes the

rapidity evolution of an arbitrary product of null Wilson lines. As the projectile is boosted

and new degrees of freedom effectively become available to scatter, new Wilson lines appear

at different impact parameters.

This formalism is well established in the leading and next-to-leading logarithmic ap-

proximations in weakly coupling gauge theories. The main aim of this paper is to present

simple, physically motivated hypotheses, which ensure the applicability of the formalism at

higher orders and constrain its structure, and extract new, testable (theoretical) predictions

to test these.

In practice, usefulness of the Balitsky-JIMWLK equation stems from special simpli-

fications which occur in various, distinct, physical regimes. The first is the perturbative

regime, where all Wilson lines are perturbatively close to the identity. Nontrivially, it
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then suffices to keep track of a finite number of Wilson lines, the number depending on

the desired accuracy. The truncated evolution equation reproduces the linear equations

obtained in the BFKL approach [14, 15], and what makes this truncation consistent is the

phenomenon of gluon reggeization.

A second and important regime, which we will not discuss in this paper, occurs when

at least either the projectile or the target does not contain a parametrically large number

of Wilson lines. This regime may be relevant, for example, in the description of asym-

metric proton-ion collisions. In this regime the Balitsky-JIMWLK evolution can be solved

numerically through Monte-Carlo simulations [16–18].

A third important regime is the ‘t Hooft’s large Nc limit, or planar limit. In this

limit products of Wilson lines simplify due to the standard large Nc factorization, and one

obtains a closed nonlinear equation for the dipole expectation value known as the Balitsky-

Kovchegov equation [9, 10]. As long as the projectile and target are both made out of a

number of Wilson lines which does not grow like ∼ N2
c , the nonlinear term in the equation

remains small and the equation further simplifies to a linear one. This linear equation

governs the planar limit of the four-point correlation function, as long as the energy is

not nonperturbatively large. In this paper we will analyze, to all orders in the ‘t Hooft

coupling, the linear equations which govern a variety of correlators and amplitudes.

For the historical perspective, it should be noted that the necessity of keeping track

of the paths of multiple particles, in any version of the relativistic eikonal approximation,

was demonstrated early on in the history of the subject. For example, Cheng and Wu [19,

20] analyzed high-energy photon-photon scattering in quantum electrodynamics to order

α4 and showed that the result could be understood in a simple way in terms of dipole-

dipole scattering. The dipoles arose as eikonalized electron-positron pairs in the photon’s

wavefunction. Nonetheless, to our knowledge, the complexity inherent to such a formulation

was not successfully tackled until the above cited works, as other successful approaches were

developed and prevailed in the meanwhile [14, 15, 21].

To dissipate possible confusion, we should stress that the nonlinear nature of the

evolution equation in forward scattering is related to the presence of infinite null Wilson

lines. In contrast, the rapidity divergences of semi-infinite Wilson lines, as occur in soft-

collinear effective theory and in the study of infrared divergences of fixed angle scattering,

are linear and comparatively simpler (see refs. [22–24] and references therein). It is only in

the presence of collinear initial and final state partons that the full power of the formalism

to be discussed is needed.

1.1 Relativistic eikonal approximation

In order to revisit and extend existing results, we will rely on relatively few postulates,

which we propose should form the general basis of a relativistic eikonal approximation.

1. Rapidity factorization. Degrees of freedom with widely different rapidities can be

separated from each other in the path integral.

– 3 –
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2. Completeness of Wilson line operators. A complete set of operators necessary to

describe a fast projectile to leading power at high energy, is provided by time-ordered

products of null Wilson lines supported on the x− = 0 light front, and which:

(a) are undecorated

(b) follow the trajectories of particles that move along the positive time direction

and could have been emitted classically by the projectile in the past and re-

absorbed by it in the future.

Eventually we hope that these principles and hypotheses will be derived rigorously starting

from e.g. the QCD Lagrangian (for example, to all orders in perturbation theory), but our

main aim here is to see where these simple assumptions take us and to test them.

None of these are really new. We view them as critical components of what is referred

to in the literature as the (Nikolaev-Zakharov)-Mueller dipole model [8, 25], Balitsky’s

shockwave picture [9], or the JIMWLK framework. However, since we are going to extrap-

olate to higher orders in perturbation theory than considered by these authors, we prefer

to begin our presentation with clearly stated hypotheses.

The factorization of degrees of freedom makes it possible to apply Wilsonian renormal-

ization group ideas to this problem, separating left- and right- moving degrees of freedom

(in any frame) in the same way that we are accustomed to separating short- and long-

wavelength modes. Thus we will use the language of operator product expansions (OPE),

renormalization group evolution, etc., whenever dealing with degrees of freedom that are

widely separated in rapidity. This principle was articulated particularly explicitly in [26]

(see also refs. [11, 27–29]), but it also appears to be an essential part of all modern ap-

proaches to the Regge limit, including, to our understanding, Lipatov’s effective action [30].

The critical quantum number of an operator in the Regge limit is its eigenvalue under

a Lorentz boost in the z direction, which we will denote for short as its z-spin. This is

because the Regge limit is attained by applying a large boost to a projectile. When a highly

boosted object is expanded over a basis of boost eigenstates, the operators with the largest

spin dominate in the limit. This is to be contrasted with for example the short-distance

expansion, where operators with the lowest scaling dimension (eigenvalue under dilatation)

dominate, or with high-energy fixed-angle scattering, where the relevant quantum number

is the twist (scaling dimension minus spin, which is the eigenvalue under the combination

of boost and dilatation leaving unchanged Bjorken’s scaling variable xB(Q) ≡ −Q2/2P ·Q).

An important feature of the Regge limit operator expansion, compared with the more

familiar limits just mentioned, is that the operators with the largest large z-spin are fun-

damentally non local. These will be, essentially, products of null Wilson lines at different

transverse positions, going from past to future infinity within the x− = 0 null plane of the

boosted projectile.

The connection with the Wilsonian OPE is probably more than a linguistic analogy.

In conformal theories the Regge limit appears to be indeed precisely a “short-distance”

limit. This becomes visible using the conformal transformation considered by Cornalba
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and collaborators in refs. [31, 32]. We (hope to) return to this connection in a future

publication [33].1

What are the operators with the largest z-spin? Our second postulate is that a com-

plete basis is formed by time-ordered products of null infinite Wilson lines. This is meant

to be the answer in weakly coupled or large Nc gauge theories. The basic idea that Wilson

lines operator should be the key operators, and that products of arbitrarily many of them

must be retained, should be intuitively clear from the introductory discussion. At the

free theory level, all such products have vanishing z-spin, e.g. they are boost invariant (in

any spacetime dimension). Hence, at the quantum level, one should perhaps not be too

surprised to find that these degenerate operators mix with each other. This mixing is the

subject of the Balitsky-JIMWLK equation.

The first step in any application of the Wilsonian operator product expansion is to

systematically list all operators that a given one can mix with, given known symmetries

and selection rules. In this case, if one simply tries to write down every possible non-local

operator supported on the x− = 0 plane, one finds a surprisingly large class of operators

whose physical significance is obscure. The proposed, conjectural, selection rules (a) and

(b) aim to bring some order into this spectroscopy.

The first selection rule postulates that there should be no need to decorate the Wilson

lines by inserting local operators along them, at least not until one is interested in power-

suppressed corrections to the high-energy limit. Decorated operators with vanishing z-spin

do exist. (Simple examples include insertions of
∫
F+idx

+ along null Wilson lines, where i is

a transverse index which thus carries no kinematical spin. With two or more such insertions,

genuinely new operators exist which cannot be expressed as transverse derivatives of null

Wilson lines.) However, such operators contradict the physical intuition that the deflection

of a fast parton should be a negligible effect in the high-energy limit. The selection rule

postulates that such operators will never appear in the operator product expansion for a

physical high-energy process.

The second selection rule postulates that the only Wilson lines one should be allowed

to draw should follow the trajectories of physical particles, which share a positive fraction of

the projectile’s energy and propagate forward along the positive light-front time direction.

A more precise way of phrasing this, is that they must arise from Feynman graphs that

respect the rules of light-front perturbation theory (sometimes called “infinite momentum

1For completeness, we record here the form of the conformal transformation [31, 32, 34, 35]:(
y+, y−, y⊥

)
≡
(
−1/x+, x− − x2⊥/x+, x⊥/x+

)
.

In the original coordinates, wavepackets for the fast incoming and outgoing partons typical probe values

(x+, x−, x⊥)1,2 ∼ ∓(t0e
η, t0e

−η, x⊥), where t0 and x⊥ are some fixed scales and η is a large rapidity. Upon

going to the y coordinates, the two wavepackets localize within a distance yµ1 ∼ yµ2 ∼ e−η of the origin,

whence the Regge limit is conformally equivalent to a “short distance” limit. The quotation marks are

necessary because the past and future wavepackets y1 and y2 necessarily lie on different coordinate patches,

and so are not actually the same point, see previous references. The geometry, instead, is the following:

the future light-cone which opens at y1 closes onto the past light-cone of y2. For this reason, the limit is

governed by non-local operators which are supported on the complete light-cone between y1 and y2, that is

the null plane x− = 0, rather than by local operators.
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frame” quantization, see for example refs. [36, 37] and also ref. [38] in the present context).

Or, even more succinctly, operators which come from allowed shockwave diagrams [9].

These diagrams will be described in the next section. This selection rule is self-evident if

one think in terms of so-called infinite momentum frame wave-functions, or if one accepts

that the shockwave formalism can be used to calculate the rapidity evolution of operators

to any order in perturbation theory. Its significance for us is that it severely limits possible

color contractions, in a way that will be especially far-reaching in the planar limit.

As we hope to convince the reader in this paper, the above principles are physically

reasonable, agree with all available theoretical data, explains in a simple way nontriv-

ial phenomena such as gluon reggeization including subtle effects such as Pomeron loops,

lead to interesting conjectures, and could be provable or disprovable using present-day

technology. Furthermore, they are already proven in perturbation theory to leading and

next-to-leading logarithmic accuracy, thanks to explicit calculations [39]. In our opinion,

this general framework satisfactorily addresses common complaints about the eikonal ap-

proximation, as put forward for example in ref. [40].

Outline of this paper. This paper is organized as follows. In section 2 we review the

Balitsky-JIMWLK evolution equation, including details of its linearization in the pertur-

bative regime and the phenomenon of gluon reggeization. We also discuss the expected

structure of the evolution equation at higher loops, stressing the importance of hermiticity.

This section is meant to contain no original material. Section 3 is essentially a continuation

of our review section, devoted to the special simplifications which occur at large Nc. We

describe explicitly the selection rules which govern the allowed Wilson line contractions

for a given process, at a given order in the 1/Nc expansion. These turn out to be rather

limited. While we feel that the arguments and results in sections 2 and 3 are either stan-

dard or straightforward extensions of known results, which may or may not be already

well-known within a certain community, we could not find proper references in print for

many statements and so we opted for a self-contained presentation.

The body of this paper begins in section 4. There we consider the elastic scattering

amplitude in weakly coupled gauge theories, restricting attention to next-to-leading loga-

rithmic accuracy. The amplitude is well-known to contain a so-called Regge cut which can

be computed using well-established tools from BFKL theory. We describe in detail how

to set up this computation and match with the BFKL result within the eikonal frame-

work. Besides its pedagogical interest, we find the end result to be rather interesting:

starting from four loops it turns out that BFKL dynamics implies nontrivial corrections to

a previously conjectured “sum over dipoles” formula regarding infrared divergences.

In section 5 we pursue our investigation of Regge cuts by going to higher multiplicity. In

the eikonal framework, gluon emission is governed by a certain OPE coefficient. We explain

how to calculate it using Balitsky’s shockwave calculus, and reproduce Lipatov’s reggeon-

particle-reggeon in the appropriate limit. We also set up the computation of higher-point

amplitudes in the Regge limit, hoping that this will lead to further interesting constraints

on the structure of infrared divergences.

– 6 –
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In section 6, we apply these tools to amplitudes in planar maximally supersymmetric

Yang-Mills theory (N = 4 SYM), aiming to find there an ideal testing ground for the

general framework at higher loop orders. Starting from just the hypotheses stated already,

we derive an exact all-order formula for the six-gluon amplitude, expressed in terms of

the scattering amplitude of color-octet dipoles, and we make an exact prediction for the

value of the boost eigenvalue and impact factor at a certain point. We also consider higher-

multiplicity amplitudes; using the established duality between amplitudes and Wilson loops

we argue that they should be governed, at all values of the coupling, by an integrable spin

chain whose operator definition we give.

Finally, in appendix A we record some useful formulas related to the Fourier space

version of the evolution equation, and in two other appendices we record details of the

derivation of an exact bootstrap equation in planar N = 4 SYM, and of the one-loop spin

chain Hamiltonian and its self-duality under Fourier transform.

Note added. Sections 2 and 3 have been significantly edited for the arXiv version 3

of this manuscript, following helpful comments from the JHEP referee. Major changes

include: the switch in section 2.2 to a functional notation, which efficiently streamlines

the weak-field expansion; the improved discussion of hermiticity constraints and Pomeron

loops, now illustrated with the help of a matrix in figure 3; a vastly expanded discussion

of the selection rules in the planar limit in section 3, which now includes detailed proofs

and examples at higher points.

2 Review of eikonal approximation and Balitsky-JIMWLK equation

Our main tool will be the eikonal approximation in gauge theories, wherein fast-moving

particles are replaced by Wilson lines supported on their classical trajectories.

Due to the large boost, the Wilson lines associated with a highly boosted projectile

propagating in the + direction will be parallel to each other and supported on a common

light-front x− = 0. They can be located anywhere in the transverse plane, since boosts

do not affect transverse coordinates. Thus the necessary operators are labelled by a two-

dimensional transverse position z, and a representation r of the gauge group:

Ur(z) ≡ Peig
∫∞
−∞ dx+Aa+(x+,x−=0,z)Tar . (2.1)

We will refer to these as “projectile” Wilson lines. Similarly, we have “target” Wilson lines

which move along the minus direction at x+ = 0:

Ūr(z) ≡ Peig
∫∞
−∞ dx−Aa−(x+=0,x−,z)Tar . (2.2)

Importantly, such null, infinite Wilson lines are divergent. The divergences occur in

any number of space-time dimensions, and, contrary to the well-known situation for semi-

infinite Wilson lines, dimensional regularization does not remove the divergences. Instead,

these can be removed, for example, by tilting the Wilson lines slightly off the light-cone and

giving them a finite rapidity η ≡ 1
2 log dx+

dx− . The operators U thus depend on a rapidity cut-

off, U ≡ Uη, which we will generally not make explicit in order not to clutter the formulas.
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z1
z2

z0

(a)

x- x+

z1
z2

(b)

Figure 1. Shockwave diagrams contributing to leading order rapidity evolution. The shaded

“shock” represent the Lorentz-contracted target which moves in the opposite direction. Diagrams

with the two gluon endpoints attached to the same Wilson lines, and a permutation of (b), are also

present but not shown explicitly.

Through the factorization of degrees of freedom at different rapidities, as discussed

in introduction, the (dimensionless) rapidity scale η at which an operator is renormalized

plays a role analogous to that played by the renormalization scale in the context of a short-

distance limit. The corresponding evolution equation, analogous to the renormalization

group equation for local operators, is the Balitsky-JIMWLK equation.

2.1 The Balitsky-JIMWLK equation

To help make contact with the different forms found in the literature, we introduce the

equation in steps, beginning with the simplest case.

The simplest gauge-invariant operators built from U ’s are color dipoles, whose evolu-

tion takes the form [9]

d

dη
Tr
[
U †f (z1)Uf(z2)

]
=
αs
π2

∫
d2z0 z

2
12

z2
01z

2
02

(
Tr
[
U †f (z1)T aUf(z2)T b

]
Uabad(z0)−CFTr

[
U †f (z1)Uf(z2)

])
.

(2.3)

This states that inserting a dipole operator renormalized at rapidity η + ∆η in the path

integral is equivalent to inserting a dipole at rapidity η, plus the right-hand side. This is

to be viewed as an operator equation, the Wilson lines indeed being defined in eq. (2.1) as

quantum field operators. The subscripts ‘f ’ and ‘ad’ indicate the fundamental and adjoint

representations, respectively, and zij ≡ zi−zj denotes differences of transverse coordinates.

In practice, this evolution equation is used to resum terms in scattering amplitudes

which grow with rapidity gaps. To understand the physical origin of its two terms, it

is customary to draw “shockwave” diagrams as in figure 1. Such diagrams will be used

extensively. They depict the trajectories of projectile partons, where each parton crossing

the target (shaded area, or “shockwave”) is dressed by a Wilson line at the transverse

position of crossing. The adjoint Wilson line Uabad(z0) in the first term in eq. (2.3) is thus

associated with a soft gluon crossing the target in figure 1(a). Since the parent partons are

undeflected by the soft gluon, their Wilson lines sit at the same point on both sides of the

equation. However their external color indices have been rotated. All transverse positions

– 8 –
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are unambiguously defined, and the different graphs are well separated from each other (up

to power-suppressed corrections in energy), thanks to the Lorentz contraction of the target.

These graphical rules may appear rooted in a perturbative, partonic picture. As we

will repeatedly emphasize, in the ‘t Hooft planar limit the important expansion parameter

is g2 = λ/Nc rather than λ itself. Certain conclusions may thus hold more broadly at finite

and even strong coupling λ.

Each step of the evolution (2.3) can potentially produce an additional Wilson line, as

discussed in introduction. To iterate the evolution, it is thus necessary to know the rapidity

evolution of a general product.

Fortunately, at the leading-order, this can be retrieved from (2.3) without further

computation. This owes to the simplicity of the Feynman graphs in figure 1, which makes

it evident that only pairwise interactions can appear at one loop. This allows the dipole

evolution (2.3) to be uplifted directly to an arbitrary color-singlet product of Wilson lines:

d

dη
U(z1) · · ·U(zn) =

αs
4π2

n∑
i,j=1

∫
d2z0 z

2
ij

z2
0iz

2
0j

(2.4)

×
(
T ai,LT

a
j,L + T ai,RT

a
j,R − Uabad(z)

(
T ai,LT

b
j,R + T aj,LT

b
i,R

))
U(z1) · · ·U(zn).

In this equation we have introduced the notations T aL,i and T aR,i for the group theory gen-

erators acting to the left or to the right, respectively, of the Wilson line U(zi). Specifically,

these act on Wilson lines as

T ai,L
[
Ur(zi)

]
≡
[
T ar Ur(zi)

]
, T ai,R

[
Ur(zi)

]
≡
[
Ur(zi)T

a
r

]
. (2.5)

Due to the group theory algebra [T a, T b] = ifabcT c, these obey the commutation relations[
T ai,L, T

b
j,L

]
= −ifabc δij T ci,L,

[
T ai,R, T

b
j,R

]
= ifabc δij T

c
i,R,

[
T ai,L, T

b
j,R

]
= 0.

For future reference, we record the form of T in the adjoint representation: (T aad)bc = if bac,

so that T ai,LU
bc
ad(zi) = if bab

′
U b
′c

ad (zi).

Using the definition (2.5) it is trivial to check that (2.4) does indeed contain (2.3) as

a special case. One could worry that this uplifting is not unique, because terms could

be added proportional to the sums
∑

i T
a
i,L or

∑
i T

a
i,R, both of which vanish on the color

dipole. However, more generally, these sum represent the total color charge and vanish

whenever all color indices are contracted into color singlets (independently in both the

past and future). The form (2.4) thus follows unambiguously from (2.3) only for color

singlet combinations of Wilson lines, and is valid only for such.

A word about gauge invariance is now in order. Physical quantities must be expressible

in terms of gauge invariant operators, e.g. Wilson loops running along closed paths. The

complete definition of the dipole (2.3) thus certainly include transverse gauge links, in the

far past and future, that close it into a rectangular Wilson loop. A basic, but critical, fact

is that at past and future infinity the fields are effectively pure gauge, so that details of

the precise paths followed used by these links are unimportant. Similarly, transverse gauge

links must be added to the products in eq. (2.4), consistent with the color contractions,

– 9 –
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but the actual paths used need not be specified. Because they do not contain essential

information we omit these paths from our notations, but the alert reader should keep in

mind that they are present. For a detailed discussion, including of the renormalization of

the cusps of the rectangles and checks at the next-to-leading order, we refer to [41].

We will also be interested in the perturbative S-matrix of quarks and gluons. As is well

known, this is gauge invariant to all orders in perturbation theory in spite of the presence

of open colored indices. In physical applications, this S-matrix describes hard interactions

between partons inside hadrons; the hadrons themselves are color singlets so the remain-

ing charge is effectively carried by non-participating “spectator” partons located ∼ Λ−1
QCD

away from the hard interaction, which is infinitely far from the perturbative perspective.

This suggests the following prescription to apply the Wilson line formalism to partonic

S-matrices: one should simply add a spectator Wilson line at a large distance, to soak up

the total color charge. With an appropriate infrared regulator in place (e.g., dimensional

regularization), this spectator can be moved to infinity. We will provide evidence that this

physically-motivated prescription is also mathematically correct.

Using this prescription, it is simple to derive a version of eq. (2.4) which is valid for

arbitrary colored states. We simply add a spectator Wilson line U∞ and remove explicit

appearances of its color charge by writing T aL,∞ = −
∑n

i=1 T
a
L,i, and similarly for TR,∞.

The net effect is simply to shift the coefficient of the TiTj term to

z2
ij

z2
0iz

2
0j

7→
z2
ij

z2
0iz

2
0j

− 1

z2
0i

− 1

z2
0j

= −2
z0i · z0j

z2
0iz

2
0j

,

the shifts being the zi, zj → ∞ limits of the original term. The evolution equation for an

arbitrary product of Wilson lines is thus given as:2

−d
dη

[
U(z1) · · ·U(zn)

]
=

n∑
i,j=1

Hij ·
[
U(z1) · · ·U(zn)

]
(2.6)

where, in a manifestly symmetrical form,

Hij =
αs

2π2

∫
d2z0 z0i·z0j

z2
0iz

2
0j

(
T ai,LT

a
j,L + T ai,RT

a
j,R − Uabad(z0)

(
T ai,LT

b
j,R + T aj,LT

b
i,R

))
. (2.7)

We will refer to eqs. (2.6) and (2.7) as the Balitsky-JIMWLK equation, following the

original works [9] (in particular, eq. (119) there) and [11–13]. Our notations here follow

closely ref. [42]. Other closely related works include that of Mueller [8] and Kovchegov [10],

not to forget the celebrated and closely-related Weizsäcker-Williams approximation. Nu-

merous derivations and presentations are available; we refer the reader to [43–45] and

references therein. (For applications to colored amplitudes we will need the D = (4−2ε)

dimensional version of the equation, recorded in (2.25) below.)

