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1 Introduction and summary

In past few years there has been much interest and progress in further understanding of
relativistic, charged, dissipative fluid in presence of some global anomalies. Presence of
quantum anomalies play a crucial role in transport properties of fluid. The first evidence
of quantum anomaly in fluid transport was holographically observed in [1, 2]. The authors
found a new parity-odd term (and hence a new transport coefficient) in the charge flavour
current. The origin of this new term can be traced back to gauge Chern-Simons term in the
dual supergravity theory. Soon after these results were published, it was shown that the new
parity-odd term in the charge current is essential because of the triangle flavour anomalies
and the second law of thermodynamics [3]. In general the second law of thermodynamics (or
equivalently the positivity of divergence of entropy current) imposes constraints on different
transport coefficients. The same constraint can also be obtained from the equilibrium
partition function of fluid [4, 5]. Equilibrium partition function provides an alternate
and a microscopically more transparent way to derive the constraints on these transport
coefficients. A generalization of this approach for charged U(1) anomalous fluid in arbitrary
even dimensions up to leading order has been considered in [6].

In [7] Bhattacharyya et al. studied parity odd transport for a four dimensional non-
conformal charged fluid at second order in derivative expansion. In four spacetime dimen-
sions the effect of anomaly appears at one derivative order and the parity-odd transport
coefficients at this order are determined in terms of anomaly coefficient. In this paper the
authors studied the transport properties at second order and found that out of 27 trans-
port coefficients 7 are fixed in terms of anomaly and lower order transport coefficients. The
goal of our current paper is to generalize this work to arbitrary even dimensions. In 2n
spacetime dimensions the leading effect of anomaly appears at (n — 1) derivative order.
Hence the subleading corrections appear at nth derivative order. The aim of this paper
is to study the constraints on transport coefficients appearing at subleading order. We
innovate a systematic mechanism to compute different fluid data at arbitrary derivative
order (parity odd or even). We list all possible scalars, vectors and tensors at any arbi-
trary derivative order in this paper. It seems to be rather difficult to find the independent
sets. However, we argue that it is possible to get the correct constraint relations between
transport coefficients even without knowing the independent sets of fluid data.

Our analysis is not valid in two spacetime dimensions. In two dimensions the parity
odd terms appear at zero derivative order itself, and hence parity-odd and parity even
sectors are not independent at any arbitrary order. Independence of these two sectors is
important in our computation.

In the parity-even sector, the leading correction appears at first order in derivative
expansion, e.g. shear viscosity and bulk viscosity terms in energy momentum tensor etc.
In this paper we have extended our calculation to include the sub-leading order correction
(i.e. second order corrections) to parity-even sector in constitutive relations in arbitrary
even dimensions in presence of U(1) gauge anomaly. This completes the description of
fluid dynamics up to sub-leading order in derivative expansion (both in parity-odd and
even sectors) in arbitrary even dimensions with abelian gauge anomaly.



The organization of our paper is as following. In section 2 we explain our notation and
perturbation scheme which we use in this paper. In section 3 we construct the partition
function for both gauge invariant and non-invariant sectors and compute the constitutive
relations from the partition function. We also describe the construction of the anomalous
entropy current. Section 4 is the most important section of this paper. Here we first
describe how to construct fluid data at arbitrary derivative order. Next, we list all the
leading and sub-leading order scalars, vectors and tensors which may appear in constitutive
relations up to sub-leading order in derivative expansion both in parity-even and odd
sectors. Although, we have not been able to find the ‘“ndependent’ parity-odd vectors
and tensors at sub-leading order, this does not inhibit us from finding the constraints on
the transport coefficients. We elaborate this issue in section 4.4. Finally, in section 5 we
list the constraint on the transport coeflicients up to sub-leading order. In appendices we
explain the Kaluza-Klien decomposition (appendix A) and sub-sub-leading order counting
(appendix B).

2 Scheme and the perturbative expansion

We consider a 2n-dimensional spacetime manifold M y,) with metric ds? = Gdxtda”
and gauge field 1-form A = A, dz". We want to study fluid dynamics in this background.
A fluid is a statistical system in local thermodynamic equilibrium, which is generally char-
acterized in terms of (covariant) energy-momentum tensor T, (covariant) charge current
JH and their constitutive equations

V. T =FPJ,+%, V.J"=3. (2.1)

F = dA is field strength for A. Here we have introduced a U(1) anomaly J and
a gravitational anomaly ¥”. The form of these anomalies is well known in literature [8].
Most of our work here will be concentrated on fluid upto subleading derivative order, where
only U(1) anomalies contribute:!

1
J= (n+ 1)0(2n) * FAn — (n+ 1)0(2n)276M1V1"'Mnl’n]-“myl L Fu (2.2)

nln*
%Y only starts getting values at subsubleading derivative order. Let us explain our nota-
tion here.

e All the fluid quantities (like currents, transport coefficients, independent terms etc.)
appearing in parity-odd sector, are denoted by ‘tilde’ (e.g. A). On the other hand
we use no special notation for parity-even sector (e.g. A). Wherever applicable,
A = A+ A denotes the total quantity (parity-odd and parity-even).

!This is true in derivative counting, which we are interested in. It was shown in [11] that the naive
derivative expansion breaks down on a cone, and hence the effects of gravitational and mixed anomaly can
be seen at first derivative order itself. In the derivative expansion however, the corresponding coefficients
appear as undermined constants, as we shall see in section 5.2.1.



e V and V denote the covariant derivative and on M2y, and the equilibrium manifold
M 4-1) respectively. We use A and * as wedge product and Hodge Dual on all
manifolds, as no confusion is possible.

Due to dissipative nature of fluid, it is not possible to write an exact generating func-
tional W (or action) for fluids from which one can derive the energy-momentum tensor
T" and charge current J#. Therefore we write their most generic forms, allowed by
symmetries, in terms of fundamental fluid variables and their derivatives in a particular
thermodynamic ensemble. In our analysis we consider the fluid variables to be temperature
9, chemical potential®> v and fluid four-velocity ut with utu, = —1.

We prefer to work in Landau Frame, where all the dissipation terms are transverse to
the direction of the fluid flow. Hence, we can decompose 7TH” and J* as

T = B, v)ulu” + T, J* = QI v)u” + T, (2.3)

where II"¥ and Y* are the most generic symmetric tensor and vector made out of fluid
variables. In the Landau frame

u, JIM =0, u, TH = 0. (2.4)

The easiest way to implement this is to project all vectors or tensors appearing in T# or
1", transverse to u* using the projection operator

V= G" + utu”.

Since fluid is a low energy fluctuation about the local thermodynamic equilibrium, I
and TH can be expanded in derivatives of fundamental fluid variables (9, v, ut):

= i

(0)+ﬁ””+ﬁ“"..., T =T

it @ + YT (2.5)

where 1:17 ;\',) and T? ) involves N number of derivatives on fluid variables. The terms on
r.h.s. can have the most generic form as,

HMV ZT 19 v Tuy) + PH ZU(N ’19 I/)S( N)t>

_ 790
T?N) = pr Po ; V(N)t(197 V)VI(JN)t, (26)

where Sy, VéL Nt and T? ;\’,) , are a collection of all possible gauge invariant scalars, vectors
and symmetric traceless tensors (collectively known as data) respectively, made out of fluid
variables and source fields at N derivative order. ), corresponds to sum over independent
terms at any particular derivative order. The data which is required for our computation
has been enlisted in section 4.

In eq. (2.6), the expression for 1:1’(‘ K,) and T’(L N) are fixed up to some undetermined coef-
ficients appearing at each derivative order. Therefore, a fluid is characterized by an infinite

2 Actually v = p/9, where p is the chemical potential.



set of such unknown functions (7(ny¢, 0Ny V(n)e), known as transport coefficients. Fluid
up to a particular derivative order is characterized by a finite number of such transport
coefficients. In general, these transport coefficients are not all independent. The second
law of thermodynamics (or equivalently, positivity of local entropy current) imposes re-
strictions on different transport coefficients® [9]. Such relations among various transport
coefficients are known as constraints.

Ref. [4] uses a different mechanism to find ‘some’ of these constraints. The idea is
to write an equilibrium partition function for the fluid and derive the energy-momentum
tensor and charge current from that partition function. Because of dissipation it is not
possible to write a generating functional (W) for the fluid. However, one can still write a
generating functional in equilibrium configuration, which we denote by We®. Using WWeab
one can find all the constraint relations involving transport coefficients which comes with
data that survives at equilibrium.

More precisely, if the theory has a timelike Killing vector w*, we can write an Euclidean
generating functional using the background fields and Killing equation on the decomposed
manifold S! x M4-1). Here S 1 is the euclidean time circle along w” with time period
B, and M(4_1) is the spacetime transverse to w'. [4] has conveniently chosen wH = 0p.
Therefore, one can decompose the background in Kaluza-Klein form,

ds? = G dat'ds” = —e%° (dt + aidazi)2 + gijdxidxj,
A = A(dt + a;dx’) + Agda’. (2.7)
For more details please refer appendix A. Using this choice along with the Landau
Gauge conditions and velocity normalization, the most-generic energy-momentum tensor

and charge current in eq. (2.3) on M4y can be decomposed into scalars, vectors and tensors
on St x Mg-1y:

TV = E(9,v)v'v! + 7%,
_ , R
T = —e | E(W,v)v'V/1 + vvf + —2—— |,
V140

— . Vv
T =¢e% ( EW,v)(1+ v0') + —L——
e < (9, v)( +Uw)+(1+viv2) ,

J'=Q, v+,
- - ;!
J=—- [ QW v)V1+ v+ ———— |, (2.8)
V140
where
T:%Ov TZ:7:ZO7 sz:,?.zjv j:j07 jZ:jl7
and
7=, 7" =y, 77 =19, =T, =7T", v=nup,v' =u"

3Similar restrictions are also applicable to non-relativistic fluids and has recently been addressed for
charged non-relativistic fluids in [10].



Indices on M 41y are raised and lowered using g% . Details of Kaluza-Klein decompo-
sition of fluid variables and background fields have been given in appendix A.

