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1 Introduction

Double Field Theory and its M-theory generalization, exceptional extended geometry, now

have a long history. Following the initial endeavours by Duff [1, 2], Tseytlin formulated

a version of the string in a doubled space [3, 4]. The new geometry to describe a duality

covariant version of supergravity was introduced by Siegel [5–7]. Hull then constructed

the double sigma model in [8] and developed more of the ideas which eventually led to the

conception of Double Field Theory (DFT) which was established with the seminal paper [9]

by Hull and Zwiebach. Since DFT allows for dynamics in all the doubled dimensions, it

goes beyond the duality covariant formulation of supergravity. DFT was then developed

further [10–13] and expanded in various directions by Park and collaborators [14–17] and

others [18–23]. Similar developments for the U-duality groups of M-theory can be found

in [24–39]. Of course, from one point of view many of the ideas in DFT and extended

geometry were anticipated by the E11 programme of West and collaborators; see for ex-

ample [40–44]. For a review of double field theory and its generalisations one may choose

from the following three articles [45–47].
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We will now adopt a rather simplistic approach which begins with the question, is

there a lift of supergravity to a higher dimensional theory where the p-form potentials are

“geometric” just as the graviphoton is in conventional Kaluza-Klein theory?

If one only considers the NS-NS sector of ten-dimensional supergravity where there

is only the Kalb-Ramond two-form potential, then the answer to this question is Double

Field Theory. If one considers eleven-dimensional supergravity with C3 and C6 potentials,

then the answer is exceptional extended geometry. The message is that one may view these

novel extended theories as lifts of known theories and the so-called “section condition” is

the Kaluza-Klein reduction constraint.

In Kaluza-Klein theories the origin of electric charge is from momentum in the KK-

direction. The quantization of momentum then results in the quantization of electric

charge. The origin of magnetic charges comes from twisting the KK-circle to produce a

non-trivial circle bundle with non-vanishing first Chern class. The first Chern class is the

magnetic charge. The construction of such a non-trivial solution for traditional Kaluza-

Klein theory was first given in [48, 49].

In 1995 M-theory came into being. A crucial aspect was the lift of Type IIA super-

gravity to eleven dimensions and the Ramond-Ramond one-form playing the role of the

KK-graviphoton. Crucially, it was not just the fields of the Type IIA theory that could be

lifted to eleven dimensions but also the charged states. Most notably, the D0-brane was

identified with the momentum in the eleventh direction and the D6-brane was identified

as the associated KK-monopole1 [50].

Thinking of Double Field Theory as a Kaluza-Klein theory immediately brings forth

the idea of describing the fundamental string as a momentum state with the momentum in

the novel additional directions. This was the subject of a recent paper [51]. Not only could

the string be identified as the null wave solution in DFT, but the effective action of such a

solution could be identified with the string action with manifest O(d, d) symmetry [3, 4].

Logically, the remaining task is to identify the monopole-like solutions in DFT. That

is, what do the DFT equivalents of KK-monopole solutions correspond to? It should not

be a surprise to the reader that this is the NS5-brane since it is the magnetic dual to the

fundamental string. The NS5-brane is also in the same O(d, d) orbit as the KK-monopole

solution in supergravity and so is a natural candidate. Note that technically there is

something much more non-trivial about having a mono-pole-type solution of DFT than

the null wave solution. The null wave has a trivial dilaton whereas the fivebrane does not

which leads to more complicated equations of motion.

It is a pleasure to note that the fivebrane/monopole in DFT has been previously studied

in some very inspiring articles using gauged linear sigma model techniques, originally by

Jensen [52] and later in various detailed works by Kimura [53–56].

When one talks of the DFT monopole solution, one is describing a solution of DFT with

a particular monopole-like ansatz for the generalized metric. In the case where there is an

isometry so that one has two T-duality related solutions of supergravity — the NS5-brane

1We are extremely grateful to Paul Townsend who pointed out the importance of the identification of

the D6-brane with the monopole in the M-theory context which then inspired this paper.
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and the KK-monopole — this is an embedding of those solutions in DFT. When there

is no isometry (though topologically there is a circle) then we have localized solutions

in DFT which require the existence of solutions with no supergravity description. Thus

these localized solutions cannot be purely thought of as an embedding in DFT since they

correspond to solutions with no ordinary spacetime interpretation.

Having identified the NS5-brane as the KK-monopole in DFT, one may then repeat

this trick with the exceptional extended geometry and describe the M-theory fivebrane as

a KK-monopole in the exceptional theory. This should not be so much of a surprise since

the M-theory lift of the NS5-brane is the M5-brane. However we can also consider the

membrane as a KK-monopole of the exceptional theory which is perhaps some what more

surprising. Finally, we can also have the fivebrane as a null wave. Thus in the exceptional

geometry case, the membrane and fivebrane solutions of eleven-dimensional supergravity

may be identified as either a wave- or a monopole-like solution of the extended theory.

On further reflection, this had to be the case since the whole point of the exceptional

extended geometry is to have U-duality manifest symmetry of the theory. S-duality is

clearly a part of the U-duality group. S-duality swaps “electric” and “magnetic” solutions

which in terms of geometry means exchanging null wave solutions with monopole like

solutions. This is a non-trivial duality since it relates solutions with different topology.

The story of this paper is similar to what happens in the six-dimensional (0, 2) theory

associated with the M-theory fivebrane. The (0, 2) theory is self-dual in six dimensions

and under dimensional reduction on a torus this self-duality results in the hidden duality

symmetry of the lower dimensional theory, such as the S-duality in four-dimensional N = 4

Super-Yang-Mills [57, 58]. The relevant solution of the six-dimensional theory is the self-

dual string. It is only how one identifies the wrapped self-dual string with states in the

four-dimensional theory that causes the emergence of the hidden duality symmetry.

Just like the (0, 2) theory, the exceptional extended geometry is describing a theory

where the duality group is a manifest symmetry. As such it is only through the reduction

to the lower dimensional theory that one actually produces a hidden duality. What is

novel is that this is a gravitational theory as opposed to the field theory examples that

have been studied so far and the duality group is beyond that of the SL(2) corresponding

to large diffeomorphism of the torus. Yet the principle is the same. In general we expect

all solutions related under U-duality to be a single solution in the extended geometry.

Let us start by describing the monopole in DFT and using this to extract the NS5-

brane. We will then show how the M-theory fivebrane may be described in the exceptional

extended geometry associated to E7 first as a null wave and then as a monopole solution.

We will then also show how the membrane can be produced as both wave and monopole

solutions. Finally we comment further on the implications.

2 The monopole in DFT

In what follows it will be useful to introduce coordinates (xµ, x̃µ) for Double Field Theory.

We will call the coordinates associated to our usual notion of spacetime xµ and the winding

or dual coordinates x̃µ. It is the presence of the O(d, d) structure η that allows this split
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into (xµ, x̃µ) coordinates since η produces a natural pairing between coordinates. (For the

reader familiar with the symplectic geometry of classical mechanics, η is very much like a

symplectic form and may be used to define a polarization which is essentially what one does

when applying the section condition or equivalently picking a duality frame.) The action

and equations of motion of DFT are concisely written in appendix A for easy referral.

In [51] a null wave in the doubled space of DFT was shown to reduce to a pp-wave

or a fundamental string when viewed from the ordinary supergravity point of view. The

interpretation of the solution in terms of the normal supergravity theory associated to the

reduction of DFT was determined by the direction the null wave was travelling in. If the

DFT solution carries momentum in a spacetime direction x it reduces to a wave. But if

it carries momentum in a dual (winding) direction x̃ it gives the string whose mass and

charge are determined by the momentum in that dual direction.

Instead of the wave we will now consider the Kaluza-Klein monopole solution also

known as the Sorkin-Gross-Perry monopole [48, 49]

ds2 = H−1
[

dz +Aidy
i
]2

+Hδijdy
idyj

H = 1 +
h

|~y(3)|
, ∂[iAj] =

1

2
ǫij

k∂kH
(2.1)

where H is a harmonic function and Ai a vector potential with i = 1, 2, 3. If this solution

is supplemented by some trivial world volume directions, it can be turned into something

known as a KK-brane, the KK-monopole being a KK0-brane. The low energy limit of M-

theory is eleven-dimensional supergravity. Thus, to embed the monopole solution (which is

four-dimensional) requires adding seven trivial dimensions (one of which is timelike) which

would then produce a KK6-brane solution as follows

ds2 = −dt2 + d~x 2
(6) +H−1

[

dz +Aidy
i
]2

+Hd~y 2
(3) (2.2)

where H and Ai are the same as above. (From the point of view of Type IIA supergravity,

which is the theory that emerges upon Kaluza-Klein reduction in the z direction, this is the

Type IIA D6-brane.) All of this is part of the usual supergravity story relating solutions

of eleven-dimensional supergravity to those of the Type IIA theory [50].

Now let us consider a monopole-type solution in Double Field Theory which we call

the DFT monopole. Appendix A shows that the following is a solution and satisfies the

DFT equations of motion. The solution is described by the generalized metric HMN given

below. It is an open question if the generalized metric is an actual metric tensor on the

doubled space or something different, in which case the term “metric” is a misnomer.

