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1 Introduction and general idea

While perturbation theory is a central tool for any physicist, there are no general equivalent

methods to study quantum field theories (QFTs) at large coupling. In principle, using

the Path Integral and the Renormalization Group (RG) proposed by Wilson one could

calculate any observable for any QFT, by discretizing the theory on a lattice and having

access to a large enough computer. As it is well known, there are limitations to this Lattice

Field theory-project and the practicalities of it are quite involved (but progress has been

continuously ongoing for the past few decades).

Another prominent tool — duality — emerged in different examples almost seventy

years ago. In the past quarter-century it has become a central idea in Mathematical Physics.

The two dualities that guide the present investigation are non-Abelian T-duality

(NATD) and the duality between gauge theories and quantum gravity theories proposed

by Maldacena in [1].

The non-Abelian T-duality originally presented in [2] was further developed and care-

fully inspected in [3]- [8]. See the lectures [9] for a nice account of some of the dualities

that follow from a Buscher procedure.

The interaction between the Maldacena duality and NATD started in the paper [10].

Indeed, Sfetsos and Thompson applied NATD to the maximally symmetric example of

AdS5 × S5, finding a metric and RR-fields that preserved N = 2 SUSY. When lifted to

eleven dimensions, the background fits (not surprisingly) into the classification of [12].

What is interesting is that Sfetsos and Thompson [10] generated a new solution to the

Gaiotto-Maldacena differential equation [13], describing N = 2 SUSY CFTs of the Gaiotto-

type [14, 15]. This logic was profusely applied to less supersymmetric cases in [16]- [19–24];

finding new metrics and defining new QFTs by the calculation of their observables.

Nevertheless, various puzzles associated with NATD remain. One of them, which

has been around since the early days of the topic, refers to global aspects of the metrics

generated. In more concrete terms, the periodicity (if any) of the dual coordinates (the

Lagrange multipliers in the sigma-model) is not known. In the same vein, the precise dual

field theory to the backgrounds generated by NATD is not clear at the moment of writing

this article.

In this paper we present possible solutions to the two puzzles above — at least in

particular examples. Our study begins with Type IIB backgrounds dual to a compactifi-

cation of the Klebanov-Witten CFT [30] to a 2-d CFT. We will present these backgrounds

for different compactifications and perform a NATD transformation on them, hence gen-

erating new smooth and SUSY solutions with AdS3-factors in Type IIA and M-theory.

Application of a further T-duality generates new backgrounds in Type IIB with an AdS3-

factor which are also smooth and preserve the same amount of SUSY. We will make a

proposal for the dual QFT and interpret the range of the dual coordinates in terms of a

field theoretic operation.

The picture that emerges is that our geometries describe QFTs that become conformal

at low energies. These CFTs live on the intersection of D2 and D6 branes suspended

– 2 –
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Figure 1. On the left: known solutions on which NATD is performed. On the right: QFT’s that

correspond to the NATD SUGRA solutions.

between NS5 branes. While crossing the NS5 branes, charge for D4 branes is induced and

new nodes of the quiver appear.

We will present the calculation of different observables of the associated QFTs that

support the proposal made above. These calculations are performed in smooth supergravity

solutions, hence they are trustable and capture the strong dynamics of the associated 2-

d CFTs.

The logic of this paper is a continuation of that in the previous works of Sfetsos-

Thompson [10] and Itsios-Nunez-Sfetsos-Thompson (INST) [16, 17]. The connection be-

tween the material in this work and those papers is depicted in figure 1 below.

The organization of this paper is as follows. In Part I of this work, covered in sections 2

to 5, we present Type IIB backgrounds that are already known and the new ones (in Type

IIA, IIB and M-theory) that we construct. The table 1 summarizes these solutions. In

Part II, starting in section 6, we begin the study of the field theoretical aspects encoded by

the backgrounds of Part I. Section 7 deals with the quantized charges, defining ranks of the

gauge groups. Section 8 studies the central charge computed holographically, either at the

fixed points or along the anisotropic flows (where a proposal for a c-function is analyzed).

This observable presents many clues towards the understanding of the associated QFTs.

– 3 –
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Solutions IIB NATD NATD-T Uplift

Flow from AdS5 × T 1,1 to AdS3 ×H2 × T 1,1 N = (0, 2)

Fixed points AdS3 × Σ2 × T 1,1 : Σ2 = S2, T 2, H2 (non-SUSY)

2.1 3.1 4 5.1

The Donos-Gauntlett solution 2.2 3.2 — 5.2

Table 1. Summary of solutions contained in Part I. The numbers indicate the section where they

are discussed. We refer to the SUSY preserved in two-dimensional notation.

Section 9 presents a detailed study of Wilson loops and entanglement entropy of the QFT at

the fixed points and along the flow. Summary, conclusions and future directions of research

are spelt out in section 10. The presentation is complemented by generous appendices where

many useful technical points have been relegated.

Note added: while this paper was in the final writing stages, the work [31] appeared. It

superposes with the material in our section 3.2.

– 4 –
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Part I

Geometry

In this Part, we will exhaustively present a large set of backgrounds solving the Type IIB or

Type IIA Supergravity equations. Most of them are new, but some are already present in

the bibliography. New solutions in eleven-dimensional Supergravity will also be discussed.

These geometries, for the most part, preserve some amount of SUSY.

The common denominator of these backgrounds will be the presence of an AdS3 sub-

manifold in the ten or eleven dimensional metric. This will be interpreted as the dual

description of strongly coupled two dimensional conformal dynamics. In most of the cases,

there is also a flow, connecting from an AdS3 fixed point to an AdS5, with boundary

R1,1×Σ2. The manifold Σ2 will be a constant curvature Riemann surface. As a consequence

we conjecture that the full geometry is describing the strongly coupled dynamics of a four

dimensional QFT, that is conformal at high energies and gets compactified on Σ2 (typically

preserving some amount of SUSY). The QFT flows at low energies to a 2-d CFT that is

also strongly coupled.

The solutions that we are going to present in this section, can be found by inspection

of the Type II equations. This requires a quite inspired ansatz. More practical is to search

for solutions of this kind in five dimensional gauged supergravity, see the papers [32–36]

for a detailed account of the Lagrangians. Some other solutions are efficiently obtained by

the use of generating techniques, for example a combination of Abelian and non-Abelian

T-duality, that are applied to known (or new) backgrounds, as we show below.

We now present in detail, the solutions we will work with in this paper.

2 Simple flows from AdS5 × T 1,1 to AdS3 × M7 in Type IIB

We start this section by proposing a simple background in Type IIB. In the sense of the

Maldacena duality, this describes the strongly coupled dynamics of an N = 1 SUSY QFT

in four dimensions, that is compactified to two dimensions on a manifold Σ2. In order

to allow such a compactification we turn on a 1-form field, A1, on the Riemann surface

Σ2. Motivated by the works [32–36], where the authors consider dimensional reductions

to five dimensions of Type IIB supergravity backgrounds on any Sasaki-Einstein manifold,

we propose the following ansatz,

ds2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bds2

Σ2
+ dr2 + e2Uds2

KE + e2V (η + zA1)2 ,

F5

L4
= 4e−4U−V Vol5+2J ∧ J ∧ (η+zA1)−zVolΣ2 ∧ J ∧ (η+zA1)− ze−2B−V VolAdS3 ∧ J,

Φ = 0, C0 = 0, F3 = 0, B2 = 0.

(2.1)

We will focus on the case in which the Sasaki-Einstein space is T 1,1, hence the Kähler-

Einstein manifold is

ds2
KE =

1

6
(σ2

1 + σ2
2 + ω2

1 + ω2
2) , (2.2)
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where we have defined,

σ1 = dθ1, σ2 = sin θ1dφ1,

σ3 = cos θ1dφ1,

ω1 = cosψ sin θ2dφ2 − sinψdθ2, ω2 = sinψ sin θ2dφ2 + cosψdθ2,

ω3 = dψ + cos θ2dφ2,

VolAdS3 = e2Ady0 ∧ dy1 ∧ dr,

Vol5 = e2BVolAdS3 ∧VolΣ2 , z ∈ R,

η =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) ,

J = − 1

6
(sin θ1dθ1 ∧ dφ1 + sin θ2dθ2 ∧ dφ2) . (2.3)

Below, we will find that the parameter z is selected to be z = −1
3 , by imposing that some

amount of SUSY is preserved. From a gauged supergravity perspective, this is related to

the ‘spin’ with which particles rotate under the twist.

The forms η and J verify the relation dη = 2 J . The range of the angles in the σ′is

and the ωi’s — the left invariant forms of SU(2) — is given by 0 ≤ θ1,2 < π, 0 ≤ φ1,2 < 2π

and 0 ≤ ψ < 4π. The ωi satisfy dωi = 1
2 εijk ωj ∧ ωk. We also defined a one form A1,

that verifies dA1 = VolΣ2 . As usual ds2
Σ2

is the metric of the two dimensional surface of

curvature κ = (1,−1, 0), denoting a sphere, hyperbolic plane1 or a torus respectively. In

local coordinates these read,

A1 = − cosα dβ, VolΣ2 = sinα dα ∧ dβ, ds2
Σ2

= dα2 + sin2 αdβ2, (κ = 1) ,

A1 = coshα dβ, VolΣ2 = sinhα dα ∧ dβ, ds2
Σ2

= dα2 + sinh2 αdβ2, (κ = −1) ,

A1 = α dβ, VolΣ2 = dα ∧ dβ, ds2
Σ2

= dα2 + dβ2, (κ = 0) .

(2.4)

A natural vielbein for the metric (2.1) is,

ey0 = LeAdy0 , ey1 = LeAdy1 , eα = LeBdα ,

eβ = LeBA0dβ , er = Ldr ,

eσ1 = L
eU√

6
σ1 , eσ2 = L

eU√
6
σ2 , e1 = L

eU√
6
ω1 ,

e2 = L
eU√

6
ω2 , e3 = LeV (η + zA1) ,

(2.5)

with A0 = sinhα for H2, A0 = sinα for S2 and A0 = 1 for T 2.

1To be precise, we do not consider the hyperbolic plane H2, as it has infinite volume. What we consider

is a compact space H2/Γ obtained by quotient by a proper Fuchsian group [37], and its volume is given by

4π(g − 1), where g is the genus of H2/Γ.

– 6 –
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As anticipated, the background above describes the strong dynamics for a compactifi-

cation of a four dimensional QFT to two dimensions. In the case that we are interested in

this work — in which the Kähler-Einstein manifold is the one in eq. (2.2) — the four dimen-

sional QFT at high energy asymptotes to the Klebanov-Witten quiver [30] on R1,1 × Σ2.

As it will be clear, most of our results will be valid for the case of a general Y p,q or any

other Sasaki-Einstein manifold and their associated QFT. Indeed, these solutions can be

obtained by lifting to Type IIB, simpler backgrounds of the five-dimensional supergravity

in [33–36]. In fact, the 5-d supergravity Lagrangian was written for any Sasaki-Einstein

internal space.

Assuming that the functions A,B,U, V depend only on the radial coordinate r, we

can calculate the BPS equations describing the SUSY preserving flow from AdS5× T 1,1 at

large values of the radial coordinate to AdS3 ×M7. The end-point of the flow will be dual

to a 2-d CFT obtained after taking the low energy limit of a twisted KK compactification

of the Klebanov-Witten QFT on Σ2. Imposing a set of projections on the SUSY spinors

of Type IIB — see appendix A for details — we find,

A′ − e−V−4U ± z

2
e−2B−2U−V = 0,

B′ − e−V−4U ∓ z

2
e−2B−2U−V ∓ z

2
e−2B+V = 0,

U ′ + e−V−4U − eV−2U = 0, (2.6)

V ′ − 3e−V + 2eV−2U + e−V−4U ∓ z

2
e−2B−2U−V ± z

2
e−2B+V = 0 ,

where the upper signs are for H2, the lower signs for S2, and z = −1
3 for both cases. In

the case of the torus the variation of the gravitino will force z = 0, obtaining A′ = B′,

which does not permit an AdS3 solution. We now attempt to find simple solutions to the

eqs. (2.6).

2.1 Solution of the form AdS3×H2, AdS3×S2 and AdS3×T 2 with ‘twisting’

At this point we are going to construct a flow between AdS5×T 1,1 and AdS3×Σ2×M5. To

simplify the task, we propose that the functions U, V are constant, then the BPS equations

imply that U = V = 0, leaving us — in the case of H2 with,

A′ = 1 +
e−2B

6
, B′ = 1− e−2B

3
, (2.7)

that can be immediately integrated,

A =
3

2
r − 1

4
ln
(
1 + e2r

)
+ a0 , B = ln

1√
3

+
1

2
ln
(
1 + e2r

)
. (2.8)

One of the integration constants associated with these solutions corresponds to a choice

of the origin of the holographic variable and the other constant, e2a0 , sets the size of the

three dimensional space (y0, y1, r). We will choose a0 = 0 in what follows.

In the limit r →∞ (capturing the UV-dynamics of the QFT) we recover a Klebanov-

Witten metric

A ∼ r − 1

4
e−2r +

1

8
e−4r , B ∼ r − 1

2
ln 3 +

1

2
e−2r − 1

4
e−4r , (2.9)
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whilst in the limit r → −∞ (that is dual to the IR in the dual QFT) we obtain a super-

symmetric solution of the form AdS3 ×H2,

A ∼ 3

2
r − 1

4
e2r +

1

8
e4r , B ∼ ln

1√
3

+
1

2
e2r − 1

4
e4r. (2.10)

Let us write explicitly this background using eq. (2.2),

ds2
10

L2
=

e3r

√
1 + e2r

(
−dy2

0 + dy2
1

)
+

1 + e2r

3

(
dα2 + sinh2 αdβ2

)
+dr2 + ds2

KE +

(
η − 1

3
A1

)2

,

F5

L4
=

4

3
e3r
√

1 + e2r sinhα dy0 ∧ dy1 ∧ dα ∧ dβ ∧ dr + 2J ∧ J ∧
(
η − 1

3
A1

)
+

1

3
sinhα dα ∧ dβ ∧ J ∧

(
η − 1

3
A1

)
+

e3r

(1 + e2r)
3
2

dy0 ∧ dy1 ∧ dr ∧ J , (2.11)

A1 = coshα dβ, Φ = 0, C0 = 0, F3 = 0, B2 = 0 .

The solution above was originally presented in [38].

We consider now the case of S2. With the same assumptions about the functions U, V ,

the BPS equations (2.6) read,

A′ = 1− e−2B

6
, B′ = 1 +

e−2B

3
. (2.12)

These can also be immediately integrated (with a suitable choice of integration constants),

A =
3

2
r − 1

4
ln
(
e2r − 1

)
, B = ln

1√
3

+
1

2
ln
(
e2r − 1

)
, r > 0 . (2.13)

This solution seems to be problematic close to r = 0. Indeed, if we compute the Ricci

scalar we obtain R = 0, nevertheless, RµνR
µν ∼ 3

32L4r4
+ . . . . close to r = 0. The solution

is singular and we will not study it further.

It is interesting to notice that a family of non-SUSY fixed point solutions exists.

Indeed, we can consider the situation where B,U, V and A′(r) = a1 are constant. For S2

and H2, we find then that the Einstein equations impose U = V = 0 and

8 + e−4Bz2 − 4 a2
1 = 0 , 4− z2e−4B + κ e−2B = 0. (2.14)

Where κ = +1 for S2 and κ = −1 for H2. The solution is,

z2 = e2B
(
4e2B + κ

)
, a2

1 = 3 + κ
e−2B

4
(2.15)

For the S2 case the range of parameters is,

B ∈ R , z ∈ R− {0} , a1 ∈
(
−∞,

√
3
)
∪
(√

3,+∞
)
, (2.16)

– 8 –
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while for H2 we find,

B ∈
[
− ln 2,+∞

)
, z ∈ R , a1 ∈

(
−
√

3,−
√

2
]
∪
[ √

2,
√

3
)
. (2.17)

Notice that in the case of H2, there is a non-SUSY solution with z = 0, hence no fibration

between the hyperbolic plane and the Reeb vector η. The SUSY fixed point in eq. (2.12)

is part of the family in eq. (2.17), with z = −1
3 .

For the T 2 we also find an AdS3 solution,

a2
1 = 3 , z2 = 4e4B , U = 0 , V = 0 . (2.18)

Notice that z ∈ R−{0}. It would be interesting to study the stability of these solutions.

A possible way to do this is to write these solutions in the language of a five or a three

dimensional gauged supergravity, like the ones in [33–36]. Once in that formalism, to study

the fluctuations of the different scalar fields (that determine the sizes of the internal space

and the H2). It is likely that these solutions admit small fluctuations whose mass is below

the BF bound, hence making the solution unestable. We leave this point to be studied in

the future.

This completes our presentation of what we will refer as ‘twisted’ solutions. By twisted

we mean solutions where a gauge field is switched on the Riemann surface generating a

fibration between Σ2 and the R-symmetry direction. In the following, we will present a

background that also contains an AdS3 factor, it flows in the UV to an AdS5, but the field

content and the mechanism of SUSY preservation are different from the ones above.

2.2 The Donos-Gauntlett-(Kim) background

In this section we revisit a beautiful solution written in [39] — this type of solution was

first studied in [40]. Due to the more detailed study of [39], we will refer to it as the

Donos-Gauntlett solution in the rest of this paper.

