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1 Introduction

One of the most celebrated successes of string theory is the AdS/CFT correspondence [1].

This generates a powerful duality between asymptotically AdS gravitational theories and

conformal field theories on the AdS boundary, which is the simplest and best-studied ex-

ample of the more general notion of a ‘gauge-gravity duality’. As a strong-weak coupling

duality, the correspondence allows for the translation of non-perturbative field theory cal-

culations into more tractable, perturbative calculations in gravity and vice-versa. This has

enabled the exploration of previously inaccessible regimes of theoretical physics. Indeed,

there are many examples of strongly coupled systems in condensed matter physics and it

is hoped that gauge-gravity duality may allow for a better understanding of these. Signif-

icant progress has already been made in this direction, leading to the development of the

AdS/CMT correspondence (see [2, 3] and references therein). Further recent progress has

been to extend the correspondence to spacetimes which are not asymptotically-AdS but

rather exhibit hyperscaling violating and Lifshitz (hvLif) behaviour [4, 5], thus extending

the dictionary between gravity and condensed matter systems living on the boundary.
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The central idea in gauge/gravity duality is that each state in the bulk has a corre-

sponding state in the dual field theory. In particular, black objects are dual to thermal

ensembles in the field theory with the same thermodynamic properties (temperature, en-

tropy, chemical potential, etc.) as the bulk spacetime [6, 7].

A natural starting point for the correspondence is to look at charged (Reissner-

Nordström or ‘RN’) extremal black holes and black branes in AdS [8]. However, like their

asymptotically flat ‘cousins’ they have a large non-zero entropy at zero temperature, thus

violating the Third Law of Thermodynamics, which states in its strictest version that the

entropy of a system should vanish in the zero temperature limit [9]. While a non-vanishing

entropy for certain classes of extremal black holes is consistent with microstate counting

for the corresponding D-brane configuration in string theory [10, 11], this still begs the

question of whether one can find other gravitational systems which have a zero entropy

or entropy density at zero temperature. Apart from being an interesting question about

gravity, such systems are relevant for possible dualities between gravity and condensed

matter systems.

We remark that although ‘Nernst Law’ is in the following used synonymously with

‘Third Law of Thermodynamics’, Nernst’s original formulation only requires that the dif-

ference in entropy between two equilibrium states related through a change in external

parameters goes to zero at zero temperature. This formulation is equivalent to the ‘process

version’ of the Third Law, which states that zero temperature cannot be reached by any

physical process in a finite number of steps. A process version of the third law of black hole

mechanics was already established in [12]. However, the Nernst version or, equivalently,

the process version of the Third Law does not imply by itself the slightly stronger version

of the Third Law, due to Planck, which states that the entropy itself goes to zero at zero

temperature. This stricter version corresponds to systems with a unique ground state, and

thus is the generic situation in condensed matter, although there is an extended debate

about possible exceptions in specific systems, see for example [2, 3, 13, 14].

In the following we will be concerned with the explicit construction of families of

gravitational solutions which have zero entropy (or entropy density) in the extremal limit.

Following conventions in the literature, we will refer to the Third Law in its stricter,

Planckian, version as the Nernst Law.

Extremal brane solutions with vanishing entropy density at zero temperature have

recently been studied for a variety of bulk theories [14–19] and could have important

applications in extending the dictionary between condensed matter and gravity. They

have been dubbed ‘Nernst branes’ in [19], and it is believed that the corresponding non-

extremal solutions exist and satisfy the Nernst Law, that is, these non-extremal solutions

have a finite entropy which goes to zero when the temperature goes to zero while external

parameters are kept fixed. Finding such non-extremal solutions is important, since extremal

Nernst branes are not completely regular solutions. While all curvature invariants remain

finite at the horizon, tidal forces become infinite and scalar fields take infinite values,

which suggests a breakdown of the underlying effective field theory [2, 19]. A first step

in addressing this issue is to find non-extremal solutions, which can then be studied in

the near extremal limit. In this context it is clearly desirable to have completely explicit,
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analytical solutions. However most results in the literature have to rely on a mixture of

analytical and numerical methods. Of course tidal forces may still get very large at the

horizon when one approaches the extremal limit [20], but analytical solutions will enable

one to identify the region in parameter space where the solution can be trusted and possibly

be mapped to condensed matter systems.

The second step in controlling the near horizon low temperature behaviour is to embed

the theory under consideration into a UV-complete theory, for which string theory and its

non-perturbative extension M-theory are arguably the best candidates. In the low-energy

limit the relevant stringy gravitational backgrounds can be described in terms of super-

gravity. We will be working in a set-up which can be described by N = 2 U(1) gauged

supergravity with an arbitrary number of vector multiplets. Theories with N = 2 super-

symmetry are natural generalisations of the Einstein-Maxwell-Scalar theories underlying

dilatonic black hole and black brane solutions which have been studied extensively as poten-

tial duals of strongly coupled electron systems [2, 3]. They have the advantage that one can

often find exact, analytical answers, despite the fact that the couplings are not fixed by the

matter content (as is the case forN ≥ 4 supersymmetry), but depend on arbitrary functions

of the scalar fields, which are subject to quantum and stringy corrections. While we do not

discuss the string theory or M-theory embedding explicitly, note that such theories arise

through heterotic flux compactifications on K3× T 2 and type-II flux compactifications on

Calabi-Yau three-folds. We will not need to choose a specific model, and only assume that

the vector multiplet couplings take the most general form that arises when working to lead-

ing order in the Regge parameter α′, and within the validity of string perturbation theory.

In other words, we only assume that the prepotential, which encodes the vector multiplet

couplings, is of the so-called very special type reviewed below. By working in a gauged

supergravity theory obtainable by flux compactification from string theory we will have the

option to further address the issues related to singularities in the extremal limit at a later

stage. For BPS black holes with vanishing entropy it is known that the inclusion of stringy

higher curvature corrections in supergravity [21, 22] leads to regular solutions with finite en-

tropy [23], and the entropy function formalism demonstrates that this mechanism is robust

and does not depend on supersymmetry and details of the higher curvature corrections [24].

We refer to [2, 3, 14] for a further discussion of the possible implications of quantum and

string corrections to the zero temperature behaviour and the ‘fate’ of the Nernst Law.

Within the framework of four-dimensional N = 2 U(1) gauged supergravity coupled to

vector multiplets, extremal Nernst branes have previously been constructed in [19] using a

first-order rewriting of the equations of motion, and by considering a specific model: the

so-called STU-model. However a similar rewriting for their non-extremal counterparts has

so far proven elusive, and the only known examples [25] have been constructed by deform-

ing the metric of the corresponding five-dimensional extremal solution [26] and imposing

suitable consistency conditions. In this paper we are able to provide a systematic con-

struction of non-extremal Nernst branes by directly solving the second-order equations of

motion. Moreover, our results will not only apply to a particular model, but to all models

where the prepotential is of the very special type. This gain in generality and systematics

should help to expand the AdS/CMT dictionary considerably in the future.
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We now present a brief overview of the results in this paper. We start with a theory

of n N = 2 vector multiplets coupled to U(1) gauged supergravity, with prepotential

F (X) =
f(X1, . . . , Xn)

X0
,

where f is homogeneous of degree three. If f is a homogeneous polynomial of degree three

(which is not required for our methods to apply), then the corresponding theory can be

obtained by dimensional reduction from five dimensions. Moreover, such prepotentials

capture perturbative string effects to leading order in α′ if the model can be embedded

into heterotic or type-II string theory. In this case the supergravity lift to five dimensions

becomes a lift from type-II string theory to M-theory.

Within these models we restrict ourselves to static black brane solutions. Apart from

this we will impose that the scalar fields take purely imaginary values, as for such ‘axion-

free’ field configurations there is a systematic simplification of the equations of motion.

Since we impose stationarity in four dimensions, we can perform a time-like dimensional

reduction to obtain an effective three-dimensional Euclidean theory. The degrees of freedom

in three dimensions can then be repackaged using the real formulation of special geometry

developed in [27], which has been used to construct solutions to both gauged [28–30] and

ungauged [31] theories of supergravity coupled to vector multiplets.

Since our ability to obtain explicit non-extremal solutions depends on using a specific

formalism, let us briefly summarize the underlying principles without going into technical

details.

• Instead of using the physical four-dimensional scalar fields zA, A = 1, . . . , n, we work

on the ‘big moduli space’ parametrized by scalar fields XI , I = 0, . . . , n. The addi-

tional (complex) degree of freedom is compensated for by a local C∗ gauge symmetry.

Working on the big moduli space has the advantage that the number of scalar fields

and gauge fields matches.

• We use the real formulation of special Kähler geometry, which replaces the complex

scalars XI by real scalars qa, a = 0, . . . , 2n + 1 and which replaces the holomorphic

prepotential F (XI) by a real Hesse potential H(qa). This leads to a simpler, and

fully covariant, behaviour of all relevant quantities under electric-magnetic duality.