For the purpose of this paper it is sufficient that the generalized metric transforms under

generalized diffeomorphisms (generated by the generalized Lie derivative) and for a given

solution satisfies the DFT equations of motion. Nevertheless, for convenience we will encode

the matrix HMN in terms of a “line element” ds2 = HMNdXMdXN which provides a

concise way of presenting the components of HMN . It is not neccessary to us that this line

element defines an actual metric tensor in the doubled space.2 With this caveat in mind,

2We thank Chris Hull for emphasizing this issue to us.
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we write the monopole solution as follows

ds2 = HMNdXMdXN

= H(1 +H−2A2)dz2 +H−1dz̃2 + 2H−1Ai[dy
idz̃ − δijdỹjdz]

+H(δij +H−2AiAj)dy
idyj +H−1δijdỹidỹj

+ ηabdx
adxb + ηabdx̃adx̃b

(2.3)

and the rescaled dilaton of DFT (defined as e−2d = g1/2e−2φ)

e−2d = He−2φ0 (2.4)

where φ0 is a constant. The generalized coordinates with M = 1, . . . , 20 are

XM = (z, z̃, yi, ỹi, x
a, x̃a) (2.5)

where i = 1, 2, 3 and a = 1, . . . , 6. The last line in the line element uses the Minkowski

metric ηab, i.e. x
1 = t and x̃1 = t̃ are timelike, our signature is mostly plus.

Here H is a harmonic function of the yi only; it is annihilated (up to delta function

sources) by the Laplacian in the y-directions and is given by

H(r) = 1 +
h

r
, r2 = δijy

iyj (2.6)

with h an arbitrary constant that is related to the magnetic charge. The vector Ai also

obeys the Laplace equation, is divergence-free and its curl is given by the gradient of H

~∇× ~A = ~∇H or ∂[iAj] =
1

2
ǫij

k∂kH . (2.7)

This doubled solution is to be interpreted as a KK-brane of DFT. It can be rewritten to

extract the spacetime metric gµν and the Kalb-Ramond two-form Bµν in ordinary spacetime

with coordinates xµ = (z, yi, xa). We will show explicitly that the “reduced” solution is in

fact an infinite periodic array of NS5-branes smeared along the z direction.

One can also show that if z̃ is treated as a normal coordinate and z as a dual coordinate

the reduced solution is the string theory monopole introduced above. This means the

(smeared) NS5-brane is the same as a KK-monopole with the KK-circle in a dual (winding)

direction.

One might be concerned about the presence of Ai in the generalized metric since for the

monopole picture to make sense, Ai must transform as a one-form gauge field. (Below we

show how this one-form is a component of the two-form Bµν). Crucially, the generalized

metric transforms under the so-called generalized Lie derviative. When the generating

double vector field of the generalized Lie derivative points in the dual space directions it

generates the gauge transformations of the B-field. When we have an additional isometry,

the z direction of this solution, then this generalized Lie derviative generates the correct

gauge transformations of a one-form field Ai. (This requires the gauge parameters to also

be independent of z).
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2.1 Rewriting the solution

We will now use the form of the doubled metric HMN in terms of gµν and Bµν to rewrite the

solution (2.3) in terms of ten-dimensional non-doubled quantities. This is like in Kaluza-

Klein theory, writing a solution of the full theory in terms of the reduced metric and vector

potential

ds2 = (gµν −Bµρg
ρσBσν)dx

µdxν + 2Bµρg
ρνdxµdx̃ν + gµνdx̃µdx̃ν . (2.8)

By Comparing (2.8) with (2.3) the reduced fields can be computed. The spacetime metric

gµν and the non-vanishing components of the B-field Bµν are given by

ds2 = −dt2 + d~x 2
(5) +H(dz2 + d~y 2

(3))

Biz = Ai .
(2.9)

The determinant of this metric is −H4 and therefore the string theory dilaton becomes

e−2φ = g−1/2e−2d = H−2He−2φ0 = H−1e−2φ0 . (2.10)

This solution is the NS5-brane solution of string theory [59], more precisely it is the NS5-

brane smeared along the z direction. Usually the harmonic function of the NS5-brane

depends on all four transverse directions, that is yi and z. By smearing it over the z

direction the brane is no longer localized in z and so the z-dependence is removed from the

harmonic function.

Smearing the solution along z has also consequences for the field strength Hµνρ. The

NS5-brane comes with an H-flux whose only non-zero components are in the transverse

directions yi and z = y4. The field strength is written as

Hmnp = 3∂[mBnp] = ǫmnp
q∂q lnH(r, z) (2.11)

where m = i, z = 1, . . . , 4. We then note that the non-trivial part of the metric is gmn =

Hδmn so that g = det gmn = H4. This then allows us to write the field strength as

Hmnp =
√
gǫ̃mnpqg

qs∂s lnH

= H2ǫ̃mnpqH
−1δqsH−1∂sH = ǫ̃mnp

q∂qH
(2.12)

where the epsilon tensor has been converted to the permutation symbol (a tensor density)

in order to make contact with the epsilon in a lower dimension. If the solution then is

smeared along z, H no longer depends on this coordinate. Therefore Hijk = 0 and

Hijz = 2∂[iBj]z = ǫ̃ijzkδ
kl∂lH

= ǫ̃ijkδ
kl∂lH = ǫij

k∂kH = 2∂[iAj] .
(2.13)

Thus the only non-zero component of the B-field (up to a gauge choice) of the smeared NS5-

brane is Biz = Ai. This then shows how the flux of the smeared NS5-brane is just the same

as the usual magnetic two-form flux from a magnetic monopole for the electromagnetic field.
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In conclusion, the smeared NS5-brane solution (2.9) can be extracted from the DFT

monopole (2.3) using (2.8). If z and z̃ are exchanged, the same procedure recovers the KK-

monopole of string theory. Since the monopole and the NS5-brane are T-dual to each other

in string theory and DFT makes T-duality manifest, this should not come as a surprise.

In order to identify the NS5-brane with the KK-monopole, it needed to be smeared

along the z direction. Any monopole type solution is expected to need more than a single

patch to describe it (and in fact the topological charge may be viewed as the obstruction

to a global description). In [60] the problems of constructing a full global solution contain-

ing NS-NS magnetic flux, with patching between different local descriptions in DFT, are

discussed in detail. So have we resolved those issues here?

Not really, in the case described above, because of the additional isometry in the

transverse directions, the three-form flux is completely encoded in a two-form flux. (This

is non-trivial and can be constructed in the usual way, à la Dirac). In other words because

of the additional isometry H3 = F2 ∧ dz, so that although the H3 flux is an element of the

third cohomology it is really completely given by the second cohomology of which F2 is a

non-trivial representative.

One can now ask the question if it is possible to localize the monopole and remove this

additional smearing. We will look at this next.

2.2 The localized monopole solution

One can construct a solution which is not smeared but localized in the z direction. Then

the harmonic function H has an explicit dependance on z

H(r, z) = 1 +
h

r2 + z2
(2.14)

and the field strength Hµνρ in (2.11) of the NS5-brane has two non-zero components

Hijz = 2∂[iBj]z = ǫij
k∂kH(r, z) = 2∂[iAj]

Hijk = 3∂[iBjk] = ǫijk∂zH(r, z) .
(2.15)

The first one can be expressed in terms of the magnetic potential Ai as before in the

smeared case. The second one is new, as the ∂z derivative now does not vanish. The

localized monopole solution of DFT then reads

ds2 = H(1 +H−2A2)dz2 +H−1dz̃2

+ 2H−1Aidy
idz̃ − 2H−1Aidỹidz + 2H−1Bi

jdyidỹj

+H(δij +H−2AiAj +H−2Bi
kBkj)dy

idyj +H−1δijdỹidỹj

+ ηabdx
adxb + ηabdx̃adx̃b

(2.16)

where extra terms for dy2 and dyidỹj involving Bij arise as compared to (2.3).

Upon rewriting this solution by using the ansatz (2.8), one obtains the localized NS5-

brane with its full field strength. If we carry out the simple operation of swapping the roles

of z and z̃ in the reduction, then this gives the following result

ds2 = −dt2 + d~x 2
(5) +H−1

[

dz̃ +Aidy
i
]2

+Hd~y 2
(3)

Hijk = 3∂[iBjk] = ǫijk∂zH(r, z) .
(2.17)
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duality frame
DFT solution

with H = H(r, z)

DFT solution

with H = H(r, z̃)

A
NS5-brane

localized in spacetime

NS5-brane

localized in winding space

B
KK-monopole

localized in winding space

KK-monopole

localized in spacetime

Table 1. In this table both DFT solutions are of the form (2.16) but with different coordinate

dependencies in the harmonic function. Each solution can be viewed in two different duality frames.

In frame A the z coordinate is a spacetime coordinate while z̃ is a dual winding coordinate. In frame

B it is the other way round, z is a dual winding coordinate while z̃ is a spacetime coordinate. The

solutions extracted from the DFT solutions that are localized in spacetime have good supergravity

descriptions while those that are localized in winding space have not.

