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1 Introduction

Orientifolds of Type II superstring theories admit generalized fluxes via a successive ap-

plication of T-duality on the three form H-flux. The same results in a chain of geometric

and non-geometric fluxes as

Hijk −→ ωjk
i −→ Qk

ij −→ Rijk, (1.1)

and have led to impetus progress in constructing string solutions in connection with the

gauged supergravities in recent years [2–21]. Generically, all of such fluxes appear as

parameters in the four dimensional effective potential and hence can develop a suitable

scalar potential for the purpose of moduli stabilization which has been among the central

aspects towards constructing realistic string models. For this goal, it is always preferred to

have compactification backgrounds of much more rich structure and as much ingredients as

possible because the same can induce new possibilities to facilitate the demands of (semi-

)realistic model building. On these lines, the application of non-geometric fluxes towards

moduli stabilization and cosmological model building aspects have attracted great amount

of interest [22–27] in recent time.

String fluxes are closely related to the possible gaugings in the gauged supergrav-

ity [6–14, 28, 29] and it is remarkable that the four dimensional effective potentials could

be studied (without having a full understanding of their ten-dimensional origin) via merely

knowing the forms of Kähler and super-potentials [18, 23–26, 29–31]. Being simpler and

well understood in nature, the Type II toroidal orinetifolds provide a promising toolkit to

begin with while looking at new aspects, and so is the case with investigating the effects
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of non-geometric fluxes. Further, unlike the case with Calabi Yau compactifications, the

explicit and analytic form of metric being known for the toroidal compactification back-

grounds make such backgrounds automatically the favorable ones for performing explicit

computations and studying the deeper insights of non-geometric aspects; for example the

knowledge of metric has helped in knowing the ten-dimensional origin of the geometric

flux dependent [29] as well as the non-geometric flux dependent potentials [18]. In our

previous work [18], we have performed a close investigation of the effects of T-duality mo-

tivated fluxes via considering their presence in the induced four-dimensional superpotential

as proposed in [8, 11]. We determined the most general form of the H, F , Q, R-fluxes in

terms of the generalised metric and derived the Bianchi identities among these fluxes. On

a simple toroidal orientifold of type IIA and its T-dual type IIB model with all T-dual in-

variant geometric and non-geometric NS-NS and R-R fluxes turned-on, we have computed

the induced scalar potential from the four-dimensional superpotential and subsequently

we have oxidized the various pieces into an underlying ten-dimensional supergravity ac-

tion [18]. We found that, both in the NS-NS and in the R-R sector, the resulting oxidized

ten-dimensional action is compatible with the flux formulation of the Double Field Theory

action [11, 12].

The connection between a string compactification and the gauged supergravity effec-

tive theory mentioned so far is not the full story [32–34] for both the type II superstring

theories. In a setup of type IIB superstring theory compactified on T
6/(Z2 × Z2), it was

argued that the additional fluxes are needed to ensure S-duality invariance of underlying

low energy type IIB supergravity. The resulting modular completed fluxes can be arranged

into spinor representations of SL(2,Z)7, and can be described globally via a non-geometric

compactification of F-theory when there is a geometric local description in terms of ten-

dimensional supergravity [32]. The Jacobi identities of the flux algebra then lead to the

general form of the Bianchi identites in F-theory compactifications. The compactifica-

tion manifold with T - and S-duality appears to be an U -fold [5, 32, 35, 36] where local

patches are glued by performing T - and S-duality transformations. As a result, a gen-

eralization of our previous work [18] to include the S-dual version of the non-geometric

Q-flux, called P-flux, is necessary. It is expected to provide a direct connection between

the four-dimensional superpotential and the stringy aspects of the original T- and S-duality

invariant ten-dimensional supergravity.

Recently, axionic-inflation has received a lot of interest due to the possible detection of

primordial gravitational waves claimed by the BICEP2 collaboration [37]. The recent result

of PLANCK [38] implies that the value of tensor-to-scalar ratio (r) around 0.2 (as claimed

by BICEP2) can be explained by the foreground dust. Nevertheless, because of having

an upper bound as r < 0.11, constructing models to realize non-trivially large values of r

are compatible as well as desired from the point of view of the possible future detection of

gravitational waves. In the context of axion driven inflationary models developed in Type

IIB/F-theory compactifciation, many proposals have emerged [27, 39–47] in the recent

times. In the original axion-monodromy inflation [48, 49], the involutively odd C2 axions

have been proposed as being the inflaton candidate. The specific Calabi-Yau orientifolds

which could support such odd axions along with their (F-term) moduli stabilization aspects
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have been studied in [50–53]. Regarding one of the recent axionic inflation models, a No-

Go theorem has been proposed [1] as a challenge of creating a mass-hierarchy between

universal axion and dilaton in type IIB orientifold compactifciation. The same has been

of interest for constructing axion-monodromy inflationary model involving the universal

axion [40, 45]. Equipped with the modular completed fluxes, we examine the original

No-Go theorem. We find that despite of relatively much richer structure for universal-

axion/dilaton dependences of the full potential, quite surprisingly, the No-Go statement

still holds in a two field analysis, and thus showing its robustness.

This paper is organized as follows: in section 2, we present the basic set-up of the type

IIB on T
6/ (Z2 × Z2) orientifold and the general fluxes allowed to write out a generic form

of superpotential involving the two NS-NS fluxes (H,Q) and their respective S-dual (F, P )

fluxes. In section 3, a detailed study of the four-dimensional scalar potential induced by

the flux superpotential is performed which takes us to propose a dimensional oxidation

into the underlying ten-dimensional action in section 4. The form of Chern-Simons terms

reproducing the respective 3-brane and 7-brane tadpoles are also consistently invoked while

considering the SL(2,Z) invariance. Next, as an application to the potential we derived, in

section 5, we examine the role of non-geometric fluxes, specially S-dual P-fluxes, which they

could play in the context of the No-go theorem mentioned in [1]. In the end, we summarize

the results followed by two short appendices (A) and (B) detailing some intermediate steps

and the strategy followed for invoking the flux combinations needed for oxidation purpose.

2 Type IIB on T
6/ (Z2 × Z2) orientifold and fluxes

Following the notations of [18], let us briefly revisit the relevant features of a setup within

type IIB superstring theory compactified on T
6/ (Z2 × Z2) with the two Z2 actions being

defined as

θ : (z1, z2, z3) → (−z1,−z2, z3) (2.1)

θ : (z1, z2, z3) → (z1,−z2,−z3) .

Further, the orientifold action is: O ≡ Ω I6 (−1)FL where Ω is the worldsheet parity, FL is

left-fermion number while the holomorphic involution I6 being defined as

I6 : (z
1, z2, z3) → (−z1,−z2,−z3) , (2.2)

resulting in a setup with the presence of O3/O7-plane. The complex coordinates zi’s on

T 6 = T 2 × T 2 × T 2 are defined as

z1 = x1 + iU1x
2, z2 = x3 + iU2x

4, z3 = x5 + iU3x
6, (2.3)

where the three complex structure moduli Ui’s can be written as Ui = ui + i vi, i = 1, 2, 3.