Since the fluid we are considering is in local thermodynamic equilibrium, we can write
the fluid variables as a spatial derivative expansion about their equilibrium values

9 =1,+AMY + A®@y 4 .
V:I/O-FA(DV-FA(Q)V-F...
vt =0l + AWyt ARy (2.9)

The terms with subscript ‘o’ are the equilibrium values, while A®Y) designates the N
derivative corrections.* The zeroth component of fluid velocity ug = v also gets derivative
corrections which are determined by the corrections to v* using the four-velocity normal-
ization. Similarly all the transport coeflicients can also be expanded using the Taylor
Series expansion

a(9,v) = ap(90,16) + AV + AP + . (2.10)

Therefore the energy-momentum tensor and charge current receive two fold derivative
corrections. First of all we write these expressions as a derivative expansion in terms of
fluid variables in eq. (2.5). Secondly, each term in that expansion can be further expanded
around the equilibrium values of fluid variables according to eq. (2.9). Thus we finally get

= ] (80 oy + [ty £ 500 ...
& =[S + |80 + iy | + [ AP + A0 + )| (2.11)

Expansion of time components can be determined from these using Landau gauge condition
eq. (2.4).

We choose the equilibrium convention for ¥ and v by identifying their equilibrium
values to be the red-shifted temperature and Wilson loop in the lower dimensional theory

L Bo =B/ —Goo = Be”, v, = BAo. (2.12)

7‘90

In the next section we construct the equilibrium partition function and obtain energy-
momentum tensor and charge current in terms of background data following [4]. After that,
we compare these stress tensor and current with the fluid stress tensor and current order
by order in derivative expansion to find the constraints among the transport coefficients at
any particular derivative order. A typical constraint will connect transport coefficients at
equilibrium {a,(9,, v,)} and their derivatives with respect to ¥, and v, (up to a particular
derivative order)

¢( {00 (90, v0) } » {00 (0o, yo)}) —0. (2.13)

4In this paper, A™ A denotes parity-odd n'" derivative corrections to a fluid quantity A4, while A(™ A
represents the parity-even n** derivative corrections. Entire derivative correction is denoted by AM 4 =
AMA+AMA,



We can extrapolate this constraint to non-equilibrium configurations:

@({aw,y)},{aaw,y)}) —0, (2.14)

while doing this, we are making an error of at least one derivative order higher, which will
be compensated at next derivative order computation. This is how we find the generic con-
straints among fluid transport coefficients. Please note that while the equality constraints
determined by this procedure are generic, the inequality constraints are not determined by
this method.

3 Equilibrium partition function

The equilibrium partition function® We® of the theory can generally be disintegrated into
two parts:

eqb eqb eqb
Weab = W(Cq) + W(j). (3.1)

The first one is the ‘conserved’ partition function which is gauge and diffeomorphism

invariant, and generates conserved part of currents denoted by 773;, j(“C). The other piece

is not gauge-invariant and is referred to be ‘anomalous’ partition function. It generates
anomalous piece of ‘consistent currents’ which will not be gauge-invariant in general. By

defining a consistent subtraction scheme (Bardeen-Zumino currents), we can make these

anomalous currents gauge invariant (see [11] for details) which we denote by ’7_'(%,.7(’2).

Their value at equilibrium is fixed by anomaly, and upto subleading order is given by:

B n m— n—m (

7?;1,/) — _oc2n) Z n+lcm+1ﬂgygl+1 * (uO A Xo/\l( 1) A XO/;( )) MuZ)
m=1

= o0 Zl "G B2 ), 52

Thy = —C S (04 1) "ot x (o A XY™ 1 X(g(n_m))u

m=1
n

=@ Z (n+1) "Cpovlt, .. (3.3)

o(m)
m=1

Here {X}, X3} are {—ddu,dA + Jvdu} projected transverse to u#, and their equilib-
rium values upon KK reduction reduce to: {fi, fo} = {ﬁda, dA}. Hence we have:5

n

Tiay = CP Y MOy ™ iy, Ty =Tiay =0, (3.4)
=1

Ty =—=CP N " (n+1) "Colol iy, Ja) =0. (3.5)
m=1

5The partition function may be thought of as the Euclidean action for the fluid living on the background
with coordinate time ¢t compactified on a circle of length B

5To get these and some further results we have to used the ideal order results v, = —e, v} = 0, which
we will derive in section 5. We use it here to simplify the notation.



Let us now concentrate on VV(e g;). It’s variation on background (2.7) will determine the
conserved currents:

n 1 - v 7
i = [ va [_27(13)5% T804, (3.6)
And hence,
eqb eqb
w_ WMo o W 37)
© 776G, (@ A, '
Kaluza-Klein decomposition of eq. (3.7) gives,
5Weqb 5Weqb (SWeqb
=ij © i o i _ © 5 2092 (C)
T(C) - 2790Tij, T(C) + [§] ’1901/0‘7(0) — ’190TM, T(C) =¢ ’19067?90,
SW P SWEIP
o ©) F e (O
ey = "o 5A; Joy= —e 7 (3.8)

Here we have switched the basis to 9, = e 7/ B and v, = BA for later convenience. a® is
the Kaluza-Klein gauge field. Note that while W(ecq;) is gauge invariant, its integrand does
not need to be. We can include a typical Chern-Simons term to it, which is defined such

that its integral is gauge invariant:”

/ Ianl — —/dinw\/g { Z nCm—ICm—lAilé(m) + 1§Cnazlz(n)} . (39)
M2n-1)

m=1

Here C),’s are constants. This is indeed a valid Chern-Simons form as at equilibrium lé(m)
is just made of Chern classes of f1 and fa:

lom) = * (ff(m_l) A fQ/\(n_m)> : (3.10)

For the gauge-invariant integrand, we assume that curvature scales of the background
M q_1) is much much larger than the mean free path of the fluid, therefore the whole
manifold can be thought of as union of various flat patches. The system can be thought
of in thermal equilibrium in each local patch. On each patch we can define the euclidean
partition function locally, hence giving us

ng'; = / a*"a\/g B(Z)P(F) + / >ty fgx 1P (3.11)

where P(Z) is local thermodynamic pressure and (%) is local thermodynamic temperature.
Given pressure, we can use the thermodynamic relations in local patch
e+ P
v

to define emergy density e, entropy density s and charge density g of the fluid. All are

dP = d¥ + dqdv, e+ P =1vs+ vq, (3.12)

functions of ¥ and v. We can expand chq? around its equilibrium value as

W — / "0 fg BoPo+ AW, (3.13)

"We have left the terms in 7?"~! which can be related to others upto a total derivative.



Derivative correction to the ideal fluid partition function is denoted by AW(qu;’, which will
contain all the possible gauge invariant scalars made out of background metric and gauge
field components at a particular derivative order. We have computed these scalars (till the
derivative level of our interest) in section 4.

Collating together the conserved currents in eq. (3.8) and the anomalous pieces in
egs. (3.5), (3.4), and varying the Chern-Simons terms in W(eg;) i.e. eq. (3.9), we can fi-
nally write:

eqgb
le — 21905W(C) )
591‘;‘
B B 5Weqb
T + e Dovpd' = Y, ©)
5ai
n—1 (n+1) (2n)0' i 977
—19 Z Cm 1{ ( T 1) C 9 ool l o(m )—i-nle?lo(m) s
eqb
T— 2092 (O
v 5y
eqb
7i_ 9. W)
? A
n— n+1 n), mii i
_19 Z 1Cm 1{ ( )0(2 )1/0 lo(m) +nCm_1lO(m)},
5Weqb
J=—¢ 5; )| (3.14)

Comparing these to the most generic fluid expressions in eq. (2.8) we can compute the
constraints. Thus, we see that it is only the gauge invariant part W(egl)[’ of the partition
function that we need to evaluate at any desired order.

3.1 Anomalous entropy current

In last section we reviewed a procedure to get equality type constraints among fluid trans-
port coefficients. It is generally known that these very constraints can also be get by
demanding existence of an entropy current whose divergence is positive semi-definite. The
most generic Entropy Current can be written as:

T§ = Tkcy T Téay (3.15)

where jé‘( ) is the part which captures the explicit dependence on anomaly coefficients.
However, the other piece jgf(c) can get implicit dependence on the anomaly coeflicients
through the fluid equations of motion. We need to demand this current to be positive
semi-definite,

VuTh = VuTlicy + VTl 20, (3.16)
whenever EOM are satisfied. For equilibrium fluid configuration, both the pieces can be
demanded to be positive semi-definite separately. Such decoupling is not always possible,



as the fluid equations of motion depend on anomaly coefficients, which can induce some
implicit anomaly dependence in 7, é‘(c). However, for equilibrium fluid configurations, the
equations of motion are trivially satisfied and thus entire information of anomaly can be
incorporated in jéf(A). Hence, if any part of ﬁujg(c) couple to @ujéf(,q)a the respective
transport coefficients will be determined in terms of anomaly coefficients, and hence will be
present in jgf( 4) at the first place. Therefore all the information about constraints among
fluid transport coefficients is encoded in the existence of 7 S“(C). In [12, 13] the author gives
an explicit construction of entropy current from Eqgb. Partition Function.