This solution is the KK-monopole. The spacetime coordinates in this duality frame now

include z̃, crucially though the harmonic function H still depends on z, which is a dual

coordinate in this frame. One thus concludes that this is the monopole localized in the dual

winding space. This property is discussed in detail in [52]. This is exactly the same result

as blindly applying the Buscher rules (which would require an isometry) to the localized

NS5-brane along the z direction. It produces the monopole (which is indeed the T-dual of

the fivebrane) but the solution is localized in the dual winding direction.

The alert reader will be aware that obviously one should not be allowed to use the

Buscher rules to carry out a T-duality in the z direction in the case where the NS5-brane

is localized. The z direction is not an isometry of the localized solution. Here we have a

very clear example of how Double Field Theory differs from just a theory with manifest T-

duality. Double Field Theory makes no assumptions about the existence of isometries. The

O(d, d) symmetry in DFT is a local continuous symmetry that is applicable for any back-

ground. This perspective was discussed in [61] amongst other places, most recently in [62].

The usual spacetime manifold is defined by picking out a maximally isotropic subspace

of the doubled space. Normally this is done by solving the section condition or strong

constraint, which removes the dependence of fields on half of the coordinates. We then

identify the remaining coordinates with the coordinates of spacetime.

The DFT monopole is a single DFT solution which obeys the section condition; how we

identify spacetime is essentially a choice of the duality frame. When the half-dimensional

subspace which we call spacetime matches that of the reduction through the section condi-

tion, then we have a normal supergravity solution which, in the case described above, is the

NS5-brane. Alternatively, one can pick the identification of spacetime not to be determined

by the section condition, this then gives an alternative duality frame. Generically this will

not have a supergravity description even though it is part of a good DFT solution. This

is precisely the case described in this section. There is a localization in winding space and

so this solution cannot be described through supergravity alone — even though it maybe

a good string background. In DFT it is just described by picking a spacetime submanifold

that is not determined by the solution of the section condition.

– 8 –
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With this in mind, we come to the following conclusion. There are two different DFT

solutions of the form (2.16), one with H(r, z) and the other with H(r, z̃) as harmonic

function. Here by z and z̃ we do not mean spacetime and winding coordinates a priori, but

just the coordinates as expressed in (2.16). For each of these two DFT solutions there is a

choice of duality frames which are of course related by O(d, d) rotations. In one frame, for

clarity call it frame A, z is a spacetime coordinate and z̃ is a dual winding coordinate. In

another frame, say frame B, the role of z and z̃ is exchanged, i.e. z̃ is a spacetime coordinate

and z is dual. See table 1 for an overview.

In the case where H is a function of z, the DFT solution rewritten in the duality

frame A is the NS5-brane localized in spacetime. Its T-dual, found by going to frame B,

is the KK-monopole localized in winding space which has no supergravity description as

explained above. In the other case where H is a function of z̃, the DFT solution rewritten

in frame B gives the KK-monopole localized in spacetime while frame A gives the NS5-

brane localized in winding space. Again this is a solution with no supergravity description

but valid from a string theory point of view.

The DFT solution listed in the first column of table 1 containing the winding localized

monopole and spacetime localized NS5-brane was first given in the work by Jensen [52].

The DFT solution described in the second column extend Jensen’s ideas but are of course

a natural consequence of the structure of DFT. We would also like to emphasize that one

may interpret Jensen’s solution as a DFT monopole as described here (this interpretation

has not been made before).

What then is T-duality? When there is a spacetime isometry then there is indeed an

ambiguity in how one identifies the spacetime in doubled space. The presence of the isom-

etry means there are no unwanted dependences on dual coordinates from picking different

duality frames and so supergravity is a good description for both choices. Thus from the

DFT perspective, traditional T-duality comes from an ambiguity in how one defines the

half-dimensional subspace corresponding to a good supergravity solution. This perspec-

tive of T-duality and the identification of spacetime as a null subspace, determined by the

O(d, d) structure η was described first in [8]. We do not differ from this perspective. Where

we perhaps extend the description in [8] is that DFT does allow us to pick subspaces that

do not match the section condition. This choice does not allow a spacetime interpretation

but does have an interpretation from string theory.

In [63] and more recently in related works by Harvey and Jensen [52, 64] and

Kimura [53–56, 65, 66] a gauged linear sigma model was used to describe the NS5-brane

and related solutions. By “related solutions” we mean the KK-monopole and in fact also

the exotic 522 brane [67, 68]. These are all solutions in the same O(d, d) duality orbit.

The advantage of the gauged linear sigma model description is that one may examine the

inclusion of world sheet instanton effects. As first shown in [63], the inclusion of such

world sheet instantons gives rise exactly to the localization in dual winding space we are

describing above. Thus in some sense DFT knows about world sheet instantons.

In terms of the topological questions raised by [60], the localized solution (which does

not have the additional isometry) requires an appropriate patching to form a globally
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defined solution. Thus for this paper we restrict ourselves to giving only descriptions in a

local patch. What is hopeful is that the solution described here has very specific topology

of the dual space since it is itself a monopole. It is hoped to carry out a detailed analysis

of the global properties in the future.

3 The exceptional case E7

There are similar constructions to DFT for the U-duality groups of M-theory. In this

paper we will work with the E7 group. For more on this, see [33]. The approach described

in [33] is in fact a truncated version of the full theory. Recently, through an excellent

series of works, the full non-truncated theory, which goes by the name Exceptional Field

Theory, has been developed by Hohm and Samtleben [69–73]. We will not deal with this

non-truncated version of the theory in this paper but we hope to investigate properties of

solutions to the Hohm and Samtleben theory in the future [74].

3.1 The E7 exceptional extended geometry

We consider the case where the eleven-dimensional theory is a direct product of M4×M7,

the U-duality group acting on the seven-dimensional space M7 is E7. We will truncate the

theory to ignore all dependence on the M4 directions and will not allow any excitations of

fields with mixed indices such as the graviphoton. The exceptional extended geometry is

constructed by combining the seven spacetime dimensions with wrapping directions of the

M2-brane, M5-brane and D6-brane to form a 56-dimensional extended space with tangent

space given by

TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ Λ6TM . (3.1)

Details of this construction and the resulting theory are described in [26] and [24, 25, 27–

29, 33, 34]. The algebra is E7 ⊗ GL(4) with the E7 acting along the seven spacetime

dimensions of the extended space. The generators of the associated motion group are

Pµ, Q
µν , Qµ1...µ5 , Qµ1...µ7,ν and Pα (3.2)

where µ = 1, . . . , 7 and α = 1, . . . , 4. The first four generate the 56 representation of E7

and the last one generates translations in the remaining four directions, the GL(4). For

convenience, the following dualization of generators is used

Q̃µν =
1

5!
ǫµνρ1...ρ5Q

ρ1...ρ5 and Q̃µ =
1

7!
ǫν1...ν7Q

ν1...ν7,µ . (3.3)

For the E7 generators we can now introduce generalized coordinates

X
M = (Xµ, Yµν , Z

µν ,Wµ) (3.4)

to form the extended 56-dimensional space. Note that an index pair µν is antisymmetric

and we thus have indeed 7 + 21 + 21 + 7 = 56 coordinates.

The generalized metric MMN of this extended space can be constructed from the

vielbein given in [24–26, 28, 29, 33]. The full expression is quite an unwieldy structure, so

we will introduce it in several steps.
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The underlying structure of MMN can be seen clearly if the M-theory potentials C3

and C6 are turned off. Then the only field present is the spacetime metric gµν and the line

element of the extended space3 reads

ds2 = MMNdXMdXN

= g−1/2
{

gµνdX
µXν + gρσ,λτdYρσdYλτ

+ g−1gρσ,λτdZ
ρσdZλτ + g−1gµνdWµdWν

}

.

(3.5)

Here the determinant of the spacetime metric is denoted by g = det gµν and the four-index

objects are defined by gµν,ρσ = 1
2 (gµρgνσ − gµσgνρ) and similarly for the inverse.

The generalized metric has a scaling symmetry and can be rescaled by a power of its

determinant which in turn is just a power of g. The bare metric, i.e. without the factor of

g−1/2 upfront, has detMMN = g−28. One could choose to rescale by including a factor of

g1/2 which would then lead to detMMN = 1, an often useful and desirable property.

Here the factor g−1/2 is included. It arises completely naturally from the E11 pro-

gramme, see [33], and interestingly gives solutions in the Einstein frame when rewritten by

a KK-ansatz (i.e. no further rescaling is necessary).

If the gauge potentials are non-zero, there are additional terms for the “diagonal”

entries of (3.5) and also “cross-terms” mixing the different types of coordinates. For what

follows we will not need to use the full generalized metric with both potentials present at

the same time. We will just need to consider the two special cases where either the C3

potential or the C6 potential vanishes.

In the first case with no three-form, the six-form is dualized and encoded as

Uµ =
1

6!
ǫµν1...ν6Cν1...ν6 (3.6)

which allows the line element to be written as

ds2 = g−1/2

{[

gµν +
1

2
(gµνU

ρUρ − UµUν)

]

dXµXν +
2√
2
g−1/2gµ[λUτ ]dX

µdZλτ

+

[

gρσ,λτ − 1

2
U [ρgσ][λU τ ]

]

dYρσdYλτ +
2√
2
g−1/2U [ρgσ]νdYρσdWν

+ g−1gρσ,λτdZ
ρσdZλτ + g−1gµνdWµdWν

}

.