• Upon dimensional reduction, the Kaluza-Klein scalar φ is absorbed into the real

scalars qa, which results in the ‘radial’ direction of the big moduli space becoming a

physical (rather than gauge) degree of freedom.

We postpone fixing the remaining U(1) ⊂ C∗ gauge symmetry to preserve electric-

magnetic duality. The resulting three-dimensional theory depends on 4n + 5 real

scalars qa, q̂a, φ̃, subject to one local gauge symmetry, where q̂a are dual to the four-

dimensional gauge fields and φ̃ is dual to the Kaluza-Klein vector. While qa, q̂a are

vectors under electric-magnetic duality, φ̃ is a scalar.

• We impose an ansatz which corresponds, from the four-dimensional point of view,

to a static solution with purely imaginary scalar fields. This determines φ̃ and half
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of the fields qa, q̂a in terms of the remaining fields, and also fixes the residual U(1)

gauge symmetry. By abuse of notation, we denote the remaining independent fields

by qa, q̂a (with a restricted range of a, depending on the precise version of the ansatz).

• When we now proceed to solve the time-reduced three-dimensional equations of mo-

tion, their particular structure allows us to obtain solutions in closed form.

We remark that while some of the above ingredients are well known to people working

on N = 2 supergravity, it is critical that these elements are put together into a systematic

structure. The key element that we use and preserve is electric-magnetic duality, which acts

on the fields by symplectic transformations.1 Our choice of variables, which all transform

as symplectic tensors, leads to the simplifications and systematics that we exploit. We

observe that this works despite the fact that the electric-magnetic duality group is broken

to a discrete subgroup thereof by the presence of gauging (a scalar potential), and despite

the fact that our ansatz restricts us from the full symplectic group to a subgroup.

Solving the three-dimensional equations of motion directly results in an instanton

solution depending on a number of integration constants, which are a priori undetermined.

However, in order that this solution lifts to a regular black brane in four dimensions

we have to impose suitable regularity conditions. In particular, we require that the

four-dimensional solution has a finite entropy density, which happens to simultaneously

ensure that the scalar fields take finite values on the horizon. For a given set of charges and

fluxes, we are then left with a two-parameter family of black brane solutions parametrised

by a temperature T and chemical potential µ, which can both be freely varied. In the

limit of zero temperature, we recover the extremal Nernst branes of [19]. Therefore we

interpret our solutions as non-extremal (or ‘hot’) Nernst branes. Indeed, it turns out

that the entropy density goes to zero as T → 0 for fixed charges/fluxes, in agreement

with the Nernst Law. Our solutions interpolate between hyperscaling violating Lifshitz

geometries with (z, θ) = (0, 2) at the horizon and (z, θ) = (1,−1) at infinity, where z is

the dynamical critical exponent and where θ is the hyperscaling violating exponent. In

the zero temperature limit the near horizon geometry changes to (z, θ) = (3, 1).

This paper is organised as follows. In section 2 we review the real formulation of

special geometry as applied to N = 2 U(1) gauged supergravity with both electric and

magnetic fluxes, relegating the more technical details to the appendices. We then reduce

this theory over a time-like direction and determine the equations of motion of the three-

dimensional theory for general static field configurations, before concentrating on the case

of purely imaginary field configurations. In section 3 we solve the aforementioned equations

of motion for the case where we have a single electric charge and some number of electric

fluxes. Having found a solution to the three-dimensional equations of motion we then lift

it back to a four-dimensional solution and determine the conditions imposed on the various

integration constants by regularity, before carrying out an analysis of the properties of the

solution. In section 4 we apply our method to the case where we instead switch on a single

magnetic charge and a single magnetic flux, whilst keeping (n − 1) of the electric fluxes.

1We refer the reader to [32, 33] for a comprehensive review of electric-magnetic duality in supergravity.
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Section 5 contains our conclusions. We also include a brief initial discussion of our results

in the context of holography.

2 N = 2 gauged supergravity and the real formulation of special geom-

etry

2.1 Lagrangian of N = 2 U(1) gauged supergravity

We begin with the well-known bosonic Lagrangian of N = 2 Fayet-Iliopoulos U(1) ⊂
SU(2)R gauged supergravity coupled to n vector multiplets. Our conventions follow those

of [27, 29]2

e−14 L4 = −1

2
Y R(4)− gIJ∂µ̂XI∂µ̂X̄J +

1

4
IIJF Iµ̂ν̂F J |µ̂ν̂ +

1

4
RIJF Iµ̂ν̂F̃ J |µ̂ν̂ − V

(
X, X̄

)
, (2.1)

where µ̂, ν̂ = 0, . . . , 3 are four-dimensional spacetime indices, and I, J = 0, . . . , n label

the four-dimensional gauge fields: n from the vector multiplets and one, the graviphoton,

from the gravity multiplet. For later convenience we use a formulation of the theory which

contains n + 1 complex scalar fields XI which are subject to local dilatations and U(1)

transformations. The n physical scalars remaining after gauge fixing can be parametrised as

zA = XA/X0, where A = 1, . . . , n. While the physical scalars zA parametrise a projective

special Kähler (PSK) manifold, the XI parametrise a conic affine special Kähler (CASK)

manifold, which is a complex cone over the PSK manifold. Conversely, the PSK manifold

can be obtained as the Kähler quotient of the CASK manifold with respect to the C∗-

action generated by dilatations and U(1) transformations. In physical terms this quotient

amounts to gauge fixing the local C∗ action, as discussed below. All terms in (2.1) except

the scalar potential V (X, X̄) are completely determined by the holomorphic prepotential

F (XI), which is homogeneous of degree 2. Prior to gauge fixing dilatations, the space-time

Ricci scalar, R4, is multiplied by the conformal compensator

Y = −i(XI F̄I − FIX̄I),

where derivatives of the prepotential are denoted FI = ∂F
∂XI , etc. The tensor

gIJ = − ∂2

∂XI∂X̄J
log Y,

is the horizontal lift of the physical (PSK) scalar metric to the CASK manifold. It has

a two-dimensional kernel which reflects the fact that the XI only represent n complex

physical degrees of freedom. The vector couplings are given by

NIJ = RIJ + iIIJ = F̄IJ + i
NIKX

KNJLX
L

−XMNMNXN
,

where NIJ = 2ImFIJ .

2Note that in e.g. [31], the opposite sign was used for the Einstein-Hilbert term of the corresponding

ungauged theory, which leads to some sign-flips compared to the Einstein equations presented there.
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We now turn to the C∗ gauge fixing. Dilatations are fixed by imposing the D-gauge

− i
(
XI F̄I − FIX̄I

)
= κ−2 , (2.2)

which in particular brings the Einstein-Hilbert term in (2.1) to the standard form − 1
2κ2

R4.

Likewise U(1) transformations can be fixed by imposing any condition transverse to the

U(1) action, such as Im
(
X0
)

= 0. However, as discussed in more detail in [27, 31], it is often

advantageous to postpone U(1) gauge fixing until reducing the theory and starting to solve

the resulting equations of motion. In particular, upon imposing the D-gauge (2.2) one has

gIJ∂µ̂X
I∂µ̂X̄J = ḡAB∂µ̂z

A∂µ̂z̄B,

where ḡAB is the positive definite (PSK) metric of the physical scalars zA. Working

with the scalars XI has the advantage that we retain covariance under symplectic

transformations, and will result in a more convenient form of the equations of motion

after reduction. Note that while the D-gauge removes one real degree of freedom from the

XI , the second unphysical degree of freedom is taken care of by the remaining local U(1)

symmetry, see [27] for details. Geometrically, imposing the D-gauge while keeping the local

U(1) symmetry corresponds to working on a U(1) principal bundle over the PSK manifold.

The four-dimensional Lagrangian (2.1) also includes a scalar potential V (X, X̄), which

as in [19] is given as

V (X, X̄) = N IJ∂IW∂JW̄ − 2κ2|W |2, (2.3)

with a superpotential of the form

W = 2
(
gIFI − gIXI

)
, (2.4)

where gI , gI parametrize the U(1) gauging. Since superpotentials of the form (2.4) arise

in flux compactifications, we refer to them as magnetic and electric fluxes, respectively.

Note that we have included an explicit factor of κ2 in (2.3) using dimensional analysis.

We will use this later to rewrite the potential in terms of real variables. For reference, we

note that the XI have mass dimension −1 while the flux parameters have dimension −2,

so that W has dimension −3. Since NIJ and, hence, its inverse N IJ are homogeneous of

degree 0, they have dimension 0, and V has dimension −4, as required. We also remark

that for later convenience we have re-scaled the flux parameters by a factor of 2 relative

to [19]. Moreover, we have not factorized the flux parameters into a dimensionful coupling

and dimensionless parameters, but kept them dimensionful.