Now concentrating on the second term: at equilibrium, @uj g( ) > 0, since it does not
have any independent coefficients, just constants, one cannot apply any constraints for it
to be satisfied. Therefore jg( A) must be exact. But any current is always ambiguous upto
some exact terms, and hence we can choose 7, éf( ) = 0 equally well. We can hence write in

a generic hydrodynamic frame:®
THY — ( v) = v) —( v) =Nz
7?;1) o 26“(5&)“(0) + QQ(Z)U(C) + QQ(Z)U(A) + H‘ELA), (3.17)
Ty = 04(ay T Tay, (3.18)
0 = su(y) + Toa): (3.19)

Note that in the expression for ’7;% we have used the fact that anomalies are parity-
odd. Now depending on the choice of hydrodynamic frame, these conditions can be used
to determine anomalous dissipative parts of the various currents. For example, if we define
ut such that it does not contribute to anomaly, i.e. u? a) = 0, we will get:

Ty =Tty diy=-Tlmey T =210 (0 +u2ytac) , Thay =0

(3.20)
This is the neatest frame for anomalies. Similar results for U(1) anomaly were derived
in [14], however these expressions are also applicable to gravitational anomalies.” Here we
present explicit expressions for the anomalous parts of currents, in presence of both U(1)
and gravitational anomaly. Following the generic expressions given in [8], these can be com-
puted directly from the anomaly polynomial. The anomaly polynomial in 2n dimensions
up to (n + 1) derivative order is given as [15],

P =@ Aot e FACTD A TR A 9], (3.21)

where, C(?") is gauge anomaly coefficient which we have already introduced in the last
section and ¢, is gravitational anomaly coefficient. The two form fR is defined in terms of
the Riemann tensor as,
é
9‘{0‘5 = Raﬁ,ﬂ;diﬁ’y A dz°. (322)

Taking appropriate derivative of the above, one can find explicit expressions for anomalous
parts of the currents. The leading part of the currents proportional to the gauge anomaly

8We have used the thermodynamic functions €, ¢, s here, which will be explicitly proved in section 5.
9Restricted to equilibrium configurations.
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coefficient C®™) have already been given in egs. (3.2), (3.3). Here we present the subleading
order contributions to currents coming due to the gravitational anomaly,

j(lil) = cm(n—1) [* (Uo A FN=2) A Ao (AO‘BU _ Qgc{aﬁ))”

n—2
+ 3 "2C (o)™ * (u A UNm=1) A FAn=2-m)

m=1

A (maﬁ - A"‘BU) A (Rag — Aasl) )” (3.23)

where,

1 1 A S
AMV = 5 <U/,LV - 41970Uo[up,u}av 190) y U/w = 2P[uapu]5v uﬁ' (3‘24)

The heat current has the form,

1
quA) = —cmﬁ— [* (uo A .7-'/\(”_1))# AaﬁAaﬁ

n—1
+3° I C(m — 1) (o)™ * (u A UNM=2) 7 FAn—1-m)
m=2
A (%aﬁ _ AaﬂU) A (fﬁaﬁ — AaﬁU))M

n—1
-2 Z LG, (9ov0)™ % (uo A UNm=1) A FA=1=m)
m=1

A (R — Aasl) )| (3.25)
Finally, the stress tensor looks like,
i 1)
7_?1141; — 4Cmvp Z n—lcm(,ﬂoyo)m* (uo A U/\(m—l) /\JT_'/\(TL—m—l) A <£RP(I/ _ AP(ZIU)>
m=1
e M v
- (u A FAm=D) A ) —20,ulq}) . (3.26)

Instead if we are working in Landau Frame, where (jé‘ a) = qé‘c) = 0, we will getcondition:
— 77%%,(0) = <6G’“’ + ﬁlg)) Uy (a) = (EG’“’ + ﬁ’(&) Uy (A)- (3.27)

We need to invert <6G‘“’ + I V)), which can be done perturbatively in derivatives. To

(©
leading order:

L
'LL;(LA) = —H_ipﬁlz)uy(c) +..., (3.28)

- 11 -



and hence

S FH 4 Fuw v oa(pa [ ov) € v
T(A) - ‘7(A)+ 6+P7ZA)UV(C)+, H(A) —27EA) <5a+ 6+P'LL(C)UQ(C)> + ...,
(3.29)
- 5w 1 _ ~
TZ(A) = H_ipﬁli;)uu(q +...= gﬁ’z)uy(c) + 1/.7(’;1) — V’I"(‘A) + ... (3.30)

As showed by [14], in presence of just U(1) anomaly, it gives the exact result of Son-
Sorowka [3]. To write a similar expression for gravitational anomaly in Landau Frame, one
will need to find anomalous velocity to subsubleading order, which might be non-trivial.

4 Counting of independent terms

This section is dedicated to develop a systematic procedure to compute independent fluid
data (vectors, tensors transverse to velocity and scalars). First we will review the counting
in parity-even sector in generic dimensions. Then we will extend this idea to parity-odd
sector in generic dimensions at arbitrary derivative order through a procedure we call
‘derivative counting’.

After describing the generic procedure, we explicitly construct leading and sub-leading
order parity-odd and even terms which are important for our current work. Many of these
terms vanish in equilibrium. In tables 2, 1, 5 we list all the leading and sub-leading terms
both parity-odd and even and check if they survive at equilibrium. Further in appendix B
we extend this counting procedure to parity-odd subsubleading derivative order fluid. For
this reason we will keep our illustrations in the construction explicit to subsubleading order.

4.1 Parity-even counting

In this subsection we present the parity-even counting in generic dimensions. One can
always count independent data in the local rest frame (LRF) of the fluid, which turns out
to be easier. We can later covariantize the terms to a generic reference frame by following
simple (and generic) rules.!® In LRF, the fundamental quantities are

e Temperature — 19, Chemical Potential — v.
e Derivatives of fluid velocity'! — dpu’, &7u’.
e Field Tensor — F¥, & = FVu,.
e Curvature — RUk RiK0 RiOK0

All other quantities are merely derivatives of these fundamental quantities. Since LRF is
locally flat, we are using the coordinate derivatives 0, and 0;. We introduce a notation for

0The rules can be summarized as: replace 1) ‘0’ index with contraction with u*, 2) %’ indices with
a projection along P*, 3) & with V, 4) e"292-inin with ef1¥1#2v2-bnvny  and finally 5) put all extra
factors of projectors and velocities on left-most, so no derivatives act on them.

My, = —1 would imply u*du, = 0 and hence in local rest frame dug = 0.
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parity-even terms which will be useful later in parity-odd counting. Terms with d deriva-
tives and ¢ indices will be denoted collectively as (5, i,d). When working at equilibrium,
it is also convenient to define:'?

SHY — QV(HUV), UH* = ZV[“’LLV]7 (41)
xf = {—oum PP F L f U A =12 (42)

The purpose of above notation is revealed in Kaluza Klein formalism: at equilibrium
only spatial components of X" survive which land exactly to fy defined by:

ap = {ﬁai, Ai} , ij = Viaf'\ — Vid,. (4.3)
In the same spirit we define

1 1
[CHveT = PR pYE PrIPTR g s — <U‘“’U”” +SUMU 2U"”U“"> L (44)

Only spatial components of KHP? survive at equilibrium, and they exactly match R7¥.
The usage of index ‘A’ is purely to facilitate counting and computations. Similarly we
define 95 = {0, v}.

Bianchi identity: in counting, we will extensively use the Bianchi identity to get rid of
many terms, so it would be worth to spend some time on it. The Bianchi Identities for
Field Tensor, Vorticity and Riemann Tensor take the form:

ViuFve) = ViuVotly) = Vi Rigos = Riuwple = 0. (4.5)

However our redefined variables Xy and I do not satisfy Bianchi Identities. But neverthe-
less we can always use these identities to relate

VieXaves  VilKogos:  Kjuplos (4.6)

to other terms, and hence we can safely get rid of these in the following computation. In
rest frame especially (or at equilibrium in any generic frame), one can check that Xy and
K also satisfy Bianchi Identities.

Killing equation: if the theory has a unit Killing direction w* we have the following
Killing equation for a general tensor

£,T010 — () — wﬂ@#Toqaz... _ ZTOé1...Olk—10'ak+1v--@o_wak-’ (4'7)
k

20ur conventions are:

1 1 prv

A[y,l/] _ §P;:,1P11ﬁ (Aaﬂ _ Aﬁa) , A(MV) — Eplixplj[:? (Aaﬂ + ABCV) , A(MV> = A(HV> _ 7d — 1PQ¢[']A¢“B7
Al — % (Alj _ AJZ) , A6 % (AZJ + Aﬂ) , Al — A6 dg_ lguA“.
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which in local rest frame becomes
DT P = 0. (4.8)

Therefore if we are considering a theory at equilibrium, we do not have to consider the Jy
derivatives. Secondly, the Killing equation for metric G is given by

VAw® + vew? = 0. (4.9)
Taking \/% = u# and using Killing Equation for scalars this translates to:

VAU + Veuf =0, (4.10)
Hence in local rest frame S¥ = 9w’ + &7u’ = 0.

4.1.1 First derivative order

Below, we compute all possible terms at first derivative order in LRF.

1. (2,2,1): 849, x7

2. (1,1,1): 99y, | Oou' |, E

3. (0,0,1): S*,

However all these first derivative terms are not independent on-shell. Using first order

equations of motion one can eliminate some of them. The equations of motion are given
by eq. (2.1) (at equilibrium)

L (1,1,1): 8, TH = F'*Jo + T
2. (0,0,1): 8,T"y = —E%Ta +T'w, JT" =73.
Using these equations we have killed the terms in the counting.

4.1.2 Second derivative order

Below we list all possible pure second derivative terms. By pure we mean they are not
product of two first derivative terms. Product of two lower derivative terms are called
composite terms.

1. (2,4,2): KUk

2. (3,3,2): 9i59k, oixft, RVY,

3. (1,2,2): 99905, 9'EY, | 9,57 | 80/'\,’1” ’ 30)(21'3" Riokm Kciad

4. (1,1,2): |9'0094 |, | Bodou’ |, DoE?, 9;89, 9, X1, R,

5. (0,0,2): | 905%, || 0000t |, 9:0"0, BT, Ky, R4
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Name LRF Covariant | Equilibrium
1qi 1
VKL VI P’“O‘@oﬂ%\ Vidr,
V3“ &t —191V2i Ex —191V2“ 0
oM % S(id) % S{u) 0

Table 1. Independent leading order parity-even data.

Here also all the terms are not independent because of equations of motion. The second
order equations of motion are given by,

1. (1,2,2): 3%9,7H) = 9tk (Flog, +57),  alkg, Tl = olF (File g, + 1)

2. (3,1,2): 00, TH = 8y (FOTu+T), 90, T") = -0 (€2 Ta — Tus),
90, T" = 0'3
3. (0,0,2): 3,0, T = 0; (Fi*Ta +T7),  800,T"y = =80 (£*Ta — Tua),

800, T" = 903

Again we have killed terms in the counting using equations of motion. We
have provided a list of all terms till second order (also composites) in covariant form and
their equilibrium values in tables 1, 2. We can iterate this procedure to further derivative
orders as required by the cause. Note that, for a pure term at Nth derivative order, the
maximum number of indices possible are N 4 2; we will need it later.