(3.7)

In the second case with no six-form, the three-form components are encoded in C, V

and X (see [33]). We will concentrate on the special case where

V µ1...µ4 =
1

3!
ǫµ1...µ4ν1...ν3Cν1...ν3 6= 0 but Xµ

ρσ = CµλτV
λτρσ = 0 . (3.8)

3As for the generalized metric in DFT, we utilize a line element to present the components of the matrix

MMN and the coordinates of the extended space in a concise form. We do not wish to imply that the

generalized metric is an actual metric tensor on the extended space.
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Then the line element for the generalized metric is then given by

ds2 = g−1/2

{[

gµν +
1

2
Cµνρg

ρσ,λτCλτν

]

dXµdXν

+

[

gµ1µ2,ν1ν2 +
1

2
V µ1µ2ρσgρσ,λτV

λτν1ν2

]

dYµ1µ2dYν1ν2

+ g−1

[

gµ1µ2,ν1ν2 +
1

2
Cµ1µ2ρg

ρσCσν1ν2

]

dZµ1µ2dZν1ν2

+ g−1gµνdWµdWν +
2√
2
g−1/2Cµρσg

ρσ,λτdXµdYλτ

+
2√
2
g−1/2V µ1µ2ρσgρσ,ν1ν2dYµ1µ2dZ

ν1ν2

+
2√
2
g−1/2Cµ1µ2ρg

ρνdZµ1µ2dWν

}

.

(3.9)

The action for the E7 theory can be constructed as in [24–26, 28, 29, 33]. One should

remember though that when deriving the equations of motion through the variation of the

action, it is necessary that the generalized metric remains in the E7/SU(8) coset. Thus the

variation is subject to a constraint. This has the effect of introducing a projector on the

naive equations of motion. This set of projected equations of motion was first worked out

for DFT in [11] and for the SL(5) exceptional case in [51] along with the general formula for

the exceptional cases. A solution of the exceptional extended geometry thus has to satisfy

PMN
KLKKL = 0 (3.10)

where P is the projector of the E7 theory and K is the variation of the action with respect

to the generalized metric M. (The indices are taken to run from 1 to 56 and appear in

symmetric pairs.)

Before we go on to construct and discuss specific solutions to the E7 theory, let as

briefly recall some classic M-theory solutions. This allows us to present our conventions

and clarify the notation.

3.2 Classic supergravity solutions

In eleven-dimensional supergravity there are four classic solutions: the wave, the mem-

brane, the fivebrane and the monopole. They are all related by T- and S-duality and

upon reduction on a circle they give rise to the spectrum of string theory solutions in ten

dimensions.

Here we will briefly present these four solutions in terms of the bosonic fields C3, C6 and

g which in turn are given terms of an harmonic function H. To allow for easy comparison

of the solutions, they are all expressed in the same coordinate system, even if is not the

most natural for each solution. The coordinates we choose have one time direction t, one

“special” direction z, six directions ~x(6) = xa and three directions ~y(3) = yi for a total of

eleven dimensions. The reason for this notation will become apparent soon.

The order of these coordinates is important for the extended coordinates with an

antisymmetric pair of indices since for example Ytz = −Yzt. It is fixed by defining the
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permutation symbol ǫtx1x2x3x4x5x6y1y2y3z = +1. This order will be kept also after reductions

when some of the coordinates drop out.

Let’s start with the “pure gravity” solutions, the pp-wave and the KK-monopole.

They do not come with a gauge potential and are given just in terms of the metric. The

pp-wave consists of parallel rays carrying momentum in the z direction with transverse

plane wavefronts spanned by xa and yi in the above mentioned coordinates. The wave

solution then reads

ds2 = −H−1dt2 +H
[

dz − (H−1 − 1)dt
]2

+ d~x 2
(6) + d~y 2

(3)

= (H − 2)dt2 + 2(H − 1)dtdz +Hdz2 + δabdx
adxb + δijdy

idyj

H = 1 +
h

|~x 2
(6) + ~y 2

(3)|7/2

(3.11)

where h is some constant proportional to the momentum carried.

The KK-monopole or KK6-brane solution was already introduced in section 2. Where-

as the momentum of the wave solution can be seen as gravito-static charge, the monopole

carries topological or gravito-magnetic charge, hence the name “monopole”. This solution

is expressed in terms of a vector potential Ai which is related to the harmonic function

as before, see equation (2.7). For the monopole, the z direction needs to be compact and

will be referred to as the “KK-circle”. The xa form the world volume of the KK6-brane,

leaving the yi to be transverse. For completeness, the monopole solution is restated in full

ds2 = −dt2 + d~x 2
(6) +H−1

[

dz +Aidy
i
]2

+Hd~y 2
(3)

= −dt2 + δabdx
adxb +H−1dz2 + 2H−1Aidy

idz +H
(

δij +H−2AiAj

)

dyidyj

H = 1 +
h

|~y(3)|
, ∂[iAj] =

1

2
ǫij

k∂kH .

(3.12)

Again h is a constant, here it is proportional to the magnetic charge.

Now turn to the extended solutions, the M2-brane and the M5-brane. These branes

naturally couple to the C3 and C6 gauge potentials respectively. This can be seen as the

natural electric coupling.

For both branes the worldvolume is spanned by t and some of the xa, while the remain-

ing x’s, yi and z are transverse to it. The harmonic function H in each case is a function

of the transverse directions. The membrane solution is given by

ds2 = H−2/3[−dt+ d~x 2
(2)] +H1/3[d~x 2

(4) + d~y 2
(3) + dz2]

Ctx1x2 = −(H−1 − 1), C̃izx3x4x5x6 = Ai

H = 1 +
h

|~x 2
(4) + ~y 2

(3) + z2|6/2

(3.13)

and the fivebrane solution reads

ds2 = H−1/3[−dt+ d~x 2
(5)] +H2/3[dx26 + d~y 2

(3) + dz2]

C̃tx1x2x3x4x5 = −(H−1 − 1), Cizx6 = Ai

H = 1 +
h

|x26 + ~y 2
(3) + z2|3/2 .

(3.14)
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solution t x1 x2 x3 x4 x5 x6 y1 y2 y3 z

pp-wave — —

KK-monopole — — — — — — — • • • •
M2-brane — — — ◦ ◦ ◦ ◦
M5-brane — — — — — — ◦ ◦ ◦ ◦

Table 2. In this table a dash denotes that the solution is extended in that direction while a blank

denotes a transverse direction. For the monopole, the four transverse directions (denoted by a dot)

are special in the sense that the magnetic potential Ai and the KK-circle z encapsulate all the non-

trivial features of the monopole. These four directions are of interest for the M2 and M5 because

they are the directions (denoted by a circle) through which the electric or magnetic fluxes will flow.

In both cases both the electric and magnetic potentials are shown. The latter ones can

be found by dualizing the corresponding field strengths. The field strength of the electric

potential is proportional to F ∼ ∂H−1 ∼ ∂H which is dualized into F̃ ∼ ǫ∂H ∼ ∂A

where we use (2.7) to relate H and A. Therefore the vector potential Ai appears in the

components of the magnetic potentials.

The four solutions recapped above are all related to each other by M-theory dualities.

The wave and the membrane are T-dual to each other, in the same way the wave and the

fundamental string are related by T-duality in string theory. Similarly the monopole and

the fivebrane are T-duals, again as for the monopole and NS5-brane in string theory (cf.

section 2).

Furthermore, the membrane and fivebrane are related by S-duality, they are electro-

magnetic duals of each other. To complete the picture, there is a S-duality relation between

the wave and the monopole. We will discuss this further towards the end of this paper.

In table 2 the character of each of the eleven dimensions for each of the four solutions is

illustrated.

If these classic solutions are carried over from eleven-dimensional supergravity to the

extended E7 theory, the underlying spacetime has to be reduced from eleven to seven

dimensions in order to build the 56-dimensional extended space. There are various ways

of picking the seven and four out of the eleven as will be explained below.

Note that in order to keep the notation simple we will use the following convention. If

the directions x3, x4 and x5 are reduced, we still use xa with a = 1, 2 for the first two x’s or

alternatively label them as x1 = u and x2 = v. Similarly we use x6 = w where necessary.

3.3 The M2- and M5-brane as a wave in exceptional extended geometry

In [51] it was not only shown how the wave in DFT gives rise to the fundamental string but

also that a null wave in the SL(5) extended theory reduces to the membrane in ordinary

spacetime. The same is true for the E7 extended theory. A null wave propagating along a

membrane wrapping direction gives rise to the M2-brane.

Furthermore, due to the larger extended space, it is now also possible to consider a

wave travelling in a fivebrane wrapping direction. Unsurprisingly, this reduces to the M5-
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direction of

propagation

supergravity

solution

X ∈ TM pp-wave

Y ∈ Λ2T ∗M M2-brane

Z ∈ Λ5T ∗M M5-brane

W ∈ Λ6TM KK-monopole

Table 3. The wave in exceptional extended geometry can propagate along any of the extended

directions giving the various classic solutions when seen from a supergravity perspective.

brane in ordinary spacetime. We will demonstrate this explicitly and for completeness

reproduce the membrane result.