Now choosing the following basis of closed three-forms

α0 = dx1 ∧ dx3 ∧ dx5 , β0 = dx2 ∧ dx4 ∧ dx6 ,

α1 = dx1 ∧ dx4 ∧ dx6 , β1 = dx2 ∧ dx3 ∧ dx5 , (2.4)

α2 = dx2 ∧ dx3 ∧ dx6 , β2 = dx1 ∧ dx4 ∧ dx5 ,

α3 = dx2 ∧ dx4 ∧ dx5 , β3 = dx1 ∧ dx3 ∧ dx6
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satisfying
∫

αI ∧ βJ = −δI
J , the holomorphic three-form Ω3 = dz1 ∧ dz2 ∧ dz3 can be

expanded as

Ω3 = α0 + i (U1β
1 + U2β

2 + U3β
3)− iU1U2U3β

0

−U2U3α1 − U1U3α2 − U1U2α3 . (2.5)

The additional chiral variable are axion-dilaton

S = e−φ − i C0 . (2.6)

and the Kähler moduli, generically being encoded in the complexified four-cycle volumes

given as

Jc =
1

2
e−φJ ∧ J + i C(4) . (2.7)

In our case, these moduli are

T1 = τ1 + i C
(4)
3456, T2 = τ2 + i C

(4)
1256, T3 = τ3 + i C

(4)
1234, (2.8)

where the real parts can be expressed in terms of the two-cycle volumes ti as, τ1 =

e−φ t2 t3, τ2 = e−φ t3 t1, τ3 = e−φ t1 t2. We also need to express the two-cycle volumes

ti in terms of the four-cycles volumes τi as,

t1 =

√

τ2 τ3
τ1 s

, t2 =

√

τ1 τ3
τ2 s

, t3 =

√

τ1 τ2
τ3 s

(2.9)

with s = Re(S). Now, the non-vanishing components of the metric in string frame are

gMN = blockdiag

(

e
φ

2

√
τ1 τ2 τ3

g̃µν , gij

)

. (2.10)

Further, the string frame internal metric gij is also block-diagonal and has the following

non-vanishing components,

g11 =
t1
u1

, g12 = − t1v1
u1

= g21 , g22 =
t1(u

2
1 + v21)

u1
,

g33 =
t2
u2

, g34 = − t2v2
u2

= g43 , g44 =
t2(u

2
2 + v22)

u2
, (2.11)

g55 =
t3
u3

, g56 = − t3v3
u3

= g65 , g66 =
t3(u

2
3 + v23)

u3
.

These internal metric components can be written out in more a suitable form, to be utilized

later, by using the four cycle volumes τi’s and the same is given as under,

g11 =

√
τ2

√
τ3√

s u1
√
τ1

, g12 = −v1
√
τ2

√
τ3√

s u1
√
τ1

= g21 , g22 =

(

u21 + v21
)√

τ2
√
τ3√

s u1
√
τ1

,

g33 =

√
τ1

√
τ3√

s u2
√
τ2

, g34 = −v2
√
τ1

√
τ3√

s u2
√
τ2

= g43 , g44 =

(

u22 + v22
)√

τ1
√
τ3√

s u2
√
τ2

, (2.12)

g55 =

√
τ1

√
τ2√

s u3
√
τ3

, g56 = −v3
√
τ1

√
τ2√

s u3
√
τ3

= g65 , g66 =

(

u23 + v23
)√

τ1
√
τ2√

s u3
√
τ3

,
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Since the background fluxes ωi
jk and Rijk are odd under the orientifold projection, the

only invariant fluxes are the following components of the three-forms H3 and F3 as under,

H : H135 , H146 , H236 , H245, H246 , H235 , H145 , H136 , (2.13)

F : F 135 , F 146 , F 236 , F 245 , F 246 , F 235 , F 145 , F 136

and the components of non-geometric Q and P-fluxes, which can be collectively given as

A ≡ Q or P :

A : A1
35 , A2

45 , A1
46 , A2

36 , A5
13 , A6

23 , (2.14)

A5
24 , A6

14, A3
51 , A4

61 , A3
62 , A4

52 ,

A2
35 , A5

23 , A3
52 , A2

46, A4
51 , A1

45 ,

A5
14 , A4

62 , A6
13 , A3

61 , A1
36 , A6

24 .

Now, the complete form of flux induced superpotential is given as [28],

W =
1

4

∫

X

(

F − i S H
)

∧ Ω3 −
i

4

∫

X

[(

Q − i S P
)

• Jc
]

∧ Ω3, (2.15)

where the three-form of type A • Jc = 1
6(A • Jc)ijk dx

i ∧ dxj ∧ dxk is defined as

(A • Jc)ijk =
3

2
A[i

mn Jc
mnjk] for A ∈ {Q,P}.

Together with the Kähler potential

K = − ln

(

S + S

2

)

−
∑

i=1,2,3

ln

(

Ui + Ui

2

)

−
∑

i=1,2,3

ln

(

Ti + Ti

2

)

(2.16)

it allows now to compute the F-term contribution of the effective four-dimensional scalar

potential by utilizing the following standard relation

VF = eK
(

Ki̄DiW D̄W − 3|W |2
)

. (2.17)

As it is well reflected from the superpotential, the inclusion of dual P-flux provides a

modular completion under the SL(2,Z) transformation [28]:

S → kS − iℓ

imS + n
, kn− ℓm = 1 , k, ℓ, m, n ∈ Z ;

(

F3

H3

)

→
(

k ℓ

m n

)(

F3

H3

)

,

(

Q

P

)

→
(

k ℓ

m n

)(

Q

P

)

. (2.18)

Let us mention that for our example there are no two-forms anti-invariant under the ori-

entifold projection so that no B2 and C2 moduli are present. The SL(2,Z) self-dual action

for IIB will result in further transformation on the rest of the massless bosonic spectrum.
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To explicitly check the modular invariance of the four-dimensional scalar potential, we con-

sider a simplified version of S-duality transformation given as S → 1/S, under which chiral

variables, together with R-R field and various fluxes transform in the following manner,

S → 1

S
, Tα → Tα, Um → Um, (2.19)

Hijk → Fijk, Fijk → −Hijk, Qij
k → −P ij

k , P ij
k → Qij

k .

Here it should be noted that the Einstein-frame chiral coordinate Tα is invariant only in

an orientifold with no odd axions, i.e. h11− (X6/O) = 0 [54]. Under this S-duality, the

superpotential and the Kähler potential (at the tree level) transform as:

eK −→ |S|2 eK , W −→ − i

S
W. (2.20)

which finally results in a S-duality invariant F-term potential VF .

3 Rearrangement of F-term scalar potential

In this section we will present the full F-term scalar potential in the form of various “suit-

able” pieces to be later utilized for the oxidation purpose in the next section.