4.2 Parity-odd counting

In this section we shall compute the parity-odd leading and sub-leading derivative fluid
data. Calculation in parity-odd sector is a lot more cumbersome, even in LRF. We introduce
here a scheme called ‘derivative counting’ to compute these terms step by step. Any parity-
odd term in (2n)-dimension must have a (2n — 1)-dim Levi-Civita involved in LRF

¢liad2-indn. (4.11)
We are interested in constructing all possible scalars, vectors and symmetric tensors using
it. A bit of thinking will reveal that one needs at least (2n — 2)-rank parity-even tensors to
be combined with €%2/2-injn for this purpose. One can subsequently form a list of parity-odd
data types:

1. Ve vectors with free index on € (2n — 2 rank parity-even tensor contracted with ).

2. S: scalars with all indices contracted with € (2n—1 rank parity-even tensor contracted
with €).

3. Te: tensors with one free index on € (2n — 1 rank parity-even tensor contracted
with €).
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Name LRF Covariant Equilibrium
Sia ' POV, V g0 ViVitdao
Sa(ar) A DIr PPN 597V 501 Vit o VitITo

S3(ar) XY Xy XYY Xy 12 frig
Sy K K R
Ss ATA P, VrVY 0
Se 21 8739(:;1‘:; 55%3111;% ; ZUS?RW Jﬁlsgl 0

—4p20i — a5z Y My —4pzO211 — 132°3,11
S7a ViVsi ViVay, 0
Ss ViV Vi'Vay, 0
Sy 0?2 0?2 0
S1o S%9S;; SHS,, 0
v Xk P Pog VO Xy Vi fh

Voar XV, X Vrq SV 0,
v Vi POy Vi 0
v ;% PHAVAS, 5 0
VL | R — 50X — S5 X000 | PPPuCRap — 55V — 52 Vi 0
Vi, ovi ovf 0
A% ovy ovy 0
Vi SV S Viy 0
\4 SV, SHV,, 0

Vioa XV, XL V3, 0
T 29N Y, Pl prIfy Vs Vivig,,

T)\r) 919 0N Pl prIBY 9\ gor V95, VI,

T4 X\ XA A
T j &2 JC (k) R
T oty vy 0
T N e B

—4p2 w21 a1 92 +2,11 492 3,11
T?x vy vy 0
T4 vy vy 0
Tg“' Sr (Slodud 0
T Slikgi) Slnerg”) 0
T, skl Staxy), 0

Table 2. Independent subleading order parity-even data.

~16 —




4. Vy: vectors with free index not on € (2n rank parity-even tensor contracted with €).

5. VY. vectors formed of contraction of two non-¢ indices with free index on € (2n rank
parity-even tensor contracted with ¢).

6. Ty: tensors with no free index on € (2n+1 rank parity-even tensor contracted with €).

7. SC: scalars formed of contraction of T # (2n + 1 rank parity-even tensor contracted
with €).

8. TY¢: tensors formed of contraction of two non-¢ indices with one free index on e
(2n + 1 rank parity-even tensor contracted with ).

9. V?: vectors formed of contraction of two non-¢ indices with one free index not on €
(2n + 2 rank parity-even tensor contracted with ¢).

10. VY. vectors formed of contraction of four non-¢ indices with free index on ¢ (2n +2
rank parity-even tensor contracted with ¢)

and so on.

Here we note that given D derivatives, one cannot construct a parity-even term, pure
or composite, with more than 2D indices, because (2,2,1) and (2,4,2) have the highest
index to derivative ratio, which is 2. Therefore, if we are interested in a fluid at (n —2+s)
derivative order (s = 1 corresponds to parity-odd leading order and so on), we can get at
most 2(n — 2+ s) indices. The list of parity-odd data types we gave above is complete till
subsubleading derivative order (s = 3).

Independent data types: we should emphasise that not all parity-odd data-types listed
above are independent. The dependence comes from that fact that when we are working
in 2n — 1 dimensions, any antisymmetrization over 2n or more indices will vanish. Given
that we are dealing with parity-even tensors of arbitrary rank which are to be contracted
with €, there are a whole lot of these antisymmetrizations possible. Hence, to find the
independent data-types becomes highly non-trivial.

Let’s look at a special case of this dependence. We construct a 2n-antisymmetrization,

[i1--~i2n—1Akﬂkzmki’l...hnfl

€ =0, (4.12)

therefore,

2n—1
il...ign_lAkle...kt — E (_1>a+16k1i1...izn_QAku...kt
a=1

€ . .
21...12n—1

(4.13)

11...0q—1%%g...12—2 "

The consequence of this is that the data types [ |; (i.e. ones with a free index not
c

¢ (i.e. the ones with a free index on € and an extra

on €) can be expressed in terms of | ]
contraction). Hence data-types | |; for example V¢, T}, V](f are not independent.
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Note that this result is only based on a specific form of 2n-antisymmetrization
(eq. (4.12)). One can in principle go on with any random antisymmetrizations over 2n
or more indices and find relations among the data, which as it turns out, is not a trivial
task to do. We will come back to this issue in section 4.4. For now we continue with
the counting.

4.2.1 Derivative counting

We have classified parity-odd terms in data-types based on the number of parity-even
indices required. We want to construct all allowed parity odd terms with D derivatives.
We observe that it is not required to include all parity-even data type of the form (7,14, d)
in this construction. We will show this below.

For a parity-odd fluid at D = (n — 2 + s) derivative order, we need to construct all
the D derivative parity-even terms with number of indices ranging from 2D (the maximum
possible) to 2(D 4+ 1 — s) (= 2n — 2, the minimum required), i.e.

2(D + 1 — s) < No of indices of a parity-even D derivative term < 2D.

These D-derivative parity-even terms can be constructed out of pure derivative terms. We
need not consider pure terms with self contractions in parity-even data types as they have
been included in our counting procedure.

We now want to argue that not all parity-even data-types are required for this con-
struction. For a data-type (ﬁ, i, N') to be included at least once, the following combination
with (2D — 2N + ) indices must be included:

(D—N)x(2,2,1)® <]isz)

Since the minimum rank of this term must be 2n —2 = 2(D+1 — s) and maximum possible
rank is N + 2, therefore we get,

N+2>i>2(N—s+1). (4.14)

For this equation to have a solution N < 2s. So we need at max 2s derivative order parity-
even terms, to construct parity-odd terms till (n — 2 + s) derivative order. For example at
leading order, s = 1, only pure terms with at max 2 derivatives are required. The parity
even terms required till s = 3 are enlisted in tables 3, 4. Further, if we were only interested
in finding terms that survive at equilibrium, we can use the Killing condition and drop all
terms with Jy derivatives.

Some of the combinations constructed by this procedure using table 3 are:

1. (2D indices): D(2,2,1)

2. (a) (2D — 1 indices): (D —1)(2,2,1) & (1,1,1)

3. (a) (2D — 1 indices): (D —2)(2,2,1) ® (3,3,2)
(b) (2D — 2 indices): (D —2)(2,2,1) ®2(1,1,1)
(¢) (2D — 2 indices): (D —2)(2,2,1) & (1,2,2)
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Data Type | Decomposition | Local Rest Frame Equilibrium
(2,2,1) Xy Iy
(1,1,1) B2 Vidae
(2’ 4, 2) JCigkl Rk
(2,3,2) 91(2,2,1) o xlk vifE
(1,2,2) 0(1,1,1) 0'079) ViV,
(5,5,3) 0'(2,4,2) O Ciklm Vi Rikm
(3,4,3) 9'07(2,2,1) D01 X} Vivi it
(1,3,3) 9'07(1,1,1) D07 0F 9 VivVIVFI s,
(3,6,4) 0'07(2,4,2) DL JCklmn Vivi RFmn
(5,5,4) 9'070k(2,2,1) D919k xfm Vivivk fim
(1,4,4) 0070k (1,1,1) oo Ro o U ViVIVEVI9,,
(£,7,5) D' (2,4,2) D97 ok Clmme Vivivk Rimno
(2,6,5) | 9'079%9'(2,2,1) | o'0IgF A VivIVEV! frn
(3,8,6) | 9'079%9'(2,4,2) | 9'0IgFdIKCmr | VIVIVEY!RMMOP

Table 3. Parity-even data-types — Surviving at equilibrium.

and so on...The counting can be extended arbitrarily to the derivative order we need.
In next section we will construct terms till subleading order, and later in appendix B we
will extend it to subsubleading order. We will suppress the usage of data-type (2,4,2) for
brevity; combinations involving it can always be reached by exchanging (2,4, 2) with two
(2,2,1)’s.

4.3 Examples of parity-odd counting
4.3.1 Leading order (D =n—1) (s=1)

For s = 1, the required indices are merely 2D = 2n — 2 (V,), which amounts to the only
combination:

D(2,2,1), (4.15)

along with the terms involving (2,4, 2). However in V. all the free indices are contracted
with Levi-Civita, which will kill any term involving (2,4, 2) due to Bianchi Identity. The
only remaining combination is — (n) vectors

(m-"
n—m

)
m=1

where we define,

m 1 m-+a n
B WV HyVy
<n —a-— m> = Gn—a fmvL-pnvn H A H B
HUiv1...-fhaVa r=a+1 y=m-+a+1
. ] mt-a n .
_ o i iy
<n —a— m> = 9n—a Cii2j2.injn H h H Ea (4.16)
%1292...%aJa r=a+1 y=m-+a+1
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Data Type

Decomposition

Local Rest Frame

(2,2,1) o'l = 180)
(1,1,1) Vi=E — Vi
04(2,2,1) Dtgdk
=0 =R o+ 300079 — 24009070 — a7 ]
(1,2,2) 90(2,2,1) 8o X3F, Byo'i
0'(1,1,1) A
(3,1,2) d(1,1,1) D000V, DoV
9'(3,3,2) 0 I
(3.4,3) d0(2,4,2) Dok ktm
0'07(2,2,1) Fole Ronl
d0(3,3,2) D=k
(1,3,3) al(,l’M) : = —
0007(2,2,1) D007 XKL 990 oIk
0'97(1,1,1) DIV
0(1,2,2) Op=4
(2,2,3) 000(2,2,1) D000 X, pOpo™
9009 (1,1,1) 1%, BV
9'07(3,3,2) o' oI =kim
(2,5,4) 0007(2,4,2) Do KCktmn
0'079%(2,2,1) 9919k glm
900'(3,3,2) Dp0'EIH
0'07(1,2,2) 0ipIEM
(1,4,4) 000(2,4,2) DO K Ftmm
00070%(2,2,1) oI OF XM 9yI Ok o™
0'079%(1,1,1) 0 IRV
0'070k(3,3,2) D' 91 gkZlmn
(2,6,5) 0007 0%(2,4,2) Do 9k Ctmmo
D'019%9(2,2,1) FoloXlto o et

Table 4. Parity-even data-types — Vanishing at equilibrium.
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4.3.2 Subleading order (D = n, s = 2) — Surviving at equilibrium

At subleading order, index families required are: 2D = 2n (VY), 2D —1 = 2n — 1 (T)
and 2D — 2 = 2n — 2 (V). We only compute terms surviving at equilibrium because that
is what we need for the current work.