2Note added. In the arXiv version 3 of this paper we have switched the overall sign of H to

H = −d
dη

, throughout this paper, in order to conform with the conventional sign of the Hamiltonian used in

the literature.
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A noteworthy feature of the color-singlet case (2.4) is its invariance under conformal

transformations of the transverse plane: it is a simple exercise to verify that, upon perform-

ing the inversion zi → zi/z
2
i including the corresponding Jacobian, the factor

d2z0 z2ij
z20iz

2
0j

goes to

itself. The inversion symmetry implies invariance under a full SO(3,1) group of conformal

transformations of the transverse plane. This symmetry follows directly from the confor-

mal invariance of the tree-level QCD Lagrangian. More precisely, the SO(4,2) conformal

symmetry of the theory contains this SO(3,1) as a subgroup preserving the x− = 0 plane

(see for example the appendix of ref. [46]). In contrast, conformal symmetry is absent in

the color non singlet case (2.7). This can be attributed to the spectator Wilson line added

at infinity, which is not invariant under inversion.

The equation is often applied in the literature in the context of inclusive observables,

such as the energy density some time after a collision. It is important to realize that such

observables differ conceptually from the exclusive, time-ordered, amplitudes considered in

the present work. Inclusive quantities require discussing both matrix elements and their

complex conjugates, e.g., the full Schwinger-Keldysh contour. Both kind of observables

nevertheless happen to be governed by the same evolution equation, at least at the leading

order [28, 29, 47–49].

The equation (2.6) is but the leading perturbative approximation to an evolution equa-

tion which in principle is to be computed as a series in g2. (The postulates stated in the

introduction suffice to ensure its existence to all orders.) The next-to-leading order correc-

tions in the dipole case have been obtained in [39] (see also [50, 51]), and shown to agree

with next-to-leading order BFKL eigenvalue [52] in the appropriate regime.3

2.2 Linearization and gluon reggeization: a pedestrian approach

The Balitsky-JIMWLK equations constitute an infinite hierarchy which we cannot solve

without further approximations. Even starting from a single Wilson line, complicated

products of multiple Wilson lines are generated. Pictorially, these build up a cloud of soft

gluons around the projectile.

In the so-called dilute or weak-field regime, where all Wilson lines are close to the

identity, the infinite hierarchy can be consistently truncated to a linear system. This system

involves a finite number of Wilson lines, the number depending on the desired accuracy.

This linear system furthermore agrees with that arising from the BFKL approach. The

consistency of this truncation is essentially the phenomenon of gluon reggeization, and is a

nontrivial property of the evolution equation.

Because we will use this result extensively, we describe it in detail. We need to pick

a color-adjoint degree of freedom to form the basis of the expansion. Since all operators

are expressed in terms of Wilson lines, this itself should be expressible in terms of Wilson

lines. Departing slightly from the literature, we will use the following convenient choice,

3Note added. The full next-to-leading evolution equation has been made available shortly after

the first arXiv submission of this paper [53, 54]. It is consistent, in a nontrivial way, with the triangular

structure discussed in subsection 2.3 [33].
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the logarithm:

W a ≡ fabc

gCA
(log Uad)bc (2.8a)

≡ fabc

gCA

[
Uad − 1

]bc − 1

2

fabc

gCA

[
Uad − 1

]bd[
Uad − 1

]dc
+ . . . (2.8b)

=

∫ +∞

−∞
Aa+(x+)dx+ − g1

2
fabc

∫ +∞

−∞
dx+

1 dx
+
2 A

b
+(x2)Ac+(x1)θ

(
x+

2 − x
+
1

)
+ . . . . (2.8c)

Note that the operator W a begins at order g0 in perturbation theory, where it sources one

free gluon. More generally, it will be interpreted shortly as an interpolating operator for

the Reggeized gluon. The expansion on the last line can be generated systematically to

higher orders, if desired, using formulas from [55] (see also [56]). We have included it for

illustration, since we will only need the (straightforward) relation between W and U .

From its definition, W is manifestly invariant under gauge transformations which van-

ish at infinity. This ensures, as explained above, that it gives rise to fully gauge invariant

correlators upon including appropriate gauge links at infinity and spectators.

Exponentiating the definition, the infinite Wilson line in representation r is obtained

simply as

Ur = exp
(
igW aT ar

)
= 1 + igW aT ar −

g2

2
W aW bT ar T

b
r − i

g3

6
W aW bW cT ar T

b
rT

c
r +O

(
g4W 4

)
.

(2.9)

The notation O(g4W 4) indicates that the error is an operator with vanishing tree-level

couplings to fewer than four gluons. This expansion is systematic and works uniformly for

Wilson lines in arbitrary representations. In the particular case of the adjoint representa-

tion, which has (T aad)bc = if bac,

Uabad = δab + gfabcW c− g
2

2
facef bdeW cW d− g

3

6
facxfxdyfyebW cW dW e +O

(
g4W 4

)
. (2.10)

It is important to stress that both sides of eq. (2.8a) contain quantum field operators,

which are to be multiplied using the time-ordered products for the quantum fields Aaµ
which appear in them. With this operator ordering, equations (2.9) and (2.10) are exact

quantum-mechanical statements. (The time ordering of the Aaµ fields is not to be confused

with the P-ordering of the color generators T ai which they multiply, which arise from the

definition (2.1). There is a private P-ordering symbol for each Wilson line Peig
∫
A but

only a single overall time ordering symbol.) The proof of eqs. (2.9) and (2.10) requires

only to statements about classical matrices, because the private P-ordering symbols from

the various U factors in eq. (2.8b) do not interfere with each other, and the time-ordered

product of the Aaµ quantum fields is commutative. The identities can also be checked

explicitly for the first few terms of (2.8c). The multiplication of W fields is commutative

so their products can be written in any order.

The expansion in W fields, evidently, is only useful in states where it converges, which

requires 〈W 〉 ∼< 1/g. More precisely, the target should be such that all vacuum expectation

values 〈0|(W )n(target Wilson lines)|0〉 � 1/gn, which defines the dilute target regime.
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This automatically includes all perturbative scattering processes with a fixed number of

target and projectile partons (small compared to 1/g2).

Conceptually, in the dilute regime, one expands both sides of the Balitsky-JIMWLK

equation in powers of W and obtains an evolution equation for products of W . The tedious

bookkeeping can be much streamlined by using a functional notation as follows. Viewing

the projectile operator, which is a sum of products of U ’s, as a functionalO[U ] one can intro-

duce the functional derivatives δ/δU . Acting on a functional O[U ], the Balitsky-JIMWLK

equation (2.6) can then be rewritten as an integro-differential equation through the follow-

ing substitutions (applied after normal-ordering all TL,R’s to the right of U ’s) [57, 58]:

∑
i

7→
∫
d2zi, T ai,L 7→

[
T aU(zi)

] δ

δU(zi)
, T ai,R 7→

[
U(zi)T

a
] δ

δU(zi)
. (2.11)

These are such that after substituting into eq. (2.7), one obtains trivially the same action

on any polynomial O[U ]. The commutation relations below (2.5) are also preserved up

to the trivial substitution δij 7→ δ2(zi−zj). This integro-differential formulation has been

extensively used as a starting point for numerical Monte-Carlo studies.

For the dilute approximation, one can use eqs. (2.9) to write the projectile as a func-

tional O[W ]. The Baker-Campbell-Hausdorff formula then states that

igT aj,L=
δ

δW a
j

+
g

2
fabxW x

j

δ

δW b
j

+
g2

12
faexf ebyW x

j W
y
j

δ

δW b
j

− g4

720
WWWW

δ

δW
+. . .

igT aj,R=
δ

δW a
j

− g
2
fabxW x

j

δ

δW b
j

+
g2

12
faexf ebyW x

j W
y
j

δ

δW b
j

− g4

720
WWWW

δ

δW
+. . . . (2.12)

The color contractions in the W 4δ/δW and higher terms are easily obtained but will not be

needed. For the reader’s convenience we reproduce here the functional form the Balitsky-

JIMWLK equation (2.6):

−d
dη
≡ H=

αs

2π2

∫
d2zid

2zj
d2z0 z0i·z0j

z2
0iz

2
0j

(
T ai,LT

a
j,L+T ai,RT

a
j,R−Uabad(z0)

(
T ai,LT

b
j,R+T aj,LT

b
i,R

))
.

To linearize we plug in eqs. (2.10) and (2.12) and expand in g. Rewriting the parenthesis as(
T ai,L − T ai,R

)(
T aj,R − T aj,R

)
−
(
Uabad(z0)− δab

)(
T ai,LT

b
j,R + T aj,LT

b
i,R

)
, (2.13)

and abbreviating W a
i ≡W a(zi), the various terms readily evaluate to:

(
T ai,L − T ai,R

)(
T ai,R − T ai,R

)
= −faa′cf bb′cW a′

i

δ

δW a
i

W b′
j

δ

δW b
j

,

−
(
Uabad(z0)− δab

)
T ai,LT

b
j,R =

1

2
faa

′cf bb
′c

((
W a′
i −W a′

0

)
W b′

0

δ2

δW a
i δW

b
j

+W a′
0

δ

δW a
i

W b′
j

δ

δW b
j

)

+
1

g
fabcW c

0

δ2

δW a
i δW

b
j

+O
(
gW 3

)
. (2.14)

– 13 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
3

Importantly, the 1/g piece ends up canceling after adding the (i↔ j) term, so (2.13) is of

order g0. Commuting W ’s to the left of δ/δW ’s and collecting terms then yields

H =
αs

2π2

∫
d2zid

2zj
−d2z0 z0i·z0j

z2
0iz

2
0j

faa
′cf bb

′c
(
W a′
i −W a′

0

)(
W b′
j −W b′

0

) δ2

δW a
1 δW

b
2

+
αsCA
2π2

∫
d2zi

d2z0

z2
0i

(W a
i −W a

0 )
δ

δW a
i

+O
(
g4W 4δ2/δ2W

)
.

(2.15)

This equation possesses two crucial properties.

• It contains no terms of order (W )0. This is a simple consequence of the boost invari-

ance of the vacuum: in this state all expectation values vanish 〈(W )n〉 = 0, and this

state must be stable.

• It contains no terms Wδ2/δ2W . This is a simple consequence of signature (CPT)

symmetry, which interchanges initial and final states Uabad 7→ U baad. The Reggeized

gluon is odd under this symmetry, W a → −W a, which explains the cancelation of

the 1/g piece.

These imply that the one-loop evolution is triangular in the Reggeized gluon basis: higher-

order terms omitted in eq. (2.15) can increase the number of W fields in an operator, but

no effects exist (in the one-loop Balitsky-JIMWLK Hamiltonian) which would decrease the

number of W ’s.

This result is of fundamental importance since it ensures that sectors with different

numbers of W ’s can be diagonalized independently at one-loop. In the single-W sector, for

example, one gets just the second line of eq. (2.15). This is easily diagonalized by going to

momentum space, W a(p) =
∫
d2zeip·zW a(z), leading to

d

dη
W a(p) = αg(p)W

a(p) +O
(
g4W 3

)
(2.16)

where α is the so-called gluon Regge trajectory

αg(p) ≡
αsCA
2π2

∫
d2z

z2

(
eip·z − 1

)
= −αsCA

2π
log

p2

µ2
IR

. (2.17)

The significance of eq. (2.16) is that amplitudes mediated by single-W exchange exhibit

pure Regge pole behavior, that is the pure power-law dependence on energy A ∝ sα(p) that

is the hallmark of gluon reggeization. (Later we will treat the infrared divergences more

carefully using dimensional regularization.) Mathematically, gluon reggeization is implied

by the triangular structure of eq. (2.15), which governs the weak-field expansion.

For products of two and more W fields, eq. (2.15) reproduces the celebrated BFKL

equation [14, 15] and its multi-reggeon generalization in arbitrary color states, the BJKP

equation [59–61], as it should. For the reader’s convenience, the Fourier space version of

eq. (2.15) is given in appendix A in a form which can be directly compared with those

references. This confirms the interpretation of the W field, defined in eq. (2.8a) as the

logarithm of a null infinite Wilson line, as an interpolating operator for the Reggeized gluon.
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Figure 2. Feynman diagram giving the tree-level inner product between two Wilson lines.

2.3 The hermitian inner product and structure at higher loops

A simple but powerful fact about the boost operator H = − d
dη is that it is hermitian.

This holds with respect to a specific inner product, which is just the vacuum ex-

pectation value of time-ordered products of left- and right- moving Wilson lines, e.g. the

scattering amplitude. For any two functionals O1,2, we define:〈
O1,O2

〉
≡ 〈0|T O1[U ]ηO2[Ū ]η|0〉 . (2.18)

The barred U ’s, as we recall from eq. (2.2), denote left-moving Wilson lines. At tree level,

the inner product in the Reggeized gluon basis is Gaussian with the two-point function

〈0|T W a(p) W̄ b(p′)|0〉
∣∣∣
g→0

= δabδ2(p− p′) i
p2
. (2.19)

This is obtained trivially from the graph shown in figure 2 in a covariant or Coulomb gauge,

since the longitudinal integrals in the Wilson lines force the four momentum components

p+ and p− to vanish.4

Let us expand upon the definition. The next-to-leading order scattering amplitude

of dipoles has been calculated as a function of rapidity difference in ref. [41]. Eq. (2.18)

instructs us to take the limit of large rapidity difference in the result (given in eq. (27)

there), and renormalize to equal rapidity by subtracting ∆η times the one-loop evolution

(given in eq. (28) there), leaving a finite result. We do not reproduce the result here, but we

note that, like any renormalized object, the inner product depends on the scheme chosen

for separating “finite” and “divergent” parts. When calculating a physical observable, this

scheme dependence is to cancel against that of impact factors.

Hermiticity of H arises because one can increase the total energy of the system either

by boosting the target or the projectile, and these must yield the same result. Imposing

boost invariance of eq. (2.18) thus gives

d

dη

〈
O1,O2

〉
= 0 ←→

〈
HO1,O2

〉
=
〈
O1, HO2

〉
. (2.20)

4We recall that such correlators are to be made gauge invariant by adding gauge links at infinity,

abbreviated from our notations, as explained below eq. (2.5). In the present case of correlators with open

indices, these trail to a common spectator location at spatial infinity. In a covariant or Coulomb gauge these

links can be ignored here. Although the inner product is gauge invariant, we mention that the Coulomb

gauge is known to offer technical advantages at higher loops for such symmetrical calculations [44].
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−d
dη



(W )1

(W )2

(W )3

(W )4

(W )5

· · ·


=



g2 0 g4 0 g6

0 g2 0 g4 0 · · ·
g4 0 g2 0 g4

0 g4 0 g2 0 · · ·
g6 0 g4 0 g2

· · ·





(W )1

(W )2

(W )3

(W )4

(W )5

· · ·


Figure 3. Structure of the evolution equation in the Reggeized gluon basis (W ∼ 1/g logU).

Entries on the diagonal and above come from the one loop Balitsky-JIMWLK equation, while their

Hermitian conjugates below the diagonal are generated starting from three loops. Products of

off-diagonal terms give rise to the so-called “Pomeron loop” phenomenon.

This is far from trivial to reconcile with the partonic picture underlying the Balitsky-

JIMWLK approach. What is described as addition of one Wilson line in the projectile

wavefunction O1 (as in figure 1(a)), is not simply Hermitian conjugate to removing one

Wilson line in the target wavefunction O2. This is because there is a mis-alignment between

the Wilson line basis (U basis), in which the partonic picture is manifest but the inner

product is highly degenerate, and the Reggeized gluon basis (W basis), in which the inner

product is approximately diagonal. The U and W bases correspond, respectively, to what

are called in the BFKL literature the descriptions of the scattering in terms of s-channel

and t-channel states.

To see how hermiticity works we expand the one-loop Balitsky-JIMWLK equation in

the Reggeized gluon (W ) basis, starting from the nonlinear terms in the expansion (2.15).

The first such terms are the n→ (n+2) transitions appearing in H at order g4 (e.g. the term

g4W 4δ2/δW 2). Similarly one finds n→ (n+4) transitions at order g6, etc. The powers of

g simply reflect the cost of emitting additional gluons. Odd transitions such as n→ (n+1)

are forbidden by signature symmetry. This is shown above the diagonal in figure 3.

The one-loop Balitsky-JIMWLK equation, by construction, reliably predicts all the

leading terms above the diagonal. In general, an L-loop shockwave diagram can only

produce an overall (g2)L times combinations of U ’s and TL,R’s that are free of explicit

coupling constants. Upon expanding in gW , one finds further powers of g which simply

track the powers of W . Thus, the L-loop contribution to the n→ (n+2m) transition is of

order g2L+2m, and the (nonvanishing) L = 1 contribution is indeed leading.

What about the matrix elements below the diagonal, required by hermiticity? The

rescaling U ↔ gW now works the opposite way and the L-loop contribution to the n →
(n−2m) transition is of order g2L−2m. In particular, the one-loop Hamiltonian had better

be triangular in the W -basis, as found above, since a g0 matrix element below the diagonal

would be clearly inconsistent with hermiticity. In this way reggeization can be seen as a

simple and unavoidable consequence of hermiticity. The W basis is singled out by this

argument, because it diagonalizes the leading-order inner product.

The ∼ g4 matrix elements below the diagonal are thus generated at higher loops. For

example, the one-loop term of the form

g4 ×W 4 δ2

δW 2
⊂ expansion of g2 × (U ’s)× TiTj (2.21)
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is Hermitian conjugate to

g4 ×W 2 δ4

δW 4
⊂ expansion of g6 × (U ’s)× TiTjTkT` , (2.22)

which can arise from linearization of the three-loop Balitsky-JIMWLK Hamiltonian. Indeed

such four-parton interactions can be expected starting from three loops.

An important phenomenon, known as the Pomeron loop, is that starting from next-

to-next-to-leading logarithmic order (NNLL), the off-diagonal terms in H can multiply

each other. Let us be more precise, since the matrix form of H is scheme dependent. In

principle one can always imagine going to a basis where H is diagonal. A more common

strategy, generally followed in the BFKL literature, is to diagonalize the inner product.

(So that the reggeon propagator at equal rapidity does not receive loop corrections.) By

such changes of basis, the Pomeron loop phenomenon can be shuffled around between the

inner product, the Hamiltonian, and the impact factors. The invariant statement is that

at NNLL, in addition to NNLL corrections to exchanges of existing reggeons, one must

account for processes where two additional reggeons are exchanged.

The simplest example is the elastic 2 → 2 amplitude, whose Regge limit at LL and

NLL is governed by exchange of one Reggeized gluon, but, at NNLL, becomes unavoidably

contaminated by exchanges of three Reggeized gluons. That the tree-level impact factor

for three W ’s is nonzero is evident from eq. (4.1) below. That this impact factor cannot be

removed by a redefinition of W is ascertained by the fact that it is different for quarks and

gluons external states. Thus exchange of 3-reggeon states at NNLL is unavoidable. This

is related to the fact that Regge pole factorization of the elastic amplitude does not work

at NNLL, as observed explicitly from the two-loop amplitudes [62].

The gluon Regge trajectory could still be defined to any order as an eigenvalue of H;

as a matter of principle the gluon still “reggeizes”. However, starting from NNLL (beyond

the planar limit) this eigenvalue does not control the high-energy limit of any process.

There is an extensive literature on multi-reggeon exchanges, starting from refs. [21, 59–

61] and references therein. One important motivation is the energy growth of the amplitude

for Pomeron exchange, which would eventually violate unitarity. Indeed the Pomeron (the

ground state of H for a color-singlet pair of Reggeized gluons) has a negative eigenvalue,

H = −αsNc4 log 2
π ≡ 1−j0. This implies that four-reggeon states exist, which can be described

as two Pomerons, which grow approximately twice as fast with energy. Nonlinear effects

associated with exchange of such states, and analogs containing even more reggeons, are

expected to stop and “saturate” the growth. Thus, even if suppressed by g, the off-diagonal

terms in figure 3 must play a critical role at sufficiently high energies.

The “Pomeron loop closure” vertex (2.22) has been discussed within the Balitsky-

JIMWLK formalism in several references, including [63–68]. A recent numerical estimate

of the size of Pomeron loop in QCD has been given in ref. [69]. It is an important open

problem to develop an approximation scheme in which the twin constraints of Hermiticity

and the partonic picture (e.g. t- and s-channel unitarity) are simultaneously solved.

To summarize, within the Balitsky-JIMWLK formalism there is a clear answer to the

question in the title of this paper. In an abstract sense, the gluon ‘always Reggeizes’: to any
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desired perturbative accuracy, it can be used as a systematic building block to compute the

high-energy limit of any process. However, starting from next-to-next-to-leading logarithm

accuracy (NNLL), it never contributes in isolation to any physical process (due to multi-

reggeon exchanges), so its direct observability is effectively lost. One can make an analogy

with a resonance or unstable particles, whose pole mass is hard to measure if it is not

narrow. The situation improves in the planar limit, as we will see in the next section:

there it is possible to probe the Reggeized gluon directly, in isolation, at finite and even

strong coupling.

2.4 The one-loop Balitsky-JIMWLK equation from hermiticity

Hermiticity gives quantitative constraints, not only qualitative ones. In this subsection,

which lies somewhat outside the main flow of this paper, we demonstrate the following fact:

hermiticity completely fixes the form of one-loop evolution, up to overall normalization.

The partonic picture described in introduction ensures that the evolution is obtained

from shockwave diagrams, shown at one-loop in figure 1. Even without explicit calculation,

one can say that the result must be of the form

H(1) =
∑
i,j

∫
d2−2εz0Kij;0

(
c′T ai,LT

a
j,L+c′T ai,RT

a
j,R−Uabad(z0)

(
T ai,LT

b
j,R+T aj,LT

b
i,R

))
, (2.23)

for some functions Kij;0 and c′. The steps leading to eq. (2.15) show that unless c′ = 1, the

linearization will contain 2 → 0 transitions violating the boost invariance of the vacuum

(and hermiticity more broadly). Thus c′ = 1. In this case one automatically gets the

triangular structure and gluon reggeization.