Using the expressions of Kähler potential and superpotential given in eqs. (2.15)–

(2.16), the full F-term scalar potential results in 9661 terms appearing in the form of

quadratic-terms in four H,F,Q and P -fluxes. Now, let us consider the following new flux-

combinations which we have invoked after a very tedious terms-by-term investigation of

the scalar potential,

Hijk = hijk , Qij
k = Qij

k − C0 P ij
k , (3.1a)

Fijk = fijk − C0 hijk , P ij
k = P ij

k ,

where

hijk =

(

Hijk +
3

2
P[i

lmC
(4)
lmjk]

)

, fijk =

(

Fijk +
3

2
Q[i

lmC
(4)
lmjk]

)

. (3.1b)

The importance/relevance of these flux combinations will be clearer as we proceed across

the various sections of this article. By using these new flux orbits which generalizes the

results of [18, 33], one can rewrite the old-flux squared terms (like H2, F 2 etc.) into a set of

new-flux squared terms (like H2,F2 etc.) in a useful manner. A close inspection of the full

F-term scalar potential make it possible to rearrange the various terms into the following

interesting pieces,

VF = VHH +VFF +VQQ +VPP +VHQ +VFP +VQP (3.2a)

+VHF +VFQ +VHP + . . .

where dots denote a collection of terms which could not be rearranged in new flux com-

binations, however such terms are precisely canceled by using the Bianchi identities which
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we will elaborate on later. The explicit expressions of various pieces in eq. (3.2a) are given

as under,

VHH =
s

4VE

[

1

3!
Hijk Hi′j′k′ g

ii′

E gjj
′

E gkk
′

E

]

VFF =
1

4 sVE

[

1

3!
F ijk F i′j′k′ g

ii′

E gjj
′

E gkk
′

E

]

VQQ =
1

4 sVE

[

3×
(

1

3!
Qk

ij Qk′
i′j′ gEii′g

E
jj′g

kk′

E

)

+ 2×
(

1

2!
Qm

niQn
mi′ gEii′

)]

VPP =
s

4VE

[

3×
(

1

3!
Pk

ij Pk′
i′j′ gEii′g

E
jj′g

kk′

E

)

+ 2×
(

1

2!
Pm

ni Pn
mi′ gEii′

)]

VHQ =
1

4VE

[

(−2)×
(

1

2!
HmniQi′

mn gii
′

E

)]

(3.2b)

VFP =
1

4VE

[

(+2)×
(

1

2!
Fmni P i′

mn gii
′

E

)]

VQP =
1

4VE

[

(+2)×
(

1

3!
(3Pn

l′m′

gEl′l g
E
m′m)

)

E ijklmn
E

(

1

3!
(3Qk

i′j′ gEi′ig
E
j′j)

)]

≡ 1

4VE

[

(+2)×
(

1

2!
(Pk′

ij gk
′k

E )

)

EE
ijklmn

(

1

2!
(Qn′

l,m gn
′n

E )

)]

VHF =
1

4VE

[

(+2)×
(

1

3!
× 1

3!
Hijk E ijklmn

E F lmn

)]

VFQ =
1

4 sVE

[

(+2)×
(

1

2!
× 1

2!
Qi

j′k′ F j′k′j τEklmn E ijklmn
E

)

]

VHP =
s

4VE

[

(+2)×
(

1

2!
× 1

2!
P i

j′k′ Hj′k′j τEklmn E ijklmn
E

)

]

.

In order to understand and appreciate the nice structures within the aforementioned ex-

pressions, we need to supplement the followings,

• In the rearrangement process, we have utilized some Einstein- and string-frame con-

version relations given as VE = s3/2 Vs, g
E
ij = gij

√
s and gijE = gij/

√
s which helps us

in seeing the S-duality invariance manifest.

• The Levi-civita tensors are defined in terms of antisymmetric Levi-civita symbols

ǫijklmn and the same are given as: EE
ijklmn =

√

|gij | ǫijklmn = VE ǫijklmn while

E ijklmn
E = ǫijklmn/

√

|gij | = ǫijklmn/VE . Further, the Einstein- and string-frame

Levi-civita tensors are related as: Eijklmn = s−3/2 EE
ijklmn and E ijklmn = s3/2 E ijklmn

E .

• τEklmn denotes the four-form components corresponding to the saxionic counterpart

of C(4) RR axions with the only non-zero components being the four-cycle volume

moduli, which are given as τE3456 = τ1, τ
E
1256 = τ2, τ

E
1234 = τ3 in the notations developed

in the earlier section 2.

Another motivation for the collection of terms in eq. (3.2b) being written out only in

terms of Einstein frame quantities is the fact that in our later analysis of investigating

– 7 –
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a No-Go about the universal-axion/dilaton mass splitting, we want all (inverse-)metric

appearance to be independent of the dilaton. The more on this aspect will be clear in

section 5. Further, to reflect the involvement and difficulties while invoking the right

combinations of flux-orbits as well as the scalar potential rearrangement, it is important

to mention the following counting of terms in various pieces of the rearrangement given in

eqs. (3.2a)–(3.2b),

#(VHH) = 1054, #(VFF ) = 4108, #(VQQ) = 1071, #(VPP) = 288,

#(VHQ) = 450, #(VFP) = 450, #(VQP) = 324, (3.3)

#(VHF ) = 128, #(VFQ) = 288, #(VHP) = 72

In addition, there are 1968 terms which are removed by using Bianchi identities and are

denoted as dots in eq. (3.2a). All these numbers sum up to a total of 9661 which is the

number of terms in the F-term scalar potential. For a complete detail of term-by-term

analysis by turning-on a subset of fluxes at a time, see appendix A.

Now, the following important observations can be made out of the eqs. (3.2a)–(3.2b)

along with the new-orbit arrangements as mentioned in eqs. (3.1a)–(3.1b),

• Not only the full potential (3.2a) is manifestly S-duality invariant, but also the in-

ternal pieces (VHH +VFF ), (VPP +VQQ), (VHQ +VFP) and (VFQ +VHP) form

S-duality invariant combinations while the remaining two pieces VQP and VHF are

self-dual.

• In the absence of S-dual P−fluxes, one completely reproduces the results of [18].

Moreover, from eqs. (3.1a) and (3.1b), one can see that similar to the fact that

inclusion of Q-fluxes corrects F3-orbit by (C4 • Q)-type terms, the further inclusion

of their dual P-fluxes modifies H3-orbit with (C4 • P )-type terms.

• As well expected, the S-dual completion results in a more symmetrical NS-NS and

RR-sector flux orbits as one can see that similar to a RR-sector flux F3 having a

correction of type Fijk = Fijk − C0Hijk in Taylor-Vafa construction (and as Fijk =

fijk−C0 hijk in the current generalized version), now we have a NS-NS flux receiving

a similar type of correction from a RR-flux in the form as Qk
ij = Qk

ij − C0 Pk
ij .

• A relative minus sign in VFP terms is observed as compared to those of VHQ terms

and the same is because of the definition of S-duality is as given in eq. (2.19).