2D family: 2D family was already discussed in section 4.3.1, but this time since two
indices are free from e, one (2,4,2) can appear with two antisymmetric indices of R
contracted. However we are supposed to take a contraction on remaining indices, which
again due to antisymmetry vanish. Only remaining data are — (n — 1) vectors:

m—1

ja n—1
n—1— m>zj]<;X XQCL e

2D — 1 family: combinations in (2D — 1) family which survive at equilibrium are:
1. (D—1)(2,2,1) & (1,1,1)
2. (D-2)(2,2,1)® (2,3,2)
3. (D-3)(2,2,1)®(3,5,3)

along with the combinations with (2,4,2). In T, only one index stays free from €, hence
again (2,4,2) and (%, 5,3) cannot appear. The remaining two combinations will yield:

1. (n—1)(2,2,1) @ (1,1,1): 2 possibilities — (6n — 4) traceless symmetric tensors and
(2n) scalars

(i m—1 \(ijk 1) n-1
m=1 <n—m—1> DAy, m=1

83>19A‘

(Wom

Scalars:

(o) 00|

m=1

2. (n—2)(2,2,1) @ (3,3,2): 1 possibility — (2n — 2) traceless symmetric tensors

)

n—m—1

2D — 2 family: combinations in (2D — 2) family which survive at equilibrium are:
1. (D—-2)(2,2,1)®2(1,1,1)

(1,2,2)
(% 3,2) @ (1,1,1)

2. (2,2,1

( ) )
(D —2) )@
3. (D-3)(2,2,1)®
(D=3)(2,2,1)®
L (D-49(2,2,1)©2(3,3,2)
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Name Term Equilibrium

pon m—1\HV m—1\1%

lm m=1 n—m> v n—m>
~ A 71 /L
S| IV (nm) Vidao
vE |t m—1 pa m—1 a0
Vlm m=1 <n717m>/“,pguy‘)(1 X2o.oc <n717m>lm‘jf{af2a

Vom0,V | (Y91, Vi,

2m|m=1 n—m—1 n—m—1
Tonl” 1P 0 (M=),
~ v -1 _ v ~ _ ijk
Tornli s | Gt ) V0 | (I

~pr  n—1 m—1 \(uvpo & 5) m—1 \(ijk )
T3arm m=1 <n7m71 ul’vpﬁAXFU <n7m71 le?AOka

Table 5. Independent leading and subleading order parity-odd data at equilibrium.

6. (D—4)(2,2,1)®(3,5,3) @ (1,1,1)
7. (D—4)(2,2,1) @ (3,6,4)
8. (D—5)(2,2,1)®(3,3,2) & (3,5,3)
9. (D-6)(2,2,1)®2(3,5,3)

Along with these, we have the combinations with (2,4, 2). However, V. has no index free
from €, and hence Bianchi Identity will not allow (2,4, 2), (%, 5,3) and (%, 6,4). Further,
(1,2,2), (%, 3,2) and (%, 4, 3) will vanish as they cannot be made completely antisymmetric.
Finally only one combination will remain, yielding:

1. (n—2)(2,2,1) ®2(1,1,1): 1 possibility — (n — 1) vectors

m— ijk n
<n—mi1> ! 8j1918k192‘m:1

At equilibrium we have (2n) scalars, (2n — 2) vectors and (8n — 6) traceless symmetric
tensors. We have tabulated these data and their equilibrium values in table 5.

4.4 The basis of independent data

As we discussed in section 4.2, the data we have enlisted in the preceding sections is a
‘complete set” but not independent. There might exist numerous relations among them
through antisymmetrizations of 2n or more indices. If we look back at section 2, the need
of all independent data arose to write down the most generic form of the constitutive
relations. We write the energy-momentum tensor and charged current as a combination of
all independent tensors and vectors respectively up to some undetermined coefficients which
are called transport coefficients. We then determine the same quantities from equilibrium
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partition function and compare with the fluid results. It turns out that the transport
coeflicients which destroys the positivity of entropy current divergence are set to zero
by this procedure. We call these transport coefficients unphysical. Put differently, the
partition function generates only the physical transport coefficients in the constitutive
relations (eq. (3.14)) at equilibrium.

Now if we relax the condition ‘“independence’ while writing fluid constitutive relations,
i.e., add more terms to these relations which could have been determined in terms of others;
they can be regarded as redundant transport coefficients in our system. Since the charge
current and the energy-momentum tensor we derive from the partition function remain
unchanged, we get relations between the transport coefficients (including the redundant
coefficients) and the coefficients appearing in partition function. However, we still have
our answers — the independent transport coefficients and distinct constitutive relations.

Let us explain with an example. Suppose at some particular derivative order, we
have total I number of vectors V/*. We can write charge current at this order as, JV =
Zi[:1 a;V}/', where a;’s are transport coefficients. On the other hand, suppose our partition
function has X number of independent coefficients C’s, and it generates a charge current
JH = Z{Zl ci(Cy)VE. ¢(C}) are some functions of C;’s. By comparison we will get
a; = ¢;(Cj). These are I relations with X free parameters, and thus imposes I — X
constraints on a;.

Now let’s add to our set K more vectors V4',a = I +1,...,I + K which could in
principle be determined as: V&' = Zi[:l Cy;V}'. Then we would have guessed our ansatz to
be JH = S K b v# and by varying partition function we will get J# = SK4 4, (C,)VH,
d;(C;) are some functions of C;’s determined by relation ¢; = (di — ZQJ;II{H daCai>, as
our partition function is still the same. By comparison we will get b; = d;(C}). These are
K + I relations with X free parameters, and thus imposes K + I — X constraints on b;.
We hence get exactly K extra constraints, to kill the K extra degrees of freedom we added
in the system. But once we have imposed these constraints, we will only be left with X
independent transport coefficients.

However, note that we still need independent set of scalars that enters the equilibrium
partition function, for our arguments to make sense. We check it here before we proceed.
At leading order there are no scalars. At subleading order the scalars do not have enough
indices for 2n or more antisymmetrizations, as a result all the scalars we get are indepen-
dent. At higher order however, it may not be so easy to find out all the independent set
of scalars.

Lets look at an example of such residual 2n-antisymmetrization conditions. In
eq. (4.13) if we chose B to be of the form Sg¥, we will get:

n—1

Z(_1)a+16<pi1...in_zAilmia_lQ>iamin_2 =0, (4'17)

a=1

where ( ) denotes the traceless symmetric part of a matrix. Hence one of these matrices of
type T, (after making traceless) is not independent for a given A. A similar argument is
valid on other tensors like T¢ using S¢¢%. But as we are treating all symmetric traceless
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tensors (of type [ ]¢) to be independent, this should reflect in our final constraints, and as
we will see, it will. It turns out that till subleading order, eq. (4.17) is the only remaining
residual constraint, and thus we can construct an independent basis; but this issue might
turn more subtle at higher derivative orders. To illustrate the procedure we will not start
with the independent basis even for subleading order, and show that we get consistent
results at the end.

5 Fluid constitutive relations

Having all the data we require, we are ready to find the constitutive relations for fluid.
We start with the results which are already known in literature, i.e. fluid up to leading
derivative order. We revisit the results in our notation. Later we consider charged fluid
at subleading order in section 5.3. We also set up the notation and architecture for sub-
subleading order parity-odd fluid in this formalism in appendix B. However we do not
compute the constitutive relations explicitly, as we will discuss, the calculation becomes a
lot non-trivial.

5.1 Ideal fluid

At zero derivative order only energy-momentum gets a transverse contribution:

e

(0) = AP, (5.1)

where A is some arbitrary function of ¥ and v. Now comparing eq. (2.8) with eq. (3.14)
we can write at ideal order,

EOU(Z;UZ + Aogij = giij

. - Ui .
— O'UZ\/ 1 + ’UZ'O’UZ‘) — \/707. + 1907/0620’02 = 0,
1+ Uiové

Eo(1 + vip0?) + Violl
Vi — 00—,
o oV (1+Uz'o'Ug) o

Qové = 07

Qr/ 1+ vipvl = . (5.2)

The identifications will then give
v, = —€7, vl =0, A=P, Q=q, E=c (5.3)

Note that we have identified A, @, E exactly, and not just at equilibrium, as we explained
in section 2. Therefore, the energy-momentum tensor and charge current for ideal fluid
can be written as,

7?5;/ = eul'u” + PP, j(’é) = qut. (5.4)
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5.2 Leading order fluid

One can divide the constitutive relations in hydrodynamics in two different sectors — parity
even and parity odd. Ideal fluid belongs to the first sector (in d > 2). The first non trivial
derivative corrections in parity-even sector appears at the first derivative order e.g. shear
viscosity term in energy-momentum tensor. Whereas in the parity-odd sector, the leading
terms appear at (n — 1) derivative order for a fluid in 2n dimensions. All these terms and
the corresponding transport coefficients (at leading order) have already been found in [6].
We shall discuss their result in our notation.