We can put a nontrivial constraint on the kernel Kij;0 by considering, in momentum

space, the following special case of eq. (2.20):〈
HW a(p1)W b(p2),W c(p1−q)W d(p2+q)

〉
=
〈
W a(p1)W b(p2), H W c(p1−q)W d(p2+q)

〉
.

The action of (2.23) (with c′ = 1) in momentum space is worked out in appendix A, for a

general kernel K(q1, q2). By choosing color indices such that δacδbd = δadδbc = fadef bce = 0,

we can single out the term in eq. (A.3) that has the facef bde color structure. Hermiticity

then reduces to the constraint

G(p1−q)G(p2+q)
(
K(q,−q) +K(p1, p2)−K(q, p2)−K(p1,−q)

)
= G(p1)G(p2)

(
K(q,−q) +K(p1−q, p2+q)−K(−q, p2+q)−K(p1−q, q)

)
, (2.24)

where G(p) = 1/p2 is the tree level inner product (2.19). Note that K(q1, q2) is defined

only up to addition of functions of only q1 or q2, which leave the constraint invariant.

The constraint (2.24) is very difficult to satisfy. But for arbitrary G with G−1(0)=0,

there is a simple solution: K(q1, q2) ∝ G(q1)G(q2)
G(q1+q2) ! (This Ansatz was inspired by the discus-

sion in ref. [67].) For G(p) = 1/p2 it is also easy to prove that this is the unique solution

in the space of rational functions. Since on general grounds the one-loop kernel should be

rational in momentum space, this proves uniqueness for our purposes (although a more

general statement would be interesting).
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Since the inner product is the same in momentum space in any spacetime dimension

D, this form for K must hold in any dimension. The proportionality constant must be

obtained by some other mean, for example from the shockwave computation in ref. [9] (see

also subsection 5.1 below). From this one finds that K(q1, q2) = −αs
(q1+q2)2

q21q
2
2
' −2αs

q1·q2
q21q

2
2

,

independent of dimension. Performing the Fourier transform then yields the analog of (2.7)

in arbitrary dimension D = 4−2ε:

H
(D)
ij =

αs

2π2

Γ(1− ε)2

π−2ε

∫
µ2εd2−2εz0 z0i·z0j(

z2
0iz

2
0j

)1−ε (
T ai,LT

a
j,L+T ai,RT

a
j,R−Uabad(z0)

(
T ai,LT

b
j,R + T aj,LT

b
i,R

))
.

(2.25)

This will be used in section 4. It would be interesting in the future to work out the

constraints from hermiticity at higher loop orders.

Comparison with the literature. The general ideas presented so far are rather stan-

dard but some details may differ from the literature. We believe that the simple assump-

tions stated in Introduction allow to efficiently deal with most subtleties.

One issue regards operator ordering. The central assumption here is that time-ordered

products of highly boosted operators can be expanded in terms time-ordered products of

null Wilson lines. When considering the weak field limit, this forces us to use degrees of

freedom that are functionally expressed in terms of Wilson lines, such as their logarithm

W in (2.8a).

In the literature many other identifications of the reggeized gluons have been used, a

simple one being the line integral
∫∞
−∞A+ (see for example [70]). While satisfactory at

one-loop and for the simplest few objects, such as the Pomeron or Odderon, which involve

symmetrical color structures δab or dabc (so that fabc factors are killed), at higher orders this

choice leads to ambiguities related to gauge dependence and how to order the A+’s. These

issues are automatically avoided here by using W ’s, so that arbitrary color configurations

and higher loops can be discussed at once and uniformly. In this way the BJKP equation

for arbitrary color states was immediately obtained in eq. (2.15).

Another common strategy is to identify the reggeized gluons with the gluons exchanged

in the t-channel of a Feynman diagram. Instead, we focus on the operators W which source

those gluons. The so-called “n-gluon approximation” is essentially equivalent to keeping

up to n powers of W in both the target and projectile, although it differs in details because

each W couples to arbitrarily many gluons, and the W -expansion is gauge invariant.

Possible replacements for W would include the color-adjoint projections of (Uf − 1) or

(Uad − 1), which appear closely related to what is used in Lipatov’s effective action after

longitudinal integration (see eq. (87) of [30]). We chose the logarithm for its technical

efficiency: its inverse is trivial to take, it works uniformly for all representations, and the

weak field expansion is solved by the Baker-Campbell-Hausdorff formula (2.12).

When comparing with the BFKL approach, it is important to note that since we con-

sider only time-ordered amplitudes, and the time-ordered product of W ’s is commutative,

only Bose-symmetrical multi-reggeon states appear. (The color factors can have any sym-

metry, but the overall wavefunctions including color and transverse coordinates must be

Bose symmetric.) It is on such states that eq. (2.15) is equivalent to the BJKP equation.
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The equations in the BFKL literature are more general since reggeons residing on different

sides of a unitarity cut are also considered. A prominent example is a color-adjoint pair

of gluons straddling a cut, which we may write formally as a non-time-ordered product

of W ’s. The original bootstrap relation [14] states that when computing a time-ordered

amplitude, this pair always appears with a special wavefunction χa, which mimmicks a

single reggeized gluon:

χa(z) ≡ fabc
(
W b(z)W c(z)−W c(z)W b(z)

)
,

−d
dη
χa(p) = αg(p)χ

a(p) . (2.26)

This is used to effectively remove these states from the description. In the Balitsky-

JIMWLK formalism, such non-time-ordered products never appear to begin with (when

computing a time ordered amplitude with real external momenta, as done in this paper).

An unambiguous prediction of the formalism is thus that non-Bose-symmetric BFKL states

can always be decoupled.

3 Simplifications in the planar limit

In this section we investigate the structure of the evolution in the ‘t Hooft planar limit of

SU(Nc) gauge theory, Nc → ∞ with λ = g2Nc fixed. Specifically, in the dilute regime,

starting from NNLL we will address whether products of the off-diagonal elements in

figure 3 are suppressed by a relative λ2 or g4 ∼ λ2/N2
c .

These products include, for example, the Pomeron loop effect mentioned previously.

Since the Pomeron is a color-singlet object, this effect by definition involves a double-trace

intermediate state and is 1/N2
c suppressed. However, the theory also contains single-trace

states with four reggeized gluons. These have been extensively studied in the literature

due to their connection with an integrable spin chain [71]. From the matrix structure in

figure 3, one could imagine that they appear in, for example, a four-point correlator at

NNLL. This is not the case.

In this section we analyze the selection rules governing high-energy scattering in the

planar limit, to all orders in the ‘t Hooft coupling. The key concepts are standard and

our discussion will be based on refs. [9, 10, 38]. The systematic analysis of higher-point

correlators is however slightly subtle and to our knowledge was not presented before. One

of our main results is that the number of connected Wilson lines which can appear in a

given process is bounded above, to all orders in λ. In particular, color quadrupoles can

never appear in planar 2→ 2 scattering, although they appear in 3→ 3 scattering.

3.1 Dipole evolution in the planar limit

We begin by discussing 2→2 scattering of four single-trace operators. It is helpful to first

review the standard large Nc limit of the Balitsky-JIMWLK equation. To expand at large

Nc one can use the following standard SU(Nc) identities, with traces normalized so that

Tr[1] = Nc, Tr[T aT b] = 1
2δ
ab:

Tr
[
T aXT aY

]
=

1

2
Tr
[
X
]
Tr
[
Y
]
− 1

2Nc
Tr
[
XY

]
, Uaa

′
ad (z0)T a

′
f = U †f (z0)T a

′
f Uf(z0),

Tr
[
T aX

]
Tr
[
T aY

]
=

1

2
Tr
[
XY

]
− 1

2Nc
Tr
[
X
]
Tr
[
Y
]
. (3.1)
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planar

limit

strict

planar

limit

Figure 4. Factorization in the planar limit: the product of Wilson lines becomes of product of

dipoles. In the strict planar limit, after subtracting the vacuum contribution only one connected

trace survives at a time.

Using the first two relations one easily finds

Uabad(z0)Tr
[
U †f (z1)T aUf(z2)T b

]
=Tr

[
U †f (z1)T aUf(z2)U †f (z0)T aUf(z0)

]
(3.2)

=
1

2
Tr
[
U †f (z1)Uf(z0)

]
Tr
[
U †f (z0)Uf(z2)

]
− 1

2Nc
Tr
[
U †f (z1)Uf(z2)

]
.

Defining the dipole Uij ≡ 1
Nc

Tr[U †f (zi)Uf(zj)], the one-loop equation (2.3) thus becomes

−d
dη
U12 =

λ

8π3

∫
d2z0 z

2
12

z2
01z

2
02

(U12 − U10U02) . (3.3)

This equation is exact in Nc and we have not used large Nc yet.

The main simplification at large Nc is that expectation values of products of single-trace

operators factorize, 〈U01U02〉 = 〈U01〉〈U02〉. (Expectation values being defined, as before,

as vacuum expectation value against the target, e.g. 〈X〉 ≡ 〈0|X(target Wilson lines)|0〉,
normalized so that 〈1〉 = 1.) This is depicted in the first arrow in figure 4. The resulting

closed nonlinear equation (3.3) for the dipole expectation value is known as the Balitsky-

Kovchegov equation [9, 10].

Further simplifications occur in the so-called strict planar limit, where the target is

taken to be made of a number of fields which is not large as Nc → ∞. Then the dipoles

depart from unity only by a small amount: 〈Uij〉 = 1− 1
N2
c
Uij where U ∼ 1. Expanding in

1/N2
c , eq. (3.3) linearizes as shown in the second arrow in figure 4 to:

−d
dη
U12 =

λ

8π3

∫
d2z0 z

2
12

z2
01z

2
02

(U12 − U10 − U02) . (3.4)

The strict limit is the relevant one for discussing high-energy correlation functions of single-

trace operators. It holds when Nc → ∞ is taken with a fixed energy. More precisely, it

holds as long as the energy growth of amplitudes does not compensate 1/N2
c effects, which

in practice requires 1/N2
c (s/t)j0−1 � 1 where j0 is the Pomeron intercept.

The strict planar limit is of course closely related to the weak field limit discussed in

the preceding section, but it differs significantly and becomes simpler starting from NNLL.

The question to be addressed is whether traces with four or more fundamental Wilson

lines can appear, as one moves to higher orders in perturbation theory. Given the explicit
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(a) (b)

Figure 5. (a) “Generic” shockwave diagram for dipole evolution in the planar limit. (b) Shockwave

diagrams in which a charge crosses the shock four times, but which violate the rules of light-

front perturbation theory and are disallowed. The amplitudes above and below the shock and not

separately connected.

form of the one-loop evolution, their absence at leading-logarithm order is rather trivial.

But in general, one could imagine drawing Feynman diagrams in which some color charge

crosses the shock four times, as in figure 5(b). If these graphs did contribute, these would

produce connected quadrupoles (see eq. (3.9) below). However, these graphs are not valid

shockwave diagrams.

The problem with the graphs in figure 5(b) is that one side of the shock contains a

disconnected amplitude. This cannot arise from the trajectories of particles moving forward

in time as postulated, and is inconsistent with the rules of light-front perturbation theory.

It is relatively easy to prove that any planar diagram, which is separately connected

above and below the shock, cannot contain any such zigzag. The proof is essentially a

counting exercise. For definiteness, we normalize the single trace operators so that the

two-point function of the single-trace operator O is of order N0
c , for example

O(x) =
1

Nc
Trf[FµνFµν ]. (3.5)

Standard large Nc estimates then give that the connected amplitude on the bottom of the

shock, for O(x) to couple to 2m color charges, scales like

〈2m color charges|O(x)|0〉 ∼
(
δi ̄√
Nc

)m
(3.6)

up to powers of λ, where (δi ̄)
m represent some index contraction between the m funda-

mental and m antifundamental color indices at the shock. The amplitude on the top gives

a similar factor, but generally with a different index contraction. However, the product is

maximized when the index contractions are the same: in this case one gets m traces, pro-

ducing a factor (Nc)
m, so the overall amplitude is of order N0

c as expected. All traces are

then color dipoles (e.g. have only two Wilson lines). If one insists to get a quadrupole, one

must sacrifice at least one trace, at the cost of a factor 1/Nc. We conclude that quadrupoles

can only appear at the 1/Nc level.
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Connectedness of the top and bottom amplitudes was essential in this argument, since

otherwise the Nc scaling (3.6) does not hold.

The generic diagrams which survive in the planar limit are thus of the form of

figure 5(a), where the color charges crossing the shock organize into a string of dipoles.

The generalization of the Balitsky-Kovchegov equation, to higher orders in λ and leading

1/Nc, must thus takes the general form

−d
dη
Uab =

∞∑
m=0

∫
d2z1 · · · d2zmH[a b]→[a 1···mb] Uaz1Uz1z2 · · ·Uzmb, (3.7)

for some set kernels H[a b]→[a 1···mb] scaling like ∼ λm for m ≥ 1. This is a simple gener-

alization of the one- and two-loop results. In particular, in the strict planar limit, setting

Uij → 1− 1
N2
c
Uij , one finds a linear equation to all orders in λ:

−d
dη
U12 =

∫
d2z0d

2z0′ H12→00′(λ)U00′ , (3.8)

with H12→00′(λ) some kernel depending on the ‘t Hooft coupling. This kernel is well defined

to all orders in λ (up to a scheme transformation), and can be directly extracted from the

four point correlator.

This result is in sharp contrast with what was found in the preceding section in the

general non-planar case, where, starting from NNLL, multi-reggeon exchanges cannot be

neglected. The reason things simplify in the strict planar limit is that instead of keeping

track of an arbitrary number of exchanged gluons, it suffices to keep track of the two

Wilson lines which source them. This makes it especially easy to control the expansion.

The linear form (3.8) is consistent with what is found at strong coupling using the AdS/CFT

correspondence [72].

3.2 Higher-point correlators

The knowledgeable reader may wonder: where does the planar spin chain appear in this

story? The rules stated in introduction give a simple answer to this: these can appear

(only) at higher orders in 1/Nc, or for connected higher-point correlators.

Consider for example the connected correlator of six single-trace operators, where three

are part of the projectile. Certain connected shockwave diagrams, as shown in figure 6,

are seen to contain one color charge following a “zig-zag” path and crossing the shock four

times. This gives rise to a color quadrupole in the operator product:

O(x)O(y)O(z) ∼ U1234U21U43, Uijk` =
1

Nc
Tr
[
U †f (zi)Uf(zj)U

†
f (zk)Uf(z`)

]
. (3.9)

This does not contradict the arguments in the preceding subsection, because, for this

higher-point correlator, the top amplitude can contain two connected components. (The

subscripts on the U ’s correspond to the four partons crossing the shock in the figure.)

In general, if n↓ single-trace operators operators are inserted below the shock, and

connected to 2m color charges through an amplitude with k↓ ≤ n↓ connected components,
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O(z)

O(x) O(y)

Figure 6. The product of three single-trace operators can contain up to one color charge which

cross the shock four times (the outer line in this example), leading to a color quadrupole.

the estimate (3.6) for the bottom amplitude is modified to

〈2m color charges|O(x1) · · ·O(xn↓)|0〉 ∼
(
δi ̄√
Nc

)m( 1

Nc

)n↓−k↓
.

The amplitude on top is estimated similarly. Let us restrict our attention to index contrac-

tions which connect all n = n↓ + n↑ operators together. We know from the general theory

that the connected correlator of n single-trace operators scales like (1/Nc)
n−2; this is ob-

tained if the (2m) color indices between bottom and top are contracted into (m+2−k↓−k↑)
traces. Contractions with more traces would not be fully connected, while contractions with

fewer traces represent 1/Nc corrections. The number of traces directly gives us the number

of multipoles, or more precisely, a weighted sum of the number of Wilson lines in each trace:∑
traces

(nlines − 2) = 2(k↓ + k↑ − 2) ≤ 2(n− 2) . (3.10)

The equality is easily verified in the example of figure 6, where k↓ = 1, k↑ = 2 and the

left-hand side is equal to 2 because of the quadrupole in (3.9). The upper bound depends

only on the process under consideration. In particular, in a product of 3 operators, one can

find at most one quadrupole (but which can multiply an arbitrary number of dipoles). For

four operators one could find in addition an hexapole, or a product of two quadrupoles,

but nothing more complicated. (Traces of odd numbers of fundamental Wilson lines can

never appear.)

For the quadrupole to have any observable effect, it must be present in both the target

and the projectile. Otherwise, using Hermiticity, it could be projected out (see eq. (3.17)

below). For this reason quadrupole exchange is only relevant starting from the connected

six-point function.

These constraints imply that in the planar limit a quadrupole can evolve into products

of one quadrupole and dipoles, or just dipoles. Schematically,

−d
dη

Uijk` ∼ [(one quadrupole)× (dipoles)] + (only dipoles) . (3.11)

This can be seen in action in refs. [73, 74], where the one-loop evolution of a quadrupole is

worked out. The present arguments demonstrate that this structure holds to all orders in

the ‘t Hooft coupling. The weighted sum on the left-hand side of eq. (3.10) never increases

under evolution in the planar limit.
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In the strict planar limit, setting again Uijkl = 1− 1
N2
c
Uijkl, the linearized quadrupole

Uijkl can evolve onto a quadrupole or into a linearized dipole, but nothing else. Schemati-

cally, eq. (3.8) thus gets replaced by

−d
dη
U1234 =

∫
1′2′3′4′

H1234→1′2′3′4′(λ)U1′2′3′4′ +

∫
1′2′

H1234→1′2′(λ)U1′2′ , (3.12)

for some kernels H, defined to all orders in λ. (This can be seen at one-loop in eq. (10)

of ref. [74].) One thus find a triangular system, to all orders in λ, whose structure is

opposite to that found in the preceding section in the general non-planar case at one- and

two-loops. There, we recall, in the basis of reggeized gluons, the length could only increase.

This demonstrates the efficiency of the Wilson line approach for organizing the strict planar

limit. Instead of keeping track of all these gluons, it becomes possible, and more efficient,

to keep track of only the few Wilson lines which source them.

3.3 Bootstrap relations and the Odderon intercept

The planar simplifications can be translated into constraints on the interactions between

reggeons. For example, by expanding both sides of eq. (3.3) to third order in W , one learns

that the family of operators [70]

Õ(z1, z2) = dabc
(
W a(z1)−W a(z2)

)(
W b(z1)−W b(z2)

)(
W c(z1)−W c(z2)

)
(3.13)

obeys a closed differential equation at one-loop:

−d
dη
Õ(z1, z2) =

λ

8π3

∫
d2z0 z

2
12

z2
01z

2
02

(
Õ(z1, z2)− Õ(z1, z0)− Õ(z0, z2)

)
. (3.14)

Thus a special family of three-reggeon states behaves effectively like two-reggeon states.

It is known that this family actually contains the ground state, whose wavefunction is

O0(z1, z2) = (~z1 − ~z2) and one-loop eigenvalue, as trivially seen from eq. (3.14), vanishes.

A simpler example of a similar relation is provided by a single fundamental Wilson

line. In the planar limit its evolution is obtained by taking z2 to infinity in eq. (3.7), and

so involves products of one fundamental Wilson line times a string of dipoles. At one-loop,

for example,
−d
dη
Uf(z1) =

λ

8π3

∫
d2z0

z2
01

(Uf(z1)− Uf(z0)U01) . (3.15)

In the strict planar limit the dipole factor goes to unity, giving a linear equation for Uf.

This leads to Regge pole behavior for the planar four-parton amplitude in any gauge theory,

to all orders in λ (as discussed further in section 6). On the other hand, the dipole also

disappears when one expands the preceding equation to second other in W and projects

onto the color adjoint. It then reduces to

d

dη
Da(p) = αg(p)Da(p) +O

(
W 3
)
, for Da(p) = dabc

∫
d2zeip·zW b(z)W c(z) , (3.16)

with αg(p) the gluon Regge trajectory and dabc the fully symmetrical group theory invari-

ant. This is closely related to the bootstrap relation (2.26) and demonstrates that a pair

– 25 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
3

of reggeized gluons in a specific state behaves like a single reggeized gluon. This state is

known in the BFKL literature as the signature-even reggeized gluon. Although derived

using the planar limit, due to the limited color structures which can appear at one-loop,

eq. (3.16) holds at this order even away from the planar limit.

There are also relations among the Wilson lines governing the planar limit. For exam-

ple, the hermiticity relation 〈
H U12,U3456

〉
=
〈
U12, H U3456

〉
(3.17)

implies that a quadrupole with a specific wavefunction (namely, the wavefunction defined

by the overlap 〈U12,U3456〉) evolves like a dipole. Such relations will be used in section 6.

The representation (3.14) of the Odderon as a signature-odd dipole leads to a one-line

proof that the Odderon intercept is equal to 1 to all loop orders in the planar limit (e.g.

the ground state energy of H vanishes). The present proof extends a two-loop observation

of [75]. The basic point is that the planar evolution equation involves only strings of dipoles

as in eq. (3.7).5 For the ground state wavefunction 〈Uij〉 = 1− 1
N2
c

(~zi−~zj) +O
(
1/N3

c

)
, such

strings simplify telescopically:

H U12 ⊃ U10U00′U0′2 → 1− 1

N2
c

(
(~z1−~z0)+(~z0−~z0′)+(~z0′−~z2)

)
= 1− 1

N2
c

(
~z1−~z2

)
. (3.18)

Thus strings of arbitrary length all linearize to the same expression. By boost invariance of

the vacuum, the evolution equation is automatically such that the coefficient of the “1” term

cancels out, hence the whole evolution vanishes for this wavefunction, to all orders in λ.

This result is in agreement with the strong coupling AdS/CFT results of refs. [76, 77].

The present argument however says nothing beyond the planar limit. In fact, for funda-

mental matter, one will get a broken string of dipoles so the telescopic cancelation (3.18)

will not apply. It would be interesting to determine whether loops of fundamental matter,

or other 1/N2
c corrections, produce a nonzero intercept at NLL or at strong coupling.

All the above relations are analogous to the “bootstrap” relation mentioned in

eq. (2.26), in that they allow to remove special multi-reggeon states in favor of simpler ones

containing fewer reggeons. This is indeed how the vanishing of the Odderon intercept was

demonstrated recently to two loops, in the planar limit, within the BFKL formalism [78].

The Wilson line formulation is seen to offer a powerful and convenient route to the same

conclusion.

4 The elastic amplitude to next-to-leading logarithm accuracy

We now turn to the analysis of the Regge limit |s| � |t| of the elastic scattering amplitude,

for massless colored partons in gauge theory. In the leading logarithmic approximation,

the amplitude is known to exhibit Regge pole behavior A ∝ |s|α(t), as mentioned already.