In DFT, the section condition is easily solved by reducing the coordinate dependence

to half the doubled space. Thus each pair of solutions related by an O(d, d) transforma-

tion, such as the wave and string or the monopole and fivebrane, can be presented in a

straightforward fashion. In contrast in the exceptional extended geometry, the solutions to

the section condition are more complex since a much larger extended space has to be dealt

with. In the case of E7, the section condition takes one from 56 to seven dimensions. We

thus present the solutions step by step and relate them “by hand” rather than constructing

the different solutions to the section condition explicitly.

Consider the following solution for an extended E7 theory built from a seven-dimensio-

nal spacetime with coordinates Xµ = (t, xm, z) → X
M with m = 1, . . . , 5, i.e. in the

above mentioned coordinate system reduce on x3, x4, x5 and x6 and collect the remaining

transverse directions x1, x2 and yi into xm. The generalized metric is given by4

ds2 = (2−H)
[

−(dXt)2 + δmndYmzdYnz + δmndZ
tmdZtn − (dWz)

2
]

− (dYtz)
2

+H
[

(dXz)2 − δmndYtmdYtn − δmndZ
mzdZnz + (dWt)

2
]

+ (dZtz)2

+ 2(H − 1)
[

dXtdXz − δmndYtmdYnz + δmndZ
tmdZnz − dWtdWz

]

+ δmndX
mdXn + δmn,kldYmndYkl − δmn,kldZ

mndZkl − δmndWmdWn .

(3.15)

This is a massless, uncharged null wave carrying momentum in the Xz = z direction and

H = 1 + h
|~x(5)|

3 is a harmonic function of the transverse coordinates xm. The solution is

smeared over all other directions and thus there is no coordinate dependence on them. If

the extra wrapping dimensions are reduced by using a Kaluza-Klein ansatz based on (3.5),

one recovers the pp-wave in M-theory in seven dimensions.

If the wave is rotated to travel in a different direction, the momentum it carries becomes

the mass and charge of an extended object in the reduced picture. The different M-theory

solutions obtained upon a KK-reduction of the extended wave solution pointing in various

directions are summarized in table 3.

4The delta with four indices is defined as δmn,kl =
1
2
(δmkδnl − δmlδnk) and similarly for the inverse.

– 15 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
5

The rotation that points the wave in the Ztz direction is achieved by the following

swap of coordinate pairs in the above solution

Xz ←→ Ztz Wz ←→ Ytz

Xm ←→ Ztm Wm ←→ Ytm .
(3.16)

The rotated wave solution can now be rewritten by using a KK-ansatz based on the line ele-

ment given in (3.7) to remove the extra dimensions. This gives the M5-brane solution (3.14)

reduced to seven dimensions (and smeared over the reduced directions)

ds2 = H1/5
[

−dt+ d~x 2
(5) +Hdz2

]

C̃tx1x2x3x4x5 = −(H−1 − 1)

H = 1 +
h

z
.

(3.17)

The details of this calculation can be found in appendix B.1.

It can also be shown that the wave in the E7 extended theory pointing along one of

the Y -directions gives the membrane from a reduced point of view. The key steps of this

calculation are given here.

Start by splitting the transverse coordinates xm into xa and yi with a = 1, 2 and

i = 1, 2, 3 as before so that the extended space is given by Xµ = (t, xa, yi, z) → X
M . Then

the wave can be rotated to point in the Yx1x2 direction. This is achieved by the mapping

Xz ←→ Yx1x2 Wz ←→ Zx1x2

Xa ←→ ǫabYbz Wa ←→ ǫabZ
bz

Yij ←→ ǫijkZ
tk Zij ←→ ǫijkYtk

(3.18)

while leaving the remaining coordinates unaltered. The extended solution (3.15) then reads

(recall that x1 = u and x2 = v)

ds2 = (2−H)
[

−(dXt)2 + δabdX
adXb + δijdYizdYjz

+δabdZ
tadZtb + δij,kldYijdYkl − (dZuv)2

]

− (dYtz)
2

+H
[

(dYuv)
2 − δabdYtadYtb − δij,kldZ

ijdZkl

−δabdWadWb − δijdZ
izdZjz + (dWt)

2
]

+ (dZtz)2 (3.19)

+ 2(H − 1)
[

dXtdYuv − dXudYtv + dXvdYtu − ǫij
kdZijdYkz

+ǫijkdYijdZ
kz + dWudZ

tv − dWvdZ
tu − dWtdZ

uv
]

+ δabdYazdYbz + δijdX
idXj + (dXz)2 + δijdZ

tidZtj + δabδijdYaidYbj

− (dWz)
2 − δijdYtidYtj − δabδijdZ

aidZbj − δabdZ
azdZbz − δijdWidWj .

The KK-ansatz to reduce this metric is based on the line element given in (3.9), it will

be used again later in the monopole section, equation (B.16). The procedure is the same

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
5

as in the reduction calculation that yielded the fivebrane and gives

ds2 = H−2/5
[

−dt+ d~x 2
(2) +H(d~y 2

(3) + dz2)
]

Ctx1x2 = −(H−1 − 1)

H = 1 +
h

~y 2
(3) + z2

(3.20)

which is the M2-brane solution reduced to seven dimensions (with the harmonic function

smeared accordingly).

Hence, both the M2 and the M5 can be obtained from the same wave solution in the

exceptional extended geometry and all branes in M-theory are just momentum modes of

a null wave in the extended theory. The direction of the wave determines the type of

brane (from the reduced perspective) or indeed gives a normal spacetime wave solution.

From this point of view the duality transformations between the various solutions are just

rotations in the extended space.

3.4 The M5-brane as a monopole in exceptional extended geometry

In section 2 we showed that the NS5-brane of string theory was the monopole solution of

DFT. In this section we want to show something similar for the M5-brane in exceptional

extended geometry.

If the KK-circle of the monopole in the E7 extended theory is not along a usual

spacetime direction but instead along one of the novel Y -directions, then this produces a

smeared fivebrane solution.

First, a slightly different extended space has to be constructed. Starting from eleven

dimensions and reducing on x3, x4, x5 and t allows for a construction of the monopole

solution in the extended space with coordinates Xµ = (xa, w, yi, z) → X
M (where w = x6)

and potential Ai. The generalized metric is given by

ds2 = (1 +H−2A2)
[

δabdYazdYbz + (dYwz)
2 +H−2(dWz)

2
]

+ (1 +H−2A2
1)
[

(dX1)2 +H−2δabdZ
a1dZb1 +H−2(dZw1)2

]

+ (1 +H−2A2
2) [. . . ] + (1 +H−2A2

3) [. . . ]

+ (1 +H−2A2
1 +H−2A2

2)
[

H−1(dY3z)
2 +H−1(dZ12)2

]

+ (1 +H−2A2
1 +H−2A2

3) [. . . ] + (1 +H−2A2
2 +H−2A2

3) [. . . ]

+ 2H−2A1A2

[

dX1dX2 −H−1dY1zdY2z +H−1dZ13dZ23 (3.21)

+H−2δabdZ
a1dZb2 +H−2dZw1dZw2

]

+ 2H−2A1A3 [. . . ] + 2H−2A2A3 [. . . ]

+ 2H−1A1

[

H−1(dX1dXz − δabdYazdYb1 − dYwzdYw1)

+H−2(dY12dY2z + dY13dY3z − dZ12dZ2z − dZ13dZ3z)

+H−3(δabdZ
a1dZbz + dZw1dZwz − dW1dWz)

]
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+ 2H−1A2 [. . . ] + 2H−1A3 [. . . ]

+H−1
[

δabdX
adXb + (dXw)2 + δabdYawdYbw + δab,cddYabdYcd

]

+H−2
[

(dXz)2 + δabδijdYaidYbj + δijdYwidYwj

]

+H−3
[

δabdWadWb + (dWw)
2 + δabdZ

awdZbw + δab,cddZ
abdZcd

+δij,kldYijdYkl + δijdZ
izdZjz

]

+H−4
[

δabdZ
azdZbz + (dZwz)2 + δijdWidWj

]

where A2 = AiA
i = A2

1+A2
2+A2

3. The ellipsis denotes the same terms as in the line above,

with the obvious cycling through the i index. The harmonic function H is a function of

the three y’s and is given by H = 1 + h
|~y(3)|

. The relation between the harmonic function

and the vector potential are as given in (2.7).

This is a monopole5 with the KK-circle in the Xz = z direction. The solution as before

may be rotated such that this “special” direction is of a different kind. If the KK-circle is

along Ywz, a membrane wrapping direction, the solution reduces to a M5-brane smeared

along z. This rotation is achieved by the following map (recall that x1 = u and x2 = v)

Xz ←→ −Ywz Wz ←→ Zwz

Xw ←→ Yuz Ww ←→ Zuz

Yuv ←→ −Yvz Zuv ←→ Zvz

Yui ←→ −Yiz Zui ←→ Ziz

Yvi ←→ 1

2
ǫijkZ

jk Zvi ←→ 1

2
ǫijkYjk .