The background in [39] describes a flow in the radial coordinate, from AdS5 × T 1,1

to AdS3 ×M7. The solution is very original. While the boundary of AdS5 is of the form

R1,1 × T 2, the compactification on the Riemann surface (a torus) does not use a ‘twist’ of

the 4d-QFT. This is reflected by the absence of a fibration of the Riemann surface on the

R-symmetry direction η. Still, the background preserves SUSY.2 The solution contains an

active NS-three form H3 that together with the RR five form F5 implies the presence of a

RR-three form F3. The authors of [39] found this configuration by using a very inspired

ansatz. We review this solution below, adding new information to complement that in [39].

The metric ansatz is given by,

ds2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2B

(
dα2 + dβ2

)
+ dr2 + e2Uds2

KE + e2V η2 , (2.19)

2The solutions in eqs. (63)-(80) of the paper [43], can be thought as an ‘ugly’ ancestor of the Donos-

Gauntlett background.
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where A,B,U, V are functions of the radial coordinate r only. The line element ds2
KE is

defined in eq. (2.2) and σi, ωi, η are given in eq. (2.3). The natural vielbein is,

ey0 = LeAdy0, ey1 = LeAdy1, eα = LeBdα, eβ = LeBdβ, er = Ldr,

eσ1 = L
eU√

6
σ1, eσ2 = L

eU√
6
σ2, e1 = L

eU√
6
ω1, e2 = L

eU√
6
ω2, e3 = LeV η .

(2.20)

Note that compared to [39] we have relabelled φi → −φi. To complete the definition of the

background, we also need

Vol1 = −σ1 ∧ σ2, Vol2 = ω1 ∧ ω2, (2.21)

and the fluxes,

1

L4
F5 = 4e2A+2B−V−4Udy0 ∧ dy1 ∧ dα ∧ dβ ∧ dr +

1

9
η ∧Vol1 ∧Vol2

+
λ2

12

[
dα ∧ dβ ∧ η ∧ (Vol1 + Vol2) + e2A−2B−V dy0 ∧ dy1 ∧ dr ∧ (Vol1 + Vol2)

]
,

1

L2
F3 =

λ

6
dβ ∧ (Vol1 −Vol2),

1

L2
B2 = −λ

6
α (Vol1 −Vol2),

(2.22)

where λ is a constant that encodes the deformation of the space (and the corresponding

operator in the 4d CFT). The BPS equations for the above system are given by,

A′ =
1

4
λ2e−2B−2U−V + e−4U−V , B′ = e−4U−V − 1

4
λ2e−2B−2U−V ,

U ′ = eV−2U − e−4U−V , V ′ = − 1

4
λ2e−2B−2U−V − e−4U−V − 2eV−2U + 3e−V .

(2.23)

It is possible to recover the AdS5 × T 1,1 solution by setting λ = 0 and

A = B = r, U = V = 0. (2.24)

In appendix B, we will write an asymptotic expansion showing how the AdS5 fixed point

is deformed by λ. Further we can recover the AdS3 solution by setting λ = 2 (this is just

a conventional value adopted in [39]) and

A =
33/4

√
2
r, B =

1

4
ln

(
4

3

)
, U =

1

4
ln

(
4

3

)
, V = −1

4
ln

(
4

3

)
. (2.25)

A flow (triggered by the deformation parameterized by λ) between the asymptotic AdS5

and the AdS3 fixed point can be found numerically.

It is also possible to find an analytic approximation for the solution of the BPS system

which makes contact with aspects of thermodynamics. This is well explained in appendix B,

where a similar analysis for the geometry of the H2 flow is also considered. We approximate

the various functions that appear in the metric of the Donos-Gauntlett geometry using the
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following ansatz,

A =
r

RDG
+ (1− 1

RDG
)µA ln

[
e
r
µA + e

rA
µA

]
, U =

1

2

ln 2√
3

1 + e
r−rU
µU

,

B = r + rB + µB ln
[
e
− r
µB + e

− rB
µB

]
, V =

1

2

ln
√

3
2

1 + e
r−rV
µV

.

(2.26)

The comparison with the numerical solutions is illustrated in figure 4.

Up to this point, we have set the stage for our study, but most of the solutions discussed

above have already been stated in the literature. Here we just added some new backgrounds

and technical elaborations on the known ones. Below, we will present genuinely new Type

IIA/B solutions. The technical tool that we have used is non-Abelian T-duality. This

technique, when applied to an SU(2) isometry of the previously discussed solutions will

generate new Type IIA configurations. In our examples these new solutions are nonsingular.

Their lift to eleven dimensions will produce new, smooth, AdS3 configurations in M-theory.

Moreover, performing an additional Abelian T-duality transformation we generate new

Type IIB backgrounds with all fluxes turned on and an AdS3 fixed point at the IR. We

move on to describe these.

3 New backgrounds in Type IIA: use of non-Abelian T-duality

In this section we apply the technique of non-Abelian T-duality on the Type IIB back-

grounds that we presented above. As a result we obtain new solutions of the Type IIA

supergravity.

3.1 The non-Abelian T-dual of the twisted solutions

We will start by applying non-Abelian T-duality (NATD) to the background obtained via

a twisted compactification in section 2. The configuration we will focus on is a particular

case of that in eq. (2.1). Specifically, in what follows we consider U = V = 0. These values

for the functions U and V are compatible with the BPS system (2.6). In this case the

background (2.1) simplifies to,

ds2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bds2

Σ2
+ dr2 +

1

6

(
σ2

1 + σ2
2

)
+

1

6

(
ω2

1 + ω2
2

)
+ (η + zA1)2 ,

F5

L4
= 4Vol5 + 2J ∧ J ∧ (η + zA1)− zVolΣ2 ∧ J ∧ (η + zA1)− ze−2BVolAdS3 ∧ J .

(3.1)

As before, all other RR and NS fields are taken to vanish. Also, the 1-form A1, the line

element of the Riemann surface Σ2 and the corresponding volume form, for each of the

three cases that we consider here, are given in eq. (2.4).

We will now present the details for the background after NATD has been applied on

the SU(2) isometry described by the coordinates (θ2, φ2, ψ). As is well-known a gauge

fixing has to be implemented during the NATD procedure. This leads to a choice of three

‘new coordinates’ among the Lagrange multipliers (x1, x2, x3) used in the NATD procedure
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and the ‘old coordinates’ (θ2, φ2, ψ).3 In all of our examples we consider a gauge fixing of

the form,

θ2 = φ2 = ψ = 0. (3.2)

As a result, the Lagrange multipliers x1, x2 and x3 play the rôle of the dual coordinates

in the new background. To display the natural symmetries of the background, we will

quote the results using spherical coordinates. This makes the expressions compact. We

refer the interested reader to appendix C, for the expressions after NATD in cartesian and

cylindrical coordinates. We define,

x1 = ρ cos ξ sinχ , x2 = ρ sin ξ sinχ , x3 = ρ cosχ ,

∆ = L4 + 54α′2ρ2 sin2 χ+ 36α′2ρ2 cos2 χ , σ̃3 = cos θ1dφ1 + 3zA1.
(3.3)

The NSNS sector of the transformed IIA background reads,

e−2Φ̂ =
L2

324α′3
∆,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bds2

Σ2
+ dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆

[
6
(

sin2 χ
(
dρ2 + ρ2(dξ + σ̃3)2

)
+ ρ sin(2χ)dρdχ+ ρ2 cos2 χdχ2

)
+ 9
(

cosχdρ− ρ sinχdχ
)2

+
324α′2

L4
ρ2dρ2

]
,

B̂2 =
α′3

∆

[
36ρ cosχ

(
ρσ̃3 ∧ dρ+ ρ sinχdξ ∧

(
sinχdρ+ ρ cosχdχ

))
+

(
L4

α′2
σ̃3 − 54ρ2 sin2 χdξ

)
∧
(

cosχdρ− ρ sinχdχ
)]
,

(3.4)

while the RR sector is,4

F̂0 = 0, F̂2 =
L4

54α′
3
2

(2σ1 ∧ σ2 + 3zVolΣ2) ,

F̂4 =
L4

18
√
α′

[
3ze−2B

(
dρ cosχ− ρ sinχdχ

)
∧VolAdS3 + z ρ cosχVolΣ2 ∧ σ1 ∧ σ2

− 18α′2

∆
ρ2 sinχ

(
zVolΣ2 +

2

3
σ1 ∧ σ2

)
∧
(

2 cosχ
(

sinχdρ+ ρ cosχdχ
)

+ 3 sinχ
(
ρ sinχdχ− cosχdρ

))
∧
(
dξ + σ̃3

)]
. (3.5)

The SUSY preserved by this background is discussed in appendix A. We have checked that

the equations of motion are solved by this background.

3The process of NATD and the needed gauge fixing was described in detail in [17, 18].
4According to the democratic formalism, the higher rank RR forms are related to those of lower rank

through the relation Fp = (−1)[
p
2
] ∗ F10−p.
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3.2 The non-Abelian T-dual of the Donos-Gauntlett solution

In this section we will briefly present the result of applying NATD to the Donos-Gauntlett

solution [39] that we described in detail in section 2.2 and appendix B.

Like above, we will perform the NATD choosing a gauge such that the new coordinates

are (x1, x2, x3). We will quote the result in spherical coordinates, but the expressions in

cylindrical and cartesian coordinates will be written in the appendix C. The expressions

below are naturally more involved than those in section 3.1. This is due to the fact that now

there is a non-trivial NS 2-form that enters in the procedure (explicitly, in the string sigma

model) which makes things more complicated. As above, we start with some definitions,

B± = ρ cosχ±L
2λ

6α′
α , B = B+ , ∆ = L4e4U+2V +54α′2e2Uρ2 sin2 χ+36α′2B2e2V . (3.6)

The NSNS sector is given by,

e−2Φ̂ =
L2

324 α′3
∆,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2B

(
dα2 + dβ2

)
+ dr2 +

e2U

6

(
σ2

1 + σ2
2

)
+
α′2

∆

[
6e2U+2V

(
sin2 χ

(
dρ2 + ρ2

(
dξ + σ3

)2)
+ ρ sin(2χ)dρdχ+ ρ2 cos2 χdχ2

)
+ 9e4U

(
cosχdρ− ρ sinχdχ

)2
+

324α′2

L4

((
B cosχ+ ρ sin2 χ

)
dρ+ ρ

(
ρ cosχ− B

)
sinχdχ

)2
]
, (3.7)

B̂2 = L2λ

6
α σ1 ∧ σ2

+
α′3

∆

[
36 B e2V

(
σ3 ∧

((
B cosχ+ ρ sin2 χ

)
dρ+ ρ

(
ρ cosχ− B

)
sinχdχ

)
+ ρ sinχdξ ∧

(
sinχdρ+ ρ cosχdχ

))
+ e2U

(
e2V+2U L

4

α′2
σ3 − 54ρ2 sin2 χdξ

)
∧
(

cosχdρ− ρ sinχdχ
)]
.

The RR sector reads,

F̂0 = 0, F̂2 =
L2

6α′
3
2

(
λα′dB− ∧ dβ +

2

9
L2σ1 ∧ σ2

)
,

F̂4 =
L4λ

36
√
α′

[
eV
(

2L2

α′
dα− 3e−2B−2V λ

(
cosχdρ− ρ sinχdχ

))
∧VolAdS3

− 6α′

L2

(
ρ sinχ

(
sinχdρ+ ρ cosχdχ

)
BdB

)
∧ dβ ∧ σ1 ∧ σ2

+
36α′2

∆
ρ sinχ

(
3α′

L2
dβ ∧ dB− −

2

3λ
σ1 ∧ σ2

)
∧
(

2e2V B
(

sinχdρ+ ρ cosχdχ
)

+ 3e2Uρ sinχ
(
ρ sinχdχ− cosχdρ

))
∧
(
dξ + σ3

)]
. (3.8)
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Here again, aspects of the SUSY preserved by this background are relegated to appendix A.

It is interesting to point out that Donos and Gauntlett observed an enhancement of SUSY

at the AdS3-fixed point of their solution. The reader may wonder if such enhancement

occurs after Non-Abelian T-duality. Answering this would imply the study of the Kosmann

derivative for the spinors discussed in appendix B of [39]. If some of the projections on the

spinor drops at the fixed point, there will be enhancement of SUSY. We leave this technical

calculation for the future.

Finally and just like in all other examples in this paper, we have checked that the

equations of motion are solved by this background.

4 T-dualizing back from Type IIA to IIB

In this section, we will construct new Type IIB Supergravity backgrounds with an AdS3

factor at the IR. The idea is to obtain these new solutions by performing an (Abelian) T-

duality on the configurations described by eqs. (3.4)–(3.5); which in turn, were obtained by

performing NATD on the backgrounds of eq. (3.1). The full chain of dualities is NATD -T.

The new solutions present an AdS3 fixed point and all RR and NS fields are switched on.

It should be interesting to study if the AdS3 fixed point of this geometry falls

within known classifications. If not, to use them as inspiring ansatz to extend these

taxonomic efforts.

In order to perform the T-duality, we will choose a Killing vector that has no fixed

points, in such a way that the dual geometry has no singularities. An adapted system of

coordinates for that Killing vector is obtained through the change of variables,

α = arccosh (cosh a cosh b) , β = arctan

(
sinh b

tanh a

)
, (4.1)

obtaining,5

A1 = sinh a db , VolΣ2 = cosh a da ∧ db , ds2
Σ2

= da2 + cosh2 a db2 . (4.2)

The Killing vector that we choose is the one given by translations along the b direction.

Its modulus is proportional to the quantity,

∆T = 54α′2z2ρ2 sin2 χ sinh2 a+ e2B cosh2 a ∆ , (4.3)

where ∆ is defined in eq. (3.3). Since ∆T is never vanishing the isometry has no fixed points.

To describe these new configurations, we define,

A3 = 3z sinh a
(

cosχdρ− ρ sinχdχ
)
− db . (4.4)

5In fact using the coordinate transformation eq. (4.1) we obtain A1 = sinh a db+ total derivative.
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Then, we will have a NSNS sector,

e−2Φ̃ =
L4

324α′4
∆T ,

ds̃2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bda2 + dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆T

[
∆

L4
db2 + 6e2B cosh2 a

(
ρ2 sin2 χ

(
σ3 + dξ

)2
+
(
dρ sinχ+ ρ cosχ dχ

)2)
+ 9
(
z2 sinh2 a+ e2B cosh2 a

)((
dρ cosχ− ρ sinχ dχ

)2
+

36α′2

L4
ρ2dρ2

)
− 6z sinh a db

((
36α′2

L4
ρ2 + 1

)
cosχ dρ− ρ sinχ dχ

)]
, (4.5)

B̃2 =
α′3

∆T

[
e2B cosh2 a

(
36ρ cosχ

[
ρσ3 ∧ dρ+ ρ sinχdξ ∧

(
sinχdρ+ ρ cosχdχ

)]
+

(
L4

α′2
σ3 − 54ρ2dξ sin2 χ

)
∧
(
dρ cosχ− ρ sinχdχ

))
− 18 z ρ2 sinh a sin2 χ

(
dξ ∧A3 + db ∧ σ3

)]
,

and a RR sector that reads,

F̃1 =
zL4

18α′2
cosh a da ,

F̃3 =
L4

54α′
(
2A3 + 3zρ cosχ cosh a da

)
∧ σ1 ∧ σ2

+
zL4α′ cosh a

∆T
ρ2 sinχ

(
σ3 + dξ

)
∧
[
e2B cosh2 a

((
2 + sin2 χ

)
dχ− sinχ cosχdρ

)
− z sinh a sinχA3

]
∧ da ,

F̃5 =
L4

6
e−2B

(
24e4Bρ cosh ada ∧ dρ+ z

(
dρ cosχ− ρdχ sinχ

)
∧ db

)
∧VolAdS3 (4.6)

+
L4α′2 cosh a

18∆T

[
e2B cosh aρ sinχdξ ∧

((
dρ sinχ+ ρdχ cosχ

)
∧
[
24ρ cosχA3 − z

(
L4

α′2
+ 54ρ2 sin2 χ

)
cosh ada

]
+ 18 ρ sinχ

(
3zρ cosχ cosh ada− 2dβ

)
∧
(
dρ cosχ− ρdχ sinχ

))
− 18z2 ρ3 sinh a sin2 χ dξ ∧

(
3z sinh a

(
sin2 χdρ+ ρ sinχ cosχdχ

)
+ cosχA3

)
∧ da

]
∧ σ1 ∧ σ2 .

We have checked that the equations of motion are solved by this background, either assum-

ing the BPS equations (2.7) or the non-SUSY solution (2.17). We have also checked that

the Kosmann derivative vanishes without the need to impose further projections. These

facts point to the conclusion that this new and smooth solution is also SUSY preserving.

We will now present new backgrounds of eleven-dimensional Supergravity.
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5 Lift to M-theory

Here, we lift the solutions of sections 3.1 and 3.2 to eleven dimensions. This constitutes

another original contribution of this paper, presenting new and smooth backgrounds of

M-theory that describe the strong dynamics of a SUSY 2d CFT.