Starting from the next order (NLL), the amplitude generically contains Regge cuts (except

when projected onto the color-octet channel). In the eikonal approach these cuts are

5This property is not apparent in the form of the evolution recorded in ref. [75], due to simplifications

which have been applied in ref. [39], although it is manifest in its original starting point, eq. (5) of [39].
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12

3 4

Figure 7. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections are

obtained by summing the renormalization group evolution for the gluon source, which effectively

reggeizes the exchanged gluon.

understood as the contribution from operators made of two W ’s, which are equivalent

to exchange of two reggeized gluons in the BFKL formalism. Their contribution can be

reliably predicted using just the tree-level impact factors, together with the linearized

leading-order Balitsky-JIMWLK equation, which is nothing but the BFKL equation as we

have seen. In this section we describe this computation.

To our knowledge this object was not calculated in this formalism before, but the

calculation will quickly be seen to become equivalent to the standard BFKL one [14, 15,

79, 80]. This should help clarify the connection and complete agreement between the two

formalisms. In addition, we will compute explicitly for the first time some of the integrals

that appear at higher loops.

In prevision of using the infrared divergences to constrain the so-called soft anoma-

lous dimension, we perform all computations in dimensional regularization using the D-

dimensional kernel (2.25).

4.1 General structure of the amplitude

We consider the amplitude Mij→ij where the projectile and target partons retain their

identities (for example gg → gg or gq → gq etc.) It will be convenient to work in a

frame where the incoming partons 1 and 2 both have vanishing transverse momentum,

with momenta P4 and P3 being nearly opposite to P1, P2, respectively. These kinematics

are shown in figure 7.

The first step in the computation is to perform an operator expansion, wherein we

approximate the projectile by Wilson lines. At the leading logarithmic order, this amounts

to the “naive” eikonal approximation

âi,λ3,a(P3)â†i,λ2,a′(P2) ∼ p+
2 δλ2,λ̄3Ui(p)aa′ (leading log.). (4.1)

Here â† and â are creation and annihilation operators for the parton asymptotic states.

As for all operator products in this paper, the time-ordered product is understood. Ui
is a Wilson line in the representation associated with particle i with color indices a and

a′, and p is the transverse momentum component of P3. We use capital letters to denote

four-vectors: Pi ≡ (p+
i , p

−
i , pi). The λi’s denote the helicities of the particles, which are

conserved in the high-energy limit.
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Several interesting applications of eq. (4.1) have appeared in the literature, see for

instance refs. [81, 82]. It is important to realize that, at higher orders in perturbation

theory, several types of corrections modify eq. (4.1), in line with its interpretation as an

operator product expansion.

First, the coefficient of Ui(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing mul-

tiple Wilson lines must appear. This is necessary because the original operator Ui(p) will

mix with such products under rapidity evolution. Hence they must necessarily appear in

the OPE, be it only to fix “integration constants” of the evolution. These effects cannot

be accounted for by a simple multiplicative renormalization of eq. (4.1). The first place

where this will become visible is however is at next-to-next-to-leading logarithmic accu-

racy (NNLL), through next-to-leading-order corrections to the two-reggeon impact factor.

(These general features of the operator expansion have been apparent long before the ad-

vent of the Balitsky-JIMWLK equation, and appeared already in Cheng and Wu’s work

mentioned in introduction.)

Since we are aiming for next-to-leading logarithmic accuracy, we expand (4.1) in terms

of W operators (the logarithm of a Wilson line), following subsection 2.2. To this ac-

curacy, we will require the one-loop correction to the one-W coefficient and the leading

approximation for the coefficient of the two-W term. Hence, to NLL accuracy,

âi,λ3,a(P3)â†i,λ2,a′(P2) ∼ p+
2 δλ2,λ̄3 ×

∫
d2−2εzeip·z

[(
1 +

αs

4π
Ci(1)

)
igW c(z)(T ci )aa′

−g
2

2
W c(z)gW d(z)

(
T ci T

d
i

)
aa′

+O
(
g5W, g4W 2, g3W 3

)]
, (4.2)

where Ci(1) is some unknown function of p2. That this is sufficient for NLL accuracy follows

from the triangular structure of the evolution equation (2.15) for products of W ’s, e.g.

the phenomenon of gluon reggeization. We have discarded the contribution from the unit

operator (W )0, which obviously does not contribute to the connected scattering amplitude.

To obtain the amplitude one performs a similar expansion for the target partons 1 and

4, and take the vacuum expectation value of the product of Wilson lines, which is the inner

product (2.18. At the leading logarithm order this gives simply

Maa′bb′
ij→ij

∣∣
LL

= 2g2sδλ1,λ̄4δλ2,λ̄3(T ci )aa′(T
d
j )bb′ × i

〈
W c(p)η,W d(z = 0)η

′〉
. (4.3)

The operators are renormalized to the respective rapidities of the projectile and target.

In order to evaluate this in such a way that large energy logarithms remain under

control, one must evolve the two operators to the same rapidity. The equal-rapidity inner

product then gives the factor (2.19), −iδab/t, while the evolution gives simply exp(αg(t)|η−
η′|), where αg(t) is the gluon Regge trajectory defined in eq. (2.16). To evaluate the rapidity

difference between P3 and P4 we use the formula

η − η′ ≡ 1

2
log
|p+

4 p
−
3 |

|p−4 p
+
3 |

=
1

2
log
|s|2

p2
4p

2
3

= log
|s|
−t
, (4.4)
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where we have used p−3 = p2
3/p

+
3 .6 The leading-logarithm amplitude is therefore given as

Maa′bb′
ij→ij

∣∣
LL

=

(
|s|
−t

)αg(t)

2g2 s

t
δλ1,λ̄4δλ2,λ̄3(T ci )aa′(T

d
j )bb′ ≡

(
|s|
−t

)αg(t)

×Mtree
ij→ij . (4.5)

The gluon Regge trajectory, to one-loop accuracy but computed exactly in ε, is

α(1)
g (t) =

αsCA
2π2

Γ(1− ε)2

π−2ε

∫
µ2εd2−2εz

(z2)1−2ε
(eip·z − 1) =

α̃sCA
2πε

(
µ̄2

−t

)ε
. (4.6)

In the rest of this section we will assume the choice µ̄2 = −t for the MS renormalisation scale

µ̄2 ≡ 4πe−γEµ2, so as to avoid carrying factors (−µ̄2/t)ε everywhere. We have also defined

the rescaled coupling constant α̃s ≡ αsc
′
Γ(4πe−γE)−ε, where γE is the Euler-Mascheroni

constant and c′Γ is the ubiquitous loop factor

c′Γ =
Γ(1− ε)2Γ(1 + ε)

(4π)−εΓ(1− 2ε)
. (4.7)

Using the next-to-leading-log OPE in eq. (4.2), we apply the same procedure to the

next-to-leading log accuracy, and find two terms:

Maa′bb′
ij→ij

∣∣
NLL

=Maa′bb′
ij→ij

∣∣odd

NLL
+Maa′bb′

ij→ij
∣∣even

NLL
. (4.8)

The first, signature-odd component originates from the single-W terms in eq. (4.2) and

represent the exchange of a single reggeized gluon. Explicitly, accounting for all pertinent

effects, it is given as

Maa′bb′
ij→ij

∣∣odd

NLL
=

(
|s|
−t

)α(1)
g (t)(

1− iδφ+ α(2)
g (t) log

|s|
−t

+ Ci(1) + Cj(1)

)
Mtree

ij→ij . (4.9)

Since this contribution is already rather well understood, we simply enumerate the ingre-

dients and refer to the literature for the explicit expressions (see for example equation

(2.11) of ref. [62], whose notation we are following closely). One of the ingredients is the

two-loop correction α
(2)
g (t) to the gluon Regge trajectory, first computed in refs. [83, 84],

and defined in the present context as the eigenvalue of the next-to-leading order Hamilto-

nian in the one-W sector. The other ingredients are the corrections Ci(1) to the coefficient

functions defined in (4.2), together with the next-to-leading order correction to the inner

product 〈W,W 〉. We note that, obviously, there is some freedom to shift quantum cor-

rections between the last two using a finite scheme transformation (finite here meaning

rapidity-independent). A natural way to fix this freedom is to normalize, to all orders,

〈
W a(p),W b(z = 0)

〉
≡ iδ

ab

p2

1 + e−iπαg(t)

2
≈ iδ

ab

p2
(1− iδφ+ . . .) , (normalization)

6Had we used p1 instead of p4 to compute the rapidity difference, we would have found instead the

infrared-divergent result log |s|/
√

(−t)µ2, where µ2 is some infrared regulating scale. However, this has the

same dependence on log |s| and so amounts to simply a different scheme; the difference could be absorbed

by an s-independent redefinition of C(1).
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with δφ ≈ π
2α

(1)(t). This is the natural phase for exchange of a signature-odd reggeon and

ensures that the correction Ci(1) is real, see ref. [62]. In practice, the Ci(1) can then be

read off by comparing the Regge limit of the one-loop fixed-order amplitude with eq. (4.9).

From now on we will concentrate on the signature-even contribution, which arises from

the double-W term in (4.2) and evaluates to

Maa′bb′
ij→ij

∣∣even

NLL
= iα̃s

∞∑
`=1

(
α̃s

π
log
|s|
−t

)`−1 dcd,ef`

`!

(
T ci T

d
i )aa′

(
T ej T

f
j

)
bb′
×2g2sδλ1,λ̄4δλ2,λ̄3 . (4.10)

Anticipating that each term will be pure imaginary (this is obvious from the factor of

i in the inner product (2.19)), we have pulled out an overall factor i. The d` give the

expectation values of various powers of the Hamiltonian (2.15),

dab,cd` ≡ πp2`

(c′Γ)`

∫
d2−2εz eipz

〈(
−H(1) π

α̃s

)`−1

W a(z)W b(z),W c(0)W d(0)
〉
. (4.11)

4.2 The Regge cut contribution

Conceptually, the computation of the `-loop cut contribution is now entirely straightfor-

ward: it involves powers of the one-loop BFKL/linearized Balitsky-JIMWLK kernel (in D

dimensions) sandwiched between explicitly known wavefunctions using the tree-level inner

product. Technically this is nontrivial, however, mainly because we do not know how to

diagonalize the D-dimensional kernel.

To cast eq. (4.11) into a more useful form we first rewrite the color factors in terms of

operators acting on the tree color structure. The operators we will need are the Casimirs

of the color charges in the various channels. Following ref. [85] we define:

T2
t = (T1 + T4)2, T2

s = (T1 + T2)2, T2
u = (T1 + T3)2. (4.12)

Color conservation implies that T2
s + T2

t + T2
u = 2Ci + 2Cj .

Consider now the one-loop case. The signature-even contribution is simply the ex-

change of a pair of free gluons between a pair of eikonal lines, depicted in figure 8, which

in momentum space is simply

dab,cd1 =
(
δacδbd + δadδbc

)
× πp2

c′Γ

∫
µ̄2εd2−2εq

(2π)2−2ε

−1

q2(p− q)2
=
(
δacδbd + δadδbc

)
× 1

2ε
.

We recall that we have chosen the renormalization scale µ̄2 = p2. The color factor can be

written in a nicer way using the following identity:(
δceδdf + δcfδde

)(
T ci T

d
i

)
aa′

(
T ej T

f
j

)
bb′

=
T2
s −T2

u

2
(T ci )aa′(T

c
j )bb′ . (4.13)

The identity follows simply from writing T2
s−T2

u
2 = T ai,L

(
T aj,L + T aj,R

)
. Notice that the last

factor is the tree color structure. Thus the signature-even contribution to the one-loop

amplitude in the Regge limit can be written as:

M(1)aa′bb′

ij→ij
∣∣even

= i
α̃s

2ε

T2
s −T2

u

2
×Mtree

ij→ij . (4.14)
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Figure 8. Signature-even contribution to the next-to-leading order elastic amplitude. Renormal-

ization group evolution of the gluon sources is equivalent to dressing the exchanged gluons with

BFKL corrections.

To go to higher orders, we use that the color factors in the one-loop kernel depend

only on the total color charge in the t channel,

facef bdeW cd =

(
CA −

1

2
T2
t

)
W ab.

Therefore, all terms in eq. (4.10) will be polynomials in T2
t and CA acting on T2

s−T2
u

2 Mtree
ij→ij .

This allows us to rewrite the Regge cut contribution (4.10) in a more useful form. Antic-

ipating simplifications, it will also be useful to factor out the one-loop Regge trajectory

weighed by the t-channel Casimir. Thus:

Maa′bb′
ij→ij

∣∣even

NLL
= iα̃s

(
|s|
−t

)αg(t)
T2
t

CA
∞∑
`=1

1

`!

(
α̃s

π
log
|s|
−t

)`−1

d`Mtree
ij→ij . (4.15)

To now write the d`’s as explicitly as possible, we work in momentum space and we use

the momentum conservation to write W (p)W (k − p) ≡Wp(k), stripping the color indices.

In momentum space, eq. (4.11) becomes

d` =
πp2`

c′Γ

∫
µ̄2εd2−2εk

(2π)2−2ε

〈
Ĥ`−1Wp(k)

〉
× T2

s −T2
u

2
(4.16)

where the expectation value is defined as 〈Wp(k)〉 ≡ −1/[k2(p−k)2], to be taken after

acting with Ĥ. The subtracted Hamiltonian, shifted by the one-loop Regge trajectory

weighted by T2
t and divided by (−α̃s/π), in accordance with (4.15), is given explicitly by

(see eq. (A.3))

ĤWp(k) =
(
2CA−T2

t

) π
c′Γ

∫
µ̄2εd2−2εk′

(2π)2−2ε

(
(k′)2

k2(k−k′)2
+

(p−k′)2

(p−k)2(k−k′)2
− p2

k2(p−k)2

)
Wp(k

′)

+

[
CA
2ε

(
p2

k2

)ε
+
CA
2ε

(
p2

(p− k)2

)ε
− T2

t

2ε

]
Wp(k). (4.17)

The problem is now reduced to computing a rather explicit set of planar propagator-type

Feynman integrals in 2− 2ε Euclidean dimensions.

We have verified that the integrals generated by this procedure agree with the standard

BFKL result, see for example refs. [14, 15, 20, 79, 80] and references therein. However, we

find it interesting to perform the integrations explicitly.
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Results for the integrals. For ` = 1, 2, 3 it turns out that all the required integrals can

be done by repeatedly applying the formula for the bubble integral,∫
d2−2εk

(2π)2−2ε

1

(k2)α((p+ k)2)β
=

Γ(1− ε− α)Γ(1− ε− β)Γ(α+ β − 1 + ε)

(4π)1−εΓ(α)Γ(β)Γ(2− 2ε− α− β)
(p2)1−ε−α−β .

This produces a (somewhat lengthy) sum over various products of Γ functions. Although

we did not find that they combine in any particularly illuminating way, it is straightforward

to expand this result in ε to any desired accuracy:

d1 =
T2
s −T2

u

2
× 1

2ε
(4.18a)

d2 =
[
T2
t ,T

2
s

]
×
[
− 1

4ε2
− 9

2
εζ3 −

27

4
ε2ζ4 −

63

2
ε3ζ5 + . . .

]
(4.18b)

d3 =
[
T2
t ,
[
T2
t ,T

2
s

]]
×
[

1

8ε3
− 11

4
ζ3 −

33

8
εζ4 −

357

4
ε2ζ5 + . . .

]
. (4.18c)

In writing the color factors here we have used that T2
t ' CA when acting on the tree

amplitude, which allows the combination (T2
t − CA) to be written as a commutator. Also

ζk is Riemann’s zeta function evaluated at the integer k.

As a cross-check on these expressions, we have been able to reproduce these results by

working directly with the coordinate-space expression of the kernel given in eq. (2.15).

At the four-loop order, all but one integral can be similarly done using just the bubble

formula. The remaining integral is:7

(4π)2(p2)4ε

(c′Γ)2

∫
d2−2εk

(2π)2−2ε

d2−2εk′

(2π)2−2ε

(k2)−ε((p−k′)2)−ε

(p−k)2(k−k′)2(k′)2
=

7

3ε2
− 214

3
ζ3ε− 107ζ4ε

2 − 1166ζ5ε
3 + . . . .

We have obtained this result with the help of the two-fold Mellin-Barnes representation of

the triangle sub-integral desribed for example in [87], evaluating the integrals analytically

in terms of infinite sums using contour integration. This integral appears multiplied by

1/ε2 in d4, and, adding it to the rest, we obtain

d4 = [T2
t ,
[
T2
t ,
[
T2
t ,T

2
s

]]]
×
[
− 1

16ε4
− 175

2
ζ5ε+ . . .

]
+ CA

[
T2
t ,
[
T2
t ,T

2
s

]]
×
[
− 1

8ε
ζ3 −

3

16
ζ4 −

167

8
ζ5ε+ . . .

]
. (4.19)

In summary, the NLL amplitude contains two components: exchanges of one and two

reggeized gluons. The former is given by eq. (4.9) and the later is given in eq. (4.15), with

the first few d`’s just presented.

We note that if the amplitude is projected onto color-octet states in the t-channel,

the Regge “cut” collapses to a Regge pole (e.g., a pure power of s) since all commutators

[T2
t , · · · ] = 0 vanish, so the even amplitude is just d1 times the exponential in (4.15). This

simplification is a consequence of the “bootstrap” relation (3.16). In particular, since in

the planar limit the planar amplitude is automatically in the octet, it has no Regge cut.

7The author thanks Tristan Dennen for convincing him to use the Mellin-Barnes approach for this

problem, and for providing initial results obtained with the help of the MB package [86]. Any mistake is

the author’s.
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4.3 Implications for infrared divergences

To structure of infrared divergences in gauge theory is well understood, thanks to works

spanning several decades. In dimensional regularization, amplitudes can be written in

the form

M = Z

(
Pi
µf
, αs(µ

2
f ), ε

)
H
(
Pi
µ
,
µf
µ
, αs(µ

2), ε

)
(4.20)

where all infrared divergences (poles in dimensional regularization) are absorbed into

the factor

Z

(
Pi
µ
, αs(µ

2), ε

)
= exp

(
−1

2

∫ µ2

0

dλ2

λ2
Γ

(
Pi
λ
, α(λ2), ε

))
. (4.21)

For further discussion and for a detailed breakdown of the content of the exponent, we refer

to [22, 23, 88] and references therein. The soft anomalous dimension Γ is a matrix that

acts on the set of all possible color structures, and, correspondingly, Z is also a matrix.

The λ integration generates poles in 1/ε where ε < 0 acts as an infrared regulator; up to

running coupling corrections, αs(λ
2) = αs(µ

2)
(
µ2

λ2

)ε
.

A fascinating conjecture put forward in refs. [23, 24, 89] is that in the massless case

the soft-anomalous dimension should take form of a sum over “dipole” terms

Γ = −
∑
i 6=j

γ̂K(αs(λ
2))

4
log
−sij − i0

λ2
T ai T

a
j +

∑
i

γJi(αs(λ
2)), (4.22)

where γ̂K ≈ 2αs
π +O(α2

s ) and sij = −2Pi·Pj . This conjecture was made based on the result

of a 2-loop computation and other theoretical arguments. Possible corrections to the dipole

formula are strongly constrained, for example by collinear limits and by invariance under

rescaling of the particle’s momenta, but are not ruled out.

Conveniently, since this general form is scheme-independent, we can choose to expand

the exponent in terms of α̃s instead of αs, the difference being subleading in ε. This will

modify d and Mfin
ij→ij but not the general form of the formula.

The Regge limit of the dipole formula was investigated in a beautiful paper [90], whose

notations we will follow closely. At leading-log, Z is particularly simple since we only need

to keep the terms proportional to log |s| ≈ log |u| in the exponent [90]. This gives, using

T a1 (T a2 + T a3 ) = −1
2T2

t ,

Z
∣∣
LL

= e
α̃s
2πε

log
|s|
t
T2
t . (4.23)

Comparing eq. (4.20) with the leading-log amplitude amplitude (4.5), we conclude that in

the present scheme

Hij→ij
∣∣
LL

=Mtree
ij→ij . (4.24)

As noted in [90], the fact that a solution exists at all shows that any potential departure

of Γ from the dipole formula must vanish at leading log in the Regge limit, at least when

acting on the Regge limit of the four-particle tree amplitude.

We will now concentrate on the signature-even part of the next-to-leading logarithm

amplitude, since this is the first place where a nontrivial Regge cut appears. Using the
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ingredients just obtained, the factorization formula (4.20) reduces to

Mij→ij
∣∣even

NLL
=
(
Z
∣∣odd

NLL

)
Hij→ij

∣∣
LL

+ e
α̃s
2πε

log
|s|
t
T2
tHij→ij

∣∣even

NLL
. (4.25)

Multiplying both sides by a factor, this implies that

e−
α̃s
2πε

log
|s|
−tT

2
tMij→ij

∣∣even

NLL
=

(
e−

α̃s
2πε

log
|s|
−tT

2
tZ
∣∣odd

NLL

)
Mtree

ij→ij + finite. (4.26)

Note that this assumes only the (already established) validity of the dipole formula at

leading-log order, used through eq. (4.23).

Now assuming the dipole conjecture at higher orders, the signature-odd part of Z at

next-to-leading log will come entirely from the phases in the logarithms, log s→ log |s|−iπ,

and is given as [90]

Z
∣∣odd

NLL
= e

α̃s
2πε

(
log
|s|
−tT

2
t+iπ

T2
s−T2

u
2

)∣∣odd

NLL
. (4.27)

The fact that we need an imaginary part is the reason we do not need to include the

next-to-leading order correction to the cusp anomalous dimension, nor running coupling

effects. Because H vanishes at leading-log in the even sector, we do not need the NLL

corrections to Z
∣∣even

.

Using infrared factorization (4.20) one thus obtain from the conjectured dipole formula

the following definite prediction [90]:

e−
α̃s
2πε

log
|s|
−tT

2
tMij→ij

∣∣even

NLL
= e−

α̃s
2πε

log
|s|
−tT

2
t e

α̃s
2πε

(
log
|s|
−tT

2
t+iπ

T2
s−T2

u
2

)
Mtree

ij→ij + finite

= i
α̃s

2ε

[
T2
s −T2

u

2
− 1

2
[T2

t ,T
2
s]
α̃s

2πε
+

1

6
[T2

t , [T
2
t ,T

2
s]]

(
α̃s

2πε

)2

− 1

24
[T2

t , [T
2
t , [T

2
t ,T

2
s]]]

(
α̃s

2πε

)3

+ . . .