5.2.1 Parity-odd
Since there is no parity odd scalar and transverse symmetric traceless tensor at (n — 1)
derivative order (see table 5), only charge current gets parity-odd corrections:

Y= "' Conrwnlh,. (5.5)

m=1
The combinatorial factor is introduced for convenience. It also ensures we do not
surpass the limits of m. The fluid variables receives following corrections,

YA = Opp + A(n_l)ﬁ/\, vt = vi + A(n_l)vi. (5.6)

Further, there is no parity-odd gauge invariant scalar at equilibrium on My, _1, im-
plying that A(”_l)W(eg)o = 0. Now comparing eq. (2.8) with eq. (3.14) we will find the
constraints at parity-odd leading derivative order:

192
Wy, = D sCht +qCp + (n+1) <S + ql/) 0(2")1/”} : (5.7)

_6+P m m+1

And the corrections to fluid variables,

n

A=D1y — An=1),, 0, A=) i — Z nflcm_loéo(m)l,i(my (5.8)
m=1
where,
9*n (m+1) 2n) m+1
am__E+P Cm_lV—Cm+mC 14 :| . (59)

Here we present these relations for completion as well as to set up our notations
and conventions. We would also like to make some interesting observations about these
functions. One can verify that

S + Qi1 = VW — Wit Vme{l,n—1}, (5.10)

0,1 (0,1
PO, = 5 (P06, )" 1 g (P094, )" vmen-1). (1)

Here pressure P (¥, v) is function of temperature ¥ and redefined chemical potential v. For
any function Q(¥,v) we define Qmn) — %Q. These will come handy in subleading

order calculation.
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Note that the entire leading order parity-odd sector is determined in terms of unknown
coefficients Cp,’s. It turns out that some of them are forced to be zero by requiring CPT
invariance, while the others can be related to the gravitational and mixed anomalies by
keeping the fluid on a cone [11]. These relations to gravitational and mixed anomalies
however, do not show up in derivative counting.

5.2.2 Parity-even

The most generic current corrections at parity-even leading derivative order are
(see table 1):

3
1)) = > VL, II{}) = —2no"” — (PO, (5.12)
A=1

while at equilibrium the only surviving contributions are:

2
Yhoy = AZI AoaViy, I =0. (5.13)

There are no gauge-invariant parity-even scalars at equilibrium that appear at this order.
Therefore, A("_l)VV(eg])D = 0. Now comparing eq. (2.8) with eq. (3.14) we will find at
parity-even leading derivative order that all corrections vanish

iy = shy = AV = Ay = AWy — 0, (5.14)
We hence get the constraints:
A=A =0. (5.15)
So finally the form of currents is
Té) = AV, H?ll’) = —2not" — (P"O. (5.16)

We also get to know that no fluid quantities (1J, v, v*) get order one parity-even correction.

5.3 Subleading order fluid

In this section, we shall describe the constraints on charged fluid in arbitrary even dimen-
sions at subleading derivative order (i.e. n order), in presence of U(1) anomaly. Where
as, the subleading correction to parity-even sector comes at second order in derivative ex-
pansion. Some aspects of four dimensional fluids at sub-leading order have already been
performed in [7, 16].

5.3.1 Parity-odd

Sub-leading order parity-odd fluid dynamics in four spacetime dimensions has already
been discussed in [7]. Here, we generalize the results in arbitrary even dimensions and
find the constraints on the transport coefficients. We see that, much like in [7], the higher
dimensional transport coefficients depend on first order transport coefficients 7, C.
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From counting we can see that the n order parity-odd corrections (at egb.) are given
by (see table 5)

n—1

Tg(n) = Z n—zcm—l (ﬂol,m{/fjl’m + DOZmVl;Q,m) , (517)
m=1
n—1 -
. - ) o ) » ) N »
Moy = 2 "Cna (TOLAmTﬁl,Am + To2,AFng2,AFm> + 3 " Com1Tesam T Am
m=1 —
& -~
+ P Z "L 15 oAmSoAm.- (5.18)

m=1

Sum over the relevant ‘A, I’ indices is understood. We explicitly write the m index con-

traction to emphasize that the sum runs over different values for different terms. We do

not state non-equilibrium contributions as they won’t be required in this computation.
From eq. (2.8) and eq. (3.14) we get,

eqb
AT = 27 AMe = eZUﬁg&, (5.19)
09,
B . 5Weqb
AMJ = — A= —ec— 9 (5.20)
v,
Now,
~ Oe ~ Oe\ + ~ o - o -
(e — [ 2= (n) it (n) (), — (%X (n) 94 (n)
A™e (319)0A 19+<6V)0A v, Alq (819>OA 19+<8V>OA v. (5.21)
Therefore from eq. (5.19) and eq. (5.20) we can write,
~ SAMW L
AMY, = 9, Eopr —— (5.22)
00,r
where,
920 l@|
Bar = (035\" ?33‘6) =) (523)
Oe lq’ ¥ Oqle
Similarly comparing the 7% equations in (2.8) and (3.14) we get,
3 4 aWeqb 8Weqb
ot Fo Amyi = gy (D _gmr ) (5.24)
190 8AZ 8a¢
which can be written as,
o SAM W
A)yi = (A Hor © (5.25)

PO day,

where,

Ay = O PEpy = (ﬁ%f\q, %%’L) L oua={909)y,  dl = {W‘,Ai} . (5.26)
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One can check that Eap is symmetric matrix and dx = %. We would like to em-
phasize that these are purely notations, to make the calculations tractable and easy to
digest. There is a summation on repeated A,T" indices. Now comparing 7% and J’ in
eq. (2.8) with eq. (3.14) at parity-odd subleading derivative order, we have corrections to

constitutive relations

(n) eqb A (n) eqb
1 AW, AW 1
B e P U S
SAMpEP
(1,0) zi O pLoA(n-1) i
Po go(n) =19 SOA 5aA7, o A §(1), (527)
where,
8P
Sa=5—={a,s}. (5.28)

A swaps the value of A : 1 <+ 2. The generating functional A )W(e q;) contain all scalars

SOAm But one can check that Solm can be connected to Sozm by a total derivative. So we
take the partition function

AMwEsr = / " ay/g Y " Cmn18mSozm- (5.29)

m=1

We compute the variation of generating functional with respect to different fields and
find that

SAm e
B (<) R
591‘] 7

5A(H)Weqb n
c n— S(1,0)S

B P R AP DR T L

SAme - '
c n— V.

O S a8 T o
7 m=1

Using the form of lower order currents corrections from eq. (5.16) we can write,

A(n 1) (1) _ _2770A(n71)0_ij - gogijA(nfl)@

Ao(m g
= —2770790 n_lcm—laA ( ﬁ( )> Tojl,Am

o
~74]

— To n_QCm—l(n - 1)a0(m+2—A)T027Am

g n—1 Qo(m) \ &
g 4-0190 CmflaA 19 SoAm (531)

o

An=1) i ( )= )\03A( —Dgi

= A3 n72Cm_1(n — 1) [ao(erl) + I/an(m)] Vi, im- (532)
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One can now use the results, obtained in egs. (5.30) and (5.32) in eq. (5.27) and comparing
these expressions with eq. (5.18) to get the constraints,

- (6779 - -
T1,Am = 277198/\ (?) 5 T2,Am = 77(” - 1)a(m+2—A)7 T3,A'm — 0;
I ¢ . IS ¢ . 1,0) o
e m 5 m | — A m T 5 m :P(’)m
A, <01 2777'1,1 > A, <02 2777_1’2 > Xm
Dim = —A3(n — 1) (ame1 + vam) , Vom = —(n — 1) (qXm+1 + SXm) - (5.33)

Hence everything is determined in terms of a known function «,, and a new coefficient

Xm- Note that if we had used the 2n-assymetrization condition eq. (4.17) to get rid of one

traceless symmetric tensor to start with; a consistent choice would have been to remove

’i‘gVAlm entirely and ’i‘g’iﬂm for m =1 (see table 5). The coefficients of these terms are set to

zero already by our constraints, which means the other leftover constraints are independent.
Finally we get the corrections to fluid variables using eq. (5.25) as

A(”)QQA = n_lcmfl(—)FEOAFXo(m)Sof,m’
n—1 ]

A(n) i = (TL — 1) Z niQCm—l (Xo(erl) - VOXo(m)) Vo2,m' (534)

m=1
5.3.2 Parity-even

Next, we present the results for sub-leading order (two-derivative) parity even sector for
the fluid. From counting we can verify that at the second order, parity-even corrections
(at egb.) are given by (see table 2):

Thoy = > verVhy, HW Z TopThyy + P Y " 00uSop. (5.35)
# #
# refers to sum over all relevant indices. Now comparing eq. (2.8) with eq. (3.14)
at parity-even subleading derivative order, and performing a similar manipulation as last

section, we have corrections to constitutive relations:

A@ppredd A@)ppeab

191 ni, = 5 5W<C> _ i OA(S MW@ _‘p(LO)A(l)U(iA(l)Uﬁ‘

o ¢ Gij oA °
1 1 1 -
i A1) + (LA pao L s pon_1pao) A0,k
+ gJA Uk {A02§0(1)+<190A01P0 +27_90A02P0 3P0 >A v } ,
‘ SA@ e ‘

P0G, = ﬂosoAi&w(C} —| PAOAME | (5.36)

while the fluid variables get the corrections:

N SA@peab N ~ :
A<2>19A:00E0AFTF(C)— <A0A—;P()(O’1)E0A2> AW AN || 9,Eopa AVl |

SA@pyea
(2).i_ ¢ \A_HoA (©)
Ayt =(—) PO dan (5.37)
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Notice that the boxed terms only contribute for four dimensional fluids (n = 2). Out
of the scalars enlisted in table 2, S,1p can be related to others by a total derivative. Hence
A(Q)W(eg)o is given by:

1 .
A(Q)W(ecqlf ~3 / {da'} /9 {SrSos + SparSos(ar) + SvarSea(ar) | - (5.38)
Now we can find the variations of A(Q)W(Eg;),
SAR W y y y y
2Tij = —OASRT) o — (000rSr — Soar) Ty ar + 287arT s pr + SrTy)
1
+g" <1 — d> 8/\33801 A
+ <5A3FSR — - 3A3FSR - *519AF + . SﬁAF) So2,AT
1 4 1 2
—§ <1 — d_1> SfAFSO3,AF - 5 <1 - d-l) SRSO4:|7 (539)
SADWE 1
0w SysaSora + (@r&m)z - 28281%1“) So2,AT
1 1
—§aszArSo3,AF — 532512504, (5.40)
SARWE , ,
San; 28pAarVorr — 205SAr Voo rs- (5.41)

Using the form of lower order corrections from eq. (5.5) for n = 2 we can write,
A(l)g(l) = WoElci:Z
= (=) wox {1tos0a Vor,a = 1 (Hosax) Vg ar} - (5.42)

