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1 Introduction and summary

In past few years there has been much interest and progress in further understanding of

relativistic, charged, dissipative fluid in presence of some global anomalies. Presence of

quantum anomalies play a crucial role in transport properties of fluid. The first evidence

of quantum anomaly in fluid transport was holographically observed in [1, 2]. The authors

found a new parity-odd term (and hence a new transport coefficient) in the charge flavour

current. The origin of this new term can be traced back to gauge Chern-Simons term in the

dual supergravity theory. Soon after these results were published, it was shown that the new

parity-odd term in the charge current is essential because of the triangle flavour anomalies

and the second law of thermodynamics [3]. In general the second law of thermodynamics (or

equivalently the positivity of divergence of entropy current) imposes constraints on different

transport coefficients. The same constraint can also be obtained from the equilibrium

partition function of fluid [4, 5]. Equilibrium partition function provides an alternate

and a microscopically more transparent way to derive the constraints on these transport

coefficients. A generalization of this approach for charged U(1) anomalous fluid in arbitrary

even dimensions up to leading order has been considered in [6].

In [7] Bhattacharyya et al. studied parity odd transport for a four dimensional non-

conformal charged fluid at second order in derivative expansion. In four spacetime dimen-

sions the effect of anomaly appears at one derivative order and the parity-odd transport

coefficients at this order are determined in terms of anomaly coefficient. In this paper the

authors studied the transport properties at second order and found that out of 27 trans-

port coefficients 7 are fixed in terms of anomaly and lower order transport coefficients. The

goal of our current paper is to generalize this work to arbitrary even dimensions. In 2n

spacetime dimensions the leading effect of anomaly appears at (n − 1) derivative order.

Hence the subleading corrections appear at nth derivative order. The aim of this paper

is to study the constraints on transport coefficients appearing at subleading order. We

innovate a systematic mechanism to compute different fluid data at arbitrary derivative

order (parity odd or even). We list all possible scalars, vectors and tensors at any arbi-

trary derivative order in this paper. It seems to be rather difficult to find the independent

sets. However, we argue that it is possible to get the correct constraint relations between

transport coefficients even without knowing the independent sets of fluid data.

Our analysis is not valid in two spacetime dimensions. In two dimensions the parity

odd terms appear at zero derivative order itself, and hence parity-odd and parity even

sectors are not independent at any arbitrary order. Independence of these two sectors is

important in our computation.

In the parity-even sector, the leading correction appears at first order in derivative

expansion, e.g. shear viscosity and bulk viscosity terms in energy momentum tensor etc.

In this paper we have extended our calculation to include the sub-leading order correction

(i.e. second order corrections) to parity-even sector in constitutive relations in arbitrary

even dimensions in presence of U(1) gauge anomaly. This completes the description of

fluid dynamics up to sub-leading order in derivative expansion (both in parity-odd and

even sectors) in arbitrary even dimensions with abelian gauge anomaly.
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The organization of our paper is as following. In section 2 we explain our notation and

perturbation scheme which we use in this paper. In section 3 we construct the partition

function for both gauge invariant and non-invariant sectors and compute the constitutive

relations from the partition function. We also describe the construction of the anomalous

entropy current. Section 4 is the most important section of this paper. Here we first

describe how to construct fluid data at arbitrary derivative order. Next, we list all the

leading and sub-leading order scalars, vectors and tensors which may appear in constitutive

relations up to sub-leading order in derivative expansion both in parity-even and odd

sectors. Although, we have not been able to find the ‘independent’ parity-odd vectors

and tensors at sub-leading order, this does not inhibit us from finding the constraints on

the transport coefficients. We elaborate this issue in section 4.4. Finally, in section 5 we

list the constraint on the transport coefficients up to sub-leading order. In appendices we

explain the Kaluza-Klien decomposition (appendix A) and sub-sub-leading order counting

(appendix B).

2 Scheme and the perturbative expansion

We consider a 2n-dimensional spacetime manifold M(2n) with metric ds2 = Gµνdxµdxν

and gauge field 1-form A = Aµdxµ. We want to study fluid dynamics in this background.

A fluid is a statistical system in local thermodynamic equilibrium, which is generally char-

acterized in terms of (covariant) energy-momentum tensor T̄ µν , (covariant) charge current

J̄ µ and their constitutive equations

∇̂µT̄ µν = FνρJ̄ρ + ∼T
ν , ∇̂µJ̄ µ = J˜. (2.1)

F = dA is field strength for A. Here we have introduced a U(1) anomaly J˜ and

a gravitational anomaly ∼T
ν . The form of these anomalies is well known in literature [8].

Most of our work here will be concentrated on fluid upto subleading derivative order, where

only U(1) anomalies contribute:1

J˜ = (n+ 1)C(2n) ? F∧n = (n+ 1)C(2n) 1

2n
εµ1ν1···µnνnFµ1ν1 . . .Fµnνn . (2.2)

∼T
ν only starts getting values at subsubleading derivative order. Let us explain our nota-

tion here.

• All the fluid quantities (like currents, transport coefficients, independent terms etc.)

appearing in parity-odd sector, are denoted by ‘tilde’ (e.g. Ã). On the other hand

we use no special notation for parity-even sector (e.g. A). Wherever applicable,

Ā = A+ Ã denotes the total quantity (parity-odd and parity-even).

1This is true in derivative counting, which we are interested in. It was shown in [11] that the naive

derivative expansion breaks down on a cone, and hence the effects of gravitational and mixed anomaly can

be seen at first derivative order itself. In the derivative expansion however, the corresponding coefficients

appear as undermined constants, as we shall see in section 5.2.1.
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• ∇̂ and ∇ denote the covariant derivative and onM(2n) and the equilibrium manifold

M(d−1) respectively. We use ∧ and ? as wedge product and Hodge Dual on all

manifolds, as no confusion is possible.