It is well known that given a solution of the Type IIA SUGRA the metric of the uplifted

to eleven dimensions solution, has the following form,

ds2
11 = e−

2
3

Φ̂ ds2
IIA + e

4
3

Φ̂
(
dx11 + Ĉ1

)2
, (5.1)

where Φ̂ is the dilaton of the 10-dimensional solution of the Type IIA SUGRA and Ĉ1 is

the 1-form potential that corresponds to the RR 2-form of the Type IIA background. Also,

by x11 we denote the 11th coordinate which corresponds to a U(1) isometry as neither the

metric tensor or flux explicitly depend on it.

The 11-dimensional geometry is supported by a 3-form potential CM3 which gives rise to

a 4-form FM4 = dCM3 . This 3-form potential can be written in terms of the 10-dimensional

forms and the differential of the 11th coordinate as,

CM3 = Ĉ3 + B̂2 ∧ dx11 . (5.2)

The 3-form Ĉ3 corresponds to the closed part of the 10-dimensional RR form F̂4 = dĈ3 −
Ĥ3 ∧ Ĉ1. Here, B̂2 is the NS 2-form of the 10-dimensional type-IIA theory and Ĥ3 = dB̂2.

Hence we see that in order to describe the 11-dimensional solution we need the following

ingredients,

ds2
IIA , Φ̂ , B̂2 , Ĉ1 , Ĉ3 or F̂4 . (5.3)

Let us now present these quantities for the cases of interest.

5.1 Uplift of the NATD of the twisted solutions

As we mentioned above, in order to specify the M-theory background we need to read the

field content of the 10-dimensional solution. For the case at hand we wrote the metric

ds2
IIA, the dilaton Φ̂ and the NS 2-form B̂2 in eq. (3.4). Moreover, from the expression of

the RR 2-form in eq. (3.5) we can immediately extract the 1-form potential Ĉ1,

Ĉ1 =
L4

54 a′
3
2

(
3 z A1 − 2 σ3

)
. (5.4)

The 3-form potential — Ĉ3 — can be obtained from the RR 4-form of eq. (3.5). After

some algebra one finds,

Ĉ3 =
L4 e−2B

6 a′
1
2

z ρ cosχ VolAdS3 +
L4 z

(
L4 + 36a′2ρ2

)
cosχ

6 α′
1
2 ∆

A1 ∧ σ3 ∧ dρ

+
L4 α′

3
2 ρ2 sinχ

∆

(
z A1 −

2

3
σ3

)
∧ dξ ∧

(
ρ
(
2 + sin2 χ

)
dχ− sinχ cosχ dρ

)
+

L4 z ρ

18 α′
1
2 ∆

(
∆ cosχ

(
σ3 ∧VolΣ2 − 2A1 ∧ dσ3

)
− 3L4 sinχ A1 ∧ σ3 ∧ dχ

)
.

(5.5)

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
2

We close this section by observing that, if the coordinate ρ takes values in a finite interval,

then the radius of the M-theory circle, e
4
3

Φ̂ never blows up, because the function ∆ that

appears in the expression of the dilaton is positive definite. We have checked that the

equations of motion of the 11-dimensional Supergravity are solved by this background.

5.2 Uplift of the NATD of the Donos-Gauntlett solution

Here, the NSNS fields of the 10-dimensional theory have been written in detail in eq. (3.7).

In order to complete the description of the M-theory background we need also to consider

the potentials Ĉ1 and Ĉ3 that are encoded in the RR fields of eq. (3.8). Hence from the

RR 2-form potential we can easily read Ĉ1,

Ĉ1 =
L2λB−

6α′
1
2

dβ − L4

27α′
3
2

σ3 , (5.6)

where the function B− has been defined in eq. (3.6). Also, from the RR 4-form we can

obtain the potential Ĉ3 which in this case is,

Ĉ3 =
e−2B−V L4λ

36α′
3
2

(
2e2B+2V L2α− 3λα′ρ cosχ

)
VolAdS3

− α′
1
2L2ρ sinχ

18∆

(
18α′λB−

(
σ3 + dξ

)
∧ dβ + 4L2σ3 ∧ dξ

)
∧ Σ1

+
L2λα′

1
2

12

(
B2
− + B2 + ρ2 sin2 χ

)
dβ ∧ dσ3 .

(5.7)

Here for brevity we have defined the 1-form Σ1 in the following way:

Σ1 = 6α′e2V B
(

sinχdρ+ ρ cosχdχ
)
− 9α′e2Uρ sinχ

(
cosχdρ− ρ sinχdχ

)
. (5.8)

Finally, we observe that the radius of the M-theory circle is finite, for reasons similar to

those discussed in the previous example. We have checked that the equations of motion of

the 11-dimensional Supergravity are solved by this background. It should be interesting to

study if these solutions fall within the classes of backgrounds described by [41, 42].

This completes our presentation of this set of new and exact solutions. The expressions

for these backgrounds in cartesian and cylindrical coordinates are written in appendix C.

A summary of all the solutions can be found in table 1.

We will now move on to the second part of this paper. We will study aspects of the

field theories that our new and smooth backgrounds are defining.
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Part II

Field theory observables

6 General comments on the Quantum Field Theory

Let us start our study of the correspondence between our new metrics with their respective

field theory dual. We will state some general points that these field theories will fulfill.

In the case of the backgrounds corresponding to the compactifications described in

section 2.1, our field theories are obtained by a twisted KK-compactification on a two

dimensional manifold — that can be H2, S
2 or T 2. The original field theory is, as we

mentioned, the Klebanov-Witten quiver, that controls the high energy dynamics of our

system. The bosonic part of the global symmetries for this QFT in the UV are

SO(1, 3)× SU(2)× SU(2)×U(1)R ×U(1)B, (6.1)

where, as we know the SO(1, 3) is enhanced to SO(2, 4). The theory contains two vector

multiplets W i = (λi, Aiµ), for i = 1, 2, together with four chiral multiplets Aα = (Aα, ψα)

for α = 1, 2 and Bα̇ = (Bα̇, χα̇) with α̇ = 1, 2.

These fields transform as vector, spinors and scalars under SO(1, 3) — that is Aα, Bα̇
are singlets, the fermions transform in the (12 ,0)⊕ (0, 12) and the vectors in the (12 ,

1
2). The

transformation under the ‘flavor’ quantum numbers SU(2) × SU(2)×U(1)R ×U(1)B is,

Aα =

(
2, 1,

1

2
, 1

)
, Bα̇ =

(
1, 2,

1

2
,−1

)
,

ψα =

(
2, 1,−1

2
, 1

)
, χα̇ =

(
1, 2,−1

2
,−1

)
, (6.2)

λi = (1, 1, 1, 0), Aiµ = (1, 1, 0, 0).

The backgrounds in section 2.1, are describing the strong coupling regime of the field

theory above, in the case in which we compactify the D3 branes on Σ2 twisting the theory.

This means, mixing the R-symmetry U(1)R with the SO(2) isometry of Σ2. This twisting

is reflected in the metric fibration between the η-direction (the Reeb vector) and the Σ2.

The fibration is implemented by a vector field A1 in eq. (2.1). The twisting mixes the R-

symmetry of the QFT, represented by A1 in the dual description, with (part of) the Lorentz

group. In purely field theoretical terms, we are modifying the covariant derivative of

different fields that under the combined action of the spin connection and the R-symmetry

(on the curved part of the space) will read Dµ ∼ ∂µ + ωµ +Aµ.

In performing this twisting, the fields decompose under SO(1, 3)→ SO(1, 1)× SO(2).

The decomposition is straightforward for the bosonic fields. For the fermions, we have that

(12 ,0) decomposes as (+,±) and similarly for the (0, 12) spinors.

The twisting itself is the ‘mixing’ between the ± charges of the spinor and its R-

symmetry charge. There is an analog operation for the vector and scalar fields. Some fields

are scalars under the diagonal group in U(1)R × SO(2)Σ2 . Some are spinors and some are
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vectors. Only the scalars under the diagonal group are massless. These determine the SUSY

content of the QFT. This particular example amounts to preserving two supercharges.

There are two massless vector multiplets and two massless matter multiplets. The rest of

the fields get a mass whose set by the inverse size of the compact manifold. In other words,

the field theory at low energies is a two dimensional CFT (as indicated by the AdS3 factor),

preserving (0, 2) SUSY and obtained by a twisted compactification of the Klebanov-Witten

CFT. The QFT is deformed in the UV by a relevant operator of dimension two, as we can

read from eq. (2.9).

An alternative way to think about this QFT is as the one describing the low energy

excitations of a stack of Nc D3 branes wrapping a calibrated space Σ2 inside a Calabi-

Yau 4-fold.

The situation with the metrics in section 2.2 is more subtle. In that case there is also

a flow from the Klebanov-Witten quiver to a two-dimensional CFT preserving (0,2) SUSY.

The difference is that this second QFT is not apparently obtained via a twisting procedure.

As emphasized by the authors of [39], the partial breaking of SUSY is due (from a five-

dimensional supergravity perspective) to ‘axion’ fields depending on the torus directions.

These axion fields are proportional to a deformation parameter — that we called λ in

eq. (2.22). The deformation in the UV QFT is driven by an operator of dimension four

that was identified to be Tr(W 2
1 −W 2

2 ) and a dimension six operator that acquires a VEV,

as discussed in [39].

To understand the dual field theory to the IIA backgrounds obtained after non-Abelian

T-duality and presented in section 3.1 involves more intricacy. Indeed, it is at present

unclear what is the analog field theoretical operation of non-Abelian T-duality. There

are, nevertheless, important hints. Indeed, the foundational paper of Sfetsos and Thomp-

son [10], that sparked the interest of the uses of non-Abelian T-duality in quantum field

theory duals, showed that if one starts with a background of the form AdS5 × S5/Z2, a

particular solution of the Gaiotto-Maldacena system (after lifting to M-theory) is gener-

ated [13]. This is hardly surprising, as the backgrounds of eleven dimensional supergravity

with an AdS5 factor and preserving N = 2 SUSY in four dimensions, have been classified.

What is interesting is that the solution generated by Sfetsos and Thompson appears as a

zoom-in on the particular class of solutions in [46]. This was extended in [17] that com-

puted the action of non-Abelian T-duality on the end-point of the flow from the N = 2

conformal quiver with adjoints to the Klebanov-Witten CFT. Again, not surprisingly, the

backgrounds obtained correspond to the N = 1 version of the Gaiotto TN theories — these

were called Sicilian field theories by Benini, Tachikawa and Wecht in [47], see figure 1. It

is noticeable, that while the Sicilian theories can be obtained by a twisted compactification

of M5 branes on H2, S
2, T 2, the case obtained using non-Abelian T-duality corresponds

only to M5 branes compactified on S2 and preserving minimal SUSY in four dimensions.

What we propose in this paper is that the twisted compactification on Σ2 of a Sicilian

gauge theory can be studied by using the backgrounds we discussed in section 3.1 and

their M-theory counterparts. We will elaborate more about the 2-d CFTs and their flows

in the coming sections.

In the following, we will calculate different observables of these QFT’s by using the

backgrounds as a ‘definition’ of the 2d SCFT. The backgrounds are smooth and thus
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the observables have trustable results. Hence, we are defining a QFT by its observables,

calculated in a consistent way by the dual solutions. The hope is that these calculations

together with other efforts can help map the space of these new families of CFTs. To the

study of these observables we turn now.

7 Quantized charges

In this section, we will study the quantized charges on the string side. This analysis appears

in the field theory part of the paper because these charges will, as in the canonical case of

AdS5 × S5, translate into the ranks of the gauge theory local symmetry groups.

The NATD produced local solutions to the 10-dim SUGRA equations of motion. Nev-

ertheless, it is still not known how to obtain the global properties of these new geometries.

Some quantities associated to a particular solution, like the Page charges below, are only

well-defined when the global properties of the background are known. Since we have only

a local description of our solution, we will propose very reasonable global results for the

Page charges, mostly based on physical intuition.

Let us start by analyzing a quantity that is proposed to be periodic in the string theory.

We follow the ideas introduced in [44, 45] and further elaborated in [18]. To begin with,

we focus on the NATD version of the twisted solutions; described in section 3.1. Let us

define the quantity,

b0 =
1

4π2α′

∫
Π2

B2 ∈ [0, 1] , (7.1)

where the cycle Π2 is defined as,

Π2 = S2

{
χ, ξ, α = 0, ρ = const, dβ = − 1

3z
dξ

}
. (7.2)

As the topology of the NATD theory is not known, we propose that this cycle is present

in the geometry. This cycle will have a globally defined volume form, which in a local

description can be written as VolΠ2 = sinχ dξ ∧ dχ. We then find,

b0 =
1

4π2α′

∫
Π2

α′ρ sinχdξ ∧ dχ =
ρ

π
∈ [0, 1]. (7.3)

Again, we emphasize that this is a proposal made in [44, 45] and used in [18]. Moving

further than π along the variable ρ can be ‘compensated’ by performing a large gauge

transformation on the B2-field,

B2 → B′2 = B2 − α′nπ sinχdξ ∧ dχ. (7.4)

We will make extensive use of this below.

Let us now focus on the conserved magnetic charges defined for our backgrounds. We

will start the analysis for the case of the solutions in section 2.1.
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7.1 Page charges for the twisted solutions

We will perform this study for the solutions before and after the NATD, and we will obtain

how the Page charges transform under the NATD process. Page charges (in contrast to

Maxwell charges) have proven fundamental in understanding aspects of the dynamics of

field theories — see for example [48].

In the following, we use as definition of Page charge,

NDp

∣∣
Π8−p

=
1

2κ2
10TDp

∫
Π8−p

(∑
i

Fi

)
∧ e−B2 , NNS5|Π3

=
1

2κ2
10TNS5

∫
Π3

H3 ,

2κ2
10 = (2π)7α′4, TDp =

1

(2π)pα′
p+1
2

, TNS5 = TD5 .

(7.5)

In particular, for D3 branes we have,

ND3

∣∣
Π5

=
1

2κ2
10TD3

∫
Π5

(
F5 −B2 ∧ F3 +

1

2
B2 ∧B2 ∧ F1

)
.

The topology of the internal space is Σ2 × S2 × S3. First, we consider the cycle

S2×S3. Second, we can consider some cycles given by the product of Σ2 with a generator

of H3

(
S2 × S3,Z

)
. Notice that the S2× S3 is realized as a U(1) fibration over an S2

1 × S2
2

base. A smooth 3-manifold, S3
1 , that can be used to generate H3

(
S2 × S3,Z

)
is provided

by the circle bundle restricted to the S2
1 factor. We can also choose S3

2 , defined to be

the circle bundle restricted to the S2
2 factor of the base space. In summary, the relevant

cycles are,

Π
(1)
5 = S2 × S3

{
θ1, φ1, θ2, φ2, ψ

}
, Π

(2)
5 = Σ2 × S3

1

{
α, β, θ1, φ1, ψ

}
,

Π
(3)
5 = Σ2 × S3

2

{
α, β, θ2, φ2, ψ

}
.

(7.6)

The background fields B2, F1 and F3 are vanishing, and only F5 contributes. The specific

components of F5 in eq. (3.1) that have non vanishing pullback on these cycles are,

F5 =
L4

9
Vol1 ∧Vol2 ∧ η +

L4

6
zVolΣ2 ∧ (Vol1 + Vol2) ∧ η + . . . (7.7)

We explicitly see that it is a globally defined form, as all the involved quantities (η, VolΣ2 ,

Vol1, Vol2) are well defined globally. The associated Page charges of D3 branes for the

background around eq. (3.1) are,

ND3

∣∣
Π

(1)
5

=
4L4

27α′2π
, N̂D3

∣∣
Π

(2)
5

= ÑD3

∣∣
Π

(3)
5

=
L4

α′2
z vol (Σ2)

18π2
, (7.8)

where vol (Σ2) is the total volume of the two-manifold Σ2.6 As usual, the first relation

quantizes the size of the space,

L4 =
27π

4
α′2ND3. (7.9)

6Notice that we use Vol for volume elements (differential forms) and vol for the actual volumes of the

manifolds (real numbers).
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We have then defined three D3-charges. The one associated with ND3 is the usual one

appearing also in the AdS5 × S5 case. The other two can be thought as charges ‘induced’

by the wrapping of the D3 branes on the Riemann surface. The reader may wonder whether

these charges are present in the backgrounds found after NATD. We turn to this now.

The particular expressions for Page charges in Type IIA are,

ND6

∣∣
Π2

=
1

2κ2
10TD6

∫
Π2

(
F̂2 − F̂0 B̂2

)
,

ND4

∣∣
Π4

=
1

2κ2
10TD4

∫
Π4

(
F̂4 − B̂2 ∧ F̂2 +

1

2
F̂0 B̂2 ∧ B̂2

)
,

ND2

∣∣
Π6

=
1

2κ2
10TD2

∫
Π6

(
F̂6 − B̂2 ∧ F̂4 +

1

2
B̂2 ∧ B̂2 ∧ F̂2 −

1

6
F̂0 B̂2 ∧ B̂2 ∧ B̂2

)
.

(7.10)

We label the radius of the space of the geometry in eq. (3.4) by L̂, to distinguish it from

L, the quantized radius before the NATD.