]
Mtree

ij→ij + finite.

Comparing with eqs. (4.15), (4.18) and (4.19), we immediately see that the leading poles

1/ε` are in perfect agreement. Since these poles are generated by exponentiating the well-

established one-loop Γ, this simply confirms that we did not make a huge mistake in working

out the BFKL prediction. Similarly, the absence of subleading poles 1/ε`−1 is in agreement

with the two-loop result of ref. [91].

However, at four loops, we do find a 1/ε pole in eq. (4.19), in contradistinction with

the dipole formula prediction, and signaling a nontrivial contribution to the four loop soft

anomalous dimension. More precisely, the pole gives the Regge limit of the four-loop soft

soft anomalous dimension as:

lim
s→∞

ΓMtree
ij→ij = − iα4

s

24π3
ζ3CA[T2

t ,
[
T2
t ,T

2
s

]]
log3 |s/t| ×Mtree

ij→ij +O
(
α4

s log2 s, α5
s

)
. (4.28)

(As mentioned, this vanishes in the planar limit, as expected.)

This conclusion is not affected by possible subleading powers of ε added to the anoma-

lous dimensions, e.g. scheme transformations, which, as noted above, due to the special
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form of the amplitude, would simply change the explicit form of H
∣∣
LL

. Also, we do not

see any place in the previous argument where higher-order in the coupling corrections

could have been neglected. Since the higher-than-linear dependence on log |s| is a dramatic

change compared to the dipole formula, this appears to rule out the dipole conjecture

starting from four loops.

We believe that this breakdown has a simple physical interpretation. Perhaps over-

simplifying, the dipole conjecture suggests the absence of correlations between multiple

soft gluon emissions. However, since the Regge limit of the amplitude contains a Regge

cut made of a pair of reggeized gluons, BFKL dynamics implies some definite correlations

between the radiated gluons. What we find fascinating, however, is that the effect is some-

how delayed to four loops, contrary to two or three as the argument would naively suggest.

We do not have a good understanding why.

Connection with deep inelastic scattering? There is an intriguing mathematical

similarity between the vanishing of the two and three-loop soft anomalous dimension in

the Regge limit obtained here, and the behavior of anomalous dimensions for twist-two

gluonic operators in the spin j → 1 limit. This limit governs the behavior of deep-inelastic

scattering structure functions in the limit of small Bjorken xB.

Indeed, a well-known prediction of the BFKL equation in this context is that the spin

j = 1 + ω of an operator should depend on its dimension through

ω = −αs

π

(
ψ
(
−γ

2

)
+ ψ

(
1 +

γ

2

)
− 2ψ(1)

)
. (4.29)

We refer to [92, 93] for original references and a recent application. Inverting this relation

gives a prediction for the anomalous dimension γ(j) for j = 1+ω in the regime αs � αs
ω � 1:

γ(j = 1 + ω) = −2
αs

πω
+ 0

( αs

πω

)2
+ 0

( αs

πω

)3
− 4ζ3

( αs

πω

)4
− 4ζ5

( αs

πω

)6
+ . . . . (4.30)

This predicts the leading power 1/ω` at each loop order `.

The vanishing of the second and third coefficients is clearly reminiscent of what we just

found for the soft anomalous dimensions. This suggests a possible quantitative connection,

which would seem reasonable at least when the amplitude is projected onto color singlet

exchange in the t-channel. We leave this question to future work. It could also be interesting

to connect the present result with the four-loop renormalization matrix of intersecting

Wilson lines, following the approach of [81].

5 Multi-Regge limit of n-point amplitudes and OPE

In the so-called multi-Regge limit, one considers, for example, the 2 → (n−2) production

amplitude with several rapidity gaps:

η2 ∼ η3 � η4 � · · · � ηn ∼ η1, p3 ∼ p4 ∼ · · · ∼ pn. (5.1)

We work in a frame where the transverse momenta pi obey p1 = p2 = 0 (see figure 9). This

kinematical region is interesting as it dominates the total cross-section at high energies.
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12

3 4 n...

Figure 9. Labelling of particles in multi-regge kinematics. The particles on the top line are well

separated in rapidity.

We expect investigation of the infrared divergences of higher-point amplitudes in the

Regge limit to shed further light on the possible corrections to the dipole formula. For

example, it cannot be ruled out that the cancelation of the three-loop divergence in the

previous section is an accident of four points, and that divergences may be visible in the

Regge limit at three loops five points. This section will provide the necessary set-up for

this computation.

In prevision of our discussion in the next section, it is useful to generalize the kinematics

slightly by considering processes where P3, . . . , Pn are not necessarily in the final state. We

thus consider the kinematics parametrized explicitly by:

p±i = σi|pi|e±ηi for i = 3, . . . , n,

p−1 = −
∑
i 6=1

p−i , p+
2 = −

∑
i 6=2

p+
i , p+

1 = p−2 = p1 = p2 = 0. (5.2)

The signs σi = ±1, for σ = 3, . . . n, distinguish incoming/outgoing particles. With no loss

of generality we can set σ3 = +1, leaving 2n−3 distinct choices.

Due to crossing symmetry, one might expect these 2n−3 amplitudes to combine into

a single analytic function. While this is presumably correct, such a packaging is certainly

nontrivial and requires the use of the so-called Steinmann relations (see the discussion in

ref. [94]). In general this gives the amplitude as a sum of many terms with different phases,

and so the sum can look very different in the 2n−3 regions. Since our emphasis is on the

factorization properties of the amplitudes, rather than their analyticity properties, we thus

consider these 2n−3 amplitudes simply as separate objects.

Thanks to the rapidity factorization, the multi-Regge regime (5.1) can be analyzed by

repeatedly applying the (rapidity) operator product expansion.

An instructive analogy is with an Euclidean correlator 〈0|O(x1) · · · O(xn)|0〉 in the

limit |x1| ∼ |x2| � |x3| � . . . � |xn−1| ∼ |xn|. In such a situation, by applying the

conventional Operator Product Expansion, the operator product O(x1)O(x2) would be

approximated in terms of simpler operators O′(0). In turn, the product O′(0)O(x3) would

be approximated in terms of operators O′′(0), etc. In this way the full correlator would be

expressed in terms of (n−2) OPE coefficients.
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To study the multi-Regge limit, we do the same, repeatedly applying the rapidity OPE,

exploiting the large rapidity separations. The first step is to replace the two fastest-moving

particles 1 and 2 by Wilson lines. This is the same step which we already discussed in the

2→ 2 case, which at the leading order took the form (4.1):

âi,λ3,a(P3)â†i,λ2,a′(P2) ∼ p+
2 δλ2,λ̄3Ui(p3)aa′ (Born).

For the next step we first need to evolve the Wilson line to the rapidity of P4, which will

generate an operator containing multiple Wilson lines. We then need to consider operator

products of the form

[U(z1) · · ·U(zn)] âa4ε4 (P4). (5.3)

For concreteness, we will assume here that the produced particle is a gluon with polarization

vector ε4 and color index a4.

5.1 Shockwave formalism

The shockwave formalism allows to compute operator products such as (5.3) uniformly for

an arbitrary target, obtaining expressions that are valid for arbitrary expectation values of

the Wilson lines, order per order in the coupling.

The relevant tree-level shockwave diagrams here are shown in figure 10. The diagrams

show explicitly the Wilson lines and on-shell gluon, while all other partons entering the

scattering process, P5, . . . , Pn, P1, are lumped into the Lorentz-contracted shock. Fortu-

nately, at this order, the radiated gluon obviously couples to only one parent Wilson line

at a time, so we need only consider one Wilson line at the time.

To compute the first graph we need the gluon propagator in the shock wave back-

ground. This is simplest in the light-cone gauge A− = 0. A simple representation takes the

form [26, 50] (see also refs. [95, 96] for closely related equations in a gravitational context)

〈Aaµ(Z1)Abν(Z2)〉shock =

∫
d2−2εz0

∫
d4−2εP1

(2π)4−2ε
eiP1·(Z1−Z0)

∫
d4−2εP2

(2π)4−2ε
eiP2·(Z0−Z2)

×G(0)
µi (P1)G

(0)
iν (P2)2p+

1 (2π)δ(p+
1 − p

+
2 )〈Uabad(z0)〉shock . (5.4)

Here we denote D-dimensional vectors using capital letters and the index ‘i’ is purely

transverse. The particles are fast-moving in the x+ direction and the shock is at x+ = 0.

This expression is valid when z+
1 > 0 and z+

2 < 0.8 The free propagator is given as

G(0)
µν (P ) =

−i
−2p+p− + p2 − i0

(
δµν −

Pµδ
+
ν + Pνδ

+
µ

p+

)
. (5.5)

The interpretation is the following: the gluon propagates freely from Z2 to the shock,

picks up the phase (color rotation) 〈Uabad(z0)〉shock, and propagates freely afterwards. The

phase depends only the transverse position of the crossing and equals the expectation value

of the corresponding Wilson line operator; we have let Z0 = (0, 0, z0) to simplify the writing

of the exponent. The longitudinal energy p+ of the gluon is unchanged across the shock,

due to the latter being infinitely boosted hence independent of z−.

8We use the normalization conventions p+ = p0+p3

2
, p− = (p0 − p3), P ·X = (−p+x− − p−x+ + p·x).
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For us it will be useful to first perform the p− integrations, which gives

〈Aaµ(Z1)Abν(Z2)〉shock =

∫
d2−2εz0

∫
d2−2εp1

(2π)2−2ε

d2−2εp2

(2π)2−2ε
eip1·(z1−z0)+ip2·(z0−z2)〈Uabad(z0)〉shock

×
∫ ∞

0

dp+

(2π)2p+
e
−i

p21z
+
1 −p

2
2z

+
2

2p+

(
δµi−

p1iδ
+
µ

p+

)(
δνi−

p2iδ
+
ν

p+

)
, (5.6)

which again assumes z+
1 > 0 and z+

2 < 0.

As a simple consistency check, it is possible to verify that upon taking 〈Uabad(z)〉shock →
δab, eq. (5.6) reduces to the free propagator.

A further interesting exercise is to consider the shockwave diagram in figure 1(a), which

was claimed in section 2 to give rise to the rapidity evolution equation. For more detail

of this computation we refer to refs. [9, 39, 51], but here we mostly want to cross-check

our expression for the shockwave propagator. Using the propagator (5.6) the graph in

figure 1(a) is given directly as

− g2T a2,LT
b
1,R

∫ ∞
0

dz+
1

∫ 0

−∞
dz+

2 〈A
a
+(Z1), Ab+(Z2)〉shock

=
g2

π
T a2,LT

b
1,R

∫
d2−2εz0〈Uabad(z0)〉shock

×
∫

d2−2εp1

(2π)2−2ε

d2−2εp2

(2π)2−2ε
eip1·(z1−z0)+ip2·(z0−z2) p1·p2

p2
1p

2
2

∫ ∞
0

dp+

p+
.

The divergences in the p+ integration reflect the rapidity evolution of the Wilson line

operators: these can be regulated with a rapidity cutoff, giving rise to a rapidity evolution

equation via: d
dη

∫∞
0

dp+

p+
→ 1. The Fourier transform to coordinate space immediately

yields the first two terms of the four-dimensional evolution equation (2.7), as well as its D-

dimensional version (2.25). As discussed in section 2, the rest of the equation is determined

by Hermiticity.

Although admittedly terse, the preceding paragraph is a technically complete and

rigorous derivation of the Balitsky-JIMWLK equation.

5.2 OPE coefficient for gluon emission

We are now ready to compute the OPE coefficient for gluon emission as given by the

shockwave diagram of figure 10(a). The LSZ amputation for the on-shell gluon P3 simply

removes the outgoing propagator, so using the propagator (5.6) in figure 10(a) directly gives

U(z1)âaε (P )
∣∣
figure 10(a)

∼ −ig
∫
d2−2εz0U

ab
ad(z0)T bR,1U(z1)eip·z0

×
∫

d2−2εq

(2π)2−2ε

ε·q
p+
eiq·(z0−z1)

∫ 0

−∞
dz+

2 e
iq2z+2
2p+ .

The ∼ symbol reminds us that the shockwave approximation is valid in the high-energy

limit up to corrections suppressed by powers of the energy. Since the shockwave state is

arbitrary we can remove the shockwave expectation value and obtain an operator equation.
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z1
z2

p2

(a)

z1

p2

(b)

Figure 10. Tree-level shockwave diagrams for gluon emission.

Due to the gauge choice in the preceding subsection, the polarization vector ε must be in

the light-cone gauge ε− = 0; only its transverse component appears in the above equation.

The graph (b) gives minus the same result, but without the adjoint Wilson line.

Performing the z+
2 integration and relabeling z0 → z2 we thus obtain:

U(p1)âaε (P2) ∼ −2g

∫
d2−2εz1d

2−2εz2

(
Uabad(z2)T bR,1 − T aL,1

)
U(z1)eip1·z1+ip2·z2

×
∫

d2−2εq

(2π)2−2ε

ε·q
q2
eiq·(z2−z1).

(5.7)

Performing the Fourier transform this can also be written as

U(z1)âaε (P2) = −igΓ(1− ε)
π1−ε

∫
d2−2εz2

z12·ε
(z2

12)1−ε e
ip2·z2

(
Uabad(z2)T bR,1 − T aL,1

)
U(z1). (5.8)

These expressions are valid when p0 > 0 so that the emitted gluon is in the final state.

If the gluon is instead in the initial state, the parenthesis should be replaced by
(
T aR,1 −

U baad(z0)T bL,1
)
.

This OPE coefficient gives the tree-level amplitude for emitting one gluon from a

set of right-moving particles, described by Wilson lines, in the presence of any high-

rapidity target.

For perturbative computations, the most interesting result is the weak-field limit of

this object. Linearizing the Wilson lines as in subsection 2.2 this becomes simply

W a(p1)âbε(P2) ∼ 2igfabc
∫
d2−2εz1d

2−2εz2

(
W c(z2)−W c(z1)

)
×
∫

d2−2εq

(2π)2−2ε

ε·q
q2
eiq·(z2−z1)+ip1·z1+ip2·z2

= 2igfabcW c(p1 + p2)

(
ε·p1

p2
1

+
ε·p2

p2
2

)
+O

(
g2W 2

)
. (5.9)

We recall that ε is the transverse component of the gluon polarization in the light-cone

gauge ε− = 0.

It is illuminating to consider the four-dimensional case where the gluon has a definite

helicity; using complex notation p2 = |p|2 = pp̄, the parenthesis reduces to(
p̄1

|p1|2
+

p̄2

|p2|2

)
=

1

|p1|2
× p̄1(p1 + p2)

p2
. (5.10)
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In the BFKL formalism, the first term corresponds to the “reggeon propagator” while

the second term is Lipatov’s reggeon-particle-reggeon vertex for the emission of an on-shell

particle with transverse momentum p2, between a reggeized gluon of transverse momentum

p1 and a reggeized gluon of momentum p1 +p2. Starting from this expression, by iteratively

applying the vertex, one can, for example, derive the multi-Regge limit of the Parke-Taylor

amplitude [97].

As a final comment, we note that the (W )0 term, which would be interpreted as a

on-shell vacuum three-point vertex, vanishes in the above expression due to a nontrivial

cancelation between the two terms in eq. (5.7). This cancelation gives a simple interpre-

tation for the minus sign between the two terms. In fact it only occurs in Minkowski

signature (so that the transverse momenta are real and Euclidean).9

5.3 The Regge cuts in the five- and six-point amplitudes

Expanding eq. (5.7) to the next order in W we obtain:

W a(p1)âbε(P2) ∼ 2igfabcW c(p1 + p2)

(
ε·p1

p2
1

+
ε·p2

p2
2

)
(5.11)

− ig2facef bde
∫

d2−2εk

(2π)2−2ε
W c(p1+p2−k)W d(k)

(
ε·p1

p2
1

− ε·(p1 − k)

(p1 − k)2

)
,

up to terms of order g3W 3. This is analogous to eq. (4.2) and gives us the impact factor

for two gluons.

In principle this should be equivalent to what is known in the BFKL literature as

the reggeon-particle-reggeon-reggeon (RPRR) vertex [59], although we have not performed

the explicit comparison. Expanding (5.7) to higher orders in W would yield an infinite

sequence of such vertices.

The preceding OPE coefficients suffice to determine the projection of the six-gluon am-

plitude into the odd, even and odd signatures in the t23, t234 and t61 channels, respectively.

We recall that the signature quantum number is simply the parity under interchange of

initial and final states, so the odd projections amount to antisymmetrizing the color indices

of partons 2 and 3, and of partons 6 and 1. These ensure, to next-to-leading logarithmic

accuracy, that only a single reggeized gluon is exchanged in the t23 and t61 channels. In

particular the reggeized gluon on the left comes with a color factor fa2a3cW c(p2). The even

projection in the t234 channel is then equivalent, to the same accuracy, to symmetrizing

between c and a4 so as to remove single-reggeon exchange in the central channel.

9In a (2, 2) signature spacetime, with a transverse space of signature (1,−1), the W 0 term would be

nonzero, since, following the derivation, the two terms in the parenthesis would come with different denom-

inators 1/[(q2 ± i0]. The cancelation would then leave a δ-function term

W a(p1)âbε(P2) ∝ 4πiδ(q2)δabε·q.

The δ-function puts the exchanged gluon on-shell and the coefficient is just the Regge limit of the on-shell

three-point vertex. Hence the OPE coefficient is essentially controlled by the on-shell three-point vertex.
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Proceeding exactly as in section 4, the OPE (5.11) immediately gives the projected

the six-gluon amplitude:10

M6

∣∣odd;even;odd

NLL
= iα̃s

(
|s34|√
p2

3p
2
4

)αg(t23)(
|s45|√
p2

4p
2
5

)αg(t234)
T2
234
CA

(
|s56|√
p5

5p
2
6

)αg(t61)

×
∞∑
`=1

1

`!

(
α̃s

π
log

|s45|√
p2

4p
2
5

)`−1

d
(6)
` M

tree
6 . (5.12)

As in the four-point case, we have pulled a factor of the one-loop Regge trajectory weighed

by a Casimir in the t234 channel. The `-loop overlap function is defined as

d
(6)
` =

πp2`

c′ΓC3,4

∫
µ̄2εd2−2εk

(2π)2−2ε

(
ε4·p3

p2
3

− ε4·(p3 − k)

(p3 − k)2

) 〈
Ĥ`−1Wp3+p4(k)

〉(6) ×X6, (5.13)

where Ci,j =
εj ·pi
p2i

+
εj ·pj
p2j

and X6 = 1
2(T2 + T3 − T4)a(T6 + T1 − T5)a is the color factor

corresponding to two-gluon exchange. This is a simple modification of eq. (4.15) which

now accounts for the nontrivial k-dependence of the impact factors in this process. The

expectation value, to be computed after the effective Hamiltonian (4.17), is given by

〈Wp3+p4(k)〉(6) =
1

C6,5

−1

k2(p3+p4 − k)2

(
2
ε5·p6

p2
6

− ε5·(p6 + k)

(p6 + k)2
+
ε5·(p5 − k)

(p5 − k)2

)
. (5.14)

Notice the symmetrization under k 7→ (p3+p4−k), which accounts for the non-planar

“crossed” diagrams.

Had we not performed the odd signature projections, to find the amplitude to NLL we

would have had to include states with two reggeons in the t23 channel, for example. We

would also have needed the OPE coefficient for the (WWâ(P4) ∼ WW ) transition, which

at the leading order is just a disconnected sum over two three-point vertices (5.9).

The five-point amplitude with the odd-even signature projection is given by the anal-

ogous expression:

M5

∣∣odd;even

NLL
= iα̃s

(
|s34|√
p2

3p
2
4

)αg(t23)(
|s45|√
p2

4p
2
5

)αg(t234)
T2
t

CA

×
∞∑
`=1

1

`!

(
α̃s

π
log

|s45|√
p2

4p
2
5

)`−1

d
(5)
` M

tree
5 (5.15)

where d
(5)
` is defined just like d6

` in eq. (5.13) but with the color factor X5 = 1
2(T2 + T3 −

T4)a(T1 − T5)a instead, and the expectation value 〈Wp3+p4(k)〉(5) = −1/[k2(p3+p4 − k)2],

as in the four-point case.

10We define kinematic invariants as si···j ≡ ti···j ≡ −(pi + . . . + pj)
2. The s- and t-like invariants are

defined in the same way, but we reserve the t notation for those invariants which are spacelike (negative)

and are held fixed in the Regge limit.
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As a simple test, we can look at the infrared divergences at the lowest order in per-

turbation theory; the divergences come entirely from the region k → p1+p2, and in both

cases gives simply

d
(5)
1 =

1

2ε
×X5 + finite and d

(6)
1 =

1

2ε
×X6 + finite, (5.16)

in agreement with the results of ref. [90].

Computing the higher-loop integrals generated in this section would yield the NLL

Regge cut in the five- and six- point amplitude, which should be particularly interesting to

know at three loops given the connection with the dipole formula.

Finally, it is interesting to note that the six-point amplitude exhibits a nontrivial Regge

cut in all color channels, including when the central channel is projected onto the color

octet. This is because the nontrivial impact factors (5.11) prevent applying the bootstrap

relation (3.16), as was possible in the n = 4, 5 cases. This color-octet Regge cut for n ≥ 6

will play an important role in our analysis of the planar limit in the next section. It is

worth mentioning that this cut is pure imaginary and so cancels out in unitarity relations, in

such a way that it does not affect the proof of gluon reggeization next-to-leading logarithm

accuracy based on s-channel unitarity [98, 99].11

6 The remainder function in planar N = 4 SYM

Aiming for precision tests of the hypotheses formulated in the introduction, we now turn

to amplitudes in the planar limit of maximally supersymmetry Yang-Mills theory (N = 4

SYM). In our view, these hypotheses bear little relation with supersymmetry, so if they

are found to be satisfied in this theory we would interpret this as strong evidence that

they hold generally. Furthermore, the hypotheses imply nontrivial structure already in the

strict planar limit, which in our opinion deserves extensive testing.