2.2 Reduction to three dimensions

Imposing that the background is stationary, so that all of the fields are independent of

time, we can reduce the four-dimensional action (2.1) over a time-like direction in order to

obtain an effective three-dimensional Euclidean action. We decompose the four-dimensional

metric as

ds24 = −eφ (dt+ Vµdx
µ)2 + e−φds23, (2.5)
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where φ and Vµ are the Kaluza-Klein scalar and vector respectively, and we have left

the three-dimensional part of the metric undetermined for now. Following the procedure

for time-like dimensional reduction outlined in [27], and noting that the scalar potential

remains unchanged throughout the reduction process, one obtains the three-dimensional

Lagrangian [29]

e−13 L3 = −1

2
R(3) − H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b
)

+
1

2H
V

− 1

H2
(qaΩab∂µq

b)2 +
2

H2
(qaΩab∂µq̂

b)2

− 1

4H2
(∂µφ̃+ 2q̂aΩab∂µq̂

b)2. (2.6)

We have written all of the three-dimensional degrees of freedom using the conventions of

the real formulation of special geometry developed in [27], and afterwards set κ = 1 for the

remainder of the paper. While we give a brief summary here, more details can be found

in appendix B. The three-dimensional action contains 4n+ 5 scalar fields (qa, q̂a, φ̃) which

are subject to one local U(1) symmetry and hence has 4n + 4 independent scalar degrees

of freedom. While the qa combine the four-dimensional scalars zA with the Kaluza-Klein

scalar φ, the q̂a contain the degrees of freedom of the four-dimensional gauge fields, and φ̃

is dual to the Kaluza-Klein vector. The constant tensor

Ωab =

(
0 1

−1 0

)

is the symplectic form of the CASK manifold expressed in real variables qa. The tensor

H̃ab is given by

H̃ab =
∂2H̃

∂qa∂qb
, H̃ = −1

2
log(−2H) ,

where the Hesse potential H is related to the prepotential F by the Legendre transformation

given in (A.1).

As shown in the appendices, the scalar potential V is given in terms of the real coor-

dinates as
1

H
V (q) = −2gagb

[
H̃ab − 4qaqb − 2

(Ωq)a (Ωq)b
H2

]
, (2.7)

where the dual scalars qa are defined by qa = −H̃abq
b.

Substituting this expression into (2.6) the three-dimensional Lagrangian becomes

e−13 L3 = −1

2
R(3) − H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b + gagb
)

− 1

H2
(qaΩab∂µq

b)2 +
2

H2
(qaΩab∂µq̂

b)2

+4(gaqa)
2 +

2

H2
(qaΩabg

b)2 − 1

4H2
(∂µφ̃+ 2q̂aΩab∂µq̂

b)2. (2.8)

In the following we will restrict ourselves to static solutions, i.e. set Vµ = 0 in (2.5), for

which the final term in (2.8) vanishes [27]. The equations of motion for q̂a are then given

– 8 –
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by

∇µ
(
H̃ab∂

µq̂b
)

+ 2∇µ
(

1

H2
qbΩba(q

cΩcd∂
µq̂d)

)
= 0, (2.9)

whilst those for qa read

∇µ
(
H̃ab∂

µqb
)
− 1

2
∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c + gbgc
)

− 1

2
∂a

(
1

H2

)
(qbΩbc∂µq

c)2 +∇µ
(

1

H2
qbΩba(q

cΩcd∂
µqd)

)
− 1

H2
Ωab∂µq

b(qcΩcd∂
µqd)

+ ∂a

(
1

H2

)
(qcΩcd∂

µq̂d)2 +
2

H2
Ωab∂µq̂

b(qcΩcd∂
µq̂d)

+ 4H̃abg
b(gcqc) + ∂a

(
1

H2

)
(qbΩbcg

c)2 +
2

H2
Ωabg

b(qcΩcdg
d) = 0. (2.10)

Finally, the three-dimensional Einstein equations are

− 1

2
R(3)µν − H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
− 1

H2
(qaΩab∂µq

b)(qcΩcd∂νq
d)

+
2

H2
(qaΩab∂µq̂

b)(qcΩcd∂ν q̂
d)+gµν

(
−H̃abg

agb+4(gaqa)
2+

2

H2
(gaΩabq

b)2
)

=0. (2.11)

2.3 Purely imaginary field configurations

We concentrate in this paper on purely imaginary (PI) field configurations, which we de-

fine to be those for which the complex scalars3 zA = Y A/Y 0 are purely imaginary [31].

Moreover, we restrict ourselves to a class of prepotentials of the form

F (Y ) =
f(Y 1, . . . , Y n)

Y 0
, (2.12)

where the function f is homogeneous of degree three and real-valued when evaluated on

real fields. For the case of ungauged N = 2 supergravity, such models were considered

in [31]. Note that those models with f a cubic polynomial are precisely the ‘very special’

prepotentials for which the solutions can be uplifted to five dimensions. Since we choose

to fix the U(1) gauge by taking ImY 0 = 0, this is equivalent to setting xA = ReY A to zero.

Models obtainable from five dimensions are invariant under constant shifts xA → xA+CA,

and, hence, PI configurations will be referred to as ‘axion-free’.

For the class of models (2.12) the scalar fields qa take the form [31]

(qa)|PI = (x0, 0, . . . , 0; 0, y1, . . . , yn),

and hence we see that qaΩab∂µq
b = 0. Following [31] we extend the PI condition to the

scalars q̂a by imposing

(∂µq̂
a)|PI =

1

2
(∂µζ

0, 0, . . . , 0; 0, ∂µζ̃1, . . . , ∂µζ̃n),

which sets also qaΩab∂µq̂
b = 0. The quantities ∂µζ

I and ∂µζ̃I encode the four-dimensional

field strengths, see (B.5).

3The scalars Y I are rescaled versions of the scalars XI . See (B.1) for the definition.
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In the same way, we extend the PI condition to the fluxes ga by imposing

(ga)|PI = (g0, 0, . . . , 0; 0, g1, . . . , gn),

which sets qaΩabg
b = 0.

We then find that the equations of motion (2.9)–(2.10) and the three-dimensional

Einstein equations (2.11) simplify to

∇µ
(
H̃ab∂

µq̂b
)

= 0, (2.13)

∇µ
(
H̃ab∂

µqb
)
− 1

2
∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c + gbgc
)

+ 4H̃abg
b(gcqc) = 0, (2.14)

and

− 1

2
R(3)µν − H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
+ gµν

(
−H̃abg

agb + 4(gaqa)
2
)

= 0. (2.15)

It turns out to be useful to write the equations of motion in terms of the dual variables

qa and q̂a defined in appendix B. In terms of these, the equations (2.13)–(2.15) become

∇2q̂a = 0, (2.16)

∇2qa +
1

2
∂aH̃

bc (∂µqb∂
µqc − ∂µq̂b∂µq̂c)−

1

2
∂aH̃bcg

bgc + 4H̃abg
b(gcqc) = 0, (2.17)

and

− 1

2
R(3)µν − H̃ab (∂µqa∂νqb − ∂µq̂a∂ν q̂b) + gµν

(
−H̃abg

agb + 4(gaqa)
2
)

= 0. (2.18)

In the next section we will look for solutions of (2.16)–(2.18) which can be lifted to

regular non-extremal black branes in four dimensions.

3 Non-extremal black branes

Our aim in this section is to construct a family of non-extremal black branes in the N = 2

gauged supergravity theory (2.1) with prepotential (2.12). Restricting our attention to the

PI configurations described in section 2.3, it can be shown that the Hesse potential takes

the form [31]

H = −1

4
(−q0f(q1, . . . , qn))−

1
2 . (3.1)

For general functions f , the form of the metric H̃ab is fairly complicated [31]. However,

since the field q0 decouples from the rest, we can compute

H̃00 =
1

4q20
, q0 = − 1

4q0
,

and this will be sufficient to find solutions valid for any choice of f . We remark here upon

a slight abuse of notation which we will make throughout the remainder of this paper.

Specifically, we denote by qA with A = 1, . . . , n those scalar fields which are actually the

(A+n+1)’th components of the vector (qa). The same is true of the components H̃AB of the
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metric, which should properly be the (A+n+1, B+n+1) components of H̃ab. This notation

is convenient since (q0, qA) are the remaining non-trivial qa-fields within our ansatz.

For simplicity we will concentrate on solutions which are supported by a single electric

charge Q0 and electric fluxes g1, . . . , gn in this section. However, as we will see in section 4,

the methods introduced in the following can be easily extended to deal also with solutions

with a single magnetic charge switched on and sourced by both electric and magnetic

fluxes. The systematic investigation of dyonic black branes will be carried out in a future

publication [34].

3.1 Einstein equations

We make a brane-like ansatz for the three-dimensional metric:

ds23 = e4ψdτ2 + e2ψ(dx2 + dy2), (3.2)

where ψ = ψ(τ) is some function to be determined. This form of the metric can always

be obtained from the more commonly used form ds23 = dr2 + e2ψ(dx2 + dy2) by a suitable

redefinition r → τ . We also impose that all fields qa and q̂a depend only on τ . The

coordinate τ has been chosen such that it is an affine parameter for geodesic curves on the

scalar target space parametrized by qa and q̂a. Equivalently, the τ -dependent part of the

three-dimensional Laplace operator is given by ∂2

∂τ2
.