• Invoking the peculiar form of VQP is necessary as well as crucial for the oxidation

process as it contains many terms of PQ-type in which all the six-indices are different

and being so, such terms can neither be washed away by using PQ-type Bianchi iden-

tities nor by the anti-commutation constraints because all such respective constraints

as given in eq. (A.1) involve summation over one index. Further, the term VQP could

be written in two equivalent ways due to the following identity,

ǫijklmngii′gjj′gkk′gll′gmm′gnn′ = |det(gij)| ǫi′j′k′l′m′n′ (3.4)

– 8 –
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• The last three terms, namely VHF , VFQ and VHP , are topological in nature, and

so can be anticipated to be related to the contributions coming from various local

sources such as brane/orientifold-tadpoles as we will elaborate now.

Details of contributions from brane- and orientifold-sources. In order to have

the total scalar potential, the F-term contributions have to be supplemented with the D-

term contributions subject to certain constraints coming from Bianchi identities (A.1) as

described in detail in the appendix A. Now as seen from the form of Kähler- and super-

potentials, the eq. (2.20) ensures that the F-term contribution is invariant under S-duality.

Therefore in order to have an overall S-duality invariance, the D-terms should also be

invariant and the same demands using generalized flux orbits instead of the normal ones

as we will see in a moment. Further, as the pieces VHF , VFQ and VHP do not involve the

metric unlike the rest of the terms in (of eq. (3.2b)) and happens to be topological in nature.

Moreover, the combination (VHF +VFQ+VHP) is indeed S-duality invariant. Therefore,

the same should be (a part of) the contributions to be compensated by imposing RR

Bianchi identities or via adding the respective contribution from the various local sources.

The well anticipated contributions needed from brane- and orientifold- sources to cancel

the topological pieces of eq. (3.2b) can be considered as,

VD = −VHF −VFQ −VHP , (3.5)

Here, it should be noted that VD which is defined in terms of generalized flux combi-

nations has a structure which is more than mere flux contributions and also contain the

standard brane/orientiofld contributions coming from various local sources. Generically

speaking, this VD contains pieces from D3-brane, O3-plane as well as from all the 7-

branes (D7, NS7i, I7i) as we will see in the next section where the motivation for this

collection written in terms of generalized flux-combinations would be clearer for oxidation

purpose. Further, it should be noted that VD contributions have some pieces which can

be nullified by using certain Bianchi identities given in eq. (A.1). For example, the piece

(−VHP) will have certain terms of HP - and PP -types, and the later ones can be entirely

washed away by using some of the PP -type Bianchi identities. To be precise, out of 72

terms of (−VHP), 48 are washed away while 24 terms survive.

Now let us verify that the contributions, given in eq. (3.5) which we also needed to

compensate the topological pieces of eq. (3.2b), indeed contain the generalized versions of

D3/D7 tadpole-terms given in [18] with the inclusion of P-fluxes. For example, subject

to applying the non-trivial Bianchi identities (A.1), switching off the P-flux recovers the

following D3-tadpole terms [55, 56],

V HF
D3 = −2× 1

4V2
E

[

20H [123F 456]

]

∈ (−VHF ), (3.6)

in addition to the following D7-tadpole terms (of [18]) given as under,

V QF
D7 = −2× 1

4 sV2
E

[

Q[1
jk F jk2] τ1 +Q[3

jk F jk4] τ2 +Q[5
jk F jk6] τ3

]

∈ (−VFQ). (3.7)
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Now let us apply the reverse logic to motivate that in order to have S-duality invariance in

the D-term contributions (V HF
D3 + V QF

D7 ) of [18], the use of generalized flux orbits is quite

natural and necessary. For this purpose, consider the D7-tadpole terms V QF
D7 as given in

eq. (3.7) and invoke the terms needed for modular completion under transformations in

eq. (2.19). Now as 1/s −→ (C2
0 + s2)/s with a S-dual of V QF

D7 being of (HP )-type, and

having in mind that V HF
D3 is self-dual, one would need (at least) the following piece for a

modular completion of D-term contributions,

V PH
D7 = −2×

(

C2
0 + s2

)

4 sV2
E

[

P [1
jk Hjk2] τ1 + P [3

jk Hjk4] τ2 + P [5
jk Hjk6] τ3

]

(3.8)

One should note that the additional piece with C2
0/s coefficient gets naturally absorbed

into (−VFQ) when generalized version of fluxes F ,H,Q and P fluxes are considered.

Thus using generalized flux combinations rearranges the terms appropriately taking care

of modular completion.

Another reason which indicates the need of our generalized flux orbits (3.1a)–(3.1b)

essential is the fact that, the 128 terms of cross-piece (−VHF ) is reduced to 32 terms and 96

terms are removed via (HQ-FP) and PP-type Binachi identities. In addition to V HF
D3 which

consists of 8 terms of HF-type as mentioned in eq. (3.6), it also results in 24 more terms of

(P ij
k Qlm

n ǫijklmn)-type which (being topological) are different from those sitting inside VQP .

Noting that neither of the QP-type Bianchi identities nor the additional anti-commutative

relation in eq. (A.1) correspond to such PQ-terms because such constraints have at least

one index of QP-term being summer over, one should find a way to accommodate such PQ-

type terms in the full picture. Interestingly, considering the generalized flux-combinations

automatically does it via (−VHF ), and thus resulting in no need for supplementing such

strange topological terms of QP-type.

Although, there are some more interesting aspects based on S-duality transformation of

eight-form RR potential C(8) appearing as a triplet of eight-forms being related to produce

a D-term of (HQ + FP )-type, however we postpone this issue to the next section, where

we will discuss all the (oxidized) ten dimensional aspects.

Thus, finally following all these taxonomy of terms and taking care of contributions

from the various local sources, we reach a nicely structured form of the full scalar potential

given as,

VFull = VF +VD = VHH +VFF +VQQ +VPP +VHQ +VFP +VQP (3.9)

Now with this much ingredient in hand we are in a position to conjecture a modular

completed version of the dimensional oxidation proposed in [18].

4 S-dual non-geometric type-IIB action: dimensional oxidation to 10D

With the analysis done in the previous section, a close inspection of the resulting full scalar

potential, VFull = VF +VD obtained as a sum of F-terms and local source contributions,

reveals that all those terms can be recovered (up to satisfying a set of Bianchi identities)
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via a dimensional reduction from a set of generalized kinetic terms in a ten-dimensional

action which, in string frame, is given as,

S =
1

2

∫

d10x
√−g

(

LHH + LFF + LQQ + LPP + LHQ + LFP ++LQP
)

(4.1a)

where

LHH = −e−2φ

2

[

1

3!
Hijk Hi′j′k′ g

ii′ gjj
′

gkk
′

]

LFF = −1

2

[

1

3!
F ijk F i′j′k′ g

ii′ gjj
′

gkk
′

]

(4.1b)

LQQ = −e−2φ

2

[

3×
(

1

3!
Qk

ij Qk′
i′j′ gii′gjj′g

kk′
)

+ 2×
(

1

2!
Qm

niQn
mi′ gii′

)]

LPP = −e−4φ

2

[

3×
(

1

3!
Pk

ij Pk′
i′j′ gii′gjj′g

kk′
)

+ 2×
(

1

2!
Pm

ni Pn
mi′ gii′

)]

LHQ = −e−2φ

2

[

(−2)×
(

1

2!
HmniQi′

mn gii
′

)]

LFP = −e−2φ

2

[

(+2)×
(

1

2!
Fmni P i′

mn gii
′

)]

.