Special interest in N = 4 SYM arises because of the many available higher-loop results,

and even at strong coupling through the AdS/CFT correspondence. For example, the four-

gluon amplitude is given, to all values of the coupling, by the expression [100, 101]

M4 =Mtree
4 × exp

(
−2a log

−s12

µ2
IR

log
−t23

µ2
IR

− 2b log
−s12

µ2
IR

− 2b log
−t23

µ2
IR

+ c4

)
. (6.1)

The coefficient a ≡ Γcusp = λ
16π2− 1

2ζ2

(
λ

16π2

)2
+. . . is the so-called cusp anomalous dimension

and is known exactly to all orders in the coupling [102]. The remaining constants are

scheme-dependent and less well understood; their precise values will not be important

in what follows. We use µ2
IR to represent a generic IR cutoff, the general form being

independent of the regulator, which could be for example dimensional regularization or the

Higgs branch regulator of ref. [103].12

The explanation behind this simplicity lies in the dual conformal symmetry of the

theory, which is a hidden symmetry present in the planar limit but invisible in its original

11I thank J. Bartels for pointing out this cancelation.
12In dimensional regularization we restrict attention to the logarithm of the amplitude expanded to O(ε0)

accuracy.
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Lagrangian. The symmetry states that the on-shell color-ordered n-point amplitude, when

expressed in terms of the region momenta Xi defined as

Pj = Xj −Xj−1,

is invariant under conformal transformations of the dual X-space. This is by now well estab-

lished and for a review we refer to [104]. The symmetry is broken by infrared divergences,

in a well controlled way, and after dividing by the so-called Bern-Dixon-Smirnov (BDS)

ansatz one finds an exactly invariant remainder function [101, 105]. For n ≥ 6 points is a

nontrivial function of 3(n− 5) dual conformal invariant cross-ratios, but for four- and five-

on-shell particles, symmetry precludes a nontrivial remainder and the BDS ansatz is exact.

In this section we consider the multi-Regge limit of the remainder function. As ex-

plained in section 3, the mixing pattern of Wilson line operators is strongly restricted in

the strict planar limit (which is the relevant limit for planar, single-trace scattering ampli-

tudes), and the total number of Wilson lines can depend on the process under consideration

but does not increase with loop order. For two fast on-shell particles, the OPE necessarily

takes the form, to all orders in λ,

âλ3(P3)â†λ2(P2) ∼ p+
3 δλ2,λ̄3Cgg→1(p3)U(p3), (6.2)

where U is a fundamental Wilson line. The coefficient Cgg→1(p3) is a priori unknown but

can only depend on the dimensionless ratio p2
3/µ

2
IR (and on the ’t Hooft coupling λ = g2Nc),

where p3 is the transverse momentum injected in the Wilson line. The subscript on C

indicates that two on-shell gluons get replaced by one Wilson line. The evolution of U is

multiplicative in the strict planar limit and controlled by the gluon Regge trajectory (see

eq. (3.15)), so regge pole behavior is essentially trivial to all orders in λ.

We stress that this is a general feature of the strict planar limit; the simplifications

are unrelated to supersymmetry.

A crucial fact is that more interesting operators can appear in multi-particle processes,

similarly to the way multipoles appeared in figure 6. Here it is important to distinguish

whether the additional particles are in the final or initial state. Consider, for example, a

gluon appearing in the final state. Shockwave diagrams contributing in this case are shown

in figure 11(a). In both cases, in the strict planar limit, only one Wilson line is available for

the other particles P5, . . . , Pn, P1 to couple to (these other particles are represented by the

Lorentz-contracted “shock” in the figure). We have only shown leading-order diagrams,

but the conclusion is general and applies to any order in λ in the limit of large Nc. For an

outgoing gluon the OPE thus takes the form

U(p3)âε4(P4) ∼ C1g→1(p3, p4)U(p3 + p4) (6.3)

for some coefficient function. On the other hand, if P4 is an initial state, the number of

Wilson lines that that are available for the shock to couple to, at any given time, is either

0 or 2, as is visible in figure 11(b). Therefore, for an incoming gluon the OPE takes the

general form

U(p3)aε4(P4) ∼ C1g→0(p3, p4) +

∫
d2kC1g→2(p3, p4; z3, z4)U(z3)U(z4)†. (6.4)
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+

(a) (b)

Figure 11. Shockwave diagrams for gluon radiation in the planar limit. Labels denote the ordering

along the color trace. In (a) the gluon P4 is emitted in the final state, while in (b) it is absorbed in

the initial state. All graphs are planar; the blue line represents the color sources which are available

for the remaining color-ordered partons P5, . . . , Pn, P1 to couple to, so a dipole can appear in (b)

but not (a).

The distinction between incoming and outgoing gluons was also noted in the tree-level

OPE coefficient 5.8 and the present patter can be reproduced by taking its planar limit.

In this context this effect was first emphasized in the pioneering work [94].

6.1 The four-gluon amplitude

To analyze the six-gluon amplitude quantitatively, we first extract a few building blocks

from the known four-point amplitude, given previously. Depending on whether particle 4

is incoming or outgoing (see our kinematics in (5.2)), the target 4, 1 is described either by

a fundamental or antifundamental Wilson line, so we get two cases:

M4 =Mtree
4 ×

[
Cgg→1(t23)

]2( |s12|
−t23

)αg(t23)

×

{
〈0|U(p3)Ū †(p4)|0〉, for s12 < 0,

〈0|U(p3)Ū(p4)|0〉, for s12 > 0.
(6.5)

We recall that for definiteness we always take particle 3 to be outgoing. As before, the bar

on Ū denotes that the Wilson line is going in the minus direction, while the dagger signifies

it is in the anti-fundamental representation.

By comparing with the exact amplitude (6.1) one sees that it indeed takes the predicted

form, which is admittedly rather simple in this case (a single Regge pole). This Regge

pole behavior had been checked to all orders in the coupling for the four- and five- gluon

amplitude in ref. [106], hence so far nothing is new here.

As in section 4, we can fix a scheme by normalizing

〈0|U(p)Ū †(p′)|0〉 ≡ (2π)2δ2(p− p′)−i
p2
. (6.6)
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2

3 4 5 6

1
(a)

2

3

4 5

6

1
(b)

Figure 12. Six-gluon amplitude in (a) non-crossed 2 → 4 kinematics (b) 4 → 2 “Mandelstam”

kinematics. Both amplitudes are planar and correspond to real, physical processes in Minkowski

space, but the projection of (b) onto the x± plane is non-planar.

Then eq. (6.1) gives the various quantities are

αg(t) = −2a log
−t
µ2

IR

− 2b,

Cgg→1(t) = exp

(
−a log2 −t

µ2
IR

− 2b log
−t
µ2

IR

+
1

2
c4

)
,

〈0|U(p)Ū(p′)|0〉 = 〈0|U(p)Ū †(p′)|0〉 × e−iπωg(p). (6.7)

The reader might be tempted to unify the cases in (6.5) by simply removing the absolute

value on |s12|, so as to automatically account for the phase in the last equation. We find

such a shortcut to be of limited use for n > 4, however, and we prefer to avoid it.

6.2 The six-gluon amplitude

We now move on directly to the six-gluon amplitude in the multi-Regge limit, concentrating

on those kinematic configurations which contain Regge cuts.

A Regge cut can only be present if two or more Wilson lines are present on both sides of

a factorization channel (t-channel cut), operators. Indeed, if one side has only one Wilson

line, using hermiticity we can choose to perform the evolution on that side and we get no cut.

For six particles, the Regge cut thus only arises if a “crossed” OPE coefficient (as in

figure 11(b)) appears on both sides of the t234 cut. This occurs when {σ3, σ4, σ5, σ6} =

±{1,−1,−1, 1} or ±{1,−1, 1,−1}. In this section we consider only the first case,

{1,−1,−1, 1}, corresponding to 4→ 2 scattering.

This kinematic region was called the “Mandelstam region” of 2 → 4 scattering in

ref. [94], in reference to the work of Mandelstam which established the possibility of Regge

cuts. It is important to stress however that this region is a perfectly physical kinematic

region for 4→ 2 scattering in Minkowski space. These kinematics are depicted in figure 12.

We will now derive the all-order form (6.12) for the multi-Regge limit of the six-gluon

amplitude in this kinematical region, imposing just the all-order form for the OPE (6.4) de-
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rived from general hypothesis in section 3, together with additional symmetry requirements

in N=4 SYM.

• High-energy factorization. The amplitude in the Regge limit depends only on the

three transverse momenta p3, p4, p5 (with p6 = −p3 − p4 − p5), the regularization

scale µ2
IR, and the three rapidity differences:

η34 = log
|s34|√
p2

3p
2
4

, η45 = log
|s45|√
p2

4p
2
5

, η56 = log
|s56|√
p2

5p
2
6

.

The dependence on η34 must be of the form eη34αg(t23) and similarly for η56. In the η45

channel the only exchanged state is a (color octet) dipole, so the amplitude factorizes

on a dipole-dipole correlator, which we can normalize to unity:

M4→2

Mtree
4→2

=

(
|s34|
−t23

)αg(t23)( |s56|
−t61

)αg(t61)

×
∑
µ

C
(
p3, p4, µ

2
IR;µ

)
C
(
p5, p6, µ

2
IR; µ̄

)( |s45|√
p2

4p
2
5

)ω(p3+p4;µ)

.

Here µ labels the eigenfunctions of the rapidity evolution in the octet dipole sector.

The summation may or may not involve an integral over a continuous label, and the

eigenvalues may or may not actually depend on (p3 + p4); at this stage we are being

totally agnostic about what the eigenfunctions actually are. We are simply including

the most general functional dependence allowed by factorization.

• Dual conformal symmetry. The remainder function, defined as the ratio of the ampli-

tude to the tree amplitude times the so-called BDS ansatz, must be dual conformal

invariant. This implies that it depends only on so-called cross-ratios, of which there

are three at six-points. The Regge limit of the six-point BDS ansatz has been studied

previously; it can be written in the form (see ref. [94], eq. 74)

MBDS
6 =

(
|s34|
−t23

)αg(t23)( |s56|
−t61

)αg(t61)

Γ̃(p3, p4)Γ̃(p5, p6)

(
|s45|√
p2

4p
2
5

)ωg(t234)

C ′

where C ′ =
(

p23p
2
6

(p4+p5)2µ2IR

)2πia
. The precise form of Γ̃ (called Γ(t2, t1, log κ12 − iπ) in

ref. [94]) will not be important here, since it depends only on p3 and p4 and so can

be absorbed into the unknown function C(p3, p4;µ).13

Combining all like factors, factorization thus implies, for R ≡M/(MBDSMtree
MHV),

(
(p4 + p5)2

)−2πia
R6 =

∑
µ

C̃(p3, p4;µ)C̃(p5, p6; µ̄)

(
|s45|√
p2

4p
2
5

)ω(p3+p4;µ)−ωg(t234)

.

13Due to shifts of the form κ12 → κ12 − iπ, the function Γ in ref. [94] depends, in addition to transverse

momenta, on a discrete choice of kinematic region. This additional dependence is inessential for the present

discussion since we treat the various regions independently.
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An essential feature is the factor on the left, which cannot be absorbed anywhere else

since it involves momenta on both sides of the t234-channel cut. Mathematically, it

arises from the proper analytic continuation of the dilogarithms in the BDS ansatz

as explained in ref. [94].

We now implement the constraint that R6 is dual conformal invariant. The first

observation is that this requires the exponent to depend only on µ: (ω(p3 + p4;µ)−
ωg(p3 + p4)) ≡ ω(µ), since (p3 + p4)2 by itself is not scale invariant (let alone dual

conformal invariant). Furthermore, we can convert the rapidity difference η45 into a

cross-ratio in a symmetrical way by completing it as14

|s45|√
p2

4p
2
5

−→ |s45|(p3 + p4)2√
p2

3p
2
4p

2
5p

2
6

. (6.8)

This is the unique completion which adds only factors that can be absorbed into

the C̃’s and such that the result does not carry any charge under the dual conformal

generator ν defined below. Similarly, we can complete the factor on the left-hand-side

in a unique way, consistent with the left-right symmetry of the problem. Hence

R6

(
(p4+p5)2(p3+p4)2√

p2
3p

2
4p

2
5p

2
6

)−2πia

=
∑
µ

˜̃C(p3, p4;µ) ˜̃C(p5, p6; µ̄)

(
|s45|(p3+p4)2√

p2
3p

2
4p

2
5p

2
6

)ω(µ)

.

There remains to determine the form of the impact factors. The key is that it they

entirely determined by the dual conformal symmetry. To see this, it suffices to impose

invariance under those transformations which preserve x2 and x4 (hence preserve the

total momentum (p3 + p4)), by diagonalizing their action on the ˜̃C factors.

This would be trivial to do if x2 and x4 were at the origin and infinity, respectively.

Then the relevant transformations would be dilatations and transverse-space rota-

tions around the origin, and the corresponding eigenfunctions would be x
m
2

+iν

3 x̄
−m

2
+iν

3 ,

where we recall that the dual coordinate x3−x2 = p3. The quantum number m is an

integer and ν is naturally real. (We use boldface x and x̄ to denote the holomorphic

and anti-holomorphic components of two-vectors, with x2 ≡ xx̄.) Since we can map

any configuration to this case using a dual conformal transformation, in the general

case we get instead x3/(x4 − x3), so that:

˜̃C(p3, p4; ν,m) = C(ν,m)

(
p3

p4

)m
2

+iν ( p̄3

p̄4

)−m
2

+iν

. (6.9)

Multiplying the impact factors we have thus obtained:

Reiπδ= i
∞∑

m=−∞

( w
w∗

)m
2

∫ ∞
−∞

dν Φ̃(ν,m)|w|2iν
(

(−s45 − i0)(p3 + p4)2√
p2

3p
2
4p

2
5p

2
6

)ω(ν,m)

(6.10)

14The right-hand side can be easily verified to be a cross-ratio, by writing Pi = Xi−Xi−1. It becomes
|X2

35|
√
x224x

2
46√

x223x
2
34x

2
45x

2
56

, and it can be seen that each subscript appears the same number of times in the numerator

and denominator. Note the transverse invariants like x234 have the same weightas their indices should

suggest, as follows from the identity, for example, x234 = p24 = |s34s45|
|s345|

=
|X2

24X
2
35|

X2
25|

.
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where

δ ≡ a log
|w|2

|1 + w|4
and

w ≡ −p4p6

p3p5
=

(x3 − x4)(x5 − x6)

(x4 − x5)(x3 − x6)
.

The cross-ratio w and the phase δ are as defined in refs. [107, 108].15 We have

chosen to exponentiate an additional phase associated with the energy by writing

|s45| → (−s45 − i0), which otherwise could clearly be absorbed by a redefinition of

the impact factor Φ̃(ν,m). As argued in ref. [107], in this way the impact factor

becomes real.

• Vanishing in collinear limits. We are not done yet. A further property of the remain-

der function is that it has trivial collinear limits, R→ 1 as w goes to zero or infinity.

The rate of approach is controlled by the collinear Operator Product Expansion of

ref. [109], and at weak coupling we must have R→ 1 +O(|w|β) where β controls the

gap in the operator spectrum, with β ≈ 1
2 +O(a) at weak coupling.

This result is robust, because, as demonstrated in ref. [110], the continuation from

the Euclidean regime, where the OPE is derived, to the “crossed” kinematic region

for 4→ 2 scattering which we are considering, can be done without leaving the radius

of convergence of the small w expansion. (Even though the original momentum-space

integral representation for the contribution of a given power of w may not converge.)

Comparing this behavior with eq. (6.10), we see that the right-hand side must behave

like

r.h.s. of eq. (6.10) −→ |w|2πia
(

1 +O
(
|w|β

))
(w → 0). (6.11)

This, together with the similar behavior as w →∞, determines the analytic structure

of Φ(ν,m) and ω(ν,m) in the strip −β < Im ν < β: Φ must have exactly two poles,

located at ν = ±πa and m = 0, whose residues give exactly ±1, and no other

singularities.

Hence, pulling out a conventional factor such that Φ(ν,m)→ 1+O(a) at leading order

at weak coupling (see ref. [107]), we obtain our final result:

Reiπδ = ia

∞∑
m=−∞

(−1)m
( w
w∗

)m
2

∫ +∞

−∞

dν Φ(ν,m) |w|2iν

ν2 + m2

4 − π2a2 + i0

(
−1
√
u2u3

)ω(ν,m)

. (6.12)

We wrote −1/
√
u2u3 for the factor in the parenthesis of eq. (6.10), following the notation

in ref. [107].

Equation (6.12) is the main result of this subsection. It arises from implementing the

constraints from factorization of the amplitude in the Regge limit, to all orders in λ in the

planar limit (assuming the postulates stated the Introduction), dual conformal symmetry

and collinear limits. It is valid in the so-called Mandelstam region, defined previously. For

other kinematics where only a single Wilson lines is exchanged, e.g. those which exhibit

Regge pole behavior, the remainder function vanishes, see ref. [94].

15Although our definition of the coupling constant a differs, see below.
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We must stress that eq. (6.12) is not a theorem at present. Its validity, starting from

next-to-next-to-leading logarithmic order (NNLL), relies on simple but unproven hypothe-

ses, stated precisely in the introduction. We would thus interpret higher-loop evidence

for/against eq. (6.12) as evidence for/against these hypotheses.

The formula gives that at leading log, one reggeon is exchanged; at next-to-leading

log, two reggeons are exchanged; and at all higher orders, only two again. In light of the

discussion in section 2 and of the author’s understanding of Regge theory, this sequence:

1, 2, 2, 2, . . ., is rather surprising. It is a simple consequence of the fact that, in the strict

planar limit, instead of thinking about exchanged particles (whose number can be arbitrary)

it is more efficient to keep track of the Wilson lines which source them. In this case there

are only two, so the exchanged state is labelled by only two momenta.

Exact bootstrap equation. According to the derivation of eq. (6.12), at weak coupling

the functions Φ(ν,m) and ω(ν,m) must be devoid of singularities in a strip of width 1
2 +O(a)

around the real ν axis, and must obey the bootstrap conditions

ω(±πa, 0) = 0, and Φ(±πa, 0) = 1. (6.13)

We recall that a = λ
16π2 − 1

2ζ(2)
(

λ
16π2

)2
+ . . . is proportional to the cusp anomalous dimen-

sion. These relations are obtained from setting the residue of the pole at ν = ±a to unity,

ensuring the correct collinear behavior in eq. (6.11).

We stress that, in this limit, even though (−1/
√
u2u3) is large this factor does not play

an important role in eq. (6.11) because ω vanishes on the pole. The leading term in the

collinear limit comes not from a saddle point but from this pole. This is to be contrasted

with the situation for the first subleading term in the collinear expansion, of order w, where

the singularities of ω(m, ν) around ν = ± i
2 cause the energy factor to play an important

role [110].

It is interesting to expand the bootstrap relation to the first few orders in the coupling.

At the first order we have, with ψ(x) = (log Γ(x))′ (see eq. (6.26) below):

ω(ν,m) = a

(
|m|

ν2+m2

4

− 2ψ

(
1 + iν +

|m|
2

)
− 2ψ

(
1−iν+

|m|
2

)
+4ψ(1)

)
+O(a2). (6.14)

Note that this is smooth around the origin ν,m = 0. Since the bootstrap relation involves

a perturbatively small argument, at this order it amounts to ω(1)(0, 0) = 0, which is indeed

satisfied. Evaluating at aπ instead of the origin, we get that ω(1)(±aπ, 0) = −4π2ζ3a
3 +

O(a5). This must be compensated by a nonvanishing value at three loops at the origin:

ω(0, 0) = 4a3π2ζ3 +O
(
a4
)
. (6.15)

The vanishing two-loop result is in agreement with ref. [107], while the nonvanishing three-

loop prediction is in nontrivial agreement with the result (7.28) of ref. [108].

This derivation of the bootstrap relation (6.13) is valid at any coupling since the

predicted poles lie on the real ν-axis, while all other possible singularities must have a

strictly nonvanishing imaginary parts. Given the importance of this result, below we give

an alternative derivation based on the five-gluon amplitude.
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Connection with the work by Lipatov and collaborators. The Regge cut at 6

points has been studied extensively, starting from refs. [94, 111]. In refs. [107, 112], a

prediction for the Regge limit of the six-gluon amplitude using the BFKL approach was

obtained, which reads, in our conventions,

R6e
iπδ = cos(πωab)+ia

∞∑
m=−∞

(−1)m
( w
w∗

)m
2 P

∫ +∞

−∞

dν Φreg(ν,m) |w|2iν

ν2 + m2

4

(
−1
√
u2u3

)ω(ν,m)

.

(6.16)

In this equation ωab = a log |w|2 and the integral must be interpreted as principal value. As

far as we understand, this formula was predicted on the basis of a next-to-leading logarithm

computation.

This formula is very similar to the one we obtained, and indeed it provided a vital source

of inspiration for us. The formula of refs. [107, 112], differs, however, in one important

respect: it is expressed as the sum of a Regge pole contribution (the cosine term), attributed

to exchange of one reggeized gluon, plus a Regge cut coming from two reggeized gluons;

this manifests the sequence: 1, 2, 2, 2, . . ..

On the other hand, our formula (6.12) only has the Regge cut term. How can these

two descriptions be consistent with each other?

The resolution comes simply from the two poles near the real axis in eq. (6.12), which

we have treated differently. Indeed we have the simple identity:

ia

∫ +∞

−∞

dν|w|2iνF (ν)

ν2 − π2a2 + i0
= cosπωab + iaP

∫ +∞

−∞

dν|w|2iνF (ν)

ν2 − π2a2
. (6.17)

This is precisely the form (6.16), provided that Φreg(ν,m)

ν2+m2

4

= Φ(ν,m)

ν2+m2

4
−π2a2

. (Contrary to what

the notation may suggests, our Φ is regular near the origin, while Φreg is not.)

The interpretation of this result is simple: in the eikonal framework, at any value of

the coupling in the strict planar limit, the six-point amplitude in the Mandelstam region

is described by dipole-dipole scattering. The dipoles are labelled by both a continuous and

a discrete quantum number, and in the weak coupling limit a narrow resonance develops

near the origin for m = 0. This resonance is the reggeized gluon. At finite coupling it

becomes effectively broader (although it remains infinitesimally close to the real axis), and

presumably it becomes subdominant in the strong coupling regime λ� 1.

We find satisfying that the eikonal and BFKL approaches agree albeit in a nontrivial

way. We hope however that the physical assumptions which underly our derivation, starting

from NNLL order, are clearer.