The non-zero components of the Ricci tensor are given by

Rττ = 2ψ̈ − 2ψ̇2, Rxx = Ryy = e−2ψψ̈,

where the dot denotes differentiation with respect to τ . With this choice the three-

dimensional Einstein equations (2.18) become

− H̃abg
agb + 4(qag

a)2 − 1

2
e−4ψψ̈ = 0, (3.3)

for µ = ν 6= τ and

H̃ab
(
q̇aq̇b − ˙̂qa ˙̂qb

)
= ψ̇2 − 1

2
ψ̈, (3.4)

for µ = ν = τ , where we have used (3.3). Equation (3.4) is the Hamiltonian constraint

which needs to be imposed on solutions (qa(τ), q̂a(τ)) of the second order scalar field equa-

tions. We remark that since we have consistently reduced the full field equations, we do not

need to impose this constraint by hand, but have retained it as a field equation following

from an action principle.

3.2 Scalar equations of motion

We now turn to the equations of motion for the fields qa and q̂a. We start with the q̂a
equations of motion, which read simply

¨̂qa = 0,

and can be integrated once to find
˙̂qa = Ka, (3.5)
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for some constants Ka, which are proportional to the electric and magnetic charges of the

solution, Ka = (−QI , P I) [31]. The explicit relations between the q̂a and the field strengths

can be found in appendix B. For the case at hand we only have a single electric charge Q0,

and so the only non-zero component of ˙̂qa is ˙̂q0 = −Q0.

We turn now to the qa equations of motion (2.17), which become

e−4ψ q̈a +
1

2
∂aH̃

bce−4ψ
(
q̇bq̇c − ˙̂qb ˙̂qc

)
− 1

2
∂aH̃bcg

bgc + 4H̃abg
b(qcg

c) = 0. (3.6)

For the models (2.12) without magnetic flux, g0 = 0, on which we concentrate in this

section, the q0 equation of motion decouples from the others. Indeed, using (3.5) with

K0 = −Q0 the q0 equation of motion becomes

q̈0 −
q̇20 −Q2

0

q0
= 0. (3.7)

This takes precisely the same form as in the ungauged case [31] and can be solved with

q0(τ) = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.8)

for some constants B0 and h0. Since the solution (3.8) is invariant under B0 → −B0, we can

take B0 ≥ 0 without loss of generality. It will turn out that B0 acts as a non-extremality

parameter for the full solution. Furthermore, as we will see later explicitly, τ naturally

takes values 0 ≤ τ < ∞. Thus in order that q0 6= 0 for τ ≥ 0 we will have to require

sign(h0) = sign(Q0).

The qA equations of motion, for A = 1, . . . , n, become4

e−4ψ q̈A +
1

2
e−4ψ

n∑
B,C=1

∂AH̃
BC q̇B q̇C −

1

2

n∑
B,C=1

(∂AH̃BC)gBgC + 4

n∑
B=1

H̃ABgB

(
n∑

C=1

qCgC

)
=0.

(3.9)

Multiplying by qA and summing over A gives

e−4ψ
n∑

A=1

qAq̈A + e−4ψ
n∑

A,B=1

H̃AB q̇Aq̇B +

n∑
A,B=1

H̃AB gAgB − 4

(
n∑

A=1

gAqA

)2

= 0, (3.10)

where we have made use of the homogeneity properties of the metric H̃ab, viz. qa∂aH̃
bc =

2H̃bc and qa∂aH̃bc = −2H̃bc. One can now compare this equation to (3.3), which for the

model at hand becomes

−
n∑

A,B=1

H̃AB gAgB + 4

(
n∑

A=1

gAqA

)2

− 1

2
e−4ψψ̈ = 0 .

Substituting from this into the last two terms of (3.10) we obtain

n∑
A=1

qAq̈A +

n∑
A,B=1

H̃AB q̇Aq̇B =
1

2
ψ̈. (3.11)

4We choose to leave the sum explicit here for convenience.
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The left-hand side of this equation can be rewritten as a total derivative

n∑
A=1

qAq̈A +

n∑
A,B=1

H̃AB q̇Aq̇B =
d

dτ

(
n∑

A=1

qAq̇A

)
,

and so we can integrate to find

n∑
A=1

qAq̇A =
1

2
ψ̇ − 1

4
a0, (3.12)

for some integration constant a0, where we have chosen the factor for later convenience.

Now, using the identity ∂aH̃ = H̃abqb [31] one can show furthermore that

dH̃

dτ
= −q0q̇0 −

n∑
A=1

qAq̇A =
q̇0
4q0
−

n∑
A=1

qAq̇A.

Substituting this expression into (3.12) and further integrating gives

−2ψ + a0τ + b0 = 4H̃ − log(−q0) = −2 log
(
−4H · (−q0)1/2

)
,

where we have used the definition of H̃ given in (B.7), and have chosen the definition of

the integration constant b0 for later convenience. Substituting the explicit expression for

the Hesse potential (3.1) we therefore find

log (f(q1, . . . , qn)) = −2ψ + a0τ + b0. (3.13)

Let us now return to the Hamiltonian constraint (3.4) which, upon substituting the

expression (3.8), becomes

n∑
A,B=1

H̃AB q̇Aq̇B = ψ̇2 − 1

2
ψ̈ − 1

4
B2

0 . (3.14)

So far we have the following picture: the equations of motion for the qA are given by

the set of coupled equations (3.9). The solutions qA(τ) of (3.9) should then satisfy the two

constraints (3.13) and (3.14).

We proceed by imposing that the qA are all proportional, which will in turn mean that

all of the physical scalar fields zA are proportional to one another.5 Specifically, we set

qA(τ) = ξAq(τ) for some constants ξA. In terms of this ansatz, the constraints (3.14) and

(the derivative of) (3.13) become

3

(
q̇

q

)2

= 4ψ̇2 − 2ψ̈ −B2
0 , 3

(
q̇

q

)
= −2ψ̇ + a0. (3.15)

5Of course, it would be interesting for future work to investigate whether solutions can be found, for

generic choices of the flux parameters, where this assumption is relaxed.
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We have made use here of the homogeneity properties of f and the metric H̃ab, as well as

the identity H̃ab(q)q
aqb = 1 [27] which implies, for the models at hand, that

n∑
A,B=1

H̃AB(ξ)ξAξB =
3

4
.

The two equations (3.15) can be combined into a second-order non-linear differential

equation for ψ(τ):

ψ̈ − 4

3
ψ̇2 − 2

3
a0ψ̇ +

1

2
B2

0 +
1

6
a20 = 0. (3.16)

Introducing the variable

y ≡ exp

(
−4

3
ψ − 1

3
a0τ

)
,

this becomes

ÿ − ω2y = 0,

for

ω2 =
2

3
B2

0 +
1

3
a20,

and hence can be solved by

exp

(
−4

3
ψ − 1

3
a0τ

)
=
α

ω
sinh (ωτ + ωβ) , (3.17)

where α and β are integration constants, and we have taken ω to be the positive root

without loss of generality. Note that the right hand side should be non-negative for all

τ > 0, and hence we should pick α > 0 and β ≥ 0. The solution (3.17) now determines

the function ψ(τ) appearing in the metric ansatz in terms of some integration constants,

which we will fix in section 3.3.

We can now use (3.17) to find an expression for q(τ). Indeed, differentiating (3.17)

with respect to τ and substituting into the second equation in (3.15) we obtain

q̇

q
=

1

2
ω coth(ωτ + ωβ) +

1

2
a0.

This can be integrated up to find

q(τ) = Λe
1
2
a0τ (sinh(ωτ + ωβ))

1
2 , (3.18)

where Λ is an integration constant. Since we have set all of the qA proportional to each

other, we can therefore write

qA = λAe
1
2
a0τ (sinh(ωτ + ωβ))

1
2 ,

for some constants ξA ≡ λA/Λ. Substituting this into (3.9) we find that q1g1 = . . . = qngn,

and that the qA equation of motion is satisfied provided the integration constants λA are

related to the electric fluxes gA via

λA = ± 3

8ngA

(
α3

ω

) 1
2

.
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Returning to (3.13) then determines the constant b0 in terms of α and the fluxes gA as

eb0 = ±
(

3α

8n

)3

f

(
1

g1
, . . . ,

1

gn

)
.

Finally, the Kaluza-Klein scalar φ appearing in the metric ansatz (2.5) is determined in

terms of the qa via the D-gauge condition (B.6) and the explicit form of the Hesse poten-

tial (3.1).

To summarise, we find that the scalars qa are given by

q0 = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.19)

qA = ± 3

8ngA

(
α3

ω

) 1
2

e
1
2
a0τ (sinh(ωτ + ωβ))

1
2 for A = 1, . . . , n, (3.20)

whilst the metric degrees of freedom are given by

e−4ψ =
(α
ω

)3
sinh3(ωτ + ωβ)ea0τ , (3.21)

eφ =
1

2
(−q0)−

1
2 (f(q1, . . . , qn))−

1
2 . (3.22)

The ± signs in (3.19)–(3.20) should be chosen such that the function eφ is well-defined.