In order to properly define the cycles to be considered, we should know the topology of

this NATD solution. However, we have obtained only a local expression for this solution,

and we do not know the global properties. As we explained above, we will present a

proposal to define the Page charges that would explain the transmutation of branes through

the NATD. We propose the relevant cycles to be,7

Π
(1)
2

{
θ1, φ1

}
, Π

(2)
6 =

{
α, β, θ1, φ1, ρ, ξ, χ =

π

2

}
, Π

(3)
2

{
α, β

}
. (7.11)

The associated charges are,

ND6

∣∣
Π

(1)
2

=
2L̂4

27α′2
, ÑD6

∣∣
Π

(3)
2

=
L̂4

α′2
z vol (Σ2)

36π
,

N̂D2

∣∣
Π

(2)
6

=
L̂4

α′2
z vol (Σ2) vol (ρ, ξ)

144π4
=
n2

4

L̂4

α′2
z vol (Σ2)

36π
.

(7.12)

In the last expression, we performed the integral over the ρ-coordinate in the interval

[0, nπ]. These three charges are in correspondence with the ones before the NATD in

eq. (7.8). Indeed, we can compute the quotients,

N̂D3

ND3
=
ÑD3

ND3
=

3

8π
z vol (Σ2) ,

4N̂D2

n2ND6
=
ÑD6

ND6
=

3

8π
z vol (Σ2) . (7.13)

These quotients indicate a nice correspondence between charges before and after the duality.

Using the first relation in eq. (7.12) we quantize the size L̂ of the space after NATD

to be L̂4 = 27
2 α
′2ND6.

7Intuitively, we can think that the branes transform under NATD as 3 consecutive T-dualities. For

example, in the first 5-cycle of eq. (7.6), the NATD is performed along 3 of the coordinates, (θ2, φ2, ψ), in

such a way that we end up with a 2-cycle, the first cycle in eq. (7.11), associated with D6 branes. In the

second 5-cycle of eq. (7.6) the NATD only affects the ψ-direction, so it disappears, and two more directions

are added in order to complete the 3 T-dualities, ending up with a 6-cycle in eq. (7.11), associated with

D2-branes.
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A small puzzle is presented by the possible existence of charge for D4 branes, as there

would be no quantized number before the NATD to make them correspond to. To solve

this puzzle, we propose that there should be a globally defined closed non-exact form that

allows us to perform a large gauge transformation for the B̂2, in such a way that all the

D4 Page charges vanish. In local coordinates, we have a gauge transformation,

B̂2 → B̂′2 = B̂2 + α′d [ρ cosχ σ̃3] , (7.14)

written in such a way that the integrand has at least one leg along a non-compact coordi-

nate,

F̂4 − B̂′2 ∧ F̂2 =
zL̂4

6
√
α′
e−2B (cosχdρ− ρ sinχdχ) ∧VolAdS3 . (7.15)

Hence, any Page charge for D4 branes is vanishing. To be precise, the D2 charge N̂D2 must

be computed after choosing this gauge, as it depends on B̂2, but it turns out to be the

same as calculated in eq. (7.12).

The motion in the ρ-coordinate, as we discussed above, can be related to large gauge

transformations of the B̂2-field. The large transformation that ‘compensates’ for motions

in ρ, namely B̂2 → B̂′2 = B̂2−α′nπ sinχdξ∧dχ, has the effect of changing the Page charges

associated with D4 branes, that were initially vanishing. Indeed, if we calculate for the

following four cycles,

Π
(1)
4

{
θ1, φ1, χ, ξ

}
, Π

(2)
4

{
α, β, χ, ξ

}
, (7.16)

the Page charge of D4 branes varies according to,

∆ND4

∣∣
Π

(1)
4

=
1

2κ2
10TD4

∫
Π

(1)
4

(
−∆B̂2 ∧ F̂2

)
= −nL

′4

α′2
2

27
= −nND6,

∆ND4

∣∣
Π

(2)
4

=
1

2κ2
10TD4

∫
Π

(2)
4

(
−∆B̂2 ∧ F̂2

)
= −nL

′4

α′2
z

36π
vol (Σ2) = −nÑD6.

(7.17)

We can interpret these findings in the following way. Our QFT (after the NATD) can be

thought as living on the world-volume of a superposition of D2 and D6 branes. Motions

in the ρ-coordinate induce charge of D4 branes, which can be interpreted as new gauge

groups appearing. This suggest that we are working with a linear quiver, with many gauge

groups. Moving nπ-units in ρ generates or ‘un-higgses’ new gauge groups of rank nND6

and nÑD6. Computing volumes or other observables that involve integration on the ρ-

coordinate amounts to working with a QFT with different gauge group, depending on the

range in ρ we decide to integrate over. Notice that ρ is not a holographic coordinate.

Motions in ρ are not changing the energy in the dual QFT. For the AdS-fixed points the

theory is conformal and movements in ρ do not change that.

In the paper [18] , the motion in the ρ-coordinate was argued to be related to a form of

‘duality’ (a Seiberg-type of duality was argued to take place, in analogy with the mechanism

of the Klebanov-Strassler duality cascade, but in a CFT context). That can not be the

whole story as other observables, like for example the number of degrees of freedom in
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the QFT, change according to the range of the ρ-integration. Hence the motion in ρ can

not be just a duality. We are proposing here that moving in the ρ-coordinate amounts to

changing the quiver, adding gauge groups, represented by the increasing D4 charge.

We will now present the same analysis we have performed above, but for the case of

the background in section 2.2.

7.2 Page charges for the Donos-Gauntlett solution

Part of the analysis that follows was carefully done in the original work of [39] and here we

will extend the study for the solution after the NATD that we presented in section 3.2. We

will give an outline of the results as the general structure is similar to the one displayed by

the twisted solutions of the previous section.

We focus on the original Donos-Gauntlett background first. We denote by dα, dβ the

two radii of the torus (the cycles of the torus are then of size 2πdα and 2πdβ respectively)

and consider five different cycles in the geometry,

Π
(1)
5 = S2 × S3

{
θ1, φ1, θ2, φ2, ψ

}
,

Π
(2)
5 = T 2 × S3

1

{
α, β, θ1, φ1, ψ

}
, Π

(3)
5 = T 2 × S3

2

{
α, β, θ2, φ2, ψ

}
,

Π
(4)
3 = S1

1 × s(S)
{
α, θ1 = θ2, φ1 = −φ2, ψ = const

}
,

Π
(5)
3 = S1

2 × s(S)
{
β, θ1 = θ2, φ1 = −φ2, ψ = const

}
.

(7.18)

The Page charges associated with D3, D5 and NS5 branes are,

ND3

∣∣
Π

(1)
5

=
4L4

27α′2π
, N̂D3

∣∣
Π

(2)
5

= − ÑD3

∣∣
Π

(3)
5

= 2
L4

α′2
λ2 dαdβ

9
,

NNS5

∣∣
Π

(4)
3

= − 2
L2λ dα

3α′
, N ′D5

∣∣
Π

(5)
3

= 2
L2λ dβ

3α′
.

(7.19)

After the NATD, we focus on the background around eqs. (3.7) (3.8). We consider the

following cycles in the geometry,

Π
(1)
2

{
θ1, φ1

}
, Π

(2)
6

{
α, β, θ1, φ1, ρ, ξ, χ =

π

2

}
, Π

(3)
2

{
α, β

}
,

Π
(4)
6

{
β, θ1, φ1, ρ, χ, ξ

}
, Π

(5)
2

{
β, χ, ρ = ρ0

}
.

(7.20)

The correspondent Page charges defined on them (the ρ-coordinate is taken in the [0, nπ]

interval),

ND6

∣∣
Π

(1)
2

=
2L̂4

27α′2
, ÑD6

∣∣
Π

(3)
2

= − L̂
4

α′2
λ2π

18
dαdβ , N ′D6

∣∣
Π

(5)
2

=
L′2

α′
λ

3
ρ0 dβ ,

N̂D2

∣∣
Π

(2)
6

= − L̂4

α′2
λ2 vol

(
T 2
)
vol (ρ, ξ)

288π4
= − L̂

4

α′2
λ2n

2π

72
dαdβ ,

ND2

∣∣
Π

(4)
6

=
L̂2

α′
λ

24π3
dβ vol (ρ, χ, ξ) =

L̂2

α′
λ
n3π

18
dβ .

(7.21)
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From the first relation we obtain, L̂4 = 27
2 α
′2ND6. Like in the case of the twisted solutions,

we can choose a gauge for the B̂2 field

B̂2 → B̂′2 = B̂2 + δB̂2 ,

δB̂2 =
9α′2λ

2L2
dβ ∧

(
ρ sinχ d

(
ρ sinχ

)
+ B dB

)
+ L2λ

6

(
dα ∧ σ3 − α σ1 ∧ σ2

)
,

B = ρ cosχ± L2λ

6α′
α.

(7.22)

such that the Page charge of D4 branes, when computed on every possible compact 4-cycle,

is vanishing. Indeed, after the gauge transformation, we have

F̂4 − B̂′2 ∧ F̂2 =
L4λ

36
√
α′
eV
(

2L2

α′
dα− 3e−2B−2V λ d(ρ cosχ)

)
∧VolAdS3 . (7.23)

Any integral over compact manifolds is vanishing. Like in the case of the twisted solutions,

N̂D2 and ND2 should be recalculated after choosing this gauge; but their value turns out

to be unchanged.

We can apply the same string theory considerations on the quantity b0 that now is

defined as an integral over the cycle,

Π2 = S2 , {χ, ξ, α = const, ρ = const}. (7.24)

We then calculate,

b0 =
1

4π2α′

∫
Π2

α′ρ sinχdξ ∧ dχ =
ρ

π
∈ [0, 1]. (7.25)

If we move further than π along the variable ρ, we can compensate this by performing

the large gauge transformation B̂2 → B̂′2 = B̂2 − α′nπ sinχdξ ∧ dχ. We now consider the

correspondent variation of Page charges for D4 branes, that can be calculated using the

following cycles,

Π
(1)
4 {θ1, φ1, χ, ξ} , Π

(2)
4 {α, β, χ, ξ}, (7.26)

to be,

∆QPD4

∣∣
Π

(1)
4

=
1

2κ2
10TD4

∫
Π

(1)
4

(
−∆B̂2 ∧ F̂2

)
= −n L

4

α′2
2

27
= −nND6 ,

∆QPD4

∣∣
Π

(2)
4

=
1

2κ2
10TD4

∫
Π

(2)
4

(
−∆B̂2 ∧ F̂2

)
= −n L

4

α′2
πλ2

18
dαdβ = nÑD6 .

(7.27)

The variation of the Page charges of D2 branes vanishes under this large gauge trans-

formation. For the Donos-Gauntlett solution we observe a structure very similar to the

one discussed for the twisted solutions. Again, here we would propose that the NATD

background ‘un-higgses’ gauge groups of rank nND6 as we move in units of nπ in the

ρ-coordinate.

We move now to the study of another important observable of our dual 2-d

and 4-d CFTs.
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8 Central charges and c-theorem

In this section, we will study the central charge, an important observable of the different

strongly coupled QFTs that our backgrounds in the Part I of the paper are defining.

Let us start with a brief summary of the ideas behind this observable. The RG-flow

can be understood as the motion of the different couplings of the QFT λi in terms of a

parameter t = − lnµ, such that for a given operator Ô,

dÔ

dt
= −βi(λ)

∂Ô

∂λi
. (8.1)

Hence, the beta functions βi(λ) are the ‘velocities’ of the motion towards the IR. It is

interesting to define a ‘c-function’ c(t) with the property that it decreases when flowing to

low energies,
dc(t)

dt
≤ 0. (8.2)

Such that at stationary points dc(t)
dt = 0 implies that βi(λ) = 0 and vice versa. The

intuition behind this quantity is that massless degrees of freedom are lifted by relevant

deformations, the flow to low energies then coarse-grains away these lifted modes. This

intuition is realized in different situation: the two dimensional case, with Zamolodchikov’s

definition of c(g) [49] or Cardy’s conjecture for the ‘a-theorem’ [50], proven by Komargodski

and Schwimmer in [51]. There are different versions of the c-theorem, varying in ‘strength’

and generality. See the paper [52] for a summary.

As we discussed, the c-function is properly defined only at the conformal points of a

QFT. Hence, we can define it properly in all of our backgrounds only at the AdS5 and AdS3

fixed points. In those cases the central charge is basically proportional to the volume of

the ‘internal manifold’ Md (the complement-space of AdS5 or AdS3). Indeed, there exists

a well-established formalism to calculate central charges that uses the relation between

this quantity and the Weyl anomaly in the QFT when placed on a generic curved space.

This was first discovered in [53] (before the Maldacena conjecture was formulated!) and a

complete understanding was developed in [54]. Indeed, for conformal field theories in two

and four dimensions, associated with AdS3 and AdS5 geometries respectively, we have8

2 dimensions: , A = − LR̄

16πG
(3)
N

= − c

24π
R̄, c =

3

2

L

G
(3)
N

, (8.3)

and

4 dimensions: , A = − L3

8πG
(5)
N

(
−1

8
R̄ijR̄ij +

1

24
R̄2

)
=

1

16π2

[
c

(
R̄ijklR̄ijkl − 2R̄ijR̄ij +

1

3
R̄2

)
c = a =

π

8

L3

G
(5)
N

,

− a
(
R̄ijklR̄ijkl − 4R̄ijR̄ij + R̄2

)]
, (8.4)

8The central charges a and c are equal at the leading order in an Nc-expansion. This is the result

captured by the Supergravity approximation used in this paper. Also notice that the L’s entering in this

formulas are relative to an AdS space expressed in the canonical form.

– 26 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
2

where R̄ijkl, R̄ij and R̄ are the Riemann and Ricci tensors and scalar of the boundary

metric. The Newton constant in different dimensions is calculated according to (we take

gs = 1 as in the rest of this paper),

G
(10)
N = 8π6α′4, G

(10−d)
N =

G
(10)
N

vol(Md)
. (8.5)

For solutions presenting a flow between these fixed points (or generically, an RG flow),

a quantity that gives an idea of the number of degrees of freedom can also be defined.

This quantity measures an ‘effective volume’ of the internal space, that is a volume that

is weighted together with the dilaton and other factors in the metric. To define such a

quantity one goes back to a proposal by Freedman, Gubser, Pilch and Warner [55] —

see also the paper [56] for earlier attempts. Indeed, for any background (that should be

considered to be a solution of a D-dimensional supergravity, possibly connected with string

theory) of the form,

ds2
D = e2A(r)dx2

1,D−2 + dr2 , (8.6)

and assuming that the matter fields satisfy certain Energy conditions [55], it was proven

using the Einstein equations that the quantity,

c ∼ 1

(A′)D−2
, (8.7)

is monotonically increasing towards the UV [55]. This proposal was extended by Klebanov,

Kutasov and Murugan in the paper [57], to account for an RG-flow in a d+ 1 dimensional

QFT, dual to a generic metric and dilaton of the form,

ds2 = α0(r)
[
dx2

1,d + β0(r)dr2
]

+ gij(r, ~θ)dθ
idθj , Φ(r). (8.8)

In these cases and in cases where the functions α0,Φ depend also on the internal coordinates

α0(r, ~θ),Φ(r, ~θ), the formulas of [57] were extended in [18]9 to be,

c = dd
β0(r)

d
2 Ĥ

2d+1
2

πG
(10)
N (Ĥ ′)d

, Ĥ =

(∫
d~θ
√
e−4Φ det[gint]αd0

)2

. (8.9)

At conformal points, i.e. when calculated in AdS backgrounds, this gives a constant result,

in agreement with eq. (8.3). For backgrounds with a flow, the quantity in eq. (8.9) gives

an idea of the number of degrees of freedom that participate in the dynamics of the QFT

at a given energy.

In the following sections, we will quote the results for central charges according to

eq. (8.3) for the conformal field theories in two and four dimensions. Following that, we

will write the result that eq. (8.9) gives for the flows between theories.

8.1 Central charge at conformal points

As anticipated, we will quote here the results for eq. (8.3) for the different AdS3 and AdS5

fixed points. We start with the twisted solutions of section 2.1. We will use that the volume

of the T 1,1 space is vol(T 1,1) = 16π3/27.

9It would be interesting to find a generalization to the case in which also the function β(r, ~θ).
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Twisted geometries. For the IR AdS3 fixed point, the volume of the internal compact

manifold is vol(M7) = 1
3L

7vol(Σ2)vol(T 1,1), and the central charge is,

c = 9
∣∣ND3N̂D3

∣∣ =
L8

α′4
vol(Σ2)vol(T 1,1)

24π6
. (8.10)

At the UV AdS5 fixed point, the volume of the internal compact manifold is vol(M5) =

L5vol(T 1,1), and the result for the central charge is,

c =
27

64
N2

D3 =
L8

α′4
vol(T 1,1)

64 π5
. (8.11)

After the NATD, we must consider the new radius of the space L̂ and the volume of the

new 5-dim compact space 4π2vol(ρ, χ, ξ). The computations turn out to be similar as the

previous ones, and we obtain that the central charges before and after NATD, for both the

two and four dimensional CFTs, are related by,

ĉ

c
=
L̂8

L8

4π2vol(ρ, χ, ξ)

vol(T 1,1)
. (8.12)

Let us comment on the quantity vol(ρ, χ, ξ), that appears in the calculation of the Page

charges in section 7 — see for example, eq. (7.21) and also in the computation of the

entanglement entropy of section 9. Indeed, if we calculate,10

vol(ρ, χ, ξ) =

∫ nπ

0
ρ2dρ

∫ 2π

0
dξ

∫ π

0
sinχdχ =

4π4

3
n3 ,

ĉ

c
=
L̂8

L8

4π2vol(ρ, χ, ξ)

vol(T 1,1)
=

36πN2
D6

N2
D3

n3 .