The strong coupling limit of the remainder function was studied in refs. [113, 114], by

analytically continuing an integral equation valid for general kinematics previously obtained

by other authors. Their result for the remainder function decreases in the high-energy limit

at fixed w, which is in tension with our formula (6.12); the latter predicts that the remainder

function can either grow, if the ν integral is governed by a saddle point with a positive

intercept ω, or goes to a constant, if the ν integral is governed by the poles near the real

axis. It will be important to understand whether this discrepancy is due to one of the

caveats mentioned in refs. [113, 114], or if it is due to eq. (6.12) being incorrect.16

16Note added. This tension has now been resolved [115].
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6.3 Direct derivation of the exact bootstrap relation

As a further self-consistency check, we present a direct derivation of the exact bootstrap

equation eq. (6.13), based on the five-gluon amplitude.

The idea is to consider a “crossed” kinematic regions where {σ3, σ4, σ5} = {1,−1,±1},
in the notation of section 5, so particle 3 is in the final state while particle 4 is in the

initial state.

The evolution in the t234 channel can then be described in two equivalent ways: as the

evolution of the single-line operator describing the target P1, P5, or as the evolution of the

open dipole describing the projectile P2, P3, P4. The agreement tells us something about a

specific dipole state. More formally, the amplitude takes on two different forms depending

on σ5:

M5 ∝

{
〈(UU †)(ν,m), U〉, σ5 > 0,

〈(UU †)(ν,m), U †〉, σ5 < 0.
(6.18)

The hermititicy condition (3.17) then gives the desired relation: in the first case, for exam-

ple, 〈H (UU †)(ν,m), U〉 = 〈(UU †)(ν,m), H U〉. So we must determine which wavefunction

the dipole is projected onto by the inner product.

The quantum states of the dipole are most naturally labelled using quantum numbers

ν and m introduced previously, associated with the dual conformal transformations which

preserve the positions of x2 and x4. Since these quantum numbers are certainly vanishing

for the single-line operator, one might expect to inner product to project the dipole into

its (ν,m) = (0, 0) state. However, in appendix B, it is shown, using anomalous Ward

identities for the dual conformal symmetry, that the conservation law receives an anomalous

contribution:

νL + νR + πa
(
θ(−s12)− θ(−s45)

)
= 0. (6.19)

Here θ is just the step function, which distinguishes space-like and time-like channels.

The anomalous term is nonvanishing when a Wilson line ending at future infinity

connects to a Wilson line ending at past infinity. It originates from the breaking of dual

conformal symmetry by infrared logarithms, which under these circumstances acquire non-

local imaginary parts. The anomalous conservation law thus implies that the dipole is

projected on ν = ±πa,

〈(UU †)(ν,m), U〉 ∝ δm,0δ(ν − aπ) and 〈(UU †)(ν, σ), U †〉 ∝ δm,0δ(ν + aπ), (6.20)

from which the hermiticity relation implies that ω(±πa, 0) = 0.

6.4 Higher-point amplitudes and zig-zag operators

The Regge cut contribution of the preceding subsection can be generalized to higher points.

An interesting possibility is to have more particles which alternate between the initial and

final state. Every time there is such a crossing, one additional Wilson line can be added to

the existing ones.

This is illustrated by the “doubly” crossed kinematic configuration in figure 13, which

gives rise to a product of three fundamental Wilson lines is shown Starting from the 8-gluon

– 51 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
3

Figure 13. Configuration of alternating incoming/outgoing particles which gives rise to a three-

Wilson line operator in the planar limit. This configuration could appear, for example, on both

sides of a factorization channel starting from the 8-gluon amplitude.

amplitude, this could appear on both sides of a factorization channel, giving rise to a Regge

cut controlled by states labelled by three momenta. At the lowest order these states are

controlled by the BJKP equation [59–61].

We stress that these “zig-zag” configurations appear in an amplitude which is perfectly

planar and which has real external momenta. The non-planar appearance of figure 13 is

simply a consequence of projecting trajectories onto the x± plane.

This motivates the introduction, for general m, of the “zig-zag” operators:

O(z1, z2, . . . , zm) ≡ U(z1)U †(z2) · · ·U(zm)(†). (6.21)

The Wilson lines alternate between fundamental and anti-fundamental, and the last opera-

tor is U or U † depending upon whether m is odd or even. Contrary to the quadrupole (3.9),

however, here there is no trace because we are considered a scattering amplitude of

charged partons.

Since all sites are free to move but the total momentum in the operator is conserved,

we will say that the chain (6.21) is chain has Neumann boundary conditions. Momentarily

we will meet Dirichlet open chains, bounded by non-dynamical sites ẑ0 and ẑm, denoted

with hats:

O(ẑ0, z1, . . . , zm−1, ẑm) .

The position of the non-dynamical sites cannot be changed under the evolution. Physically,

these fixed Wilson lines will arise naturally as semi-infinite Wilson lines which terminate on

hard, fixed-angle scattering events, which makes them unmovable according to the general

discussion in introduction.

As shown in section 3.2, the evolution of zig-zag Wilson lines in the strict planar limit

has a triangular structure, such that the number of zig-zags may only decrease. (This is

opposite to the triangular structure governing one- and two- loop evolution in the W basis

in the general non-planar case.) Because of the triangular structure, in order to find the

eigenvalues it suffices to keep the diagonal, length-preserving terms. At the one-loop level,

a computation starting from the Balitsky-JIMWLK equation, detailed in appendix C, gives
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the result:

d

dη
O(ẑ0, z1, . . . , zm, ẑm+1)=a

m∑
i=1

∫
d2z0

π

[(
z2
i−1 i

z2
0 i−1z

2
0i

+
z2
i i+1

z2
0iz

2
0 i+1

−
z2
i−1 i+1

z2
0 i−1z

2
0 i+1

)
O(. . . , z0, . . .)

−
(
z0 i−1·zi i−1

z2
0 i−1z

2
0i

+
zi i+1·z0 i+1

z2
0iz

2
0 i+1

)
O(. . . , zi, . . .)

]
. (6.22)

In the first line z0 is inserted in the ith position, and the other labels are left unchanged.

This equation applies uniformly for the Dirichlet and Neumann chains, provided that one

views the latter as a Dirichlet chain with two fixed sites at infinity:

O(z1, . . . , zn) ≡ O(∞̂, z1, . . . , zn, ∞̂). (6.23)

As discussed in section 3, from general physical considerations we expect a linear

equation of the form (6.22) to hold in the strict planar at all values of the coupling, albeit

with a more complicated kernel. More precisely, at `-loop order, the kernel could have

range ` so that that strings of ` neighboring points can move together in an entangled way,

depending on their position together with that of their two nearest external neighbors.

(But if 1/Nc corrections are included, the story will change and mixing with longer chains

will occur.)

The Hamiltonian (6.22) will now be identified with that of an integrable spin chain.

6.5 Wilson loop duality and the integrable SL(2,C) spin chain

Scattering amplitudes in planar N = 4 are known to admit an equivalent, dual, formula-

tion [116–119] as the expectation value of null polygonal Wilson loops. The cusps of this

Wilson loop are located at the dual coordinates Xi introduced at the beginning of this

section. The duality was generalized to arbitrary helicities in refs. [120–123], which natu-

rally led to its proof to all-order in perturbation theory (the amplitude and Wilson loops

being both expressed as integrals over the same, recursively constructed, integrands). In

this section we consider only maximal-helicity-violating (MHV) amplitudes, dual to purely

gluonic Wilson lines.

So far all our discussion has been on the amplitude side, where the Neumann

chain (6.21) has appeared in the context of higher-point amplitudes. We will now see

that the Dirichlet chains appear in the Wilson side of the duality. The wavefunctions will

be related by a Fourier transform, implying that the the evolution (6.22) is self-dual (goes

to itself) under Fourier transform.

We begin by drawing the contour of the null polygon Wilson loop dual to amplitudes

in the Regge limit. Because many momenta go to infinity, the contour develops large,

nearly null “spikes” (see ref. [124] for a nice discussion). The projection of a null segment

onto the x± plane is always slightly time-like, and furthermore the two longest sides are

those corresponding to P3 and P6, which is simple to understand since the kinematics we

are considering (in the Mandelstam region) really represent 4 → 2 scattering. An accurate

projection of the hexagon contour corresponding to six-gluon amplitude in the Mandelstam

region, which incorporates these features, is shown in figure 14(a).
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Figure 14. (a) An accurate projection onto the x± plane of the hexagon Wilson loop contour in

the crossed kinematics. In the Multi-Regge limit the “spikes” are parametrically large. (b) Zoom

onto the central region. The four semi-infinite lines ending at x1 and x4 provide boundary sites for

two length-three zig-zag chains; the cusps x3 and x5 go to infinity but their transverse positions

remain and provide the dynamical variables.

We note that although the projected geometry exhibits several self-crossings, all seg-

ments are separated in the transverse directions and do not actually intersect, except at

the cusps of the polygon.

The crucial step, now, is to simply zoom in onto the center of the figure.

From this viewpoint, as represented in figure 14(b), the “spikes” become null, infinite

Wilson lines. The finite length of the spikes then plays the role of rapidity cutoffs, the

dependence on which can be accounted for using the rapidity renormalization group.

To understand the dependence on the length of the X2 spike, we go to a Lorentz frame

where X2 is the only large left-moving spike. The rest of the polygon then appears as a

Lorentz-contracted shockwave, and by the rapidity factorization we need only concentrate

on the two approximately semi-infinite Wilson lines that are connected to X2. Because

these lines are only semi-infinite and not infinite (they end at the “hard scattering points”

X1 and X3 where their directions change abruptly), we conclude that their transverse

position is unaffected by the rapidity evolution and that the dependence on the length of

X2 is simply a multiplicative renormalization.

We now turn to the dependence on simultaneous boost of the X2 and X3 spikes, so

we go to the frame shown in the figure, where there are three fast-moving Wilson lines in

each direction. As in the preceding paragraph, we have two fixed, “hard scattering” points

which are now at X1 and X4, whose transverse positions cannot be affected by rapidity

evolution. However, we now also have an infinite Wilson line whose transverse position,

x3, can be acted on. Hence we conclude that the projectile is described by the length-three

Dirichlet chain, so that the Wilson loop factorizes as:

〈W6〉 ∝ 〈O(x̂2, x3, x̂4),O(x̂4, x5, x̂2)〉. (6.24)

(We recall that in our kinematics, the transverse components obey x2 = x1 = x6.)
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The one-loop evolution equation (6.22) can be written, in this case,

d

dη
Õ(x̂2, x3, x̂4) = a

∫
d2x0

π

[(
x2

23

x2
02x

2
03

+
x2

34

x2
03x

2
04

− x2
24

x2
02x

2
04

)
Õ(x̂2, x0, x̂4)

−
(
x02·x32

x2
02x

2
03

+
x34·x04

x2
03x

2
04

)
Õ(x̂2, x3, x̂4)

]
.

The second line is ultraviolet divergent near x0 → x2, x4, reflecting the infrared divergences

on the scattering amplitude side of the duality. This can be removed by subtracting the

one-loop gluon Regge trajectory, giving[
d

dη
− αg(x2

24)

]
Õ(x̂2, x3, x̂4) = a

∫
d2x0

π

(
x2

23

x2
02x

2
03

+
x2

34

x2
03x

2
04

− x2
24

x2
02x

2
04

)
×
(
Õ(x̂2, x0, x̂4)− Õ(x̂2, x3, x̂4)

)
.

This can be diagonalized explicitly by the wavefunctions described above eq. (6.10). More

precisely, the left-hand side is that was called the eigenvalue ω(ν,m) in eq. (6.10), and it

does not depend on x2 nor x4. Going to a frame where x2 = 0, x4 = ∞, the equation

reduces to

ω(ν,m)ψν,m(x3) = a

∫
d2x0

π

(
x2

3

x2
0x

2
03

+
1

x2
03

− 1

x2
0

)
(ψν,m(x0)− ψν,m(x3)) . (6.25)

Plugging in the eigenfunction x
m
2

+iν

3 x̄
−m

2
+iν

3 we thus get the eigenvalue

ω(ν,m) = a

∫
d2x

π

(
1

|x|2|1− x|2
+

1

|1− x|2
− 1

|x|2

)(
x
m
2

+iν x̄−
m
2

+iν − 1
)
. (6.26)

Performing the integral one reproduces the eigenvalue (6.14), which was obtained previously

in this context [111] on the amplitude side of the duality, by considering a pair of Reggeized

gluons corresponding to a Neumann chain with two sites. Here, working instead on the

Wilson loop side of the duality, we have reproduced the same eigenvalue using a Dirichlet

chain with one dynamical site. This confirms the anticipated duality between Neumann

and Dirichlet chains.

Since the duality between Wilson loops and amplitudes holds for any number of points,

this leads us to the following:

Conjecture. A linear map L: Õ(x̂0, x1, . . . , xm−1, x̂m) = LO(z1, . . . , zm) should exist, at

any value of the coupling λ, such that the Õ operators evolve with the same Hamiltonian

and have the same inner product as the O operators, but with the Dirichlet and Neumann

boundary conditions exchanged.

Morally, the linear map L is a Fourier transform which interchanges the chain with

momenta pi conjugate to zi, and the chain with transverse coordinates xi where xi−xi−1 =

pi. However, as we will see shortly, this Fourier transform is dressed by certain “OPE

coefficients” which must be expected to receive nontrivial quantum corrections. At strong

coupling, this map should be a special case of the T-duality of refs. [118, 119].
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Note that since the two chains enjoy distinct, non-commuting conformal symmetries,

the existence of an infinity of conserved charges follows directly from the conjecture. Test-

ing this conjecture would be an excellent way to test the selection rules postulated in

introduction, since the conjecture relies on the factorization of amplitudes and Wilson

polygons in the Regge limit, on the expected null infinite Wilson lines.

One-loop test. As a concrete illustration and as a simple cross-check on the general

argument, we have verified the above conjecture explicitly at the one-loop order.

A first observation is that there is no need to guess the “linear map” L; in principle it

is given from the OPE coefficients Cmg→(m+1) which appears when expressing the Regge

limit of the scattering amplitude in terms of Wilson lines. At the leading order we have

already computed these coefficients, they are given in eq. (5.8). By iterating that equation

and considering the MHV amplitude, we thus construct the following tentative map:

Õ(x̂0, x1, . . . , xm−1, x̂m) ≡
∫
d2z1 · · · d2zmO(z1, . . . , zm)

x01x12 · · ·xm−1m

z12z23 · · · zm−1m
eiz1·p1+...+izm·pm ,

(6.27)

where pi = xi − xi−1 as before. The Parke-Taylor-like denominator involving z follows

directly from eq. (5.8), while we expect the numerator to appear from a careful account of

the MHV prefactor which has to be stripped in the duality. The correctness of this guess

is confirmed by the following computation.

At one-loop order, the evolution equation for the chain O(z1, . . . , zm) was given already

in eq. (6.22). By using the inverse Fourier transform this can be used to obtain the evolution

of Õ as defined by eq. (6.27). This calculation is reproduced in appendix C. Remarkably,

the result is that the Hamiltonian (6.22) is precisely recovered, but now acting on Õ! In

other words, under the Fourier transform (6.27), the Hamiltonian goes to itself!

This dual conformal symmetry of the one-loop evolution Hamiltonian, e.g. self-duality

under Fourier transform, is equivalent to the integrability of Lipatov’s spin chain [71, 125,

126]. Integrability was used in a beautiful series of papers [127–129] (see also [130, 131]) to

describe the spectrum of a (closed) chains of reggeized gluons. The mathematical details

are slightly different here, because we use products of fundamental Wilson lines as our

degrees of freedom instead of the reggeized gluons that they source. Since the present

operator definition works uniformly at all loop orders we expect it to be better suited for

the analysis at finite coupling and hopefully also strong coupling.

7 Summary and outlook

In this paper we have considered the Regge limit of scattering amplitudes in gauge theories.

We have avoided what in our opinion are some the most difficult problems, involving

strong fields and saturation effects. Effectively we have focused on weak-field regimes,

where nonlinear effects can be tackled perturbatively and concrete progress can be made.

Even in this regime, the theory is rich and nontrivial, and, as soon as one gets to a

sufficient order in perturbation theory, relies on some unproven hypotheses. We see value

in proving or disproving these hypotheses, independently of making progress in the fully

non-linear regime.
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We have based our discussion on a simple physical picture, which is a relativistic gauge

theory extension of the eikonal approximation: a fast projectile is pictured as a cloud of

partons, the trajectory of each of which must be dressed by a Wilson line. The number

and transverse positions of these Wilson lines is not fixed, since the projectile can contain

an arbitrary number of quantum fluctuations. The number effectively depends on rapidity,

and the corresponding evolution equation, the Balitsky-JIMWLK equation, is given at

one-loop in eq. (2.6).

A key ingredient in this picture is the factorization of degrees of freedom at differ-

ent rapidity, which ensures that a fast-moving projectile can be approximated (from the

viewpoint of slower modes) by operators supported on the x− = 0 null plane. We expect

this principle to be a robust feature of quantum field theory, although, to our knowledge,

existing proofs are presently limited to leading and next-to-leading (logarithmic) orders in

perturbation theory in gauge theories. The second key ingredient is that in gauge theories,

the operators with the largest boost eigenvalues, hence the dominant ones in the limit, are

products of null Wilson lines. At the quantum level these operators mix under rapidity

evolution, as characterized by the Balitsky-JIMWLK equation.

We have reviewed how the phenomenon of gluon reggeization essentially comes out

automatically from these ingredients. It is revealed by expanding the Wilson lines close

to the identity. In particular, the logarithm W of a Wilson line was used in eq. (2.8a) as

a gauge-invariant interpolating operator for a reggeized gluon. In this basis, the one-loop

Balitsky-JIMWLK equation has a triangular form so that it can diagonalized in each sector

independently; the reggeized gluon is the eigenstate in the simplest sector. States sourced

by more powers of the W fields correspond to states with more reggeized gluons, and their

evolution (2.15) matches directly with that discussed in the BFKL literature.

Starting from the next-to-next-leading logarithmic order (NNLL for short) and beyond

the planar limit, mixing between states containing different numbers of reggeons becomes

unavoidable (see figure 3). In the reggeized gluon basis the evolution is thus really an

infinite nonlinear hierarchy of equations. In particular, starting from NNLL accuracy and

1/Nc order, there exists no scattering amplitude which would be controlled exclusively by

exchange of a single reggeized gluon. The “reggeized gluon” still exists in a theoretical

sense to all orders, as a building block allowing to compute any amplitude to any desired

accuracy, but non-planar effects beginning at NNLL cause its direct observability is lost.

As far as we are aware these general conclusions are in agreement with established results

and lore from the BFKL approach [21, 132].

Besides providing a simple and intuitive starting point, the eikonal framework is ad-

vantageous in many respects. For example, by using null infinite Wilson lines as the basic

degrees of freedom, combined with Balitsky’s shockwave formalism (as done for example

in section 5.1), infinite series of terms in the BFKL approach are automatically generated

at once. In the strict planar limit, the Wilson lines become particularly efficient variables:

as shown in section 3, the number of Wilson lines needed to describe a process does not

grow with loop order, so effectively a single Wilson line resums an arbitrary number of

reggeized gluons. We find this feature to be far from obvious in the BFKL approach. To

illustrate the power of this approach, we have given in subsection 3.3 a concise proof that

the Odderon intercept is equal to 1 to all orders in the planar limit.
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The formalism yields a clear procedure for how to calculate a perturbative scattering

amplitudes to any desired logarithmic accuracy. In general, at leading-logaithmic order one

finds only a Regge pole, from exchanging one reggeized gluon. At the next order (NLL),

one finds a Regge cut from two reggeized gluons. This cut was discussed in detail in section

section 4 for four-parton amplitudes, and in section 5 for higher-point amplitudes.

The general structure of amplitudes at NNLL and higher orders is also clear; assum-

ing the simple postulates in the introduction, it can be derived simply by truncating the

operator product expansion to the desired order in the coupling. On the other, the simple

postulates have not been established at this order, so it is important to test them. This

is interesting NNLL calculations are certainly within the reach of present-day scattering

amplitude technology in planar N = 4 super Yang-Mills, see for example [108, 133, 134].

Motivated by this state of affairs, we have formulated in section 6 a number of predictions

about the structure of higher order corrections, based on physically motivated hypotheses

stated precisely in Introduction, which should be testable in the near future.

One of these predictions is the exact form of the lanar six-gluon amplitude for certain

Multi-Regge kinematics, eq. (6.12), together with an exact constraint on the value of the

boost eigenvalue and impact factor at a certain value of the argument, in eq. (6.13). Another

prediction is that a precise set of operators, defined as alternating “zig-zag” products of null

infinite Wilson lines, should define an integrable SL(2,C) spin chain, generalizing Lipatov’s

spin chain to all values of the coupling. This was formulated as a conjecture at the end of

subsection (6.5). These predictions follow unambiguously from the postulated hypotheses,

but have not been derived rigorously otherwise. We would thus interpret higher-loop

evidence for/against these predictions as evidence for/against these hypotheses.

We see many remaining open problems and directions for future work.

• Reggeization of fermions and other exchanged particles, not discussed in the present

paper, should also be simple to understand in the eikonal framework. Consider for

example a process in which a fast quark changes its identity to a gluon, as in quark-

antiquark annihilation. This process is naturally represented by the operator∫ ∞
−∞

dx+Uf(−∞;x+)ψ(x+)Uad(x+;∞), (7.1)

which generalizes in a simple way the null Wilson line appearing for identity-

preserving processes. The Wilson lines trailing to infinity track the color charges

of fast-moving quark and gluon in the initial and final states, respectively.

This operator has boost eigenvalue −1
2 or −3

2 , depending on the spinor index on the

quark field (the dx+ integration counts as -1, and the fermion counts as ±1
2 depending

on the spinor index). The boost eigenvalue is evidently related to the spin of the

exchanged particle (minus one), so as expected quark-exchange is power-suppressed

compared to gluon exchange.

By deriving the evolution equation for this operator and linearizing it, similarly to

what was done in section 2.2, it is reasonable to expect quark reggeization will follow
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naturally. It would be interesting to use this method to reproduce, for example, old

results such as [135] which were obtained using different techniques.

In supersymmetric theories, a natural expectation is that such decorated Wilson lines

can be organized into supermultiplets, in such a way that the evolution equation

becomes manifestly supersymmetric.