3.3 The Nernst brane solution

In this section we want to look at the conditions on the various integration constants which

give rise to regular black brane solutions in four dimensions. In particular, we impose

that our solution has finite entropy density, which is the relevant regularity condition for

solutions with non-compact horizon.

Let us recall the form of the four-dimensional metric in the τ coordinates:

ds24 = −eφdt2 + e−φ+4ψdτ2 + e−φ+2ψ(dx2 + dy2). (3.23)

We will see below that for a suitable choice of integration constants τ =∞ is an event

horizon, while τ → 0 is the asymptotic regime at infinite distance. The regularity of the

solution within the bulk between horizon and infinity depends on the detailed properties

of the function f . In particular, when evaluating f on the solution, we require that it

has neither zeroes (so that there are in particular no changes of sign of eφ) nor poles.

Given the experience with similar issues for black hole solutions and domain walls, one

expects that such solutions exist for any prepotential arising in string theory upon suitable

restriction of the integration constants [35, 36]. In any case, such questions can only be

investigated explicitly on a case-by-case basis, while we restrict ourselves to questions that

can be answered irrespective of the choice of f .

The position of the event horizon can be found by looking at the value of τ for which

the norm of the Killing vector field k = ∂t vanishes. Since k2 = gtt = −eφ ∼ exp(−1
2B0τ −

3
4a0τ− 3

4ωτ) as τ →∞, we can identify the horizon with the limiting value τ →∞ provided
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a0 ≥ 0. If a0 < 0 then the position of the horizon will change depending on the relative

magnitudes of |a0| and B0, and so we will take a0 ≥ 0 in what follows.

The area of the horizon is given by∫
dxdy e−φ+2ψ

∣∣∣
τ→∞

,

which is divergent since the x and y coordinates are non-compact. However, we can still

define a finite entropy density s provided the factor e−φ+2ψ
∣∣
τ→∞ remains finite. From the

expressions (3.21)–(3.22) one can show that in this limit we have

e−φ+2ψ
∣∣∣
τ→∞

∼ exp

(
1

2
B0τ +

1

4
a0τ −

3

4
ωτ

)
.

In order that this be finite and non-zero at the horizon we therefore require

1

2
B0 +

1

4
a0 =

3

4
ω,

which turns out to be equivalent to fixing a0 = B0. Note that in this case we likewise have

ω = B0.

We still at this stage have four integration constants h0, B0, α, β which are a priori

yet to be determined. However, note that we can always absorb β into a shift of τ and a

redefinition of the constants α and h0. Indeed, it will be useful to set β = 0 at this stage

so that the asymptotic region of the solution is at τ = 0. Moreover, we see that in the

extremal B0 → 0 limit, the expression (3.17) becomes e−4/3ψ = ατ . Hence, we can scale

τ to set α = 1, matching the conventions of the extremal Nernst brane of [19]. We are

therefore left with a two-parameter family of solutions to the three-dimensional equations

of motion, parametrised by B0 and h0, which we will interpret in terms of thermodynamic

quantities in section 3.4.

Before moving on to study properties of the solution, we summarise the results so far:

the scalars qa and q̂a are given by

q0 = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.24)

qA = ± 3

8ngA
B
− 1

2
0 e

1
2
B0τ (sinh(B0τ))

1
2 for A = 1, . . . , n, (3.25)

˙̂q0 = −Q0, (3.26)

whilst the metric degrees of freedom are given by

e−4ψ =
1

B3
0

sinh3(B0τ)eB0τ , (3.27)

eφ =
1

2
(−q0)−

1
2 (f(q1, . . . , qn))−

1
2 . (3.28)

The physical scalar fields zA = Y A/Y 0 can be determined from the expressions

Y A = − i
2
eφqA, Y 0 = − 1

4q0
,
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which were obtained in [31], see appendix B. We find

zA = −i
( −q0q2A
f(q1, . . . , qn)

) 1
2

. (3.29)

Note that for B0 6= 0, q0 and qA all behave as exp(B0τ) when τ →∞. We will show in the

following section that this implies that the physical scalar fields take finite values on the

horizon for B0 6= 0.

3.4 Properties of the Nernst brane solution

We now turn to an analysis of various properties of the solution obtained in section 3.3,

postponing a fuller discussion to section 5.

A coordinate change. It is convenient to introduce the radial coordinate ρ via

e−2B0τ = 1− 2B0

ρ
≡W (ρ).

With this definition, the asymptotic region is situated at ρ → ∞, while the horizon is at

ρ = 2B0. In terms of ρ, we find the expressions

q0 = ± H0

W 1/2
, and qA = ± 3

8ngA
(ρW )−1/2 for A = 1, . . . , n,

where we have introduced the function6

H0(ρ) = −

Q0

B0
sinh

(
B0h0
Q0

)
+
Q0e

−B0h0
Q0

ρ

 .
The physical scalar fields zA(ρ) then take the form

zA = −i
(
± 8n

3g2A
f

(
1

g1
, . . . ,

1

gn

)−1
ρ1/2H0

) 1
2

.

Hence, for h0 6= 0 we find the asymptotic behaviour zA ∼ ρ1/4, whilst for h0 = 0 we find

zA ∼ ρ−1/4.
The four-dimensional line element (3.23) becomes

ds24 = −H− 1
2Wρ

3
4dt2 +H 1

2 ρ−
7
4
dρ2

W
+H 1

2 ρ
3
4 (dx2 + dy2), (3.30)

where we have found it convenient to define

H(ρ) ≡ ±4

(
3

8n

)3

f

(
1

g1
, . . . ,

1

gn

)
H0(ρ).

6We follow the sign conventions of [31]. See in particular section 5.3.1 for a comparison of conventions

for the STU -model.
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From this form of the metric, it is clear that the limit B0 → 0 can be achieved simply by

setting W = 1 and

H0|ext = −
(
h0 +

Q0

ρ

)
.

In this case we reproduce the extremal Nernst brane solutions of [19], albeit in different

coordinates. This identifies B0 as a parameter encoding the non-extremality of the solution.

For h0 = 0, the harmonic function for both the extremal and non-extremal solutions

becomes H0(ρ) = −Q0/ρ. The line element (3.30) then becomes

ds24|h0=0 = −Z− 1
2Wρ

5
4dt2 + Z

1
2 ρ−

9
4
dρ2

W
+ Z

1
2 ρ

1
4 (dx2 + dy2), (3.31)

where we have defined

Z ≡ ±4

(
3

8n

)3

Q0f

(
1

g1
, . . . ,

1

gn

)
,

with the sign chosen such that Z is positive. The corresponding extremal solution can be

obtained by setting the ‘blackening factor’ W = 1 in (3.31).

Near-horizon behaviour. To investigate the near-horizon behaviour of the line ele-

ment (3.30), we define r2 ≡ ρ − 2B0 and zoom in on the region r ≈ 0. We then find that

for B0 6= 0 the near-horizon metric looks like

ds24 = −
(
Ze

B0h0
Q0

)−1/2
(2B0)

1/4r2dt2 + 4

(
Ze

B0h0
Q0

)1/2

(2B0)
−5/4dr2

+

(
Ze

B0h0
Q0

)1/2

(2B0)
1/4(dx2 + dy2), (3.32)

which is the product of a two-dimensional Rindler spacetime with two-dimensional flat

space. We also include, for comparison, the near-horizon behaviour of the extremal solution

which, after putting ρ = R−4, becomes

ds24|Ext =
1

R

[
− 1

R4
Z−

1
2dt2 + 16Z

1
2dR2 + Z

1
2 (dx2 + dy2)

]
. (3.33)

By Wick rotating to Euclidean time t → tE = it in (3.32) and enforcing regularity of

the tE circle we can read off the temperature

4πTH = Z−1/2(2B0)
3/4e

−B0h0
2Q0 . (3.34)

We can also read off from (3.32) the entropy density of the solution, which is given by

s = Z1/2(2B0)
1/4e

B0h0
2Q0 . (3.35)

Note that from (3.34) and (3.35) we can eliminate the integration constant B0 in terms of

the thermodynamic quantities s and TH via.

B0 = 2πsTH . (3.36)
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Asymptotic behaviour. We now turn to a consideration of the asymptotic ρ → ∞
properties of the line element (3.30), which for h0 6= 0 becomes

ds24|asymp = H(∞)
1
2 ρ

1
4

[
− 1

H(∞)
ρ

1
2dt2 +

dρ2

ρ2
+ ρ

1
2 (dx2 + dy2)

]
.

Note that this is the same for both the extremal and non-extremal solutions. Making the

coordinate change ρ = R−4 then brings this to the form

ds24|asymp =
1

R3

[
−H(∞)−

1
2dt2 + 16H(∞)

1
2dR2 +H(∞)

1
2 (dx2 + dy2)

]
, (3.37)

which is conformally AdS4 with boundary at R = 0.