(8.13)

We have performed the ρ-integral in the interval [0, nπ]. The logic behind this choice was

spelt out in section 7, see below eq. (7.17). The proposal is that moving in units of π in

the ρ-coordinate implies ‘un-higgsing’ a gauge group, hence we would have a linear quiver

gauge theory. The central charge captures this un-higgsing procedure, increasing according

to how many groups we ‘create’. What is interesting is the n3 behavior in eq. (8.13). Indeed,

if n were associated with the rank of a gauge group, this scaling would be precisely the one

obtained in Gaiotto-like CFTs (also valid for the N = 1 ‘Sicilian’ theories of [47]). Indeed,

the NATD procedure when applied to the AdS5 × T 1,1 background creates metric and

fluxes similar to those characterizing the Sicilian CFTs. The backgrounds in Part I of the

paper are dual to a compactification of the Klebanov Witten CFT and (using the NATD

background) the Sicilian CFT on a two space Σ2. The two-dimensional IR fixed point of

these flows is described by our ‘twisted AdS3’ and its NATD. The central charge of the

Sicilian CFT and its compactified version is presenting a behavior that goes like a certain

rank to a third power c ∼ n3. This suggest that crossing ρ = π amounts to adding D4

branes and Neveu-Schwarz five branes and n is the number of branes that were added —

see eqs. (7.17) and (7.27) — or crossed.11 Had we integrated on the interval [nπ, (n+ 1)π],

we would have obtained a scaling like c ∼ N2
D4

at leading order in n.

10We identify the integral with the volume of the manifold spanned by the new coordinates. This becomes

more apparent if we use the expressions in the appendix, in different coordinate systems.
11Thanks to Daniel Thompson for a discussion about this.
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Donos-Gauntlett geometry. We study here the central charge for the Donos-Gauntlett

background in section 2.2. For the AdS3 fixed point, the volume of the internal compact

manifold vol(M7) = L7 (4/3)5/4 4π2dαdβ vol(T
1,1), and the central charge is,

c = 3
∣∣ND3N̂D3

∣∣ =
2

3

L8

α′4
dαdβvol(T

1,1)

π4
. (8.14)

For the AdS5 fixed point, the volume of the internal compact manifold vol(M5) =

L5vol(T 1,1), and the central charge results in,

c =
27

64
N2

D3 =
L8

α′4
vol(T 1,1)

64 π5
. (8.15)

The quotient of central charges before and after the NATD for the Donos-Gauntlett

QFT, are given by a similar expression to that in eq. (8.12).

We move now to study a quantity that gives an idea of the degrees of freedom along

a flow.

8.2 Central charge for flows across dimensions

In the previous section, we calculated the central charge for two and four dimensional

CFTs dual to the AdS3 and AdS5 fixed points of the flow. In this section, we will use the

developments in [55] and [57], to write a c-function along the flows between these fixed

points. We will find various subtleties,

• When considered as a low energy two-dimensional CFT, the definition of the c-

function evaluated on the flows will not detect the presence of the four dimensional

CFT in the far UV.

• We attempt to generalize the formula of [57] for anisotropic cases (that is for field

theories that undergo a spontaneous compactification on Σ2). This new definition

will detect both the two dimensional and four dimensional conformal points, but

will not necessarily be decreasing towards the IR. This is not in contradiction with

‘c-theorems’ that assume Lorentz invariance.

We move into discussing these different points in our particular examples. To start, we

emphasize that the formulas in eqs. (8.6)–(8.9), contain the same information. Indeed, the

authors of [57] present a ‘spontaneous compactification’ of a higher dimensional Supergrav-

ity (or String theory) to d + 2 dimensions, see eq. (8.8). Moving the reduced system to

Einstein frame and observing that the Tµν of the matter in the lower dimension satisfies

certain positivity conditions imposed in [55], use of eq. (8.7) implies eq. (8.9). Hence, we

will apply eqs. (8.8)–(8.9) to our different compactifications in Part I.

Twisted and Donos-Gauntlett solutions. For the purpose of the flows both twisted

and Donos-Gauntlett solutions present a similar qualitative behavior. We start by consid-

ering the family of backgrounds in eq. (2.1) as dual to field theories in 1 + 1 dimensions.

In this case the quantities relevant for the calculation of the central charge are,

d = 1, α0 = L2e2A, β0 = e−2A, eΦ = 1,

ds2
int

L2
= e2Bds2

Σ2
+ e2Uds2

KE + e2V (η + zA1)2 .
(8.16)
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We calculate the quantity

Ĥ = N 2e2(B+4U+V+A), N =
(4π)3vol(Σ2)L8

108
. (8.17)

Then, we obtain

c =
N e2B+4U+V

2πG
(10)
N (2B′ + 4U ′ + V ′ +A′)

. (8.18)

Using the BPS equations describing these flows in eq. (2.6) we can get an expression without

derivatives. Specializing for the solution with an H2 in section 2.1, we find

c =
N

9πG
(10)
N

(1 + e2r)2

1 + 2e2r
. (8.19)

We can calculate this for the background we obtained in section 3.1, by application of

NATD. The result and procedure will be straightforward, but we will pick a factor of the

volume of the space parametrized by the new coordinates, vol(ρ, χ, ξ).

For the purposes of the RG-flow, the quotient of the central charges will be the same

as the quotient in eq. (8.13). This was indeed observed in the past [17, 18] and is just a

consequence of the invariance of the quantity
(
e−2Φ

√
det[g]

)
under NATD.

Coming back to eq. (8.19), we find that in the far IR, represented by r → −∞,

the central charge is constant. But in the far UV (r → ∞), we obtain a result that is

not characteristic of a CFT. Hence, this suggest that the definition is only capturing the

behavior of a 2-dim QFT. In other words, the four dimensional QFT may be thought as a

two dimensional QFT, but with an infinite number of fields.

The absence of the four dimensional fixed point in our eq. (8.19) can be accounted if

we generalize the prescription to calculate central charges for an anisotropic 4-dim QFT.

Holographically this implies working with a background of the form,12

ds2
10 = −α0dy

2
0 + α1dy

2
1 + α2ds

2
Σ2

+
(
α1α

2
2

) 1
3 β0dr

2 + gijdθ
idθj . (8.20)

In this case we define,

Gijdξidξj = α1dy
2
1 + α2ds

2
Σ2

+ gijdθ
idθj ,

Ĥ =

(∫
dθi
√
e−4Φ det[Gij ]

)2

,

c = dd
β
d
2
0 Ĥ

2d+1
2

πG
(10)
N (Ĥ ′)d

.

(8.21)

We can apply this generalized definition to the flow for the twisted H2 background of

section 2.1, and Donos-Gauntlett background of section 2.2 (for more examples the reader

is referred to appendix D). In this case, we consider them as dual to a field theory in 3 + 1

12A natural generalization of eq. (8.20) is ds2 = −α0dt
2 +α1dy

2
1 + . . . .+αddy

2
d+Πd

i=1α
1
d
i βdr

2 +gijdθ
idθj .
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anisotropic dimensions (two of the dimensions are compactified on a Σ2). The quantities

relevant for the calculation of the central charge are,

d = 3, α1 = L2e2A, α2 = L2e2B, β0 = e
−2A−4B

3 , eΦ = 1,

Gijdξidξj = L2
(
e2Ady2

1 + e2Bds2
Σ2

+ e2Uds2
KE + e2V (η + zA1)2

)
.

(8.22)

We calculate

Ĥ = N 2e2(2B+4U+V+A), N =
(4π)3L8

108
. (8.23)

Then, we obtain

c =
27N e4U+V

8πG
(10)
N (2B′ + 4U ′ + V ′ +A′)3

. (8.24)

Focusing on the H2 case, if we use the solution that describe this flow — see eq. (2.8) we

get an analytical expression,

c =
N

π G
(10)
N

(
1 + e2r

1 + 2e2r

)3

. (8.25)

Notice that, by definition, this quantity gives the correct central charge in the UV (a

constant, characterizing the 4-d fixed point). In the IR, the quantity turns out to be

constant too, so it is capturing the presence of a 2-d fixed point. Nevertheless, it is probably

not an appropriate candidate for a ‘c-function between dimensions’ as it is not necessarily

increasing towards the UV. This is not in contradiction with the logic of ‘a-theorems’ and

proofs like the ones in [55] or [51], as the metric does not respect Lorentz invariance.

Hence, it is not satisfying the assumptions of the theorems. For the Donos-Gauntlett case

analogous things happen. It would be very nice to try to apply the recent ideas of [58]

to this flow. Notice that this feature of a ‘wrong monotonicity’ for the central charge was

also observed — for theories breaking Lorentz invariance in Higher Spin theories — see the

papers [59–62].

Let us move now to study other observables defining the 2-d and 4-d QFTs.

9 Entanglement entropy and Wilson loops

In this section, we will complement the work done above, by studying a couple of funda-

mental observables in the QFTs defined by the backgrounds in Part I of the paper.

Whilst at the conformal points the functional dependence of results is determined by

the symmetries, the interest will be in the coefficients accompanying the dependence. Both

observables interpolate smoothly between the fixed points.

9.1 Entanglement entropy

The aim of this section is to compute the entanglement entropy on a strip, which extends

along the direction y1 ∈ [−d
2 ,

d
2 ], and study how this observable transforms under NATD.

The input backgrounds for our calculations will be the Donos-Gauntlett and the H2 flow
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as well as their non-Abelian T-duals. Since the procedure is the same in all of the cases

and due to the similarity of the geometries we will present the results in a uniform way.

For the computation of the entanglement entropy one has to apply the Ryu-Takayanagi

formula [63] for non-conformal metrics [64]. This prescription states that the holographic

entanglement entropy between the strip and its complement is given by the minimal-area

static surface that hangs inside the bulk, and whose boundary coincides with the boundary

of the strip. The general form of the entanglement entropy for the non-conformal case is,

S =
1

4G
(10)
N

∫
d8σe−2Φ

√
G

(8)
ind . (9.1)

For the strip, we chose the embedding functions to be y0 = const and r = r(y1) and

then using the conservation of the Hamiltonian we arrive at an expression for r(y1) that

makes the area minimal under that embedding. With that we compute,

S =
L̃8

54

π

G
(10)
N

vol(Σ2)V3

∫ ∞
r∗

dr e−A
G2√

G2 −G2
∗
, (9.2)

where the form of the function G depends on the geometry of the background that

we consider,

G =

{
eA+2B for the twisted solutions

eA+2B+4U+V for the DG solution
. (9.3)

Above, r∗ is the radial position of the hanging surface tip and we define G∗ = G(r∗). Also,

with vol(Σ2) we denote the volume of the Riemann surface Σ2. Notice that the form of

the function G is the same before and after NATD. Moreover we consider,

L̃ =

{
L before NATD

L̂ after NATD
, (9.4)

The quantity V3 is defined as,

V3 =

{
16 π2 before NATD∫
dχ dξ dρ ρ2 sinχ after NATD

. (9.5)

Before the NATD transformation V3 comes from the 3-dimensional submanifold that is

spanned by the coordinates (θ2, φ2, ψ), while after the NATD it comes from the submanifold

that is spanned by the dual coordinates (ρ, χ, ξ). This implies that the entropies before

and after NATD are proportional all along the flow, for any strip length. A discussion on

possible values of the quantity
∫
dχ dξ dρ ρ2 sinχ can be found in the quantized charges

section 7 and in the discussion on central charges in section 8.

When computed by the Ryu-Takayanagi formula eq. (9.2) the entanglement entropy

is UV divergent. In order to solve this we compute the regularized entanglement entropy

(Sreg) by subtracting the divergent part of the integrand of eq. (9.2). The regularized

entanglement entropy is given by,

Sreg =
L̃8

54

π

G
(10)
N

vol(Σ2)V3

{∫ ∞
r∗

dr

(
e−AG2√
G2 −G2

∗
− FUV

)
−
∫ r∗

dr FUV

}
, (9.6)
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where the last integral is an indefinite integral with the result being evaluated at r = r∗ and

FUV =


1 + e2r

3
for the H2 twisted solution

e2r +
λ2

3
for the Donos-Gauntlett solution

. (9.7)

From the formulas (9.4), (9.5) and (9.6) it is obvious that the regularized entanglement

entropies before and after the NATD transformation differ by the factor

Ŝreg

Sreg
=
L̂8

L8

∫
dχ dξ dρ ρ2 sinχ

16 π2
. (9.8)

In the formula above we denoted by Ŝreg the value of the entanglement entropy after

the NATD transformation. As discussed below eq. (8.19), the quantity
(
e−2Φ

√
det[g]

)
is

invariant under NATD, and this explains why the ratio (9.8) is constant along the flow.

At this point let us normalize the regularized entanglement entropy by defining

the quantity,

S′ =
54

L̃8

G
(10)
N

π vol(Σ2)V3
Sreg . (9.9)

In what follows we present the behavior of S′ in the UV and the IR for the geometries of

interest. We express the results in terms of the width of the strip d,

d = 2G∗

∫ ∞
r∗

dr
e−A√
G2 −G2

∗
. (9.10)

The UV/IR behavior written in eqs. (9.12), (9.15), (9.18) and (9.20) below, are just conse-

quences of the fact that in far UV and far IR the dual QFT is conformal. The functional

forms are universal, so our main interest is the constant appearing in them, and also as a

cross-check of numerical results.

Behavior in the UV

Twisted geometries. In the case of the twisted H2 geometry we find that the width of

the strip is,

d = e−r∗
∫ ∞

1

du

u2

2√
u6 − 1

=
2
√
πΓ
(

2
3

)
Γ
(

1
6

) e−r∗ . (9.11)

Here in the integration we changed the variable r by u = er

er∗ . From the calculation of the

normalized entropy S′ we observe that in the UV this behaves like 1
d2

, namely

S′ = −π
3/2

6

(
Γ
(

2
3

)
Γ
(

1
6

))3 1

d2
+

1

3
ln d+

1

3
ln

(
Γ
(

1
6

)
2
√
π

Γ

(
2

3

))
, (9.12)

where we also included subleading and next-to subleading terms.
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Donos-Gauntlett geometry. Similarly in the case of the Donos-Gauntlett geometry

we find that the width of the strip in terms of r∗ (considering also a subheading term) is,

d =
2
√
πΓ
(

2
3

)
Γ
(

1
6

) e−r∗ + λ2
( 5

72
+

11

24
I1

)
e−3r∗ , (9.13)

where

I1 =

∫ ∞
1

dz
z2

(z4 + z2 + 1)
√
z6 − 1

= 0.1896 . . . (9.14)

Here as well we end up with a 1
d2

behavior, a logarithmic subleading contribution and a

constant c1 for the regularized entropy,

S′ = −2π3/2

(
Γ
(

2
3

)
Γ
(

1
6

))3 1

d2
+
λ2

3
ln d+ c1 , (9.15)

where c1 ,

c1 = λ2

(
−1

3
ln

(
2
√
πΓ
(

2
3

)
Γ
(

1
6

) )
+

(
ln 2

9
+

11

48
I1

)
+

Γ
(
−1

3

)
6Γ
(

2
3

) ( 5

72
+

11

24
I1

))
. (9.16)

Behavior in the IR

Twisted geometries. The calculation for the IR limit is more tricky. The origin of the

subtlety is that the integrals we have to evaluate now run all along the flow and we do not

know the analytical properties of the integrands. In order to address this issue we split

the integration into the intervals [r∗, a] and [a,+∞) choosing a to be in the deep IR but

always greater than r∗. See [65] for details of this procedure.

Following this prescription in the calculation, for the width of the strip we find,

d =
4

3
e−

3r∗
2 . (9.17)

If we do the same analysis when we calculate the normalized entropy we find,

S′ =
2

9
ln d+

2

9
ln

3

2
. (9.18)

The logarithmic dependence of the leading term on d is the expected for a 1 + 1 theory.

Donos-Gauntlett geometry. We close this section presenting the corresponding results

for the Donos-Gauntlett geometry. As in the case of the twisted geometries we split the

integrations in the same way. Then for the width of the strip we find,

d = e−a0
2
√

2

3
3
4

e
− 3

3
4√
2
r∗ . (9.19)

The normalized entropy displays again a logarithmic behavior in terms of the width of

the strip,

S′ =
8

9
ln d+

8

9
ln

(
ea0

3
3
4

√
2

)
+ c2 , (9.20)
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Figure 2. S′ as a function of d for twisted H2 (left) and Donos-Gauntlett solution (right). The

continuous curves correspond to the numerical value, while the dashed red ones to the UV and

IR limits.

where the constant c2 has the value,

c2 =

∫ ∞
0

(
e−AG− e2r − 4

3

)
dr +

∫ 0

−∞

(
e−AG− e2r −

(
4

3

) 5
4

)
dr = −0.0312 . . . (9.21)

We will now perform a similar analysis for Wilson loops.