We can now put the variations of generating functional along with lower order correc-
tions worked out above in eq. (5.36). Using egs. (5.10), (5.11) and eliminating partition
function coefficients &’s we will find following 7 constraints,

TiA + OaTs = 0, (5.43)
d—2
Tol A = — 13/\74 — Ax05.07T4 — AsTo 30, (5.44)
d—3
209 A1 = OpOrT4 — Ax05.00OrTs — T T2AT
—2A28(A7’27p)2 + AgaszAp, (5.45)
d—>5
dozar = — - TsAr + AsOsTaar, (5.46)
d—3
204 = d 17’4 + A0y, (547)
VA = WSFT&AF, (5.48)
Y
V27FA = —WSEaATgfz. (549)
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Coincidently none of the constraints depend on n = 2 special contributions. On the
other hand fluid variables corrections are given by eq. (5.37):

APyYq = 9,Emx [(7'02,ZA + OAOxTos) So1,A
1 1
+ (3(FTOQ,A)2 - 552702,“ + 2323/\31“704) So2,AT

1 1
—1827'03,AF803(AF) - 232704804}

171
3 {Q%Eoﬂz@z (Po(LO)ao/_\aof) — A 0,3

, (5.50)

1
+190E092a0[_\ <2Qanf - wof) :|SO3(AF)

ARy = (_)Alf(olﬁ)) [ (Tog,AF B Po(l’o)aofxaof ) él,r

—0x, (Tos,AF —| P10 a5 > Vi2,1"2:| (5.51)

This completes our calculation of subsubleading derivative order fluid.

6 Conclusions

In this paper we computed the energy momentum tensor and charge current for a fluid
system in 2n dimensions with U(1) anomaly up to subleading order in derivative expansion
(for both parity odd and parity even sectors) from the equilibrium partition function of
the fluid. We described a novel counting prescription to construct the fluid data. However,
an important issue we encountered here is that it is non-trivial to find independent vectors
and tensors at arbitrary derivative order. But we were still able to find the independent
transport coefficients and distinct constitutive relations. We showed that the knowledge of
independent scalars at the required derivative order is sufficient for this purpose. This is
a powerful observation and it enables us to carry on the computation at (n 4+ 1) derivative
order, where, we could find the independent scalars. We observe that the parity odd trans-
port coefficients which appear at n derivative order in constitutive relations are constrained
and some of them depend on the first order transport coefficients like n, ¢ etc. It would be
interesting to find the similar dependence in a holographic set up [17]. We plan to explore
the holographic computation in future.

It is also interesting to find the fluid constitutive relations in presence of both U(1) and
gravitational anomaly in arbitrary 2n dimensions. But, since the gravitational anomaly
appears at two higher derivative level compared to the U(1) anomaly in derivative ex-
pansion!, it requires to carry on our analysis to one higher derivative (sub-sub-leading)
order, i.e. to (n+ 1) derivative order. Fortunately, as mentioned earlier, even at this order,
we could determine the independent scalars and hence, in principle, the computation is
possible. We have carried a large part of it in appendix B.
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A Kaluza-Klein decomposition

If a (d + 1)-dim spacetime M4, 1) has a preferred time-like direction w”, it can be decom-
posed into S x M q), where S lis the euclidean time circle. A k-rank tensor decompose
in 2% parts in this scheme:

1. S does not decompose.
2. V¥ decompose in w*V,, and P*V,,.
3. TH decompose in wtw"T),,, w P T, Po"w"T,, and Pg‘“Pf”Tw,

and so on. Where P} = GH — % is the projection operator. If we are studying
theory at equilibrium, we already have a preferred direction along the Killing vector of the

theory w# = 0y. In this case we know that a (d + 1)-vector V* will yield a scalar:
WV = Vo =V, (A.1)
and a (d)-vector:
Py, =V =V" (A.2)
Hence we see that a U(1) gauge field A* will be decomposed in {Ay(Z), A(Z)}. Similarly
a tensor 7" decomposes in Tqg, T%, 76i, T4 . Tt is the similar way the metric G* on
M 441y decomposes, hence we define:

Goo = =2, Glg=0, G =g, (A3)

where we define ¢* as metric on M4). Now using the diffeomorphic invariance one can
work out the full form of G*¥

ds? = Gy datde” = —e2 @) (dt + a,(F)da?)” + gij(F)da’dad (A.4)
_ 20 _ 20, . _ A—20 2\ _ .97

Gu = gg c 20\ | ? G = (~e j_a ) zq' ’ (A-5)
—e“%q; (gij — a;aje ) —a g¥

where time redefinition invariance requires that a’ is an independent gauge field, named as
Kaluza-Klein gauge field. Using the euclidean time period /3 we can define the local equilib-
rium temperature of the theory as: 9, = 1/8, =e¢77/ B . Our higher dimensional metric is
hence disintegrated in a scalar (Temperature), a gauge field and a lower dimensional metric.

~32 -



We can now use the metric G* to raise/lower the components of vectors:
Vi=giV +aVo, V'=—eVy—a;). (A.6)
which are not Kaluza-Klein gauge invariant. From here we read out the (d)-covectors:
Vi=Vi—aV). (A.7)
Determinant of metric in two spaces can be related as:
G = —det G, = e* det g;; = e*g. (A.8)
We have the Levi-Civita symbol in lower spatial dimensions:
ik — o0 Oijk.. _ —e"’eoijk"', (A.9)
where €123 = 1/y/G and ¢'?3 =1/,/3.
It is useful to see how higher dimensional contractions behave in lower dimensions:
A'B, = —e " AB + A'B; (A.10)
Gimmmun_lAuwz---un—l7 = e Tz dn- Z(_l)aAjl---jafloja---jn72’ (A.11)

a

A.1 Derivatives of metric

Once the metric is known we can reduce the derivatives of metric, i.e. the Christoffel Symbol
and the Riemann Tensor. The Christoffel Symbol is defined by:

P, =

Wziwﬂm%ﬁﬁﬁw—%%ﬁ. (A.12)

Pretending it to be a tensor at the moment, if we define its indices to be raised and
lowered with the metric G*”. We can reduce it for Kaluza-Klein form of the metric:

. A &Y, . I o'
Tooo =0, [go =—€* 3 2 Lg'o =Tog = e*” 9 2
o o
F U | L 1 o PR
I-\Zjo :FZO] _ ieQUfz]7 FOZJ _ 5eZ(fgzagjb (811@[) + 51;%) 7 szg :gzlgjml-\klm’ (A13)

where Fkij is Christoffel Symbol on M|g), which is raised and lowered by g;;. Also we
define KK field tensor:
f9=vVd —Vid. (A.14)
f’oij is not KK gauge invariant, even though it has time index down and spatial index
up, which is the manifestation of I not being a tensor.
Lets define the higher dimensional covariant derivative as V and lower dimensional as
V, whereas the usual derivative is given by 0. We can check that:

. 1
WW:WW+ﬂWC

A ) ) 1 -
W%:VW+&me+?%ﬁw,
vVid, 1

%wzvﬂo+f%ﬂm
R V9,
WWZ&WW—, (A.15)
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similarly,

1 .. 1 . .
v V]k \V& V]k if”vﬂk + iflkvj 7
~ . V 19 1 . .
iyyJ J = 20 ri yyjk
ViV = VIV + 0y T e iV
. . vig, 1 ’
VYoo = V'Voo + 2V0=52 + 2e¥ fy (WF+Vh),

A VI, Vg, 1 o 1 . )

VoV =V vﬁ + W Vrﬁ * 5620fjkwk + *e%fzkvkj,

el Z’ V ".9 1 o 7: o i V 19

VoV = Voo T 5e? FLVE 4 etoyi 2170 o

. Vity

VoVoo = e* (Vg + V') 5 (A.16)

Finally the Riemann Curvature Tensor is defined using an arbitrary vector X* as:
1 /. . .
Ryupr X7 = (v“vy . vyvu> X, (A.17)
using which we can define:

R =R

R =R . (A.18)

;wa/ ’

Now a straight away computation will yield:

R=R— 419v79v%9 +2§VVﬁ+ e2"f”fm,

WU R = e 2 Rop = 2 2v DV, — vivwo + 162‘7 £ £,

2 Iy
u#Ri“ =e TRy =¢e"= (kaki + 3fikvk190> ,

R = RiI — 2L iy, vig, + o L givig, + e2”f’ £,

02
UQ’U/BRiO{ B = e_2aRi0j0 = 2197(2)V2190v]190 - Evzvjﬁo + EGQO—fZafjav
Ritkay — g-ogih — LGy L (piigrg (Leingiy L kg A.19
Uy = € 0—27790 1—197% f1 o+§f1 0_51 o ( )
Here R%F is defined to be lower dimensional Riemann tensor, and R = Rikj o

A.2 Derivatives of gauge field

Now let us have a look at derivatives of gauge field A*. Being a vector it decomposes as:
A=Ay= -2 (A" +q;47), A=A, A =(A —ajA). (A.20)
The gauge transformation A, — A, + 9, A translates to:

A— A, Al — Al + &A (A.Ql)
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Hence A? is a gauge field on M q), while A is a scalar. Using 3 (euclidean temperature)
we define the local equilibrium potential v, = SA. Higher dimensional field tensor however
decomposes as:

FH = VEAY VAP = FI=F9 4 e, f7, Flg=e"0,Viv,  (A.22)
where,
F'9=V'Al - VIA" (A.23)
Now we define the four vector electric field:

EF = F'y, = & = —e" 9,0V, E' = —e 2ve’9,V'y, + v} (Fij + e"ﬁoyofij) )
(A.24)

B Subsubleading order fluid

In this appendix we extend the counting discussed in section 4 to subsubleading order fluid.
We form a complete set of data at this order and classify the respective scalars, vectors
and symmetric tensors. Later using the independent scalars at this order we construct
an equilibrium partition function and compute its variation. We were however unable to
process the constraints explicitly, as the calculations are analytically intractable.

B.1 Counting at equilibrium

At subsubleading order (D = n+1, s = 3), index families required are: 2D = 2n+2 (VEC),
2D—1=2n+1(TY),2D-2=2n (VY),2D-3 =2n—1 (T.) and 2D—4 = 2n—2 (V,). We
only compute terms surviving at equilibrium, as non-equilibrium pieces are not required till
subsubsubleading order parity-even or subsubsubsubleading order parity-odd calculation.