For the case h0 = 0, the asymptotic limit corresponds simply to W → 1 in (3.31), from

which we find the asymptotic line element (3.33), after a suitable coordinate redefinition.

Chemical potential. The gauge field strength F 0
τt is determined from the scalar field q̂0

via (B.5):

Ȧ0
t = 2 ˙̂q0 = 2H̃00 ˙̂q0 = −Q0

2q20
.

Substituting in the expression (3.24) and integrating with respect to τ gives

At(τ) =
1

2

(
B0

Q0

)[
coth

(
B0τ +

B0h0
Q0

)
− 1

]
, (3.38)

where we have chosen the integration constant such that At(∞) = 0, i.e. that the gauge

fields vanish on the horizon.7 The chemical potential µ is then given by the asymptotic

value of At,

µ ≡ At(0) =
1

2

(
B0

Q0

)[
coth

(
B0h0
Q0

)
− 1

]
, (3.39)

which diverges as h0 → 0. Note that in the extremal limit B0 → 0 with h0 6= 0 we get

µext = 1/(2h0).

Thermodynamics and the Nernst law. We are now in a position to relate the inte-

gration constants B0 and h0 appearing in our solution to the thermodynamic quantities s,

TH and µ. In particular, we can rearrange (3.39) to find

e
2B0h0
Q0 = 1 +

B0

Q0µ
= 1 +

2πsTH
Q0µ

,

where we have used (3.36). Returning to (3.35) we then find an equation determining the

entropy density as a function of the electric charge Q0, fluxes g1, . . . , gn, temperature TH
and chemical potential µ of the black brane:

s3 = 4πZ2TH

(
1 +

2πsTH
Q0µ

)
. (3.40)

One consequence of (3.40) is that, if we keep Z, Q0 and µ fixed and send TH → 0, we

see that s → 0, which is precisely the strict (Planckian) formulation of the third law

7See e.g. [2] for motivation for this condition.
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TH

s

d

c

b

aμ=0.1

μ=0.25

μ=1

μ=10,000

s

TH0

Figure 1. Mathematica plot of (3.40), showing how entropy density s varies with temperature TH
for various values of the chemical potential µ, and with Q0 and Z fixed.

of thermodynamics [9]. This identifies the solution constructed in section 3.3 as a non-

extremal (‘hot’) Nernst brane.

We can further analyse (3.40) by looking at the dimensionless ratio TH/µ. When TH/µ

is small, the second term in (3.40) becomes negligible, and we find that the entropy density

behaves as s ∼ T
1/3
H . On the other hand, when TH/µ becomes large, the second term

in (3.40) dominates, and we find the behaviour s ∼ TH .

In figure 1 we plot equation (3.40) for various values of µ, keeping Q0 and Z fixed.

This shows a) the Nernst Law behaviour s→ 0 as TH → 0, and b) the crossover from the

behaviour s ∼ T 1/3
H to s ∼ TH .

4 A magnetic black brane

We now turn our attention to a simple reformulation of the procedure in section 3 which for

a certain class of prepotentials allows us to construct non-extremal black branes carrying

magnetic charge. We will here simply present the supergravity solution, and leave a fuller

discussion of the thermodynamics of magnetically-charged black branes for future work.

In particular, we are interested in prepotentials for which one of the fields Y 1, . . . , Y n

decouples from the others. Without loss of generality, we can assume that Y 1 decouples,

and consider prepotentials of the form

F (Y ) =

(
Y 1

Y 0

)
f̃(Y 2, . . . , Y n),

where the function f̃ is homogeneous of degree 2. This class is particularly interesting

from the perspective of embedding the model into string theory as it contains the tree-level

heterotic prepotentials, which are linear in the heterotic dilaton Y 1/Y 0. We consider black
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brane solutions which are supported by a single magnetic charge P 1, a magnetic flux g0,

and electric fluxes g2, . . . , gn.

In this case we see that the equations of motion can be solved in precisely the same

way as in section 3, with the field q1 and magnetic charge P 1 playing the role of q0 and Q0

in the preceding section. In particular, we have

q1(τ) = ±P
1

B0
sinh

(
B0τ +B0

h1

P 1

)
,

whilst q0 and q2, . . . , qn take the same form as (3.20) after replacing g1 with g0 in the

obvious place. Moreover, the function ψ remains unchanged and, since

eφ =
1

2
(−q0q1f̃(q2, . . . , qn))−

1
2 ,

is symmetric in q0 and q1, we find that the line element takes the same form as in section 3.

Looking at the near-horizon behaviour we again find that regularity of the solution imposes

the same relation between the integration constants, a0 = B0, as before. The entropy

density is therefore

s = Z1/2(2B0)
1/4e

B0h
1

2P1 ,

whilst the temperature of the solution is given by

4πTH = Z−1/2(2B0)
3/4e−

B0h
1

2P1 .

5 Discussion and conclusions

In this paper we have provided a new technique for the construction of non-extremal

black brane solutions to large classes of N = 2 U(1) gauged supergravity models, utilising

the techniques of time-like dimensional reduction followed by a rewriting of the effective

three-dimensional degrees of freedom through the real formulation of special geometry.

In section 3 we explicitly constructed a family of non-extremal black branes supported

by a single electric charge and an arbitrary number of electric fluxes. This family of

branes has an entropy density behaving as s ∼ T 1/3 for T → 0, which therefore vanishes

at T = 0, where we recover the extremal Nernst brane solutions of [19]. We anticipate

that such non-extremal Nernst branes will have interesting applications in the context of

holography, where they could prove useful in describing dual field theory configurations at

finite temperature and chemical potential which satisfy the Nernst Law.

One issue with regards to a holographic interpretation is that our solutions do not

fit naturally into the framework of AdS/CMT, since they do not asymptote to AdS4, but

rather conformal AdS4, as seen in (3.37). Hence, the stress tensor of the dual field theory

in the UV would not be scale invariant. However, in recent years much progress has been

made in understanding the holographic description of such ‘hyperscaling violating’ theories,

as well as the more general class of hyperscaling violating Lifshitz (hvLif) theories [4, 5, 37],

which we now review.
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Consider spacetime geometries of the form (we use the conventions of [4])

ds2d+2 = r−
2(d−θ)
d

(
−r−2(z−1)dt2 + dr2 + dx2i

)
, (5.1)

where i = 1, . . . , d label the spatial directions on the boundary, z is the ‘dynamical critical’

(Lifshitz) exponent, and θ is the ‘hyperscaling violating’ exponent.8 Note that for z = 1,

θ = 0 one recovers the metric on AdSd+2.

By looking at the near-horizon and boundary behaviour of our solutions, we see that

the Nernst brane interpolates between two hvLif geometries (5.1) with d = 2. There are

four cases of interest, corresponding to whether h0 and B0 are zero or non-zero:

• h0 = 0, B0 = 0: the solution becomes globally hvLif (3.33) with (z, θ) = (3, 1). It

has zero temperature and infinite chemical potential.

• h0 = 0, B0 6= 0: the solution (3.31) has finite temperature and infinite chemical

potential, and interpolates between a near-horizon Rindler geometry (3.32), with

(z, θ) = (0, 2), and an asymptotic hvLif geometry with (z, θ) = (3, 1).

• h0 6= 0, B0 = 0: the solution has zero temperature and a finite chemical potential.

It interpolates between a hvLif geometry with (z, θ) = (3, 1) at the horizon, and the

conformal AdS4 geometry (3.37) with (z, θ) = (1,−1) at infinity. This is the Nernst

brane solution of [19].

• h0 6= 0, B0 6= 0: the solution (3.30) has finite temperature and chemical potential,

and interpolates between a near-horizon Rindler geometry with (z, θ) = (0, 2) and

the conformal AdS4 geometry with (z, θ) = (1,−1) at infinity.

Note that all of these values are consistent with the constraints imposed by the Null Energy

Condition [4]. We have therefore found, analytically, a family of solutions which interpolate

between two hvLif geometries. This family is parametrised by the two integration constants

B0 and h0, or equivalently by the temperature T and chemical potential µ of the solution,

both of which can be freely varied. Both parameters have a distinct effect on the near

horizon and asymptotic forms of the solution: while the extremal or zero temperature limit

B0 → 0 changes the near horizon solution from (z, θ) = (0, 2) to (z, θ) = (3, 1), the infinite

chemical potential limit h0 → 0 changes the geometry at infinity from (z, θ) = (1,−1)

to (z, θ) = (3, 1). If both limits are performed we obtain a global hvLif solution with

(z, θ) = (3, 1) which we interpret as the ground state of the given charge sector. Note that

like any Lifshitz solution different from AdS it is not geodesically complete, and that the

scalars are non-constant and run off to zero or infinity in the asymptotic regions. However,

a similar behaviour can occur for domain wall solutions in gauged supergravity which,

for lack of more symmetric solutions, are interpreted as ground states. Sometimes this

interpretation can be further justified by an embedding into string theory or M-theory, see

for example [40]. While we leave studying the string theory embedding of our solutions

8We refer the reader to e.g. [4, 5, 37] for further details. For recent results on hvLif-like solutions in

supergravity, see [38, 39].
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for future work, we remark that the interpretation is consistent with a limit where the

temperature is zero and the chemical potential infinite.