9.2 Wilson loop

In this section we calculate the potential energy as a function of the separation in the

y1 direction (denoted as d) for two non-dynamical sources added to the QFT [66]. In

holography this observable can be represented by a hanging string whose ends are separated

by a distance d along the y1 direction. In our calculations we consider an embedding of

the form r = r(y1) for the string. Such an embedding gives rise to the following induced

metric on the string,

ds2
st = L̃2

(
e−2A dy2

0 +
(
e2A + r′2

)
dy2

1

)
, (9.22)

where L̃ is defined in (9.4). It is obvious that the above induced metric is the same for all

of the geometries that we have discussed in this paper so far (even for the duals). For this

reason we believe that it is not necessary to make any distinction with respect to these

geometries for the moment. Moreover, this means that the observable is ‘uncharged’ under

NATD and thus it has the same functional form when computed in the initial and dualized

geometries. The interest will be in the numerical coefficients our calculation will give.

The Nambu-Goto Lagrangian density for the string takes the form,

L =
1

2πα′

√
− det(gind) =

L̃2

2πα′
eA
√
e2A + r′2 , (9.23)

where gind stands for the induced metric (9.22). The conservation of the Hamiltonian

implies that,
e3A

√
e2A + r′2

= e2A∗ , (9.24)
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where A∗ is the value of the function A(r) at the tip of the hanging string r = r∗. We

can solve the last equation for r′ and use the result to calculate the distance between the

endpoints of the string. If we do this we can express d in terms of r∗

d = e2A∗

∫ ∞
r∗

dr
e−A√

e4A − e4A∗
. (9.25)

The Nambu-Goto action now reads

S =
T L̃2

πα′

∫ ∞
r∗

dr
e3A

√
e4A − e4A∗

, (9.26)

where T =
∫
dt. The integral in eq. (9.26) is divergent since we are considering quarks

of infinite mass sitting at the endpoints of the string. We can regularize this integral by

subtracting the mass of the two quarks and dividing by T as it is shown below

E

L̃2
α′ =

1

π

∫ ∞
r∗

dreA
(

e2A

√
e4A − e4A∗

− 1

)
− 1

π

∫ r∗

−∞
dr eA . (9.27)

This formula gives us the quark-antiquark energy. In order to calculate the same observable

starting with the NATD geometries one must take into account that the AdS radius L

is different from that of the original geometries. In fact both results are related in the

following way

Ê

E
=
L̂2

L2
. (9.28)

In the last expression the hats refer to the dual quantities.

At this point we will explore the UV and IR limits of the quark-antiquark energy both

for the twisted and the Donos-Gauntlett geometries.

Behavior in the UV

Twisted and Donos Gauntlett geometry. First we focus on the twisted solution

where the Riemann surface is the hyperbolic space, i.e. Σ2 = H2. In section 2.1 we saw

that in this case the function A(r) behaves like A(r) ∼ r. Taking this into account we can

compute the distance between the quarks from the formula (9.25). The result of this is

d =
2
√

2 π
3
2

Γ
(

1
4

)2 e
−r∗ . (9.29)

Solving this equation for r∗ we can substitute into the result coming from the formula (9.27).

This will give the quark-antiquark energy in terms of d which in our case is

E = − L̃
2

α′
4 π2

Γ
(

1
4

)4

1

d
, (9.30)

as expected for a CFT. The main point of interest in the previous formula is in the numerical

coefficient.

Similar considerations for the case of the Donos-Gauntlett geometry give the same

results as in the twisted case above. This is because the asymptotic behavior of the function

A(r) in the UV is the same in both cases.
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Behavior in the IR

Twisted geometry. Again in the IR region we address again the same difficulty that we

found in the computation of the entanglement entropy. We use the same trick to overcome

it, that is we split the integrations into the intervals [r∗, a] and [a,+∞) where a has value

in the deep IR but always greater than r∗.

In section 2.1 we saw that in the case where Σ2 = H2, the IR behavior of the function

A(r) is A(r) ∼ 3
2 r. Applying this into the formula (9.25) we obtain the following result,

d =
4
√

2 π
3
2

3 Γ
(

1
4

)2 e
− 3

2
r∗ . (9.31)

As before we solve the previous result for r∗ and we substitute it into the expression that

we find from the calculation of the quark-antiquark potential. This way we express the

energy as a function of the distance between the quarks,

E = − L̃
2

α′
16 π2

9 Γ
(

1
4

)4

1

d
. (9.32)

Donos-Gauntlett geometry. Repeating the same steps for the case of the Donos-

Gauntlett geometry we find that the distance between the quarks is,

d =
4π

3
2

3
3
2 Γ
(

1
4

)2 e
−a0− 3

3
4√
2
r∗ . (9.33)

Then, expressing the energy in terms of the distance d we find again a dependence propor-

tional to 1
d ,

E = − L̃
2

α′
8π2

3
3
2 Γ
(

1
4

)4

1

d
. (9.34)

Let us point out that the behavior in eqs. (9.30), (9.32) and (9.34) are just consequences

of the fact that far in the UV and far in the IR the QFT is conformal.

10 Conclusions and future directions

Let us start with a brief summary. We studied backgrounds dual to two-dimensional

SUSY CFTs. The 2-d CFTs were obtained by compactification of the four-dimensional

Klebanov-Witten CFT on a torus or on a compact hyperbolic plane. The 2-d CFT preserves

(0,2) SUSY.

On those Type IIB backgrounds we performed a NATD transformation, using an

SU(2)-isometry of the ‘internal space’ (or conversely, a global symmetry of the dual CFT).

As a result, we constructed new, smooth and SUSY preserving backgrounds in Type IIA

and M-theory with an AdS3 fixed point. A further T-duality was used to construct new,

smooth and SUSY Type IIB background whose IR is of the form AdS3 × M7 and all
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Figure 3. The quark-antiquark potential E
α′L2 as a function of the distance d in the cases of the

twisted H2 (left) and Donos-Gauntlett (right) solutions. The continuous curves correspond to the

numerical results and the dashed ones to the UV and IR limits.

fluxes are active. Moreover, the uplift to 11 dimensions of the new Type IIA solutions is

presented.

We analyzed the dual QFT by computing its observables, using the smooth back-

grounds mentioned above. By studying the Page charges, we observed that there is a

correspondence between the branes of the starting Type IIB solution and those of the

Type IIA solution after NATD.

The behavior of the central charge in the original CFT (the compactification of the

Klebanov-Witten theory to 2-d) is c ∼ N2
D3, while after the NATD goes like c ∼ N2

D6n
3.

This new (cubic) dependence suggest a relation with long linear quivers, which would imply

that n is measuring the number of D4 and NS5 branes. The picture that emerges is that of

a 2-d CFT living on the intersection of D2 , D6 and NS5 branes, with induced D4 charge

every time an NS-brane is crossed. Quantized charges support this interpretation.

Entanglement entropy and Wilson loops had the expected universal dependence on

d (the quark-antiquark separation or the length of strip separating the two regions) at

the fixed points. The interest of the expressions is on the coefficients, not determined by

conformal invariance. Interestingly, along the flow the observables smoothly interpolate

between the IR and the UV behaviors, which are fixed points of different dimensionality.

Both for the entanglement entropy and the Wilson loops we found that the quotient of

their values before and after NATD is constant along the flow, as it is expected.

In the future it would be interesting to:

• Connect our study with previous calculations done for AdS3, either at the sigma

model or the supergravity level. We are presenting new backgrounds, hence new 2-d

CFTs on which studies done in the past could be interesting to revisit.

• Make more precise the QFT dual to our backgrounds. Apply the findings in this

paper to other examples, perhaps more symmetric.

• Extend the classification of AdS3 backgrounds in Type II String Theory or M-theory.

Our backgrounds suggest more general metrics for the internal space. Check whether

our solutions fall within the existent classifications of, for example [41, 42, 67, 68].
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• Find new observables that select (or explore) the values of ρ = nπ argued in this

work to be special values of the ρ-coordinate. Explore further the prescription based

on the periodicity of b0.

• Explore the definition for a c-function in the anisotropic case. Is our definition of

any use? Can a definition for anisotropic backgrounds or flows between dimensions

be engineered by using the ideas in [69, 70]?

• It would be interesting to apply the c-extremization formalism of [71, 72] to our

examples with less SUSY. In the same vein, the formalism of [73] seems suited for

our examples. Indeed, a reduction of our IIB and IIA backgrounds in the sense

of [74] seems possible. This 3d-supergravity may be the suitable arena [75] to study

c-extremization in our cases. One may even speculate with the same idea applied to

our non-SUSY examples.

• Find other observables in the CFTs that can be studied in our new AdS3 back-

grounds. Study the fate of the known observables under the NATD. Are those oper-

ators charged or uncharged under the global symmetries used to dualize?

• In the previous literature [76], flows to (0, 2) SCFTs have been found, starting from

the Leigh-Strassler fixed point — something quite similar in spirit to our flows. Also,

flows from N = 4 SYM and the (0, 2) SCFT in six dimensions to 2d SCFTs with

(0,2) have been discussed in [71, 72]. Finally, the paper [77] discusses flows from other

N = 1 QFTs to (0, 2) theories triggered by the presence of a magnetic field on a torus

(similar to the Donos-Gauntlett flow and its NATD). It would be very interesting to

relate these different flows. Our NATD geometries bring a new element, incorporating

linear quivers.

• I would be of interest to break conformality, starting from our AdS3 backgrounds

and flowing down to a smooth space. This would mimic a (0,2) confining theory.

Many exact methods to compute observables exist — see for example [78]. It would

be instructive to compare them with holographic computations.

These, and various others, appear as directions worth exploring at the moment of writing.

We hope that readers appreciate the interest of this line of research and contribute with

their ideas.
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A SUSY analysis

SUSY preserved by the twisted solutions. In this appendix we write explicitly the

variations of the dilatino and gravitino for the ansatz (2.1-2.4), for the 3 cases H2, S2

and T 2. The SUSY transformations for the dilatino λ and the gravitino ψm for Type IIB

SUGRA in string frame are [79],

δελ =

[
1

2
Γm∂mΦ +

1

4 · 3!
HmnpΓ

mnpτ3 −
eΦ

2
FmΓm(iτ2)− eΦ

4 · 3!
FmnpΓ

mnpτ1

]
ε , (A.1)

δεψm =

[
∇m +

1

4 · 2!
HmnpΓ

npτ3

+
eΦ

8

(
FnΓn(iτ2) +

1

3!
FnpqΓ

npqτ1 +
1

2 · 5!
FnpqrtΓ

npqrt(iτ2)

)
Γm

]
ε ,

where τi , i = 1, 2, 3, are the Pauli matrices. Let us consider the H2 case in detail (the S2

case is obtained analogously) . Recall that the vielbein is written in (2.5).

The dilatino variation vanishes identically, as the fields involved are vanishing. The

m = 0 component of the gravitino reads,

δεψ0 =

[
A′

2L
Γ04 −

e−4U−V

2L
Γ04Γ0123iτ2 +

e−2B−2U−V

16L
z
(
Γ014 − Γ239

)(
Γ78 − Γ56

)
Γ0iτ2

]
ε .

(A.2)

First, we use the chiral projection of Type IIB,

Γ11ε = ε , (A.3)

where we define Γ11 = Γ0123456789. We also impose the following projections (Kähler

projections),

Γ56ε = −Γ78ε = −Γ49ε . (A.4)

Then, expression (A.2) simplifies to,

δεψ0 = Γ04

[
A′

2L
− e−V−4U

2L
+
e−2B−2U−V

4L
zΓ0178iτ2

]
ε . (A.5)
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We now impose the usual projection for the D3-brane,

Γ0123 iτ2ε = ε , (A.6)

and also a further projection related to the presence of the twisting,

Γ23ε = Γ78ε . (A.7)

Then, imposing that expression (A.5) vanishes we obtain,

A′ − e−V−4U +
z

2
e−2B−2U−V = 0 . (A.8)

For the component m = 1 of the gravitino equation, we obtain that it is zero when we

impose the projections and equation (A.8). For the component m = 2 we have,

δεψ2 =

[
B′

2L
Γ24 +

e−2B+V

4L
zΓ39 −

e−V−4U

2L
Γ24Γ0123iτ2 −

e−2B−2U−V

4L
zΓ24Γ0178iτ2

]
ε .

(A.9)

Combining projections (A.4) and (A.7) we get Γ39ε = −Γ24ε. Then, (A.9) gives the condi-

tion,

B′ − e−V−4U − z

2
e−2B−2U−V − z

2
e−2B+V = 0 . (A.10)

For m = 3, after imposing the projections and equation (A.10) we arrive at,

δεψ3 = −e
−B

2L
cotα (1 + 3z)Γ23ε . (A.11)

There are two contributions to this term, one coming from the curvature of the H2 (through

the spin connection) and another coming from the twisting A1. That is, here we explicitly

see that the twisting is introduced to compensate the presence of the curvature, in such a

way that some SUSY can be still preserved. Then, we impose,

z = −1

3
. (A.12)

For m = 4, the variation is,

δεψ4 =
1

L
∂rε−

1

2L

[
e−4U + 2e−2B−2U−V ] ε . (A.13)

From the condition δεψ4 = 0, we obtain a differential equation for ε. Solving for it we

arrive at the following form for the Killing spinor,

ε = e1/2
∫

(e−4U+2e−2B−2U−V )dr ε0 , (A.14)

where ε0 is spinor which is independent of the coordinate r. For m = 5, 6, 7, 8 the variations

vanish as long as ,

U ′ + e−V−4U − eV−2U = 0 . (A.15)

Finally, for m=9 the graviton variation vanishes if,

V ′ − 3e−V + 2eV−2U + e−V−4U − z

2
e−2B−2U−V +

z

2
e−2B+V = 0 . (A.16)

– 41 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
2

Summarizing, the variations of the dilatino and gravitino vanish if we impose the next

projections on the Killing spinor,

Γ11ε = ε , Γ56ε = −Γ78ε = −Γ49ε , Γ0123 iτ2ε = ε , Γ23ε = Γ49ε , (A.17)

and the BPS equations (2.6), together with the condition z = −1/3. For the case of the

2-torus, if we focus on the m = 3 component,

δεψ3 =

[
−ze

−2B+V

4L
Γ29 −

3ze−B

2L
α Γ78 +

B′

2L
Γ34 −

e−V−4U

2L
Γ34 −

ze−2B−2U−V

4L
Γ34

]
ε ,

(A.18)

we see that there is one term depending on α, due to the twisting. Contrary to the H2

and S2 cases, here there is no curvature term that could cancel it. This will force z = 0,

obtaining A′ = B′, which does not permit an AdS3 solution.

Finally, after all this analysis we deduce that the Killing spinor does not depend

explicitly on the coordinates (θ2, φ2, ψ) on which we perform the NATD transformation.

In fact it only has a dependence on the coordinate r.

SUSY preserved by the NATD solutions. In the above subsection we calculated the

amount of SUSY that is preserved by the Type IIB supergravity solutions of the section 2.1

by examining the dilatino and the gravitino variations. Here we compute the portion of

SUSY that is preserved by a supergravity solution after a NATD transformation following

the argument of [10], which has been proven in [11]. According to this one just has to

check the vanishing of the Lie-Lorentz (or Kosmann) derivative [80] of the Killing spinor

along the Killing vector that generates the isometry of the NATD transformation. More

concretely, suppose that we want to transform a supergravity solution by performing a

NATD transformation with respect to some isometry of the background that is generated

by the Killing vector kµ. Then there is a simple criterion which states that if the Lie-Lorentz

derivative of the Killing spinor along kµ vanishes, then the transformed solution preserves

the same amount of SUSY as the original solution. In the opposite scenario one has to

impose more projection conditions on the Killing spinor in order to make the Lie-Lorentz

derivative vanish. Thus in that case the dual background preserves less supersymmetry

than the original one.

We recall that given a Killing vector kµ the Lie-Lorentz derivative on a spinor ε along

kµ maps the spinor ε to an other spinor and is defined as,

Lkε = kµDµε+
1

4

(
∇µkν

)
Γµνε = kµDµε+

1

8
(dk)µνΓµνε , (A.19)

where Dµε = ∂µε + 1
4ωµρσΓρσε. For further details about the Lie-Lorentz derivative we

urge the interested reader to consult [81].

In this paper we constructed new Type IIA supergravity solutions by applying a NATD

transformation with respect to the SU(2) isometry of the original backgrounds that cor-

responds to the directions (θ2, φ2, ψ). The non-vanishing components of the associated

– 42 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
2

Killing vectors are,

kθ2(1) = sinφ2 , kφ2(1) = cot θ2 cosφ2 , kψ(1) = − cosφ2

sin θ2
,

kθ2(2) = cosφ2 , kφ2(2) = − cot θ2 sinφ2 , kψ(2) =
sinφ2

sin θ2
,

kφ2(3) = 1 . (A.20)

In what follows we will compute the Lie-Lorentz derivative along the three Killing vectors

(k(1), k(2), k(3)) using the geometries of the sections 2.1 and 2.2. It turns out that in all cases

the Lie-Lorentz derivative vanishes without the requirement of imposing further projections

on the Killing spinor. This means that the new solutions that we found using the technique

of NATD preserve the same SUSY as the original solutions.