(3.22)

Using (3.7) to read off the fields, the exceptional extended geometry monopole reduces to

the M5-brane solution

ds2 = H−3/5[d~x 2
(2) +H(dw2 + d~y 2

(3) + dz2)]

Cizw = Ai

H = 1 +
h

|w2 + ~y 2
(3) + z2|3/2 .

The fivebrane is given in terms of its magnetic potential, i.e. to the dual gauge potential

C3 given in (3.14). The full calculation is shown explicitly in appendix B.2.

We have thus demonstrated how a monopole with its KK-circle along a membrane

wrapping direction is identified with a (smeared) fivebrane. This is the analogous result to

the KK-monopole/NS5-brane identification in DFT shown in section 2.

5The solution is presented here in a coordinate patch and is therefore only valid locally. A global solution

requires multiple patches with appropriate transition functions. For the purpose of this paper we do not

require such a globally defined solution, we will restrict the calculations to a single coordinate patch.
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3.5 The situation for the membrane

In theory the same story should be true for the membrane. In the previous sections the

wave was shown not only to give the membrane but also the fivebrane. From the same

reasoning the monopole should not only give the fivebrane, but also the membrane.

The problem is that this cannot be shown as simply as for the fivebrane in the E7

truncated theory. To obtain the membrane from the monopole one has to consider its

magnetic potential C6 given in (3.13). But this six-form has non-zero components with in-

dices Cizx3x4x5x6 , i.e. in directions which are truncated in order to construct the exceptional

extended geometry.

More technically, if the electric C3 of the membrane is dualized in seven dimensions,

this gives a two-form. This means that only some part of the above six-form lives in the

seven-space that gets extended, the remainder lives in the other four directions. Thus

it is not possible to describe the membrane this way and stay in the truncated space.

This is simply a problem with the tools at our disposal, i.e. the truncated version of the

E7 exceptional field theory. By looking at all the relations we have built between the

solutions in the extended space, it seems natural that a monopole with its KK-circle in a

fivebrane wrapping direction gives a membrane. This problem then is demanding the full

non-truncated EFT [71] and we hope to report on this in future work [74].

4 Discussion and outlook

This paper has explored the role played by monopole-type solutions in Double Field Theory

and its M-theory version, exceptional extended geometry. We have seen how the KK-

monopole in both the doubled and the exceptional extended geometry can be identified

with a fivebrane solution (NS5 and M5 respectively) in supergravity.

For the DFT monopole, we also examined the localized solutions. The key here is

seeing how the O(d, d) symmetry in DFT is not T-duality. T-duality in DFT emerges only

when one has sufficient isometries in the solution, something that is certainly in tune with

our intuition. Without the additional isometries the O(d, d) related solutions do not all

have supergravity descriptions because they have a localization in the dual space. How can

we understand the localization in the dual space? It has no supergravity description. From

gauged linear sigma models this has been shown to be the result of world sheet instanton

effects. Rather speculatively, this may indicate that DFT has some knowledge of world

sheet instantons.

For the wave- and monopole-like solutions in the exceptional extended geometry, there

are numerous directions of further investigations that one may consider. The most pressing

is the need to study these solutions in the full non-truncated version of the theory, so called

exceptional field theory, developed by Hohm and Samtleben. This will then allow us to see

the relation between the wave- and monopole-like solutions which are obviously duals of

each other. We need to do this in the full theory because the duality requires the Hodge

star operation of the full eleven-dimensional spacetime. In other words, the truncated

E7 theory uses both C3 and C6 and treats them as independent. We know from eleven-

dimensional supergravity though that there is a duality relation between these potentials,
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i.e. F4 = ⋆F7. This is a crucial aspect of the story and is part of exceptional field theory,

but is not seen in the truncated E7 theory.

A further direction building on this work is to examine how black branes fit into the

picture in exceptional extended geometries. In particular it would be good to know how

the presence of the additional dimensions of the extended solutions affect the singularity

structure and the origin of the black brane. This is reserved for future work.

We have seen how a single extended geometry solution may give rise to the membrane

and fivebrane of M-theory. The orientation of the extended geometry solution determines

the M-theory brane type. One may ask what happens if the orientation of the solution

is directed along a linear combination of exceptional directions. It is clear that this may

be used to describe M-theory brane bound states or equivalently branes with non-trivial

background potentials. These solutions have been explored in detail in [75] where the

solutions were constructed through a U-duality technique.

The NS5-brane in Type IIA has an interesting two-dimensional CFT description [76] in

the near horizon. It would be interesting to examine this DFT description of the fivebrane

from some two-dimensional CFT point of view (note that the shift in the dilaton in the DFT

description allows for different regions of validity as compared to the usual description).

Finally, in [51] the dynamics of the Goldstone modes of the DFT wave solution were

calculated to give the Tseytlin string. A similar Goldstone mode analysis for these ex-

ceptional extended geometry solutions would produce a U-duality covariant worldvolume

description for the membrane/fivebrane. The analysis cannot work for the membrane or

the fivebrane alone since they transform into each other under U-duality. It would be inter-

esting to see exactly what are the Goldstone modes and describe their dynamics in order

to describe how the extended geometry solutions relate to normal M-theory brane actions.
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A Reduction of the DFT monopole

In this appendix it is demonstrated that the monopole solution of DFT presented in (2.3)

satisfies the equations of motion which can be derived from the action

S =

∫

dDXe−2dR (A.1)
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where the scalar R is given by

R =
1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

2
ηMNηKL∂MEA

K∂NEB
LHAB .

(A.2)

For a detailed presentation of this action and the meaning of the last line in R, see [51].

The full equations of motion are given in terms of a projector to take the fact into account

that the generalized metric is constrained to parametrize a coset structure. The equations

for HMN and d are

PMN
KLKKL =

1

2

(

KMN − ηMPHPKKKLHLQηQN

)

= 0 (A.3)

R = 0 (A.4)

where KMN is the variation of the action with respect to the generalized metric

KMN =
1

8
∂MHKL∂NHKL + 2∂M∂Nd

+ (∂L − 2∂Ld)

[

HKL

(

∂(MHN)K − 1

4
∂KHMN

)]

+

(

1

4
HKLHPQ − 1

2
HKQHLP

)

∂KHMP∂LHNQ

− ηKLηPQ

(

∂Kd∂LEA
P − 1

2
∂K∂LEA

P

)

H(N |RER
AH|M)Q .

(A.5)

Here η is the invariant O(d, d) metric of DFT.6 Thus one has to compute R and KMN for

the solution and show that they satisfy these equations of motion.

Let us recall the components of the metric for our solution (2.3). In order to not

confuse inverse and dual components, we will use a bar to denote a winding index and

raised indices for inverse parts. We thus have the metric and its inverse

Hzz = H−1 Hzz = H(1 +H−2A2)

Hz̄z̄ = H(1 +H−2A2) Hz̄z̄ = H−1

Hij = H(δij +H−2AiAj) Hij = H−1δij

Hīj̄ = H−1δīj̄ Hīj̄ = H(δīj̄ +H−2AīAj̄)

Hzi = H−1Ai Hzi = −H−1Ai

Hz̄ī = −H−1Aī Hz̄ī = H−1Aī

Hab = ηab Hab = ηab

Hāb̄ = ηāb̄ Hāb̄ = ηāb̄

(A.6)

and the DFT dilaton is simply

d = φ0 −
1

2
lnH . (A.7)

6The different meanings of the symbol η should be clear from its indices.
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The harmonic function H is a function of yi only, independent of z and any dual coordi-

nate. Therefore the only relevant derivatives will be ∂i. Furthermore, H obeys the section

condition and the Laplace equation. The vector Ai (whose index can be freely raised by

δij) is a function of H and obeys the same constraints. In addition its divergence vanishes.

The relation between H and A given in (2.7) will be used frequently.

Since H and d obey the section condition, the last line in both R and KMN can be

dropped as it vanishes under section. With these simplifications in mind, we can proceed

to check the equations of motion.

Start with R. Inserting the components of H, the first line reduces to

1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL = −H−3δmn∂mH∂nH (A.8)

while the second line gives

4HMN∂M∂Nd−∂M∂NHMN −4HMN∂Md∂Nd+4∂MHMN∂Nd = H−3δmn∂mH∂nH (A.9)

and we thus have R = 0.

Next we compute the components of KMN . By inspection it can be seen that KaM

and KāM vanish for any index M . Also Kzz̄,Kmn̄,Kzm̄ and Kz̄m vanish trivially. The

non-zero components are

Kmn =
1

4
H−2δkl [∂kAm∂lAn − δmn∂kH∂lH]−H−3δklA(m∂n)Ak∂lH

− 1

4
H−4AmAnδ

klδpq∂kAp∂lAq

Km̄n̄ =
1

4
H−4δkl [∂kAm̄∂lAn̄ − δm̄n̄∂kH∂lH]

Kzz = −1

4
H−4δklδpq∂kAp∂lAq

Kz̄z̄ = −1

4
H−2δklδpq∂kAp∂lAq +H−3δklδpqAp∂kAq∂lH

+
1

4
H−4δkl

[

ApAq∂kAp∂lAq −A2∂kH∂lH
]

Kmz = −1

2
H−3δkl [2∂mAk − ∂kAm] ∂lH − 1

4
H−4δklδpqAm∂kAp∂lAq

Km̄z̄ = −1

2
H−3δkl∂kAm̄∂lH +

1

4
H−4δkl [Am̄∂kH∂lH − δpqAp∂kAm̄∂lAq] .

(A.10)

Now expand the projected equations of motion componentwise. For example, the mn

component of the equation reads

2Pmn
KLKKL = Kmn − ηmm̄

[

Hm̄k̄Kk̄l̄Hl̄n̄ +Hm̄z̄Kz̄z̄Hz̄n̄ + 2Hm̄k̄Kk̄z̄Hz̄n̄
]

ηn̄n . (A.11)

Inserting the components of KMN computed above into this expression yields zero once

all terms are summed up properly. The same holds for all the other components of the

equations of motion. They are thus satisfied by our solution.