Since so far solutions interpolating between hvLif geometries have only been found by

relying on a mixture of analytical and numerical methods, we have made a significant step

forward, and expect that the techniques used and described in this paper will be useful

in making further progress. While we leave searching for a concrete holographic dual of

the bulk geometries presented in this paper to future work, we can already make some

interesting observations which shed some light on the properties which such a putative

dual theory might possess.

Let us first consider the extremal (B0 = 0) solution with h0 = 0. Since this is the grav-

itational ground state solution with (z, θ) = (3, 1), zero temperature and infinite chemical

potential, we expect it to be dual to the ground state of a (2 + 1)-dimensional QFT with

hyperscaling exponent θ = 1 and Lifshitz exponent z = 3. We remark that the specific

value θ = 1 for a QFT in d = 2 space dimensions seems to be required for the description

of states with hidden Fermi surfaces, although a three-loop calculation gives z = 3
2 rather

than z = 3 [5].

Now consider turning on some finite temperature T > 0 on the field theory side. By a

simple scaling argument, one can argue [5] that the entropy density of the thermal state is

related to the temperature as s ∼ T d−θ
z = T 1/3. We therefore expect that the non-extremal

Nernst brane with h0 = 0 in (3.31) provides us with the relevant gravity dual to the (2+1)-

dimensional QFT with θ = 1 and z = 3 at finite temperature. Indeed, taking µ → ∞ in

the relation (3.40) we see that the entropy density of the brane solution is related to the

temperature as s ∼ T 1/3 which is the expected behaviour from the field theory arguments,

and therefore consistent with our tentative interpretation.

We now move on to consider what happens at finite chemical potential µ <∞, which

corresponds to h0 6= 0. In this case, the extremal Nernst brane interpolates between a

hvLif geometry with (z, θ) = (3, 1) at the horizon, and a hvLif with (z, θ) = (1,−1) at

infinity, which is conformal to AdS4. One possible interpretation is as an RG flow between

two QFTs: one with hyperscaling exponent θ = −1 in the UV; and one with hyperscaling

exponent θ = 1 and Lifshitz exponent z = 3 in the IR. As the gravity solution is smooth,

and we do not seem to have a natural candidate for an order parameter identifying a phase

transition, we think that the more likely interpretation is that the UV ‘phase’ and the IR

‘phase’ are related by smooth crossover. For the IR theory we expect that the entropy

scales like s ∼ T
d−θ
z = T

1
3 , which agrees with the behaviour of the Nernst brane solution

for low temperature T
µ � 1. Adding temperature changes the near horizon geometry, but

leaves the asymptotic geometry at infinity unchanged, which is consistent with interpret-

ing these configurations as thermal states. We therefore expect that the IR behaviour is

correctly described by the Nernst brane solution, which in turn predicts a scaling s ∼ T

of the entropy for high temperatures, T
µ � 1. This however does not agree with the ex-

pected scaling of our tentative UV theory with (z, θ) = (1,−1), which predicts s ∼ T 3.

We also note that the asymptotic UV geometry, while conformal to AdS4, cannot be inter-

preted as an alternative ground state of our supergravity theory, because it is not, when

taken as a global geometry, part of our family of solutions. Moreover, the physical scalar

– 23 –



J
H
E
P
0
5
(
2
0
1
5
)
0
7
9

s ∼ T 3 in far UV

s ∼ T
1
3

s ∼ T

µ

T
H

1

Figure 2. The holographic phase diagram for our family of Nernst brane solutions in terms of hori-

zon temperature, TH , and chemical potential, µ, which shows a smooth crossover between the two

scaling regimes. We have also indicated that we anticipate a different scaling behaviour in the far UV

where we don’t expect that our supergravity solution accurately describes the tentative dual theory.

fields zA ∼ ρ1/4 run off to infinity in the UV region, which indicates strong coupling or

decompactification. Taken together this suggests that the description in terms of our four-

dimensional gauged supergravity theory is incomplete in the UV, and that further degrees

of freedom become relevant. If we accept that the UV geometry correctly captures the ther-

modynamic behaviour then the corresponding UV theory should have a scaling behaviour

s ∼ T 3 (z = 1, θ = −1, d = 2). The resulting tentative phase diagram is shown in figure 2.

The above mentioned analogy with domain walls together with the runaway behaviour

of the scalars suggests to interpret the UV behaviour as a decompactification limit and to

embed the four-dimensional supergravity theory into a higher dimensional theory. Since

the class of prepotentials that we have considered in this paper includes those ‘very special’

prepotentials for which the theory can be uplifted to five dimensions, the most obvious em-

bedding is into five-dimensional supergravity. There are grounds to believe [37] that the

dimensional reduction of theories admitting AdSD vacua would admit vacua with some

nontrivial hvLif behaviour. Therefore we expect that by lifting our solutions to five dimen-

sions we will obtain new asymptotically AdS5 finite temperature solutions in N = 2 gauged
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supergravity which still satisfy the Nernst Law.9 We will expand on this point in [41],

and remark that an asymptotic AdS5 leads to a scaling of the entropy s ∼ T
d−θ
z = T 3,

(z = 1, θ = 0, d = 3), which is consistent with our proposed UV theory.

We should also point out that there are issues with the interpretation of our solutions if

the temperature is strictly zero, since the Nernst brane solution has infinite tidal forces and

run-away behaviour of the scalars at the horizon in the extremal limit. This again indicates

a breakdown of the effective description, and strictly speaking the supergravity solution

should only be trusted at low but finite temperature. Thus, as in the similar case of the

holographic interpretation of hyperscaling violating solutions of Einstein-Maxwell-Dilaton

theories [4], the Nernst brane solution is not a valid description of its (tentative) dual over

the full range of the energy (radial coordinate) from the UV (infinity) to the IR (horizon),

but only over a finite interval outside the horizon. We leave it to future work to characterize

the range of validity more quantitatively, and to identify the necessary completions in the

UV and IR using a string theory embedding. One possible strategy to further investigate

the zero temperature limit is to adapt formalisms that allow to include higher derivative

terms. In N = 2 supergravity a certain class of higher derivative terms (those encoded

in the so-called Weyl multiplet), which are related to the topological string, lead to a

generalization of the framework of special geometry, on which we relied in the article [21,

22, 42–45]. One could also try to adapt the entropy function formalism [24], which employs

universal properties of near horizon geometries and does not depend on supersymmetry.

Finally we comment on further possible future directions on the gravity side. Here it

would be interesting to find solutions where other and possibly more charges and fluxes

have been turned on. We expect that our formalism is particularly suited to finding dyonic

solutions, due to its built-in electric-magnetic covariance [34]. For work in this direction

it is encouraging that work on static BPS solutions in U(1) gauged supergravity solutions

with symmetric scalar target spaces has led to the construction of the general dyonic

solution [46–49].

We think that the systematic methods and explicit analytical solutions interpolating

between hvLif geometries that we have presented in this paper will help to make progress

towards a classification of solutions in gauged supergravity, and of the hvLif landscape,

and to extend and deepen our understanding of the field theory/gravity dictionary.
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A Scalar potential in the real formulation of special geometry

In this appendix we review the real formulation of special geometry introduced in [27], based

on the work of [50, 51], and extend it to include scalar potentials of the form (2.3), which re-

sult from a flux superpotential (2.4). Starting from the holomorphic formulation, where the

complex scalars XI parametrise a conic affine special Kähler (CASK) manifold, and where

all vector multiplet couplings are encoded in a holomorphic prepotential F (XI), which is

homogeneous of degree two, one introduces special real coordinates (qa) =
(
xI , yI

)T
, where

XI = xI + iuI , FI(X) = yI + ivI .

Note that FI = ∂F
∂XI is homogeneous of degree one. In the real formulation all vector

multiplet couplings are encoded in a Hesse potential H(qa), which is homogeneous of degree

two, and which is obtained from the imaginary part of the holomorphic prepotential by a

Legendre transformation, which replaces uI by yI as an independent variable:

H
(
xI , yI

)
= 2 ImF (X (x, y))− 2yIu

I (x, y) =
i

2

(
XI F̄I(X)− FI(X)X̄I

)
. (A.1)

The special real coordinates qa are Darboux coordinates, and the Kähler form on the CASK

manifold is simply

dxI ∧ dyI =
1

2
Ωabdq

a ∧ dqb , Ωab =

(
0 1

−1 0

)
.

It is useful to note that the first derivatives Ha of the Hesse potential are related to

the imaginary parts of XI and FI by

Ha = 2(vI ,−uI)T ,

and provide an alternative, ‘dual’ coordinate system on the CASK manifold.