The NATD of the twisted solutions

Let us now compute the Lie-Lorentz derivative along the Killing vector (A.20) for the

twisted geometries that are described by the formulas (2.1)–(2.5). In the previous section,

which deals with the supersymmetry of the starting solutions, we mentioned that the Killing

spinor does not depend on the isometry coordinates (θ2, φ2, ψ). This means that the first

term in (A.19) reduces to,

kµ(i)Dµε =
1

4
ωµρσ k

µ
(i) Γρσε , i = 1, 2, 3 . (A.21)

Hence for each of the three Killing vectors we find,

kµ(1)Dµε =
z

12
e2V−2B cosφ2 sin θ2Γ23ε− e2V−2U

6
cosφ2 sin θ2

(
Γ56 − Γ′78

)
ε

− 1

2
cosφ2 sin θ2Γ′78ε+

eV−U

2
√

6

(
cos θ2 cosφ2Γ′8 − sinφ2Γ′7

)
Γ9ε

+
eU U ′

2
√

6

(
cos θ2 cosφ2Γ′7 + sinφ2Γ′8

)
Γ4ε+

eV V ′

6
sin θ2 cosφ2Γ49ε ,

kµ(2)Dµε = − z

12
e2V−2B sinφ2 sin θ2Γ23ε+

e2V−2U

6
sinφ2 sin θ2

(
Γ56 − Γ′78

)
ε

+
1

2
sinφ2 sin θ2Γ′78ε− eV−U

2
√

6

(
cos θ2 sinφ2Γ′8 + cosφ2Γ′7

)
Γ9ε

− eU U ′

2
√

6

(
cos θ2 sinφ2Γ′7 − cosφ2Γ′8

)
Γ4ε− eV V ′

6
sin θ2 sinφ2Γ49ε ,

kµ(3)Dµε = − z

12
e2V−2B cos θ2Γ23ε+

e2V−2U

6
cos θ2

(
Γ56 − Γ′78

)
ε+

1

2
cos θ2Γ′78ε

+
eV−U

2
√

6
sin θ2Γ′8Γ9ε− eU U ′

2
√

6
sin θ2Γ4Γ′7ε− eV V ′

6
cos θ2Γ49ε .

(A.22)

For convenience we have defined the rotated Γ-matrices,

Γ′7 = cosψ Γ7 + sinψ Γ8 , Γ′8 = − sinψ Γ7 + cosψ Γ8 . (A.23)
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Let us now compute the 1-forms that are dual to the Killing vectors. What one has to do

is to lower the index of the Killing vectors (A.20) using the metric (2.1) which gives the

following result,

k(1) = −L
2

3
e2V sin θ2 cosφ2

(
η + zA1

)
+
L2

6
e2U
(

sinφ2dθ2 + sin θ2 cos θ2 cosφ2dφ2

)
,

k(2) =
L2

3
e2V sin θ2 sinφ2

(
η + zA1

)
+
L2

6
e2U
(

cosφ2dθ2 − sin θ2 cos θ2 sinφ2dφ2

)
,

k(3) =
L2

3
e2V cos θ2

(
η + zA1

)
+
L2

6
e2U sin2 θ2dφ2 .

(A.24)

The second term of (A.19) can be computed by acting with the exterior derivative on the

above 1-forms and contracting the result with Γ-matrices. Notice that in order to compare

with (A.22) one has to express the components of dk(i), i = 1, 2, 3 using the flat frame (2.5).

Finally for the second term of (A.19) we find,

1

8
(dk(i))µνΓµνε = −kµ(i)Dµε, i = 1, 2, 3, (A.25)

which means that the Lie-Lorentz derivative along the Killing vectors k(i), i = 1, 2, 3

vanishes.

The NATD the Donos-Gauntlett solution. In the case of the Donos-Gauntlett geom-

etry (2.19) we notice that all the necessary expressions are quite similar to those computed

in the previous subsection. This is because the only significant difference between the line

element of the twisted geometries and that of the Donos-Gauntlett geometry is just a fiber

term. As in the example of the previous subsection, the Killing spinor does not depend

on the isometry coordinates (θ2, φ2, ψ). This implies that the derivative term kµ∂µε in

eq. (A.19) has no contribution to the result. Then the first term of eq. (A.19), for each of

the three Killing vectors, can be easily obtained from eq. (A.22) by setting z = 0. Similarly,

if we set z = 0 into eq. (A.24) we find the 1-forms k(1), k(2), k(3) for the Donos-Gauntlett

case. Once we know these 1-forms we can follow the same prescription as in the previous

subsection and compute the second term of (A.19) for each Killing vector. It happens

again that this term, when computed for every Killing vector, is related to the first term

by a minus sign and thus the Lie-Lorentz derivative vanishes without imposing further

projections on the Killing spinor.

B Details on the Donos-Gauntlett solution

Here, we describe the numerical flow of Donos-Gauntlett. We also present an analytic

approximation to the numerical solution. This complements the study in section 2.2.

We start by writing the BPS equations,

A′ =
1

4
λ2e−2B−2U−V + e−4U−V , B′ = e−4U−V − 1

4
λ2e−2B−2U−V ,

U ′ = eV−2U − e−4U−V , V ′ = − 1

4
λ2e−2B−2U−V − e−4U−V − 2eV−2U + 3e−V .

(B.1)
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The above functions satisfy the following equations of motion,

A′′ =
1

2
λ2e−2B−4U +

1

8
λ4e−4B−4U−2V + 4e−8U−2V −A′

(
2A′ + 2B′ + 4U ′ + V ′

)
,

B′′ = − 1

2
λ2e−2(B+2U) − 1

8
λ4e−2(2(B+U)+V ) + 4e−2(4U+V ) −B′

(
2A′ + 2B′ + 4U ′ + V ′

)
,

U ′′ = − 1

2
λ2e−2(B+2U) − 4e−2(4U+V ) − 2e2V−4U + 6e−2U − U ′

(
2A′ + 2B′ + 4U ′ + V ′

)
,

V ′′ =
1

2
λ2e−2(B+2U) − 1

8
λ4e−2(2B+2U+V ) − 4e−2(4U+V )

+ 4e2V−4U − V ′
(
2A′ + 2B′ + 4U ′ + V ′

)
,

(B.2)

and the constraint

8e2(B+2U+V )
[
e2B+4U

(
2A′

(
2B′ + 4U ′ + V ′

)
+A′2 + 2V ′

(
B′ + 2U ′

)
+ 8B′U ′

+B′2 + 6U ′2
)
− 12e2(B+U) + λ2

]
+ 16e4(B+U+V ) + 32e4B + λ4e4U = 0.

(B.3)

The SUSY flow. Let us now discuss the numerical flow between the two asymptotic

solutions. The appropriate asymptotics in the IR (r → −∞) are given by (here we can set

λ = 2 without loss of generality)

A = a0 +
r

RDG
+

3

2
s1e

2r/RDG + · · ·+ 1

4

(
−3 +

√
5
)
s2e

(−1+
√

5)r/RDG + . . . ,

B =
1

4
ln

(
4

3

)
+ s1e

2r/RDG + · · ·+ s2e
(−1+

√
5)r/RDG + . . . ,

U =
1

4
ln

(
4

3

)
− s1e

2r/RDG + · · ·+ 1

4

(
2−
√

5
)
s2e

(−1+
√

5)r/RDG + . . . ,

V = − 1

4
ln

(
4

3

)
− s1e

2r/RDG + · · ·+ 1

4

(
−9 + 4

√
5
)
s2e

(−1+
√

5)r/RDG + . . . ,

(B.4)

where RDG =
√

2
33/4

, and s1, s2 and a0 are integration constants to be fixed. In the UV

(r →∞) are given by (leaving λ-dependence intact)

A = r − 5

48
λ2e−2r +

287

18432
λ4e−4r − 5953

2211840
λ6e−6r + . . . ,

B = r +
7

48
λ2e−2r − 385

18432
λ4e−4r +

8267

2211840
λ6e−6r + . . . ,

U =
1

48
λ2e−2r − 13

1536
λ4e−4r +

(
cu
λ6

+
3

1280
r

)
λ6e−6r + . . . ,

V = − 1

24
λ2e−2r +

37

1536
λ4e−4r −

(
4cu
λ6
− 9023

3317760
+

3

320
r

)
λ6e−6r + . . . .

(B.5)

where there is only one integration constant given by cu. In figure 4, we plot the behavior

of the background functions for this flow, using the BPS equations and numerically solving

for cu ≈ 0.104892.
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V

Figure 4. From top to bottom: the numerical and analytical approximation values of the functions

A′, U,B′, V . The solid lines correspond to the numerical solutions and the dashed lines to the

analytical approximations. Notice that the plots for the functions U and V are rescaled by a

factor of 15.

A possible deformation of the SUSY flow.labelsubsec:nonSUSYflow Here we

present the UV expansion when we instead solve the full EOM given in eq. (B.2), as

opposed to the BPS equations given in eq. (2.23). So, in the UV (r →∞), using a similar

expansion as in the SUSY case we find (leaving the λ-dependence intact again)

A = r − 5

48
λ2e−2r −

(
cb
λ4

+
49

9216

)
λ4e−4r −

(
cb

40λ4
+

1777

552960

)
λ6e−6r + . . . ,

B = r +
7

48
λ2e−2r + cbe

−4r −
(

cb
40λ4

− 889

276480

)
λ6e−6r + . . . ,

U =
1

48
λ2e−2r − 13

1536
λ4e−4r +

(
cu
λ6
− 1

4

(
cb

5λ4
− 479

92160

)
r

)
λ6e−6r + . . . ,

V = − 1

24
λ2e−2r +

37

1536
λ4e−4r

−
(

4cu
λ6

+
3cb

20λ4
+

9023

3317760
−
(
cb

5λ4
− 343

829440

)
r

)
λ6e−6r

+

(
cv
λ8
−
(

7cb
240λ4

− 3353

4423680

)
r

)
λ8e−8r + . . . .

(B.6)

Now we have three integration constants cb, cu and cv. We can recover the original UV

expansions presented in eq. (B.5) by setting

cb → −
385

18432
λ4, cv →

7cu
12

λ2 − 72617

63700992
λ8, (B.7)

leaving one integration constant cu as before. It would be interesting to see if a family

of flows can be found using these expansions, and see if any new IR fixed points appear,

as limits.
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Analytic approximation for the Donos-Gauntlett flow. Below, we discuss a simple,

analytic approximation for the functions A,B,U, V of the Donos-Gauntlett solution. After

this, we explain how an analogy of those functions with some thermodynamic quantities

of a two-level Maxwell-Boltzmann system appears.

Analytic expressions. In our ansatz for the analytic approximation eq. (2.26) we con-

sider the following values for the various constants that appear,

µA = µB = µU = µV =
1

2
, rA =

a0

1− 1
R

= 0.212 , rB =
1

2
ln

2√
3
. (B.8)

These values come from the zeroth order of the fixed point expansions.13 The parameters

rU and rV are not fixed and we chose rU = −0.019, rV = 0.537. The comparison with the

numerics is depicted in the figure 4.

Two-level system thermodynamic analogy. By thermodynamic analogy we mean

the association of some thermodynamic quantities of the two-level Maxwell-Boltzmann

system with the functional forms of the warping factors of the geometry. The important

quantities in our scheme are the free energy (F ) and the occupation probability (P ),

FA = −1

2
ln
[
1 + e

− r−rA
µA

]
, FB = −1

2
ln
[
1 + e

− r−rB
µB

]
,

PU =
1

1 + e
r−rU
µU

, PV =
1

1 + e
r−rV
µV

.
(B.9)

The warping factors of the geometry can be written in terms of the above quantities in the

following way,

e2A = e
2(r+

1−RDG
RDG

FA)
, e2B = e2(r−FB) , e2U =

[
2√
3

]PU
, e2V =

[√
3

2

]PV
.

(B.10)

The interpretation of this rewriting is as follows: for each function A,B,U, V we have a

two-level system with energies E1 = 0 and E2 = r+ const. The factors e
2(1−RDG)

RDG
FA , e−2FB

are reminiscent of two-state transition theory. Also, the temperature of the systems is

kT = µ = 1/2 and k is the Boltzmann’s constant.

It would be interesting to exploit this formal analogy further. In particular, if having

thermal equilibrium populations is ‘extremal’ in some sense, if the variation of some relevant

QFT quantity extremized along this ‘isothermal’ flow, or some result of two state transition

theory in statistical mechanics may be applied.

13For the expansions around the UV and the IR we find the following values for the parameters

µA, µB , µU , µV :

µA = µB = µU = µV =
1

2
, (UV) ,

µA = µB = µU = µV =

√
2(√

5− 1
)

3
3
4

= 0.502 . . . , (IR) .

In what follows we chose the values that correspond to the UV.
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The two-level system analogy in the exact twisted H2 flow. This case is an

exact and simplified version of the approximated solution and the two-level system anal-

ogy we found for the Donos-Gauntlett solution. Let us consider the solution of eq. (2.8)

with a0 = 0.

The free energy for the two-level system with temperature 2kT = 1 and energy levels

E1 = 0, E2 = r is,

F = −1

2
ln
[
1 + e−2r

]
. (B.11)

The warp factors of the geometry now take the following form,

e2A = e2r+F , e2B =
1

3
e2(r−F ) . (B.12)

We saw how we can approximate the solutions of the BPS systems of eq. (2.12) and

eq. (2.23) using the ansatz of eq. (2.26).

C Expressions after NATD in other coordinates

In this appendix, we quote the expressions of the backgrounds obtained after NATD,

in cartesian and cylindrical coordinates. Recall that in all of our examples, during the

NATD transformation, we considered a gauge fixing of the form θ2 = φ2 = ψ = 0. As a

result the Lagrange multipliers x1, x2 and x3 play the rôle of the dual coordinates in the

new background generated by the NATD transformation. In this appendix we work out

the details of the NATD backgrounds that we found expressing
(
x1, x2, x3

)
both in the

Cartesian and in the cylindrical coordinate systems.

NATD of the twisted solutions: eqs. (3.4)–(3.5)

(a) Cartesian coordinates. In this coordinate system the NSNS sector of the solution

becomes.

e−2Φ̂ =
L2

324α′3
∆, ∆ = L4 + 18α′2

(
3x2

1 + 3x2
2 + 2x2

3

)
,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bds2

Σ2
+ dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆

[
6

((
x2

1 + x2
2

)
σ̃2

3 − 2σ̃3

(
x2dx1 − x1dx2

)
+ dx2

1 + dx2
2

)
+ 9dx2

3

+
324α′2

L4

(
x1dx1 + x2dx2 + x3dx3

)2
]
, (C.1)

∆B̂2

α′3
= 36x3

(
σ̃3 ∧

(
x1dx1 + x2dx2 + x3dx3

)
− dx1 ∧ dx2

)
+

(
L4

α′2
σ̃3 + 54(x2dx1 − x1dx2)

)
∧ dx3.
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On the other hand, the RR sector is,

F̂0 = 0, F̂2 =
L4

54α′
3
2

(2σ1 ∧ σ2 + 3zVolΣ2) ,

F̂4 =
L4

18
√
α′

[
3ze−2Bdx3 ∧VolAdS3 + z x3 VolΣ2 ∧ σ1 ∧ σ2

− 18α′2

∆

(
zVolΣ2 +

2

3
σ1 ∧ σ2

)
∧
(

2x3

(
dx1 ∧ dx2 +

(
x1dx1 + x2dx2

)
∧ σ̃3

)
+ 3
(
x1dx2 − x2dx1 +

(
x2

1 + x2
2

)
σ̃3

)
∧ dx3

)]
. (C.2)

To explore the singularity structure of this metric we compute the Ricci scalar (we only

present it in Cartesian coordinates),

R =
2

L2∆2

(
− 27

2
z2e−4Bα′2

(
x2

1 + x2
2

)
∆ + e−2B∆2κ+ 71L8

+ 90L4α′2
(

9
(
x2

1 + x2
2

)
+ 28x2

3

)
+ 2916α′4

(
18x2

3

(
x2

1 + x2
2

)
+ 7

(
x2

1 + x2
2

)2
+ 12x4

3

)
−∆2

(
2
(
A′′ +B′′

)
+ 4A′B′ + 3A′2 + 3B′2

))
,

(C.3)

where κ = −1, 0, 1 for each of the three cases Σ2 = H2, T
2, S2 respectively.

(b) Cylindrical coordinates. Let us now see the form of the fields in the cylindrical

coordinates,

x1 = ρ cos ξ , x2 = ρ sin ξ , x3 = x3 . (C.4)

The NSNS sector in this coordinate system reads,

e−2Φ̂ =
L2

324α′3
∆ , ∆ = L4 + 18α′2

(
3ρ2 + 2x2

3

)
,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bds2

Σ2
+ dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆

(
6
(
ρ2
(
dξ + σ̃3

)2
+ dρ2

)
+ 9dx2

3 +
324α′2

L4

(
ρdρ+ x3dx3

)2)
,

B̂2 =
α′3

∆

(
36x3

(
σ̃3 ∧

(
ρdρ+ x3dx3

)
+ ρdξ ∧ dρ

)
+

(
L4

α′2
σ̃3 − 54ρ2dξ

)
∧ dx3

)
.