LQP = −e−3φ

2

[

(+2)×
(

1

2!
(Pk′

ij gk
′k)

)

Elmnijk

(

1

2!
(Qn′

l,m gn
′n)

)]

.

This modular completed oxidation generalizes the results of [18]. Here, the new flux-orbits

are the same as defined earlier in eqs. (3.1a)–(3.1b) while the (inverse-)metric components

are written in their respective string frame expressions using VE = s3/2 Vs, g
E
ij = gij

√
s and

gijE = gij/
√
s . Recall that string frame Levi-civita tensor is related to its Einstein frame

expression as Elmnijk = s−3/2 EE
lmnijk. The presence of Levi-civita tensor in LQP is quite

anticipated for the invariance of the same as under S-duality one has {Q → −P, P → Q}.
Further, for capturing the correct coefficients of the respective flux-squared quanti-

ties such as |H|2, |F|2 etc. to those of previous section via dimensional reduction of the

10D action proposed, one has to use the ten-dimensional metric given in eq. (2.10) as

the following,

∫

d10x
√−g (. . .) ≃

∫

d4x
√

−gµν

(

1

s4 V2
s

)

×
(
∫

d6x
√−gmn

)

× (. . .) (4.2)

≃
∫

d4x
√

−gµν ×
(

1

s4 Vs

)

× (. . .).

as
∫

d6x
√−gmn ≡ Vs gives the string-frame 6D volume. As we can see now, the S-duality

invariance in the oxidized ten-dimensional action written in string frame is not explicitly

manifest as opposed to the analysis of previous section in which we kept the expressions in

terms of Einstein frame quantities. In order to see the full S-duality invariance of the 10D

action (4.1a), one has to take care of transformation of the integral measure as well.
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Comments on local-source contributions relating to CS-action in 10D. After

proposing the oxidized ten-dimensional kinetic terms, now let us also focus on the contribu-

tions VD, given in eq. (3.5), which could be thought of being related to the ten-dimensional

Chern-Simons terms of the following SL(2,Z)-invariant types [28, 32–34],1

SCS ∼ −
∫

C(4) ∧ F ∧H (4.3)

−
∫

C(8) ∧Q • F +

∫

C̃(8) ∧ P •H −
∫

C ′(8) ∧ (Q •H + P • F )

The first line is related to D3/O3-tadpoles while the second line corresponds to various

7-brane tadpoles. The first term is manifestly S-duality invariant as the RR four-form C(4)

is SL(2,Z) invariant, while for checking the S-duality invariance in the second line terms,

one needs to consider the fact that the eight-form RR potential appears as an SL(2,Z)

triplet (C(8) , C̃(8) , C ′(8)) of eight-forms. These eight-form triplet components follow the

S-dual transformation as

C(8) → −C̃(8), C̃(8) → −C(8), C ′(8) → −C ′(8) (4.4)

The first two of these transformation relations ensure the S-duality invariance between the

first two terms of the second line of eq. (4.3) relating D7-brane and S-dual NS7i-brane

tadpoles [28]. Further, the sign change of C ′(8) under S-duality ensure the survival of

S-duality odd combination of fluxes (Q • H + P • F ) which results in the so-called I7i-

brane tadpoles. Further as the eight-form potentials (C(8) , C̃(8) , C ′(8)) correspond to the

dual of axion-dilaton S, therefore there should be some way to reduce the same into two

propagating degrees of freedoms, and we will see it happening precisely while using our

new flux-orbits.

Now, let us explicitly investigate the origin of our D-brane tadpoles given in eq. (3.5)

through the respective ten-dimensional Chern-Simons’ action, and see how those could get

related to eq. (4.3). For this purpose, let us reconsider the expressions D-brane tadpoles

being the following pieces written from eq. (3.5) as under,

VD = V1 + V2; (4.5)

V1 = − 1

2VE

[(

1

3!
× 1

3!
Hijk E ijklmn

E F lmn

)]

V2 = − 1

2 sVE

[

(

1

2!
× 1

2!
Qi

j′k′ F j′k′j τEklmn E ijklmn
E

)

]

− s

2VE

[

(

1

2!
× 1

2!
P i

j′k′ Hj′k′j τEklmn E ijklmn
E

)

]

At a first glance, it appears that terms of VD can be trivially related to all the piece of

CS action in eqn (4.3) except the last terms with a piece (Q • H + P • F ). However,

1Here, we have a sign difference in the first and last terms involving C(4) and C̃′(8), as compared to

those in [28, 32]. This is because of the presence of a relative minus sign in C4 (and C0 also) while defining

the chiral variables T (and S) as compared to their respective definitions in [28, 32].
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one should recall that VD is written out in terms of generalized flux combinations while

CS-terms in eq. (4.3) are written using normal fluxes. Let us make some more taxonomy

of the respective terms. Writing back these expressions in terms of older fluxes by using

our new-flux orbit definitions in eq. (3.1a)–(3.1b), we find an interesting rearrangement of

terms ,2

V1 ≡ V a
1 + V b

1 ;

V a
1 = − 1

2VE

[(

1

3!
× 1

3!
H ijk E ijklmn

E F lmn

)]

V b
1 = − 1

2VE

[(

1

3!
× 1

3!

(

3

2
P[i

l′m′

C
(4)
l′m′jk]

)

E ijklmn
E

(

3

2
Q[l

l′m′

C
(4)
l′m′mn]

))]

V2 ≡ V a
2 + V b

2 + V c
2 ; (4.6)

V a
2 = − 1

2 sVE

[(

1

2!
× 1

2!
Qi

j′k′ F j′k′j τEklmn E ijklmn
E

)]

V b
2 = − s2 + C2

0

2 sVE

[(

1

2!
× 1

2!
P i

j′k′ Hj′k′j τEklmn E ijklmn
E

)]

V c
2 = − 1

2 VE
×
(−C0

s

) [(

1

2!
× 1

2!

(

Qi
j′k′ Hj′k′j + P i

j′k′ F j′k′j

)

τEklmn E ijklmn
E

)]

Now, we have a couple of peculiar and very interesting observations to make,

• The term V a
1 simply corresponds to the well-known D3-tadpoles in a setup without

non-geometric fluxes, and

V a
1 ∈ −

∫

C(4) ∧ F ∧H (4.7)

.