It is interesting to note the action of the projector here. Whereas the general signif-

icance of the projector in the equations of motion was pointed out in [51], it turned out
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that its presence was not strictly needed to show that the DFT wave was a solution as all

the components of KMN vanished for it independently (see appendix A of [51]).

In contrast here for the DFT monopole, not all components of KMN are zero and

only once the projector acts are the equations of motion satisfied. This might be due

to different properties of the wave and monopole solution, the former being conformally

invariant while the latter is not.

B Reduction of the exceptional extended wave and monopole

In this appendix we fill in the details of how the extended solutions of the E7 duality

invariant theory can be rewritten by using a Kaluza-Klein ansatz to obtain solutions in

ordinary spacetime.

B.1 From wave to fivebrane

In section 3.3 it is explained how the extended wave solution can be rotated to carry momen-

tum along a fivebrane wrapping direction. From a ordinary spacetime point of view, this

is then the M5-brane solution of supergravity. Here this calculation is presented in detail.

After the rotation (3.16), the wave solution (3.15) reads

ds2 = (2−H)
[

−(dXt)2 + δmndYmzdYnz + δmndX
mdXn − (dYtz)

2
]

− (dWz)
2

+H
[

(dZtz)2 − δmndWmdWn − δmndZ
mzdZnz + (dWt)

2
]

+ (dXz)2

+ 2(H − 1)
[

dXtdZtz − δmndWmdYnz + δmndX
mdZnz − dWtdYtz

]

+ δmndZ
tmdZtn + δmn,kldYmndYkl − δmn,kldZ

mndZkl − δmndYtmdYtn .

(B.1)

The KK-reduction ansatz to reduce the extended dimensions is based on the line element

given in (3.7)

ds2 = g−1/2

{[

gµν +
1

2
e2γ1 (gµνU

ρUρ − UµUν)

]

dXµXν

+

[

e2α1gρσ,λτ − 1

2
e2γ2U [ρgσ][λU τ ]

]

dYρσdYλτ

+ e2α2g−1gρσ,λτdZ
ρσdZλτ + e2α3g−1gµνdWµdWν

+
2√
2
e2β1g−1/2gµ[λUτ ]dX

µdZλτ +
2√
2
e2β2g−1/2U [ρgσ]νdYρσdWν

}

(B.2)

where the scale factors e2α, e2β and e2γ are undetermined. They arise naturally in such a

reduction ansatz which attempts to reduce 49 dimensions at once and will be determined

by consistency.

By comparing (B.2) to (B.1) term by term, one can step by step work out the fields

of the reduced solution. The term with dW 2 gives

e2α3g−3/2gzz = −1 e2α3g−3/2gtt = H e2α3g−3/2gmn = −Hδmn (B.3)
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while the dZ2 term gives

e2α2g−3/2gtz,tz = H , e2α2g−3/2gzm,zn = −Hδmn

e2α2g−3/2gtm,tn = δmn , e2α2g−3/2gmn,kl = −δmn,kl .
(B.4)

Using (B.3), the cross-term dY dW gives an expression for Uµ which encodes the six-form

potential

−e2β2g−1U zgtt = −(H − 1)

−e2β2g−1U zgmn = (H − 1)δmn

}

−→ e2β2−2α3g1/2U z =
H − 1

H
. (B.5)

Next consider the dY 2 term which gives

e2α1g−1/2gmz,nz + e2γ2g−1/2gmnU zU z = (2−H)δmn , e2α1g−1/2gmn,kl = δmn,kl

e2α1g−1/2gtz,tz + e2γ1g−1/2gttU zU z = −(2−H) , e2α1g−1/2gtm,tn = −δmn
(B.6)

and using (B.3) and (B.5) one can extract

e2α1g−1/2gzm,zn =

[

(2−H) +H
(H − 1)2

H2
e2γ2+2α3−4β2

]

δmn = H−1δmn

e2α1g−1/2gtz,tz = −
[

(2−H) +H
(H − 1)2

H2
e2γ2+2α3−4β2

]

= −H−1

(B.7)

if the factor e2γ2+2α3−4β2 is equal to 1. The penultimate step is to look at the dXdZ term

e2β1g−1gttUz = (H − 1) , e2β1g−1gmnUz = −(H − 1)δmn (B.8)

and the dX2 term which gives

g−1/2gtt + e2γ1g−1/2gttU
zUz = −(2−H)

g−1/2gmn + e2γ1g−1/2gmnU
zUz = (2−H)

g−1/2gzz = 1 .

(B.9)

They can all be combined to determine the two remaining components of the metric

g−1/2gtt = −
[

(2−H) +
(H − 1)2

H
e2γ1+2α3−2β1−2β2

]

= −H−1

g−1/2gmn =

[

(2−H) +
(H − 1)2

H
e2γ1+2α3−2β1−2β2

]

δmn = H−1δmn

(B.10)

provided that e2γ1+2α3−2β1−2β2 = 1. Collecting all the above results, we have7

g−1/2gµν = H−1diag[−1, δmn, H]

e2α3g−3/2gµν = −Hdiag[−1, δmn, H−1]

e2α2g−3/2gµν,ρσ = −diag[−δmn,−H, δmn,kl, Hδmn]

e2α1g−1/2gµν,ρσ = diag[−δmn,−H−1, δmn,kl, H−1δmn] .

(B.11)

7The order of the entries in the diagonal matrices have indices [t,m, z] for gµν and gµν . For gµν,ρσ and

gµν,ρσ the order is [tm, tz,mn,mz].
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From the first line the determinant of the spacetime metric can be computed as g = −H12/5

and thus gµν is finally determined. The three objects in the other lines, the inverse metric

gµν , gµν,ρσ and gµν,ρσ, are all related to the metric. For this to be consistent and the

constraints mentioned above to be satisfied, the factors e2α, e2β and e2γ have to be

e2α1 = H8/5 = |g|2/3 e2β1 = H2 = |g|5/6 e2γ1 = H4/5 = |g|1/3

e2α2 = H16/5 = |g|4/3 e2β2 = H18/5 = |g|3/2 e2γ2 = H12/5 = |g|
e2α3 = H24/5 = |g|2 .

(B.12)

With this the factor in front of U z in (B.5) now also vanishes and the six-form potential

can be worked out from (3.6) as

U z =
H − 1

H
−→ C̃tx1x2x3x4x5 =

H − 1

H
= −(H−1 − 1) . (B.13)

Thus the result of reducing the full solution (B.1) down to seven dimensions is

ds2 = H1/5
[

−dt+ d~x 2
(5) +Hdz2

]

C̃tx1x2x3x4x5 = −(H−1 − 1)

H = 1 +
h

z
.

(B.14)

where the harmonic function has to be smeared over the reduced directions. This is pre-

cisely the fivebrane solution in seven dimensions, obtained from reducing (3.14) on x3, x4, x5

and x6 (and smearing H).

B.2 From monopole to fivebrane

In section 3.4 the extended monopole solution with its KK-circle in a membrane wrapping

direction was shown to give the fivebrane coupled to its magnetic potential in ordinary

spacetime. The details of this calculation are given here.

The monopole solution (3.21) is transformed by (3.22) to have its KK-circle along Ywz.
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The extended line element then reads

ds2 = (1 +H−2A2)
[

(Xw)2 + (dYuv)
2 + (dXz)2 +H−2(dZwz)2

]

+ (1 +H−2A2
1)
[

(dX1)2 +H−2(dZ1z)2 +H−2(dY23)
2 +H−2(dZw1)2

]

+ (1 +H−2A2
2) [. . . ] + (1 +H−2A2

3) [. . . ]

+ (1 +H−2A2
1 +H−2A2

2)
[

H−1(dYu3)
2 +H−1(dYv3)

2
]

+ (1 +H−2A2
1 +H−2A2

3) [. . . ] + (1 +H−2A2
2 +H−2A2

3) [. . . ]

+ 2H−2A1A2

[

dX1dX2 −H−1dYu1dYu2 −H−1dYv1dYv2

+H−2dZ1zdZ2z −H−2dY12dY23 +H−2dZw1dZw2
]

+ 2H−2A1A3 [. . . ] + 2H−2A2A3 [. . . ]

+ 2H−1A1

[

H−1(−dX1dYwz + dXwdY1z + dYuvdZ
23 + dXzdYw1)

+H−2(−dZv3dYu2 + dZv2dYu3 − dYv3dZ
u2 + dYv2dZ

u3)

+H−3(dZ1zdWw + dY23dZ
uv + dZw1dWz − dW1dZ

wz)
]

+ 2H−1A2 [. . . ] + 2H−1A3 [. . . ]

+H−1
[

δabdX
adXb + (dYuz)

2 + δabdYawdYbw + (dYvz)
2
]

+H−2
[

(dYwz)
2 + δijdYizdYjz + δij,kldZ

ijdZkl + δijdYwidYwj

]

+H−3
[

δabdWadWb + (dZuz)2 + δabdZ
awdZbw + (dZvz)2

+δijdZ
uidZuj + δijdZ

vidZvj
]

+H−4
[

(dWw)
2 + (dZuv)2 + (dWz)

2 + δijdWidWj

]

.