(C.5)

Also the RR fields take the form,

F̂0 = 0, F̂2 =
L4

54α′
3
2

(
2σ1 ∧ σ2 + 3zVolΣ2

)
,

F̂4 =
L4

18
√
α′

[
3ze−2Bdx3 ∧VolAdS3 + zx3VolΣ2 ∧ σ1 ∧ σ2

− 18α′2ρ

∆

(
zVolΣ2 +

2

3
σ1 ∧ σ2

)
∧
(

2x3dρ− 3ρdx3

)
∧
(
dξ + σ̃3

)]
.

(C.6)

– 49 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
2

NATD of the Donos-Gauntlett: eqs. (3.7)–(3.8)

(a) Cartesian coordinates. The NSNS sector of this solution in the Cartesian coordi-

nate system takes the form,

e−2Φ̂ =
L2

324α′3
∆ , ∆ = L4e4U+2V + 54α′2e2U

(
x2

1 + x2
2

)
+ 36α′2B2 ,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2B

(
dα2 + dβ2

)
+ dr2 +

e2U

6

(
σ2

1 + σ2
2

)
+
α′2

∆

[
6e2U+2V

((
x2

1 + x2
2

)
σ2

3 − 2σ3

(
x2dx1 − x1dx2

)
+ dx2

1 + dx2
2

)
+ 9e4Udx2

3 +
324α′2

L4

(
x1dx1 + x2dx2 + Bdx3

)2
]
,

B̂2 = L2λ

6
α σ1 ∧ σ2 +

α′3

∆

[
36Be2V

(
σ3 ∧

(
x1dx1 + x2dx2 + Bdx3

)
− dx1 ∧ dx2

)
+ e2U

(
e2V+2U L

4

α′2
σ3 + 54

(
x2dx1 − x1dx2

))
∧ dx3

]
.

(C.7)

The fields of the RR in this coordinates become,

F̂0 = 0 , F̂2 =
L2

6α′
3
2

(
λα′dB− ∧ dβ +

2

9
L2σ1 ∧ σ2

)
,

F̂4 =
L4λ

36
√
α′

[
eV
(

2L2

α′
dα− 3e−2B−2V λdx3

)
∧VolAdS3 (C.8)

− 6α′

L2

(
x1dx1 + x2dx2 + BdB

)
∧ dβ ∧ σ1 ∧ σ2

+
36α′2

∆

(
3α′

L2
dβ ∧ dB− −

2

3λ
σ1 ∧ σ2

)
∧
(

2e2V B
(
dx1 ∧ dx2 +

(
x1dx1 + x2dx2

)
∧ σ3

)
+ 3e2U

(
x1dx2 − x2dx1 +

(
x2

1 + x2
2

)
σ3

)
∧ dx3

)]
.

Also now the functions B± become,

B± = x3 ±
L2λ

6α′
α , B = B+ . (C.9)

(b) Cylindrical coordinates. The NSNS sector of this solution in cylindrical coordi-

nates, eq. (C.4), is,

e−2Φ̂ =
L2

324α′3
∆ , ∆ = L4e4U+2V + 6α′2

(
9ρ2e2U + 6 B2e2V

)
,

dŝ2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2B

(
dα2 + dβ2

)
+ dr2 +

e2U

6

(
σ2

1 + σ2
2

)
+
α′2

∆

[
6e2U+2V

(
ρ2
(
dξ + σ3

)2
+ dρ2

)
+ 9e4Udx2

3 +
324α′2

L4

(
ρdρ+ B dx3

)2
]
,

B̂2 = L2λ

6
α σ1 ∧ σ2 +

α′3

∆

[
36B e2V

(
σ3 ∧

(
ρdρ+ Bdx3

)
+ ρdξ ∧ dρ

)
+ e2U

(
e2V+2U L

4

α′2
σ3 − 54ρ2dξ

)
∧ dx3

]
. (C.10)
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The RR sector has the form,

F̂0 = 0 , F̂2 =
L2

6α′
3
2

(
λα′dB− ∧ dβ +

2

9
L2σ1 ∧ σ2

)
,

F̂4 =
L4λ

36
√
α′

[
eV
(

2L2

α′
dα− 3e−2B−2V λdx3

)
∧VolAdS3

− 6α′

L2

(
ρdρ+ BdB

)
∧ dβ ∧ σ1 ∧ σ2

+
36α′2ρ

∆

(
3α′

L2
dβ ∧ dB− −

2

3λ
σ1 ∧ σ2

)
∧
(

2e2V Bdρ− 3e2Uρdx3

)
∧
(
dξ + σ3

)]
.

(C.11)

Also, in this coordinates the functions B± have the same form as in the Cartesian coordi-

nates. Hence their expressions are given in eq. (C.9).

The NATD-T solution: eqs. (4.5)–(4.6)

(a) Cartesian coordinates. In Cartesian coordinates the 1-form A3 defined in eq. (4.4)

and the function ∆T defined in eq. (4.3) take the following form,

A3 = 3z sinh a dx3 − db ,

∆T = 54α′2z2(x2
1 + x2

2) sinh2 a+ e2B cosh2 a ∆ ,
(C.12)

and ∆ is given in eq. (C.1).

The NSNS sector of the NATD-T solution in Cartesian coordinates takes the form,

e−2Φ̃ =
L4

324α′4
∆T ,

ds̃2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bda2 + dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆T

[
∆

L4
db2 + 6e2B cosh2 a

((
x2

1 + x2
2

)
σ2

3 − 2σ3

(
x2dx1 − x1dx2

)
+ dx2

1 + dx2
2

)
+ 9
(
z2 sinh2 a+ e2B cosh2 a

)(
dx2

3 +
36α′2

L4

(
x1dx1 + x2dx2 + x3dx3

)2)
− 6z sinh adb

(
dx3 +

36α′2

L4
x3

(
x1dx1 + x2dx2 + x3dx3

))]
, (C.13)

B̃2 =
α′3

∆T

[
e2B cosh2 a

(
36x3

(
σ3 ∧

(
x1dx1 + x2dx2 + x3dx3

)
− dx1 ∧ dx2

)
+

(
L4

α′2
σ3 + 54

(
x2dx1 − x1dx2

))
∧ dx3

)
− 18z sinh a

((
x1dx2 − x2dx1

)
∧A3 +

(
x2

1 + x2
2

)
db ∧ σ3

)]
.
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The RR sector reads

F̃1 =
zL4

18α′2
cosh a da ,

F̃3 =
L4

54α′
(2A3 + 3zx3 cosh ada) ∧ σ1 ∧ σ2

+
zL4α′ cosh a

∆T

[
e2B cosh2 a

(
2x3

(
σ3 ∧

(
x1dx1 + x2dx2

)
− dx1 ∧ dx2

)
− 3
((
x2

1 + x2
2

)
σ3 + x1dx2 − x2dx1

)
∧ dx3

)
∧ da

− z sinh a
((
x2

1 + x2
2

)
σ3 + x1dx2 − x2dx1

)
∧A3 ∧ da

]
,

F̃5 =
L4

6
e−2B

(
24e4B cosh ada ∧ (x1dx1 + x2dx2 + x3dx3) + zdx3 ∧ db

)
∧VolAdS3 (C.14)

+
L4α′2 cosh a

18∆T

[
e2B cosh a

(
dx1 ∧ dx2

∧
[
z

(
L4

α′2
+ 54

(
x2

1 + x2
2

))
cosh a da− 24 x3A3

]
+ 18

(
x1dx2 − x2dx1

)
∧
(

3zx3 cosh ada− 2db
)
∧ dx3

)
+ 18z2 sinh a

(
3z sinh a

(
x2

1 + x2
2

)
dx1 ∧ dx2

+ x3

(
x2dx1 − x1dx2

)
∧A3

)
∧ dα

]
∧ σ1 ∧ σ2 .

(b) Cylindrical coordinates. In cylindrical coordinates the 1-form A3 in eq. (4.4) and

the function ∆T in eq. (4.3) are

A3 = z sinh a dx3 − db , ∆T = 54α′2z2ρ2 sinh2 a+ e2B cosh2 a ∆ , (C.15)

and the function ∆ is given in eq. (C.5).

The NSNS sector of the solution in this coordinate system is written below,

e−2Φ̃ =
L4

324α′4
∆T ,

ds̃2

L2
= e2A

(
−dy2

0 + dy2
1

)
+ e2Bda2 + dr2 +

1

6

(
σ2

1 + σ2
2

)
+
α′2

∆T

[
∆

L4
db2 + 6e2B cosh2 a

(
ρ2
(
σ3 + dξ

)2
+ dρ2

)
(C.16)

+ 9
(
z2 sinh2 a+ e2B cosh2 a

)(
dx2

3 +
36α′2

L4

(
ρdρ+ x3dx3

)2
)

− 6z sinh a db

(
dx3 +

36α′2

L4
x3

(
ρdρ+ x3dx3

))]
,

B̃2 =
α′3

∆T

[
e2B cosh2 a

(
36x3

[
σ3 ∧

(
ρdρ+ x3dx3

)
+ ρdξ ∧ dρ

]
+

(
L4

α′2
σ3 − 54ρ2dξ

)
∧ dx3

)
− 18zρ2 sinh a

(
dξ ∧A3 + db ∧ σ3

)]
.
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Finally, the RR sector of the solution reads,

F̃1 =
zL4

18α′2
cosh a da ,

F̃3 =
L4

54α′
(2A3 + 3zx3 cosh ada) ∧ σ1 ∧ σ2

+
zL4α′ cosh a

∆T
ρ(σ3 + dξ) ∧

(
e2B cosh2 a

(
2x3dρ− 3ρdx3

)
− zρ sinh aA3

)
∧ da ,

F̃5 =
L4

6
e−2B

(
24 e4B cosh ada ∧

(
ρ dρ+ x3dx3

)
+ zdx3 ∧ db

)
∧VolAdS3

+
L4α′2 cosh a

18∆T

[
e2B cosh aρdξ ∧

([
z

(
L4

α′2
+ 54ρ2

)
cosh ada− 24x3A3

]
∧ dρ

+ 18ρ
(

3zx3 cosh ada− 2db
)
∧ dx3

)
− 18z2 sinh aρ3dξ ∧

(
3z sinh adρ+ x3 cosχA3

)
∧ da

]
∧ σ1 ∧ σ2 . (C.17)

D Central charges in other interesting geometries

In this appendix, we will consider two types of geometries that have attracted attention due

to their interesting dual QFTs. These geometries can be thought of as dual to anisotropic

QFTs, or flows between QFTs in different dimensions. The goal of this appendix is to

discuss the application of the formulas (8.21) that we developed to calculate central charges

in anisotropic theories.

An AdS3 × M7 geometry. The first geometry we will deal with, is dual to a flow

between N = 4 SYM in 3 + 1 dimensions and a 1 + 1 CFT with N = (4, 4) SUSY. The

solution was written in section 3.1 of [46]. The geometry reads,

ds2
IIB = L2

√
∆
[
e2f (dx2

1,1 + dr2) + e2gds2
H2

]
+

L2

√
∆

[
∆

X1X3
dα2 +

cos2 α

X1
dβ2

+
cos2 α cos2 β

X1
dφ2

1 +
cos2 α sin2 β

X1
dφ2

2 +
sin2 α

X3

(
dφ3 +

dx

y

)2]
,

∆ = X1 cos2 α+X3 sin2 α , X2
1 = X−1

3 = e2ϕ.

(D.1)

There is a five form excited — we will not quote it — and the dilation is vanishing. First,

we will calculate the central charge of the dual QFT considering as a field theory in 1 + 1

dimensions using eq. (8.9). Then, we will use our formula for anisotropic backgrounds

eq. (8.21).

If we consider the field theory to be in 2-d, we have that the relevant quantities are,

d = 1, α0 = L2
√

∆ e2f , β0 = 1 , eΦ = 1 ,√
det[gint] α0 ∼ L8ef+2g(X2

1X3)−1 , Ĥ ∼ L16e2f+4g ,
(D.2)

and we obtain,

c1+1 ∼ L8 ef+2g

f ′ + 2g′
. (D.3)
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The solution asymptotes to the IR and UV as,

(IR) : f ∼ − log r, g ∼ 1, (UV ) : f ∼ g ∼ − log r. (D.4)

By definition, at the IR fixed point we recover the central charge. At the UV the function

is not a constant. Indeed, using that L8 ∼ N2,

(IR) : c1+1 ∼ N2, (UV ) : c1+1 ∼ r−2. (D.5)

If we consider the theory as an anisotropic 4d theory with

d = 3, α1 = L2
√

∆ e2f , α2 = L2
√

∆ e2g y−2, β0 = e
4
3

(f−g), eΦ = 1. (D.6)

We then calculate √
det[Gij ] ∼ L8 e2f+4g (X4

1X
2
3 )−1. (D.7)

This gives the same function Ĥ as in eq. (D.2) above, but different β0. For the central

charge we get,

c3+1 ∼ N 2L8 e3f

(f ′ + 2g′)3
. (D.8)

Also, we observe that this function is constant and proportional to N2 both in the

UV and IR.

Using explicitly the solution in eq. (9) of the paper [46], we find that for different values

of the integration constant C1 in [46], the central charge is not a monotonically increasing

function. In this sense, this is similar to our examples in subsection 8.2.

Baryonic branch-like geometry. Let us now consider metric of the Baryonic Branch

of the Klebanov-Strassler QFT [82, 83]. In the string frame it has the form,

ds2 = eΦĥ−1/2dx2
1,3 + eΦĥ1/2

[
e2kdρ2 + e2h(dθ2 + sin2 θ dϕ2)

+
e2g

4
[(ω1 − a dθ)2 + (ω2 + a sin θ dϕ)2] +

e2k

4
(ω3 + cos θ dϕ)2

]
.

(D.9)

The usual way of thinking about this is as a 4d CFT, that flows due to a quasi-marginal

deformation of the Klebanov-Witten QFT. Nevertheless, for the case in which the function,

ĥ = 1− κ2e2Φ , (D.10)

is taken to be ĥ = 1 (that is κ = 0), we fall into the background describing D5 branes

wrapped on a two sphere [84], in which case, the four-dimensional character of the QFT

is less clear. The relation between both field theories and dual supergravity backgrounds

have been explained in detail in the papers [85–88].

We will calculate the central charge of the system above considering it, first as a four

dimensional QFT and then as a compactified six dimensional QFT.

Indeed, if we consider the system as four dimensional, we get

d = 3, α0 = eΦĥ−1/2, β0 = ĥe2k, Ĥ ∼ e4Φ+4h+4g+2k ĥ. (D.11)
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We then calculate

c3+1 ∼ β3/2
0

Ĥ7/2

(Ĥ ′)3
∼ ĥ2e2Φ+2h+2g+4k

(4Φ′ + 4h′ + 4g′ + 2k′ + ĥ′

ĥ
)3
. (D.12)

If, on the other hand we calculate this as if it were an anisotropic six-dimensional QFT,

we would have

d = 5, α1 = α2 = α3 = eΦĥ−1/2, α4 = eΦ+2hĥ1/2, β0 = e−4h/5+2kĥ3/5,

Ĥ ∼ e4Φ+4h+4g+2k ĥ.
(D.13)

Notice that it is the same function Ĥ, but what changes is the function β0. The central

charge of the anisotropic theory is,

c5+1 ∼ β5/2
0

Ĥ11/2

(Ĥ ′)5
∼ e2Φ+2g+6kĥ2

(4Φ′ + 4h′ + 4g′ + 2k′ + ĥ′

ĥ
)5
. (D.14)

We now analyze this, using the relevant asymptotics of the functions, as written in [89].

We find that in the IR of the QFT (ρ → 0), both definitions agree. Indeed, the function

e2h ∼ ρ2 while e2k ∼ e2g ∼ e2Φ ∼ ĥ ∼ 1 and both give c ∼ ρ5 → 0. This is the expected

result for a confining QFT. We will be interested in the UV behavior of the central charge.

Indeed, for the functions we have — see section 4 in [89],

e2h ∼ e2g ∼ e2k ∼ e4ρ/3, e2Φ ∼ 1, ĥ ∼ e−8ρ/3ρ.

We then have that both definitions behave similarly

c3+1 ∼ c5+1 ∼ ρ. (D.15)

In the ‘correct radial variable’ r = e2ρ/3, this is the logarithmic growth of the degrees of

freedom typical of the KS-solution.

Something similar occurs for the particular case κ = 0 or ĥ = 1. In that case, there is

yet another solution (this time an exact solution — see [90, 91]), such that is the same in

the IR as the one discussed above, but in the UV behaves as,

h ∼ log ρ, Φ ∼ ρ− log ρ, k = g = 0. (D.16)

In this case, the definition in eq. (D.12) grows unbounded in the UV c ∼ e2ρρ, while the

calculation for the anisotropic QFT in eq. (D.14) gives a similar growth, both driven by

the dilation factor. But at the subleading order, the four dimensional expression grows

faster. This indicates that the second definition (the one for the anisotropic QFT) is closer

to the true behavior, where the QFT has — from a 4d perspective — an infinite tower of

KK-modes, then becomes a 6d-QFT. The Little string theory is needed to UV-complete the

system, this is reflected by the unbounded growth of the central charges. This situation is

similar to what happened in section 8 in computing the central charge of the AdS5 → AdS3

flow considering it as 2-d QFT.
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[4] E. Alvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Some global aspects of duality

in string theory, Nucl. Phys. B 415 (1994) 71 [hep-th/9309039] [INSPIRE].
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[16] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On non-abelian T-duality and new

N = 1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].
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