• Using s → s/(s2 + C2
0 ) along with flux and eight-form transformations, it is clear

that V a
2 + V b

2 is S-duality invariant and

V a
2 + V b

2 ∈ −
∫

C(8) ∧Q • F +

∫

C̃(8) ∧ P •H. (4.8)

• The term V c
2 with anti- S-dual combination (Q • H + P • F ) survives because the

coefficient is also anti- S-dual as C0/s → −C0/s under S-duality. Thus, we are able

to recover the last term in CS-action as

V c
2 ∈ −

∫

C ′(8) ∧ (Q •H + P • F ). (4.9)

• In addition to the four type of terms we discussed, if we use non-generalized flux

orbits, there is an additional term in form of V b
1 . Note that, this piece contains some

terms of PQ-types in which all six flux-indices are different, and so such terms can

2For explicit details related to which of the terms are nullified by Bianchi identities, see full expressions

of V1 and V2 in terms of non-generalized fluxes given in the appendix B.
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neither be nullified by using any PQ- Bianchi identities nor using any of the anti-

commutation constraints of QP-type. Therefore one needs to either introduce a new

CS-term of type

V b
1 ∈ −

∫

C(4) ∧ P̃ ∧ Q̃ (4.10)

where P̃lmn =
(

3
2 P[l

l′m′

C
(4)
l′m′mn]

)

and Q̃lmn =
(

3
2 Q[l

l′m′

C
(4)
l′m′mn]

)

, or else one should

seek for another way of absorbing those terms into the standard picture by rearranging

the field strengths. In our case, it is the later one which happens to be true via using

new flux-combinations.

As we have mentioned earlier, these new observations also support the need of using our

generalized flux combinations. In the new flux orbits, we not only embed all terms of (Q •
H+P •F ) coupled with C ′(8) eight-form into terms of type FQ and HP, but also this helps

in absorbing the additional strange looking PQ-type terms intoH∧F . One should note that

using generic form of (QH-PF) Bianchi identity, which is given as Q[k
ijHlm]j−P[k

ijFlm]j =

0, will generically not allow the nullification of the respective terms of (Q • H + P • F )

though it can reduce the number of such terms.3 Subsequently, we propose the following

generalized form of the ten-dimensional Chern-Simons’ action written in terms of new

flux-orbits as under,

SCS ∼ −
∫

C(4) ∧ F ∧H −
∫

C(8) ∧ Q • F +

∫

C̃(8) ∧ P • H . (4.12)

5 Robustness of the No-Go for universal-axion and dilaton mass splitting

The general four dimensional scalar potential with the inclusion of all four types of (non-

)geometric fluxes (H,F,Q and P ), depend on all the 14 real moduli/axions, and a schematic

form would be as under,

V ≡ V (s, c0, τi, ρi, ui, vi) ∀i ∈ {1, 2, 3}. (5.1)

Here, the scalar potential V, as mentioned in eqs. (3.9), denotes the sum of F-and D-term

contributions which, can also be obtained from the dimensional reduction of 10D action

proposed in eqs. (4.1a)–(4.1b) along with the generalized flux orbits as in eqs. (3.1a)–(3.1b).

After collecting all the terms for dependencies of universal axion c0 and the dilaton s, the

very general scalar potential takes the following form,

V =

(

a1
s

+ a2 + a3 s

)

+
a4
s
c0 +

a5
s
c20 (5.2)

3However, as pointed out in [28], this combination (Q • H + P • F) does not have RR character and,

in particular cases, this term can be nullified. For example, by using the following simplified version of

Binachi identities does so,

Q[k
ij
Hlm]j = 0 = P[k

ij
Flm]j =⇒ Q •H + P • F = 0. (4.11)

Unlike this simplified case, there are examples of flux choices giving non-zero I7i -brane tadpoles in [34].
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where ai’s are generically some functions of various fluxes and all moduli/axions except

universal axion c0 and the dilaton s. This form of rearrangement of terms has been made

to facilitate the study of a two-field dynamics. The extremization conditions for c0 and s

are simply given as

∂V

∂c0
=

a4 + 2 a5 c0
s

,
∂V

∂s
= −a1 + a4 c0 + a5 c

2
0 − a3 s

2

s2
. (5.3)

This shows that if one wants ∂V
∂c0

= 0 without fixing c0, then one needs to satisfy flux

constraints a4 = 0 = a5, and subsequently ∂V
∂s = −a1−a3 s2

s2
. Now, the most crucial thing

which happens to be true, is the fact that

a3 = a5 (5.4)

and the same implies that “the dilaton s can not be fixed via ∂V
∂s = 0 unless the universal

axion c0 is fixed via ∂V
∂c0

= 0”. Note that all the ai-parameters generically depend on all

the other moduli/axions except the universal axion and dilaton, nevertheless the above

quoted argument holds independent of the fact whether those additional moduli or axions

are stabilized or not. This is because of the fact that this argument is independent of the

details of ais and follows from the extremization conditions of c0 and dilaton. Moreover,

it is worth to note that the condition: a3 = a5, holds irrespective of imposing the Bianchi

identities or adding counter tadpole -terms. Now to support our arguments, we compare

the scaler potential given in eqs. (3.2a)–(3.2b) with our eq. (5.2), and we get the following

explicit expressions of ai’s,

a1 =
1

4VE
× 1

3!

(

F ijk +
3

2
Q[i

lmC
(4)
lmjk]

)(

F i′j′k′ +
3

2
Q[i′

l′m′

C
(4)
l′m′j′k′]

)

gii
′

E gjj
′

E gkk
′

E

+
1

4VE

[

3×
(

1

3!
Qk

ij Qk′
i′j′ gEii′g

E
jj′g

kk′

E

)

+ 2×
(

1

2!
Qm

niQn
mi′ gEii′

)]

,

a2 =
1

4VE

[

2×
(

1

2!
Fmni P i′

mn gii
′

E

)

− 2×
(

1

2!
HmniQi′

mn gii
′

E

)

+2×
(

1

2!
(P k′

ij gk
′k

E )

)

EE
lmnijk

(

1

2!
(Qn′

l,m gn
′n

E )

)]

,

a3 =
1

4VE
× 1

3!

(

H ijk +
3

2
P [i

lmC
(4)
lmjk]

)(

H i′j′k′ +
3

2
P [i′

l′m′

C
(4)
l′m′j′k′]

)

gii
′

E gjj
′

E gkk
′

E

+
1

4VE

[

3×
(

1

3!
P k

ij P k′
i′j′ gEii′g

E
jj′g

kk′

E

)

+ 2×
(

1

2!
Pm

ni Pn
mi′ gEii′

)]

≡ a5 , (5.5)

a4 =
(−2)

4VE
× 1

3!

(

F ijk +
3

2
Q[i

lmC
(4)
lmjk]

)(

H i′j′k′ +
3

2
P [i′

l′m′

C
(4)
l′m′j′k′]

)

gii
′

E gjj
′

E gkk
′

E

+
(−2)

4VE

[

3×
(

1

3!
P k

ij Qk′
i′j′ gEii′g

E
jj′g

kk′

E

)

+ 2×
(

1

2!
Pm

niQn
mi′ gEii′

)]

.