2D family: 2D family was already discussed in section 4.3.1, but this time since four
indices are free from ¢, two (2,4,2) can appear with two antisymmetric indices of R¥
contracted. We will find 3 combinations — (19n — 20) vectors of type V¢:

1. 2(2,4,2) & (n —3)(2,2,1): 1 possibility — (n — 2) vectors

. _9
m—1 \ijklm b n
nfm72> Kjka K:lmab

m=

2. (2,4,2)® (n—1)(2,2,1) — 4 possibilities — (8n — 10) vectors

IR _1 \ijk n—1 1 \ijk b n—
sz> K’m:f ninm71> XAjaICak m=1" <ninm71> Kjka XAdb m=1
_1 \ijklm n—2
(o) I Xnat Xbm
m=
3. (n+1)(2,2,1) — 3 possibilities — (10n — 8) vectors
Z\iE ik n _1 \ijk n—1
A T I ity R AV S [
m=1 m=1

. _9

m—1 \tjklm b ™

Gt g |
m=
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2D — 1 family: 2D —1 family was already discussed in section 4.3.2, but this time three
indices are free from €. So only one among (2,4,2) and (%, 5,3) can appear, and not more
that once. We will find 5 combinations of type T¢:

1. (2,4,2) ® (n —2)(2,2,1) & (1,1,1): 3 possibilities — (8n — 12) symmetric traceless
tensors

n—1

B A YN N i W’“/cj;“’abq%\

n—m—1 n—m—1

n
)
m=1
m—1 \ (ijklm ab| 2
( D0 Xrink, ‘

n—m-—2 m=1 .

2. (n)(2,2,1) @ (1,1,1): 5 possibilities

(a) Contraction between (2,2,1) and (1,1,1) — (12n — 8) symmetric traceless ten-
sors and (4n) scalars

— A n _ ik n
771”_”11>(2X/7\>kak19p‘m:1, nTmi1><U X/?jXFkaaaﬁz m=

Scalars: we can take trace and get 4n scalars:

<?:%>iXXkakﬁF’

n

m=

(b) Contraction between (2,2,1) and (2,2,1) — (14n — 18) traceless symmetric
tensors and (2n — 2) scalars

B ik n— _ ik ! n—1
IRy R 7 GO S Gty R TV LA T

n—2

(o) M X X X O

n—m-—2 7

m=1
Scalars: taking trace we get 2n — 2 scalars:

n—m—1

—1 \ijk
mL )X XanDi|

n
m=1

3. (2,4,2)®(n—3)(2, 2, 1)@(%, 3,2): 1 possibility — (2n—4) traceless symmetric tensors

—1 \(ijkl b n—2
<n7_nm£2><” m]Cjka> O Xnim
m=
4. (n—1)(2,2,1) @ (3,3,2): 7 possibilities
(a) Contraction within (2,3,2) — (6n — 4) traceless symmetric tensors and

(2n) scalars

n—m
m=1

_ iik n—1
S e
m=

Scalars: taking trace we get 2n scalars:

() OF X

n
m=
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(b) Contraction between (2,2,1) and (2,3,2) — (20n — 28) traceless symmetric
tensors and (4n — 4) scalars.

. -1 o n—1
m—1 \{(tjk b a)|™ m—1 \(ijk a) vb
<n—m—1 Xnjb0” Xpy, 7 n—m—1> Xajv0 >XFI<: )

m=1 m
-1

B ik b n B ikl n—>2
nTmiJm Xy 3bXij‘m_1, <nTmi2><U mXK;XI‘kbabXElm‘
Scalars: taking trace we get 4n — 4 scalars:

m=1

ik n—
(M1 XAibabXij‘
m=1
(c) Contraction between (2,2, 1) and (2,2,1) — (2n—4) traceless symmetric tensors
< m—1
n—m-—2

ikl n—2
><” mejXQbkaa> Xaim

m=1

5. (n—2)(2,2,1)®(3,5,3): 3 possibilities — (4n — 6) traceless symmetric tensors

m—1

m—1 \(ijk aly P71 ijk a
Gty o, e

n—1
ik

)
m—1

m=1
(ijklm ayb n—2
n—m—2> aijl XAbm m:l.

2D — 2 family:

2D — 2 family was already discussed in section 4.3.2.

Here again,
one among (2,4,2) and (3,5,3) can appear, and not more that once. We will find 7
combinations — (39n — 46) vectors of type V&

1. (2,4,2)® (D —4)(2,2,1) ®2(1,1,1): no combinations possible

2. (n—1)(2,2,1) ®2(1,1,1): 3 possibilities — (12n — 10) vectors

m—1\¢ kq |” m—1 \ijk n
M) Op0A0 ﬁr‘mzl, Gl XAjaaaﬁrakﬁz‘m:17
m—1 >ijklm
n—m-—2

n—2
X{lj%akaﬂ%amﬁz)
m=1

3. (n—1)(2,2,1) & (1,2,2): 2 possibilities — (6n — 4) vectors

G onoton| () X a0 o

n
m=1

4. (n—2)(2,2,1) & (3,3,2) & (1,1,1): 3 possibilities — (16n — 24) vectors

m—1

o
W L) 0000 Xra,

n i n—1
m—1 \Wk aa
Gy T e xeonir
. =)
m—1 \ijklm n
(m-1 XAjaaaXFklamﬁg‘

)
m=1

m=1

5. (n—2)(2,2,1) @ (3,4,3): 1 possibility — (2n — 2) vectors

iy -1
—1 \ijk
nr—nm—1> &ﬁ“)\fpjk’

n
m=1
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6. (n—3)(2,2,1)®(3,5,3) ® (1,1,1): no possiblities
7. (n—3)(2,2,1) ®2(2,3,2): 1 possibility — (3n — 6) vectors

1 \ijkim n—2
(m 00X j1 0" Xrim
m

n—m-—2 -

2D — 3 family: we are interested in combinations in (2D — 3) family which survive at
equilibrium. We generated them through a Mathematica code and found 22 of them. We
won'’t list all of them here, because it won’t be required. Due to properties of T, most of
them will not contribute. We will be only left with 3 combinations — (7n — 9) symmetric

traceless tensors:
1. (n—2)(2,2,1)®3(1,1,1): 1 possibility — (2n — 2) symmetric traceless tensors

(nTmmt <ijk3j7913m923l>1%‘n B

2. (n—2)(2,2,1)®(1,1,1)8(1,2,2): 1 possibility — (4n—4) symmetric traceless tensors

(L) 00,000 o ’n »

3. (n—3)(2,2,1)a(3,3,2)®2(1,1,1): 1possibility — (2n—4) symmetric traceless tensors

ijklm "
( m—1 ><]kl 8j2918k1923a))(1\lm‘m:1'

n—m—2

2D —4 family: there are 51 combinations in (2D —4) family which survive at equilibrium.
However none of them will contribute due to properties of Ve.

All the subsubleading parity-odd data surviving at equilibrium has been summarized
in tables 6, 7, 8.

Independent scalars: as we discussed in section 4.4, we only need to construct inde-
pendent scalars which enter in equilibrium partition function. At subsubleading order one
can find antisymmetrizations which will determine Ssgp,, and Sgars, in terms of Siz,, and
Soarm respectively:

Xl[u]l B 'Xllm—ljm—l XQZme o Xgn—lﬂn—l ngvb]ﬁrl . = 0’ (B.l)
m=
o . . L . . “ n
X pimerdne yimin - gpincainiyg, bl =0 (B.2)
m=

Each of Syp;, and Soprym,, on the other hand is a unique scalar per choice of the parity-
even tensor used to construct it by contracting with e. Since antisymmetrization conditions
cannot alter the tensor structure, these scalars are independent.
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Name Term Equilibrium
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Table 6. Subsubleading order parity-odd vectors at equilibrium.

B.2 Attempt for fluid constraints

In the equilibrium partition function Artpead

Se2aTm. But it can be checked that antisymmetric part of SOQ[AI‘]m can be related through

(©)

a total derivative to Syiam. So we have:

A‘”“)ng;’ = / {2'} g " *Cpa {Ql,AmSol,Am + QQ,AFmSoZ(AF)m} :

we can include the scalars:

Sum over relevant indices is understood. Varying the partition function we will get:

A (n+1)117¢9b
oA W(C)

5gij

A (n+1)17€9b
0A W(C)

5190A
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Name Term Equilibrium
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Table 7. Subsubleading order parity-odd symmetric traceless tensors at equilibrium.
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Table 8. Subsubleading order parity-odd scalars at equilibrium.
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On the other hand from counting we can see that the third order parity-odd corrections
(at egb.) are given by (see tables 6, 7, 8):

Yot = Z Sott Vo, I = Z o Toy + PI¥ Z Yo Sos- (B.7)

# # #
# corresponds to all the relevant indices. Similar to subleading order, here also we will have
special contributions for n = 2, as 3 leading order (n—1) parity odd corrections can combine
to give a 3n — 3 order parity-odd corrections, which will be equal to n + 1 only at n = 2
(Remember we are not considering n = 1 case). Now comparing eq. (2.8) with eq. (3.14)
at parity-odd subsubleading derivative order, we have corrections to constitutive relations:
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while the fluid variables get corrections:
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From here onwards in principle the way would be to solve eq. (B.8) and find constraints
for transport coefficients appearing in eq. (B.7). To solve we would need to plug in the fluid
variable corrections to all lower orders, along with corrections to lower order constitutive
relations due to fluid variable corrections. The terms which were zero at equilibrium at
lower orders will also start to contribute by gaining the fluid variable corrections. Leav-
ing aside terms specifically for n = 2, still we would have to deal with a large mess in
eq. (B.8) which is analytically not quite tractable. So we leave these expressions at this
point for reference.

Readers are advised that expressions egs. (B.8), (B.9) does not contain contributions
from gravitational and mixed anomaly, and conserved Chern Simons form. Recall that
while we set up relations eq. (3.14), we only used the form of anomalous currents eq. (2.2)
and conserved Chern-Simons form eq. (3.9) to subleading derivative order. At subsublead-
ing order, they will receive further gravitational corrections.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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