To obtain the associated projective special Kähler (PSK) manifold, one imposes the

D-gauge −2H = κ−2, together with a condition which fixes a U(1) gauge. If one wants to

preserve symplectic covariance, one postpones fixing a U(1) gauge and retains a local U(1)

gauge invariance. Geometrically this corresponds to working on the total space of a U(1)

principal bundle over the PSK manifold.

In [27] it was shown how to express all couplings appearing in the bosonic part of the

vector multiplet Lagrangian in terms of real coordinates. In particular the CASK metric

NIJ = 2ImFIJ is replaced by the Hessian metric

Hab =
∂2H

∂qa∂qb
.

For the purpose of this paper we need to rewrite the scalar potential V (X, X̄) of (2.3),

and the associated flux superpotential W (X) of (2.4), in terms of real coordinates. Using
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that Ha = Habq
b by homogeneity, and using the formulae given above, it is straightforward

to obtain

W = W (qa) = W (xI , yI) = 2ga
(

Ωab +
i

2
Hab

)
qb = iga (Hab − 2iΩab) q

b, (A.2)

where we have defined (ga) := (gI , gI)
T .

In order to obtain the potential V as given in (2.3), we must compute the derivatives

∂IW =
∂W

∂XI
=

1

2

(
∂

∂xI
− i ∂

∂uI

)
W.

Since this derivative involves the real coordinates (xI , uI) rather than (qa) = (xI , yI)
T , we

apply the chain rule to W (x, y(x, u)) and compute

∂W

∂xI

∣∣∣∣
u

=
∂W

∂xI

∣∣∣∣
y

+
∂yJ
∂xI

∂W

∂yJ

∣∣∣∣
x

, and
∂W

∂uI

∣∣∣∣
x

=
∂yJ
∂uI

∂W

∂yJ

∣∣∣∣
x

.

After decomposing the second derivatives of the prepotential F into real and imaginary

parts (including a conventional factor of 2) by 2FIJ = RIJ + iNIJ , one can apply the chain

rule to show that
∂yJ
∂xI

=
1

2

(
FIJ + F̄IJ

)
=

1

2
RIJ ,

and read from [27] that
∂yJ
∂uI

= −1

2
NIJ .

Combining this, we find

∂W

∂XI
=

1

2

(
∂W

∂xI
+ FIJ

∂W

∂yJ

)
,

∂W̄

∂X̄I
=

1

2

(
∂W̄

∂xI
+ F̄IJ

∂W̄

∂yJ

)
.

Finally, we can put all of this together to obtain

N IJ∂IW∂JW̄ =
1

4
Wa

(
Hab +

i

2
Ωab

)
W̄b, (A.3)

where (Wa) =
(
∂W
∂xI

, ∂W∂yJ

)T
, Hab is the inverse Hessian metric on the CASK manifold

(see [27]), and Ωab is the inverse of Ωab.

Using (A.2), we have that

Wa = igb (H − 2iΩ)ba , W̄a = −igb (H + 2iΩ)ba . (A.4)

This can be substituted into (A.3), which after simplification becomes

N IJ∂IW∂JW̄ = Habg
agb, (A.5)

where we have used the identity10 HabΩ
bcHcd = −4Ωad [27].

10This is the standard relation between the metric and Kähler form of a Kähler manifold. The numerical

factor is due to conventional choices.
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The final expression for the scalar potential given purely in terms of real coordinates

then comes from (2.3) using (A.2) and (A.5) as follows:

V = gaHabg
b − 2κ2ga (Hac − 2iΩac) q

cgb (Hbd + 2iΩbd) q
d

= gagb
[
Hab − 2κ2HaHb − 8κ2 (Ωq)a (Ωq)b

]
, (A.6)

where we have used homogeneity Ha = Habq
b. Lastly, we substitute the D-gauge condition

−2H = κ−2 into (A.6) to obtain

V = gagb
[
Hab +

HaHb + 4 (Ωq)a (Ωq)b
H

]
. (A.7)

Note that the expression within the square brackets is homogeneous of degree zero. This

is useful in order to rewrite V in terms of rescaled variables after dimensional reduction.

B Adapting the real formulation of special geometry to dimensional re-

duction

We shall now define the various terms appearing in the three-dimensional Lagrangian (2.6),

which uses a modified version of the real formulation of special geometry that is adapted to

dimensional reduction. We follow the conventions of [27], to which we refer the reader for

further details. Firstly, the complex scalar fields, XI , appearing in the four-dimensional

Lagrangian (2.1), are replaced by rescaled scalars

Y I := eφ/2XI , (B.1)

where φ is the Kaluza Klein scalar. In the four-dimensional theory parametrised by the

XI the radial direction of the CASK manifold, which is generated by the vector field

ξ = XI ∂

∂XI
+ X̄I ∂

∂X̄I
,

is a gauge degree of freedom. The above rescaling promotes it to a physical degree of

freedom, which is equivalent to the Kaluza-Klein scalar. It turns out that this rescaling

leads to a convenient parametrization of the reduced three-dimensional theory. Rewriting

the D-gauge condition (2.2) in terms of Y I , we obtain

− i
(
Y I F̄I − FI Ȳ I

)
= eφ(Y, Ȳ ), (B.2)

which determines φ in terms of the scalar fields Y I .

Due to the homogeneity properties of the prepotential and Hesse potential, we can

obtain a real parametrization which is based on the rescaled complex scalars Y I . The

associated real coordinates are defined by the decomposition

Y I = xI + iuI(x, y), FI(Y ) = yI + ivI(x, y),

as

qa :=
(
xI , yI

)T
= Re

(
Y I , FI(Y )

)T
. (B.3)
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Furthermore, after reducing to three dimensions it is possible to write the gauge degrees

of freedom using scalar fields as well. In particular, we define

q̂a :=

(
1

2
ζI ,

1

2
ζ̃I

)T
, (B.4)

where ζI are the components of the four-dimensional gauge fields AIµ̂ along the reduction

direction, and ζ̃I are the Hodge-duals of the three-dimensional vector parts. Specifically,

these scalars descend from the four-dimensional field strengths as follows:

∂µζ
I := F Iµ0, ∂µζ̃I := GI|µ0, (B.5)

where GI|µ̂ν̂ are defined as

GI|µ̂ν̂ := RIJF J|µ̂ν̂ − IIJ F̃ Jµ̂ν̂ .

We can make further use of Hodge duality to encode the Kaluza-Klein vector degree of

freedom using the scalar field φ̃ [27], although we will not need this here since we deal only

with static configurations.

In terms of rescaled complex scalars Y I and rescaled real variables qa, the relation

between prepotential F (Y I) and Hesse potential H(qa) is

H
(
xI , yI

)
= 2 ImF (Y (x, y))− 2yIu

I (x, y) =
i

2

(
Y I F̄I(Y )− FI(Y )Ȳ I

)
= −1

2
eφ.

We also note that the D-gauge, when expressed in terms of rescaled real scalars, reads

− 2H (qa) = eφ. (B.6)

In the Lagrangian (2.6), we also use the tensor field

H̃ab :=
∂2

∂qa∂qb
H̃, H̃ := −1

2
log (−2H). (B.7)

This tensor can be interpreted as a metric on the CASK manifold, which is related to

Hab by flipping the signature along the radial direction generated by the field ξ, combined

with a conformal transformation which changes the scale transformation qa → λqa, where

λ ∈ R>0, from being a homothety to being an isometry. This follows from the obvious

fact that while Habdq
adqb is homogeneous of degree 2, H̃abdq

adqb is homogeneous of degree

0. Note that the metric coefficients Hab and H̃ab are homogeneous of degrees 0 and −2,

respectively. Both tensors are related by

H̃ab =
1

(−2H)

(
Hab −

HaHb

H

)
. (B.8)

It will be convenient for us to introduce a set of dual coordinates with respect to the

metric H̃ab defined by

qa := H̃a :=
∂H̃

∂qa
= −Ha

2H
=
−1

H

(
vI
−uI

)
. (B.9)

– 29 –
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One can show that

qa = −H̃abq
b, ∂µqa = H̃ab∂µq

b, (B.10)

where we have used that H̃a is homogeneous of degree −1 for the first identity and the

chain rule for the second.

It is also possible to use this metric to lower the index on ∂µq̂
a to obtain the co-vector

field

∂µq̂a := H̃ab∂µq̂
b. (B.11)

Finally, we re-express the scalar potential in terms of variables adapted to dimensional

reduction. Since, as we remarked, the expression in the square brackets of (A.7) is homo-

geneous of degree zero, it remains invariant if we rescale the real coordinates qa by eφ/2.

To express V in terms of the tensor H̃ab we use the relation (B.8) to write

V = −2Hgagb
[
H̃ab −

HaHb

H2
− 2

(Ωq)a (Ωq)b
H2

]
. (B.12)

Finally, we use (B.9) to re-write V in terms of the dual coordinates qa, and take into

account that upon dimensional reduction the term −V in the Lagrangian gets multiplet

by e−φ = − 1
2H and obtain

1

2H
V = −gagb

[
H̃ab − 4qaqb − 2

(Ωq)a (Ωq)b
H2

]
. (B.13)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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