Let us point out that by looking at the S-duality transformation, we observe that:

a1 ↔ a3 ≡ a5, a2 → a2, a4 → −a4. (5.6)
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which using s −→ s/(c20 + s2) and c0/s −→ −c0/s ensure the S-duality invariance of the

total potential in {c0, s} variables. The full potential can be written in S-dual pieces after

using a3 = a5 as below,

V = a2 +

(

a1
s

+ a3
(c20 + s2)

s

)

+ a4
c0
s

(5.7)

The next question is whether it is possible to create a hierarchy via additional fluxes

when we stabilize c0 and s simultaneously. To address this question will need a complete

minimization analysis of the full scalar potential with 14 scalars along with an overall 64

flux components ! Although it will be a bit strong assumption to make, let us consider the

parameters ai’s as constants and simply investigate the dynamics of two fields, namely the

universal axion and the dilaton, appearing in the same chiral multiplet S. Subsequently,

the Hessian at one set of critical point: c0 = − a4
2 a5

, s =

√
4a1 a5−a24
2
√
a3

√
a5

is given as under

Vc0c0 =
4
√
a3 a

3/2
5

√

4a1 a5 − a24
, Vc0s = 0 = Vsc0 , Vss =

4
√
a5 a

3/2
3

√

4a1 a5 − a24
, (5.8)

which implies that

m2
c0

m2
s

=
a5
a3

= 1. (5.9)

So, with this two-field analysis, we can anticipate that it is not possible to have mass

splitting of the chiral multiplet S = e−φ − i C0 even with the inclusion of non-geometric

fluxes. However as mentioned earlier, for the complete analysis, one has to investigate the

full Hessian matrix of size 14× 14, and carefully look at the non-trivial off-diagonal entries

while diagonalizing the mass-matrix.

Thus, our investigation recovers the claim of [1] about the impossibility keeping the

universal axion massless while stabilizing the dilaton in the simplest Taylor-Vafa construc-

tion [55, 56] in the absence of non-geometric (Q, P ) fluxes. In addition, our analysis

supports for the validity of the first part of the No-Go theorem [1] that while considering

a two-field dynamics, one can not have a mass splitting in universal axion and dilaton

masses even with the help of S-dual pairs of non-geometric fluxes. However, models with

additional contributions to the scalar potential may also avoid this no-go theorem. Such

corrections can involve D-brane instanton effects to the non-perturbative superpotential,

or perturbative corrections to the Kähler potential for the Kähler moduli, which can break

the no-scale structure and such effects should be studied in great detail.

6 Conclusion

In this article, we propose a S-duality invariant ten-dimensional supergravity action via

dimensional oxidation of a four-dimensional scalar potential, obtained by utilizing the

Kähler- and super-potential expressions for a toroidal orientifold of type IIB superstring

theory in the presence of non-geometric fluxes. In this context, we have generalized the
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flux orbits of [18] with the inclusion of RR P-flux being S-dual of the non-geometric Q-

flux, and these generalized flux combinations appearing in ten-dimensional kinetic terms

are as follows,

Hijk = hijk , Qij
k = Qij

k − C0 P ij
k ,

Fijk = fijk − C0 hijk , P ij
k = P ij

k .

where

hijk =

(

Hijk +
3

2
P[i

lmC
(4)
lmjk]

)

, fijk =

(

Fijk +
3

2
Q[i

lmC
(4)
lmjk]

)

.

We have motivated and exemplified the need for the use of these generalized flux-

combinations in many stages; not only in nicely arranging the ten-dimensional kinetic

terms out of F-term contribution of the scalar potential but also in consistently repro-

ducing the S-dual version of the ten dimensional Chern-Simons’-terms via the D-brane

tadpoles. In addition, we find that using our new flux orbits, only two propagating dofs

out of the three eight-form triplet potentials (C(8) , C̃(8) , C ′(8)) survive which is consistent

as well as desirably compatible because RR eight-form is dual to the axion-dilaton S.

As an application of the explicit expressions obtained, we examined the recently pro-

posed No-Go theorem [1] about the impossibility of mass-splitting of axion-dilaton chiral

multiplet, and investigating a two-field dynamics with fields c0 and s assuming that all the

other moduli/axion are fixed at their minimum, we find that the No-Go result still holds

with the inclusion of non-geometric Q- and its S-daul P-flux as well. However, for a final

conclusion, one needs to minimize the full potential by considering the dynamics of all the

14 scalars with the presence of 64 consistent flux parameters. Further, it would be also

interesting to check for the possibility alleviating the No-Go by non-perturbative effects

in the presence of Non-geometric fluxes. Although, with the present poor understanding,

it is hard to make any conclusion about the influence of non-geometric fluxes through

non-perturbative effects, nevertheless, something robust happening at tree level would be

expected to remain intact by sub-leading corrections. It would be also crucially important

to perform a very detailed moduli stabilization, and to hunt for other combination of axionic

directions which could be sufficiently lighter for satisfying the inflationary requirements.
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A Counting of terms for invoking the various pieces of oxidized 10-D

action

Here we present a detailed analysis along with the intermediate steps taken for matching

the two actions; the first one coming from Kähler potential and superpotential as a F-term

contribution, VF, while the other one Vkin, as given in form of various kinetic terms through

expressions (3.2a)–(3.2b). The later one is expected to come from the dimensional reduction

of an oxidized 10-dimensional non-geometric action given in eqs. (4.1a) and (4.1b). For

guessing the form of oxidized 10-dimensional action, the strategy has been as under,

1. First, we collected all 9661 terms appearing as F-term contribution to the four-

dimensional scalar potential, VF , obtained by using the Kähler- and super-potentials

given in eq. (2.16) and (2.15) respectively.

2. Second, we started to look for the completion of various flux orbits obtained as in

eqs. (3.1a)–(3.1b) such that the respective terms in Vkin are recovered in F-term con-

tributions, VF . This is what we called a suitable rearrangement of F-terms. For

this purpose. we considered the guidelines from earlier work [29] for type IIA with

geometric-flux, and [18] for type II theories with non-geometric Q-flux also. This step

led us with a rearrangement the 7693 terms of the full F-term potential in ten pieces

of the from VAB written out in using generalized flux-orbits A,B ∈ {H,F ,Q,P}.
Moreover, we found that 3 pieces out of 10, namely VHF , VFQ and VHP , are topo-

logical in nature and could be related to minus of a D-term contribution. Such

topological terms are 488 in numbers (and get split as 128 + 288 + 72 respectively)

which after imposing Bianchi identities further reduces into a total of 152 terms as

mentioned in table 1.