• One can consider more generally corrections to the Regge limit that are suppressed

by powers of the energy. It is natural to expect these to be governed by Wilson lines

containing more and more decorations, e.g. integrated operator insertions. However,

the detailed selection rules in this case, which will generalize those postulated to the

leading power in the introduction, remain to be worked out. Also, new subtleties

associated with possible logarithmic ultraviolet divergences of the evolution kernel

must be dealt with; for example, in the case of two-quark operators [136, 137], this

is known to lead to double-logarithmic effects which effectively make the intercept

of order
√
αs. We suspect that a thorough understanding of these issues will be an

important step toward proving high-energy factorization at higher loops.

• A satisfying feature of the eikonal framework is that it allows to derive the phe-

nomenon of gluon reggeization without invoking unitarity cuts or the analytic prop-

erties of amplitudes, on which the BFKL approach heavily relies. This being said,

unitarity is a powerful tool and it would be interesting to work out its implications,

perhaps making closer contact with the arguments of ref. [99].

As an example of expected implications, we note that the kernel of the one-loop

evolution equation (2.6) clearly “looks” like the square of the gluon emission ver-

tex (5.8). Certain terms in the two-loop Hamiltonian also clearly involve the square

of a two-gluon emission amplitude (see for example eq. (43) of ref. [39]). From the

perspective of the eikonal framework, this requires an explanation, which plausibly

could come from unitarity.

• We have shown in section 4 that starting from four-loops, BFKL dynamics is incom-

patible with a simple “sum over dipoles” formula for the soft anomalous dimension

governing infrared divergences, which was conjectured previously in the literature.

The absence of a problem at three-loops in the Regge limit is rather surprising, and

may be an artifact of considering only the 4-point case like we did. It would be

interesting to consider the 5-point amplitude, as set up in section 5, and see whether

it implies any nontrivial correction at three loops.

• We briefly comment on the Froissart bound and on unitarity limits on the cross-

sections. Because Wilson line operators are unitary matrices, the expectation value

of gauge-invariant products is necessarily bounded. This simple statement by itself

implies that the exact (“all-loop-order”) evolution operator −d/dη must be positive

semi-definite; in particular, the positive eigenvalues found in the linearized approx-

imation must be artifacts of this approximation. It is an outstanding problem to
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organize the perturbative series for the evolution operator so as to make this prop-

erty manifest, although recent progress in this direction was made in ref. [68]. (This

positivity constraint is weaker than the Froissart bound, which states that total cross-

sections can grow at most as fast as log2 s, but it can be stated even in the absence

of a mass gap and is already very difficult to implement.)

• We have not discussed the case of gravity in this paper, but it would be interesting

to see if similar methods can be applied in that case.

• In a remarkable paper, Brower, Polchinski, Strassler and Tan proposed (among other

things) that the BFKL Pomeron at weak coupling should be continuously connected

to the AdS5 graviton at strong coupling in the (strict) planar limit [72], in theories

which have a gravity dual in that regime. It would be interesting to see how this

proposal is consistent with the CFT-side picture developed in this paper. In particular

it suggests in the strict large Nc limit (e.g., single graviton exchange) a description

of the scattering of color singlet states in terms of dipole-dipole scattering.

A simple way by which agreement could be achieved is if in the high-energy limit

the two dipoles interact predominantly through graviton exchange; then the dipoles

would simply act as sources for the bulk graviton, the transverse size of the dipole

turning roughly into the radial coordinate in AdS5. In any case it would be nice to

make closer contact with the description in ref. [72]. Such a connection could also

be tested further by considering parametrically large values of the quantum number

ν � λ1/4 (Mellin conjugate to the dipole size), where the graviton should smoothly

turn into the classical string configurations of ref. [138].

• An outstanding problem is to relate the (properly supersymmetrized) SL(2,C) inte-

grable spin chain conjectured in section 6.5 to the PSU(2,2|4) spin chain known to

govern the spectrum of local operators [102, 139, 140]. This connection will most

likely involve some kind of analytic continuation, perhaps along the lines of ref. [141].

Acknowledgments

I thank the organizers and participants of the workshop “Amplitudes in the Multi-Regge

limit” held in Madrid in October 2012 for stimulating discussions which sparked this work.

I thank Lev Lipatov and Jochen Bartels for illuminating discussions, as well as Grisha

Korchemsky, Raju Venugopalan, Einan Gardi and Zohar Komargodski for helpful com-

ments on a draft of this manuscript. I also thank Tristan Dennen for assistance in the

computation of a certain integral. This work was supported in parts by a grant-in-aid from

the National Science Foundation, grant number PHY-0969448.

A Evolution equation in Fourier space and connection with BFKL

In this appendix we consider an evolution equation of the general form of eq. (2.6),

H =
∑
i,j

∫
d2−2εz0Kij;0

(
T ai,LT

a
j,L + T ai,RT

a
j,R − Uabad(z0)

(
T ai,LT

b
j,R + T aj,LT

b
i,R

))
, (A.1)
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with a general kernel Kij;0. Expanding in the reggeized gluon basis as in eq. (2.15), we get

the following evolution equation:

H = −faa′cf bb′c
∫
d2−2εzid

2−2εzjd
2−2εz0 Kij;0

(
W a′
i −W a′

0

)(
W b′
j −W b′

0

) δ2

δW a
i δW

b
j

+ CA

∫
d2−2εzid

2−2εz0Kii;0(W a
i −W a

0 )
δ

δW a
i

.

(A.2)

To make closer contact with the BFKL literature, we Fourier transform using

W a(z) =

∫
d2−2εp

(2π)2−2ε
eip·zW a(p)

and K12;0 =

∫
d2−2εq1

(2π)2−2ε

d2−2εq2

(2π)2−2ε
eiq1·(z1−z0)+iq2·(z2−z0)K(q1, q2).

Equation (A.2) readily becomes

H= −
∫
d2−2εp

[
αg(p)W

a(p)
δ

δW a(p)

]
+

∫
d2−2εp1d

2−2εp2
d2−2εq

(2π)2−2ε

[
W a′(p1−q)W b′(p2+q)

×
(
K(q, p2)+K(p1,−q)−K(p1, p2)−K(q,−q)

)
faa

′cf bb
′c δ2

δW a(p1)δW b(p2)

]
, (A.3)

where the gluon Regge trajectory is defined as

αg(p) = CA

∫
d2−2εq

(2π)2−2ε

(
K(q, p− q)−K(q,−q)

)
. (A.4)

The actual Balitsky-JIMWLK equation (2.7) corresponds to the kernel K(q1, q2) =

−2αs
q1·q2
q21q

2
2

, and the objects in eq. (A.3) become:

(
K(q, p2)+K(p1,−q)−K(p1, p2)−K(q,−q)

)
= αs

(
(p1 + p2)2

p2
1p

2
2

− (p2 + q)2

p2
2q

2
− (p1 − q)2

p2
1q

2

)
and

αg(p) = −αsCA

∫
d2−2εq

(2π)2−2ε

p2

q2(p− q)2
=

α̃s

2πε

(
µ̄

p2

)ε
. (A.5)

The rescaled coupling α̃s is defined above eq. (4.7). Using these, as noted in the main text,

eq. (A.3) can be immediately verified to agree with the BFKL equation [14, 15] and its

multi-reggeon BJKP generalization, justifying identifying W as an interpolating operator

for a reggeized gluon. In coordinate space, this kernel corresponds to

Kij;0 =
αs

2π2

Γ(1− ε)2

π−2ε

z0i·z0j(
z2

0iz
2
0j

)1−ε , (A.6)

which reproduces the D-dimensional formula reported in eq. (2.25), as well as its four-

dimensional limit (2.7).
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Eigenvalues. As a particularly important operator built out of two Wilson lines, it is in-

teresting to consider the color-singlet dipoles, which is given as U(z1, z2) ≡W a(z1)W a(z2)−
1
2W

a(z1)W a(z1) − 1
2W

a(z2)W a(z2) up to second order in the W expansion. This state is

known as the BFKL Pomeron. In this case the linearized kernel (2.15) evaluates simply to

H U(z1, z2) =
αsCA
2π2

∫
d2z0z

2
12

z2
01z

2
02

(U(z1, z2)−U(z0, z2)−U(z1, z0)) , (A.7)

which could also have been obtained directly from the original dipole case (2.4). Although

this depends on two variables, this can be diagonalized explicitly by exploiting the confor-

mal symmetry. Indeed, due to the translation symmetry and absence of scale in the kernel,

functions of the form z
1
2

+m
2

+iν

12 z̄
1
2
−m

2
+iν

12 are automatically eigenfunctions, where m must

be integral for this to be single valued and ν is naturally real. Invariance under inversion

then implies that for any z0 the following are also eigenfunctions:

ψz0(ν,m; z, z̄) =

(
z12

z01z02

) 1+m
2

+iν ( z̄12

z̄01z̄02

) 1−m
2

+iν

. (A.8)

Altogether these form a complete basis is the space of functions which vanish at z1 = z2,

see [142, 143]. These all have the same eigenvalue, which is readily computed to be

E(1)(ν,m) =
αsCA
2π2

∫
d2z

|z|2|z − 1|2
(

1− z
1+m

2
+iν z̄

1−m
2

+iν − (1− z)
1+m

2
+iν(1− z̄)

1−m
2

+iν
)

=
αs

π

[
ψ

(
1 + |m|

2
+ iν

)
+ ψ

(
1 + |m|

2
− iν

)
− 2ψ(1)

]
. (A.9)

Of considerable importance to the general theory is the fact that the ground state energy is

negative, E(1)(0, 0) = −4 log 2
π αsCA (related to the Pomeron intercept j0 ≡ 1− E(1)(0, 0)).

This signals the growth of amplitudes in the linear approximation, as well as the ultimate

breakdown of the linear approximation.

Because of the Bose symmetry of the W fields, only the states with even m are mean-

ingful in the present discussion. The eigenvalues with odd m are physical and pertain to

the special family (3.13) of three-reggeon states.

B The anomalous dual conformal charges

For any “channel” defined by the set of momenta (p2 + · · ·+ pj) in an n-point amplitude,

and for each dual conformal transformation which preserves x1 and xj , we can define a

“charge” flowing in the corresponding channel. This charge is conserved, in the sense that

the charge flowing out of the left factor equals the charge flowing into the right factor.

For what follows it will be important that the generators of dual conformal symmetry

receive nontrivial but exactly known quantum corrections. These are due to infrared di-

vergences, and the corrected generators (“anomalous Ward identities”) are given as [105]:

Di = xµi
∂

∂xµi
+ 2a log

−si i+1 − i0
µ2

IR

+ 2b, (B.1a)

Kµ
i = 2xµi xi·

∂

∂xi
− x2

i

∂

∂xµi
+ 4axµi log

−si i+1 − i0
µ2

IR

+ 4bxµi . (B.1b)
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These are such that
∑

iDiMn =
∑

iK
µ
iMn = 0 for any n. The constants a is the cusp

anomalous dimension and b is as in (6.1).

In the Regge limit we restrict our attention to those symmetry generators which pre-

serve the finite transverse momenta. These charges are the “angular-momentum”-like

integer m and the “dilatation”-like quantum number ν discussed in the main text above

eq. (6.10). These are expressed in terms of D and K as

ν =
−i
2

∑
k

(
Dk −

xij
|xj |2

Ki
k

)

m =
−i
2

∑
k

(
xk 1

∂

∂xk 2
− xj 1

|xj |2
Kk 2 − (1↔ 2).

)
. (B.2)

The contraction on the first line is over the transverse index i. These leave fixed the origin

and the point xj . Note also that x2
j = |xj |2 for j = 2, . . . , n−1 in our kinematics as

described at the beginning of section (5). Naively we would like to define the left charge

by summing over 1 ≤ k ≤ j and the right charge using j ≤ k ≤ n, but we need to be more

careful since this would double-count k = 1 and k = j. These terms in the sums vanish at

the classical level, but not for the anomaly terms.

To treat these terms more carefully we thus attempt to write the anomalous corrections

when k = 1, j in terms of either the momenta on the left of the channel, or on the right

of the channel. This requires introducing a reference momentum pr, which we take to

have intermediate rapidity ηj � ηr � ηj+1. Then, one readily see that the following

almost works:

νLOL(x0, . . . , xi) =
−i
2

j∑
k=1

(
Dk −

xij
|xj |2

Ki
k

)
OL(x0, . . . , xi), (B.3)

where in the k = 1, j terms we use the reference: log(−s01−i0) 7→ log |sr1| and log(−sj j+1−
i0) 7→ log |sjr|. With a similar definition for νR, the charge is readily verified to be almost

conserved:

(νL + νR)Mn = ia

(
log
|s1k|
|sjk|

+ log
|skn|
|sk j+1|

− log
(−s1n − i0)

(−sj j+1 − i0)

)
Mn. (B.4)

The real part of the logarithms cancels out, as is easily verified using identities similar to

that used at four points in eq. (4.4). However, the phases do not cancel. There is no way

to fix this by redefining the charges νL,R, since the phases depend on how the signs of the

energies on the left of the channel, relate to those on the right.

The quantum-corrected conservation law, including the phases, is thus:

νL + νR + πa
(
θ(sjj+1)− θ(sn1)

)
= 0. (B.5)

For the rotation generator the analogous definitions yield no anomaly, mL +mR = 0. The

exact bootstrap equation ω(±πa, 0) = 0 (6.13) can be viewed as a consequence of this

anomalous conservation law.
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C Derivation and self-duality of the one-loop SL(2,C) spin chain

Hamiltonian

In the main text we introduced the open “zig-zag” chains

O(z1, . . . , zn) ≡ U(z1)U(z2)† · · ·U(zn)(†), (C.1)

which are alternating products of fundamental and anti-fundamental Wilson lines (not

closed into a trace, contrary to the operators in section 3). In this appendix we work out

the leading-order rapidity evolution of these operators, and in the next one we verify its

dual conformal invariance, in the strict planar limit. This is similar to the derivation of

eq. (10) in [74].

To proceed, we first note that, when acting on the zig-zag operators, the group theory

generators entering the evolution equation (2.6) have some pairwise identifications:

T aR,1 = −T aL,2, T aR,2 = −T aL,3. etc. (C.2)

Furthermore, products of TL and TR operators with the same index have a simple effect:(
T aL,iT

r
R,iU

ab
ad(z)

)
O(z1, . . . , zi, . . . , zn) =

Nc

2
O(z1, . . . , z0, . . . , zn). (C.3)

Products of non-adjacent color generators, which cannot be made to have the same in-

dex using any of the identifications (C.2), on the other hand make the chain shorter,

effectively “short-circuiting” some of the Wilson lines. As noted in the main text, such

length-shortening effects can be ignored for the purposes of finding the eigenvalues of the

evolution.

Thus keeping only the length-preserving effects, using the preceding rules, in the strict

planar limit the evolution equation (2.6) reduces to

d

dη
O(z1, . . . , zn) = 2a

n∑
i=1

∫
d2z0

π
K̃ii;0

(
O(. . . , z0, . . .)−O(. . . , zi, . . .)

)
− 2a

n−1∑
i=1

∫
d2z0

π
K̃i i+1;0

(
O(. . . , z0, zi+1, . . .) +O(. . . , zi, z0, . . .)

−O(. . . , zi, zi+1, . . .)
)

+ 2a

n−1∑
i=2

∫
d2z0

π
K̃i−1,i+1;0O(. . . , z0, . . .). (C.4)

Here K̃ij;0 ≡ z0i·z0j
z20iz

2
0j

, and in the last line z0 is inserted in the ith position.

Note that we have been careful in the above about the boundary terms, which is

necessary because we are considering an open chain (without a trace). There are two

boundary conditions we need to consider, called Neumann and Dirichlet in the main text,

and the above pertains to the Neumann chain. A simple and uniform way to deal with them

however is to add “spectator,” or non-dynamical, sites at infinity at the endpoints of the

Neumann chain, so we uniformly deal with chains having Dirichlet boundary conditions,

O(z1, . . . , zn) ≡ O(∞̂, z1, . . . , zn, ∞̂),
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where the hats denote that the sites cannot be moved. The evolution equation for both

boundary conditions can now be written uniformly as

d

dη
O(ẑ0, z1, . . . , zn, ẑn+1)=a

n∑
i=1

∫
d2z0

π

[(
z2
i−1 i

z2
0 i−1z

2
0i

+
z2
i i+1

z2
0iz

2
0 i+1

−
z2
i−1 i+1

z2
0 i−1z

2
0 i+1

)
O(. . . , z0, . . .)

−
(
z0 i−1·zi i−1

z2
0 i−1z

2
0i

+
zi i+1·z0 i+1

z2
0iz

2
0 i+1

)
O(. . . , zi, . . .)

]
. (C.5)

In the first line z0 is inserted in the ith position, and the other labels are left unchanged.

(The integration variable z0 is not be confused with the fixed site ẑ0.)

To illustrate the formula we give a few special cases. For the n = 1 Neumann chain

O(z1) ≡ O(∞̂, z1, ∞̂),

d

dη
O(z1) = 2a

∫
d2z0

πz2
01

(
O(z0)−O(z1)

)
,

which reproduces the one-loop gluon Regge trajectory. For the n = 2 Neumann chain

(relevant for the six-gluon amplitude)

d

dη
O(z1, z2) = 2a

∫
d2z0

πz2
01z

2
02

(
z12·z02O(z0, z2)+z10·z12O(z1, z0)− z

2
12+z2

01+z2
02

2
O(z1, z2)

)
.

As we now show, the Neumann and Dirichlet chains are exchanged under Fourier trans-

formation. The n = 2 Neumann chain is then mapped to a Dirichlet chain with n = 1

dynamical site, allowing it to be diagonalized analytically as discussed in 6.5.

Self-duality test. In the main text we deduced, as a consequence of the duality between

amplitudes and Wilson lines, that eq. (C.5) must go to itself under Fourier transformation.

The appropriate definition of the Fourier transform is obtained from the impact factor. At

the leading order in the coupling, this gives (6.27):

Õ(x̂0, x1, . . . , xm−1, x̂m) ≡
∫
d2z1 · · · d2zmO(z1, . . . , zn)

x01x12 · · ·xm−1m

z12z23 · · · zm−1m
eiz1·p1+...+izm·pm .

(C.6)

To obtain the evolution of Õ, we act with the Hamiltonian (C.5) on the right-hand side and

use the inverse Fourier transform to re-express the result in terms of Õ. Direct evaluation

produces

d

dη
Õ(x̂0, x1, . . . , xm−1, x̂m) =

a

π

∫
d2x′1 · · · d2x̂′m

(2π)2m

x01 · · ·xm−1m

x′01 · · ·x′m−1m

Õ(x̂0, x
′
1, . . . , x

′
m−1, x̂

′
m)

×
∫
d2z0d

2z1 · · · d2zme
iz1·(p1−p′1)+...+izm·(pm−p′m) ×

n∑
i=1

Fi ,

where x′0 ≡ x0 and

Fi ≡
(

z2
i−1 i

z2
0 i−1z

2
0i

+
z2
i i+1

z2
0iz

2
0 i+1

−
z2
i−1 i+1

z2
0 i−1z

2
0 i+1

)
zi−1 0z0 i+1

zi−1 izi i+1
ei(zi−z0)·p′i− z0 i−1·zi i−1

z2
0 i−1z

2
0i

− zi i+1·z0 i+1

z2
0iz

2
0 i+1

.
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Notice that the Parke-Taylor-like denominator involving z has almost completely disap-

peared, except for those two factors which depend on zi. This still looks rather complicated

but most of the zi integrations will momentarily produce δ-functions.

To proceed, however, we need one critical cancelation. Consider the first parenthesis

in Fi. If we rewrite it in complex form,

z̄i i+1z0 i+1zi−1 iz̄i−1 0

|z0 i−1|2|z0i|2|z0 i+1|2
+ c.c., (C.7)

we see that some factors in the denominator get canceled, such that

Fi =
1

|z0i|2

(
z0 i+1z̄i i+1

z̄0 i+1zi i+1
ei(zi−z0)·p′i − 1

2

zi i+1

z0 i+1
− 1

2

z̄i i+1

z̄0 i+1
+ (i−1↔ i+1)

)
. (C.8)

Now each term in Fi depends only on two zi’s at a time, ensuring that we get a minimum of

(m−1) δ-functions from the zi integrations. Indeed consider now just the terms explicitly

shown, which depend only on z0, zi, zi+1. The trick is to shift zi and zi+1 by z0 and perform

all other z integrations. This way we obtain

d

dη
Õ(x̂0, x1, . . . , xm−1, x̂m) ⊃ a

π

m−1∑
i=1

∫
d2x′iÕ(x̂0, x1, . . . , x

′
i, . . . , xm−1, x̂

′
m)Gi({x}, x′i)

where

Gi({x}, x′i) =
xi−1 ixi i+1

xi−1 i′xi′ i+1

∫
d2zid

2zi+1

(2π)2|zi|2
ei(zi+1−zi)·(x′i−xi)

×
(

zi+1z̄i i+1

z̄i+1zi i+1
eizi·(x

′
i−xi−1) +

1

2

zi i+1

zi+1
+

1

2

z̄i i+1

z̄i+1

)
.

The integral gives a surprisingly simple result,

Gi({x}, x′i) =
xi i+1x̄i i−1

|xii′ |2xi′ i+1x̄i′ i−1
− δ2(x′i − xi)π log

(
|xi−1 i|2µ2

IR

)
. (C.9)

In addition, there is the contribution from the last term in the sum, the explicitly shown

term of Fm, which gives −π log |xm−1m|2 times the original operator. Using the iden-

tity (C.7) in the other direction and collecting terms, our final result is thus

d

dη
Õ(x̂0, x1, . . . , xm−1, x̂m)

= a

m∑
i=1

∫
d2z0

π

(
z2
i−1 i

z2
0 i−1z

2
0i

+
z2
i i+1

z2
0iz

2
0 i+1

−
z2
i−1 i+1

z2
0 i−1z

2
0 i+1

)
O(. . . , z0, . . .)

+ aÕ(x̂0, x1, . . . , xm−1, x̂m)×
m−1∑
i=1

[
log
(
x2
i−1 iµ

2
IR

)
+ log

(
x2
i i+1µ

2
IR

)]
. (C.10)

The cutoff is an infrared cutoff from the viewpoint of the amplitude (z-space), but an

ultraviolet cutoff from the viewpoint of the Wilson loop (x-space).

Comparing with eq. (C.5), we see that the first line exactly match, and the logarithms

on the second line exactly match those arising from integrating z0 in the second line of

eq. (C.5). Hence the two equations agree perfectly: the one-loop evolution equation is

identical in the coordinate and momentum spaces!
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