(B.15)

A suitable KK-ansatz to extract the spacetime metric and three-form potential is based

on (3.9)

ds2 = g−1/2

{[

gµν +
1

2
e2γ1Cµρσg

ρσ,λτCλτν

]

dXµdXν

+

[

e2α1gµ1µ2,ν1ν2 +
1

2
e2γ2V µ1µ2ρσgρσ,λτV

λτν1ν2

]

dYµ1µ2dYν1ν2

+ g−1

[

e2α2gµ1µ2,ν1ν2 +
1

2
e2γ3Cµ1µ2ρg

ρσCσν1ν2

]

dZµ1µ2dZν1ν2

+ e2α3g−1gµνdWµdWν

+
2√
2
e2β1Cµρσg

ρσ,λτdXµdYλτ

+
2√
2
e2β2g−1/2V µ1µ2ρσgρσ,ν1ν2dYµ1µ2dZ

ν1ν2

+
2√
2
e2β3g−1/2Cµ1µ2ρg

ρνdZµ1µ2dWν

}

(B.16)

where again the a priori undetermined scale factors e2α, e2β and e2γ have to be included.

We now proceed in the usual way, comparing (B.16) to (B.15) term by term to determine

all the fields. The scale factors are then picked to ensure a consistent solution. Start with
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the dW 2 term

e2α3g−3/2gab = H−3δab , e2α3g−3/2gww = H−4

e2α3g−3/2gij = H−4δij , e2α3g−3/2gzz = H−4
(B.17)

which can be used in the dZdW term to find an expression for the three-form potential

e2β3g−1Cwzig
ij = −H−3Aj

e2β3g−1Cizwg
ww = H−3Ai

e2β3g−1Cwizg
zz = H−3Ai











−→ e2β3−2α3g1/2Cizw = Ai . (B.18)

Once this is established, it can be used in the dZ2 terms

e2α2g−3/2gwz,wz + e2γ3g−1/2Cwzig
ijCjwz = H−2 +H−4A2

e2α2g−3/2gwi,wj + e2γ3g−1/2Cwizg
zzCzwj = H−2δij +H−4AiAj

e2α2g−3/2giz,jz + e2γ3g−1/2Cizg
wwCwjz = H−2δij +H−4AiAj

(B.19)

together with (B.17) to find

e2α2g−3/2gwz,wz = H−2 +H−4A2 − e2γ3+2α3−4β3H−4A2 = H−2

e2α2g−3/2gwi,wj = H−2δij +H−4AiAj − e2γ3+2α3−4β3H−4AiAj = H−2δij

e2α2g−3/2giz,jz = H−2δij +H−4AiAj − e2γ3+2α3−4β3H−4AiAj = H−2δij

(B.20)

provided that e2γ3+2α3−4β3 is equalt to 1. The remaining components of gµν,ρσ are

e2α2g−3/2gij,kl = H−2δij,kl , e2α2g−3/2gai,bj = H−3δabδij

e2α2g−3/2gaw,bw = H−3δab , e2α2g−3/2gaz,bz = H−3δab

e2α2g−3/2guv,uv = H−4 .

(B.21)

We continue with the dY dZ terms containing the object V µνρσ. They are all of the same

form (up to a sign), for example

e2β2g−1V u2v3gv3,v3 = −H−3A1 −→ e2β2−2α2g1/2V u2v3 = −A1 (B.22)

where (B.21) was used. Looking at all the terms with the relevant sign and taking the

order of the i-type index into account, the general expression is

e2β2−2α2g1/2V uvij = ǫijkAk . (B.23)

This can in turn be used in the dY 2 terms

e2α1g−1/2guv,uv + e2γ2g−1/2V uvijgij,klV
kluv = 1 +H−2A2

e2α1g−1/2g23,23 + e2γ2g−1/2V 23uvguv,uvV
uv23 = H−2 +H−4A2

1

e2α1g−1/2ga3,b3 + e2γ2g−1/2V a3cigci,djV
djb3 = H−1δab +H−3δab(A2

1 +A2
2)

(B.24)
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together with (B.21) to find

e2α1g−1/2guv,uv = 1 +H−2A2 − e2γ2+2α2−4β2H−2A2 = 1

e2α1g−1/2g23,23 = H−2 +H−4A2
1 − e2γ2+2α2−4β2H−4A2

1 = H−2

e2α1g−1/2ga3,b3 = H−1δab +H−3δab(A2
1 +A2

2)− e2γ2+2α2−4β2H−3δab(A2
1 +A2

2)

= H−1δab

(B.25)

provided that e2γ2+2α2−4β2 is equal to 1. The same holds for other values of the i-type

index. The remaining components of gµν,ρσ are

e2α1g−1/2gaw,bw = H−1δab , e2α1g−1/2gaz,bz = H−1δab

e2α1g−1/2gwi,wj = H−2δij , e2α1g−1/2giz,jz = H−2δij

e2α1g−1/2gwz,wz = H−2 .

(B.26)

The final cross-term to consider is the dXdY term which together with (B.26) yields

another expression for the three-form potential

e2β1g−1/2Ciwzg
wz,wz = −H−2Ai

e2β1g−1/2Cwizg
iz,jz = H−3Aj

e2β1g−1/2Czwig
wi,wj = H−3Aj















−→ e2β1−2α1g1/2Cizw = Ai . (B.27)

In a last step, the dX2 terms

g−1/2gww + e2γ1g−1/2Cwizg
iz,jzCjzw = 1 +H−2A2

g−1/2gzz + e2γ1g−1/2Cwizg
wi,wjCwjz = 1 +H−2A2

g−1/2gij + e2γ1g−1/2Ciwzg
wz,wzCwzj = δij +H−2AiAj

g−1/2gab = H−1

(B.28)

are combined with previous statements to to determine the spacetime metric

g−1/2gww = 1 +H−2A2 − e2γ1+2α1−4β1H−2A2 = 1

g−1/2gzz = 1 +H−2A2 − e2γ1+2α1−4β1H−2A2 = 1

g−1/2gij = δij +H−2AiAj − e2γ1+2α1−4β1AiAj = δij

(B.29)

provided that e2γ1+2α1−4β1 is equal to 1. Collecting all the above results, we have8

g−1/2gµν = H−1diag[δab, H,Hδij , H]

e2α3g−3/2gµν = H−3diag[δab, H−1, H−1δij , H−1]

e2α2g−3/2gµν,ρσ = H−4diag[1, Hδab, Hδabδij , Hδab, H
2δij , H

2, H2δij,kl, H
2δij ]

e2α1g−1/2gµν,ρσ = diag[1, H−1δab, H−1δabδij , H−1δab,

H−2δij , H−2, H−2δij,kl, H−2δij ] .

(B.30)

8The order of the entries in the diagonal matrices have indices [a, w, i, z] for gµν and gµν . For gµν,ρσ and

gµν,ρσ the order is [ab, aw, ai, az, wi, wz, ij, iz].
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From the first line the determinant of the spacetime metric can be computed as g = H4/5

and thus gµν is finally determined. The three objects in the other lines, the inverse metric

gµν , gµν,ρσ and gµν,ρσ, are all related to the metric. For this to be consistent and the

constraints mentioned above to be satisfied, the factors e2α, e2β and e2γ have to be

e2α1 = H−4/5 = g−1 e2β1 = H−6/5 = g−3/2 e2γ1 = H−8/5 = g−2

e2α2 = H−8/5 = g−2 e2β2 = H−10/5 = g−5/2 e2γ2 = H−12/5 = g−3

e2α3 = H−12/5 = g−3 e2β3 = H−14/5 = g−7/2 e2γ3 = H−16/5 = g−4 .

(B.31)

Having set the scale factors, the prefactors in (B.18), (B.23) and (B.27) vanish and V µνρσ

can be converted into Cµνρ via (3.8) which all boils down to Cizw = Ai. Thus the result of

reducing the full solution (B.15) down to seven dimensions is

ds2 = H−3/5[d~x 2
(2) +H(dw2 + d~y 2

(3) + dz2)]

Cizw = Ai

H = 1 +
h

|w2 + ~y 2
(3) + z2|3/2 .

(B.32)

where the harmonic function is smeared over the reduced directions. This is precisely the

fivebrane solution in seven dimensions, obtained from reducing (3.14) on x3, x4, x5 and t

(and smearing H) with its magnetic potential.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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