3. After recovering 7693 terms (out of 9661) terms of VF, in the final step, we are then

left with 1968 terms from (VF +VD)−Vkin. These 1968 terms are ensured to be

nullified by utilizing the following types of Bianchi identities [28, 32],

120# : QQ−type : Qk
[i jQn

l]k = 0 ,

240# : PP−type : Pk
[i jPn

l]k = 0 , (A.1)

240# : (HQ− FP )−type : Q[k
ijHlm]j − P[k

ijFlm]j = 0,

1368# : (QP )−type : Qk
[i jPn

l]k = 0 , Pk
[i jQn

l]k = 0 ,

Qp
abPm

pc − Pp
abQm

pc = 0,

where the last QP-type constraints are demanded from the anti-symmetry of the commu-

tators involved in the derivation of the various Bianchi Identities [32]. Here, one should

note the following observations,

• While mentioning the counting of D-terms, VD, we have considered it as VD =

VD + BIs which is such that VD represents only those terms which could survive
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Fluxes VF Vkin VF −Vkin VD = VD +BIs (VF +VD)−Vkin

turned-on (to be removed by BIs)

H 152 152 0 0=0+0 0

F 76 76 0 0=0+0 0

Q 1059 891 168 48=0+48 120

P 2118 1782 336 96=0+96 240

H,F 361 353 8 8=8+0 0

H,Q 1814 1478 336 96=0+96 240

H,P 3068 2684 384 144=48+96 240

F,Q 1534 1342 192 72=24+48 120

F, P 2797 2293 504 144=0+144 360

Q,P 6897 4857 2040 312=24+288 1728

H,F,Q 2422 2054 368 128=32+96 240

H,F, P 3880 3320 560 200=56+144 360

H,Q, P 8450 6194 2256 408=72+336 1848

F,Q, P 7975 5743 2232 384=48+336 1848

H,F,Q, P 9661 7205 2456 488=152+336 1968

Table 1. Number of individual terms with presence of a particular (set of) fluxes being turned-on

at a time in the scalar potential.

after the application of various Bianchi identities given in eq. (A.1). This analysis

was needed to investigate the CS action reproducing the D-brane tadpoles.

• In the two rows with (H,Q)-only and (F, P )-only fluxes, we find that although there

are tadpoles expected from (HQ+FP)-type CS-action with C ′(8) RR-potential but

while switching off a set of two fields (H,Q) or (F,H), simplifies the (HQ − FP )-

type Bianchi identity into HQ = 0 or FP = 0 case, and subsequently, no non-zero

D-terms could get induced.

• As (HQ − FP )-type Bianchi identity is the only type which involves all the four

type of fluxes, the previous argument happens to be true in case of vanishing any

one of the fluxes in the combinations (H,F,Q), (H,F,Q), (H,F,Q) and (H,F,Q).

However, as soon as all the four type of fluxes are generically turned-on, one gets

additional terms for (HQ+FP)-type I7i-brane tadpoles.

• Counting in the row with only-H and only-F fluxes corresponds to standard Tayor-

Vafa setup [55, 56] while the one with H-, F- and Q-fluxes corresponds to [18].
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B Rearrangement of D-terms for invoking the complete 10D CS action

V1 ≡ − 1

2VE

[(

1

3!
× 1

3!
Hijk E ijklmn

E F lmn

)]

(B.1)

= − 1

2VE

(

1

3!
× 1

3!

) [

H ijk E ijklmn
E F lmn +

9

4

(

P[i
l′m′

C
(4)
l′m′jk] E

ijklmn
E Q[l

l′m′

C
(4)
l′m′mn]

)

−3

2
C0

(

P[i
l′m′

C
(4)
l′m′jk] E

ijklmn
E

✘
✘
✘
✘

✘
✘✘

H lmn +H ijk E ijklmn
E P[l

l′m′

C
(4)
l′m′mn]

)

−C0
✭
✭

✭
✭
✭

✭
✭
✭
✭✭

H ijk E ijklmn
E H lmn − 9

4
C0

✭
✭
✭
✭
✭

✭
✭
✭

✭
✭
✭
✭

✭
✭
✭

✭
✭
✭✭

(

P[i
l′m′

C
(4)
l′m′jk] E

ijklmn
E P[l

l′m′

C
(4)
l′m′mn]

)

+
3

2

(

P[i
l′m′

C
(4)
l′m′jk] E

ijklmn
E ✘

✘
✘
✘
✘
✘✘

F lmn +H ijk E ijklmn
E Q[l

l′m′

C
(4)
l′m′mn]

)

]

The first two cancellations are trivial mathematical ones while the last two corresponds to

some parts of PP -type and (QH − FP )-type Bianchi Identities.

V
(i)
2 ≡ − 1

2 sVE

[(

1

2!
× 1

2!
Qi

j′k′ F j′k′j τEklmn E ijklmn
E

)]

= − 1

8 sVE

[(

Qi
j′k′ F j′k′j τEklmn E ijklmn

E

)

− C0

(

P i
j′k′ F j′k′j τ

E
klmn E ijklmn

E

)

(B.2)

+C2
0

(

P i
j′k′ Hj′k′j τEklmn E ijklmn

E

)

− C0

(

Qi
j′k′ Hj′k′j τEklmn E ijklmn

E

)

+
3

2
C2
0

(

✭
✭

✭
✭
✭
✭

✭
✭
✭
✭

✭
✭
✭

✭
✭
✭✭

P i
j′k′ P[j′

l′m′

C
(4)
l′m′k′j] τ

E
klmn E ijklmn

E

)

+
3

2
✭
✭
✭
✭
✭

✭
✭
✭
✭

✭
✭
✭
✭

✭
✭
✭

✭
✭✭(

Qi
j′k′ Q[j′

l′m′

C
(4)
l′m′k′j] τ

E
klmn E ijklmn

E

)

−3

2
C0

(

✭
✭
✭
✭

✭
✭
✭
✭

✭
✭
✭

✭
✭
✭
✭

✭✭

P i
j′k′ Q[j′

l′m′

C
(4)
l′m′k′j] τ

E
klmn E ijklmn

E

)

−3

2
C0

✭
✭
✭

✭
✭
✭
✭
✭
✭
✭

✭
✭
✭

✭
✭
✭
✭

✭✭
(

Qi
j′k′ P[j′

l′m′

C
(4)
l′m′k′j] τ

E
klmn E ijklmn

E

)]

The first two cancellations correspond to a subset of PP -type and QQ-type while the last

two corresponds to some parts of QP +PQ-type Bianchi identities. Notice the presence of

terms with coefficient C2
0/s to make V

(ii)
2 , which is given below, S-duality invariant. The

two pieces with a coefficient (−C0/s) is expected to correspond to the I7i-brane tadpoles

coming from a (HQ+FP)-combination with anti- S-dual eight-form potential C ′(8).

V
(ii)
2 ≡ − s

2VE

[(

1

2!
× 1

2!
P i

j′k′ Hj′k′j τEklmn E ijklmn
E

)]

(B.3)

= − s

8VE

[(

P i
j′k′ Hj′k′j τ

E
klmn E ijklmn

E

)

+

✭
✭
✭
✭

✭
✭
✭

✭
✭
✭
✭

✭
✭
✭

✭
✭
✭
✭

✭
✭
✭✭

(

P i
j′k′

(

3

2
P[j′

l′m′

C
(4)
l′m′k′j]

)

τEklmn E ijklmn
E

)]

The last cancellation piece corresponds to a part of PP -type Bianchi identities.
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[16] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in

supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979]

[INSPIRE].
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