Due to dissipative nature of fluid, it is not possible to write an exact generating func-

tional W (or action) for fluids from which one can derive the energy-momentum tensor

T̄ µν and charge current J̄ µ. Therefore we write their most generic forms, allowed by

symmetries, in terms of fundamental fluid variables and their derivatives in a particular

thermodynamic ensemble. In our analysis we consider the fluid variables to be temperature

ϑ, chemical potential2 ν and fluid four-velocity uµ with uµuµ = −1.

We prefer to work in Landau Frame, where all the dissipation terms are transverse to

the direction of the fluid flow. Hence, we can decompose T̄ µν and J̄ µ as

T̄ µν = E(ϑ, ν)uµuν + Π̄µν , J̄ µ = Q(ϑ, ν)uµ + Ῡµ, (2.3)

where Π̄µν and Ῡµ are the most generic symmetric tensor and vector made out of fluid

variables. In the Landau frame

uµΠ̄µν = 0, uµῩµ = 0. (2.4)

The easiest way to implement this is to project all vectors or tensors appearing in Ῡµ or

Π̄µν , transverse to uµ using the projection operator

Pµν = Gµν + uµuν .

Since fluid is a low energy fluctuation about the local thermodynamic equilibrium, Π̄µν

and Ῡµ can be expanded in derivatives of fundamental fluid variables (ϑ, ν, uµ):

Π̄µν = Π̄µν
(0) + Π̄µν

(1) + Π̄µν
(2) . . . , Ῡµ = Ῡµ

(0) + Ῡµ
(1) + Ῡµ

(2) . . . , (2.5)

where Π̄µν
(N) and Ῡµ

(N) involves N number of derivatives on fluid variables. The terms on

r.h.s. can have the most generic form as,

Π̄µν
(N) =

∑
t

τ(N)t(ϑ, ν)Tµν
(N)t + Pµν

∑
t

σ(N)t(ϑ, ν)S(N)t,

Ῡµ
(N) =

ϑo
ε+ Po

∑
t

ν(N)t(ϑ, ν)Vµ
(N)t, (2.6)

where S(N)t, Vµ
(N)t and Tµν

(N)t are a collection of all possible gauge invariant scalars, vectors

and symmetric traceless tensors (collectively known as data) respectively, made out of fluid

variables and source fields at N derivative order.
∑

t corresponds to sum over independent

terms at any particular derivative order. The data which is required for our computation

has been enlisted in section 4.

In eq. (2.6), the expression for Π̄µν
(N) and Ῡµ

(N) are fixed up to some undetermined coef-

ficients appearing at each derivative order. Therefore, a fluid is characterized by an infinite

2Actually ν = µ/ϑ, where µ is the chemical potential.
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set of such unknown functions (τ(N)t, σ(N)t, ν(N)t), known as transport coefficients. Fluid

up to a particular derivative order is characterized by a finite number of such transport

coefficients. In general, these transport coefficients are not all independent. The second

law of thermodynamics (or equivalently, positivity of local entropy current) imposes re-

strictions on different transport coefficients3 [9]. Such relations among various transport

coefficients are known as constraints.

Ref. [4] uses a different mechanism to find ‘some’ of these constraints. The idea is

to write an equilibrium partition function for the fluid and derive the energy-momentum

tensor and charge current from that partition function. Because of dissipation it is not

possible to write a generating functional (W ) for the fluid. However, one can still write a

generating functional in equilibrium configuration, which we denote by W eqb. Using W eqb

one can find all the constraint relations involving transport coefficients which comes with

data that survives at equilibrium.

More precisely, if the theory has a timelike Killing vector ωµ, we can write an Euclidean

generating functional using the background fields and Killing equation on the decomposed

manifold S1 ×M(d−1). Here S1 is the euclidean time circle along ωµ with time period

β̃, and M(d−1) is the spacetime transverse to ωµ. [4] has conveniently chosen ωµ = ∂0.

Therefore, one can decompose the background in Kaluza-Klein form,

ds2 = Gµνdxµdxν = −e2σ
(
dt+ aidx

i
)2

+ gijdx
idxj ,

A = A(dt+ aidx
i) +Aidx

i. (2.7)

For more details please refer appendix A. Using this choice along with the Landau

Gauge conditions and velocity normalization, the most-generic energy-momentum tensor

and charge current in eq. (2.3) onM(d) can be decomposed into scalars, vectors and tensors

on S1 ×M(d−1):

T̄ ij = E(ϑ, ν)vivj + π̄ij ,

T̄ i = −eσ

(
E(ϑ, ν)vi

√
1 + vivi +

vj π̄
ij√

1 + vivi

)
,

T̄ = e2σ

(
E(ϑ, ν)(1 + viv

i) +
vivj π̄

ij

(1 + vivi)

)
,

J̄ i = Q(ϑ, ν)vi + ς̄ i,

J̄ = −eσ

(
Q(ϑ, ν)

√
1 + vivi +

viς̄
i√

1 + vivi

)
, (2.8)

where

T̄ = T̄00, T̄
i = T̄ i0, T̄ ij = T̄ ij ; J̄ = J̄0, J̄

i = J̄ i,

and

π̄ = Π̄00, π̄
i = Π̄i

0, π̄
ij = Π̄ij , ς̄ = Ῡ0, ς̄

i = Ῡi, v = u0, v
i = ui.

3Similar restrictions are also applicable to non-relativistic fluids and has recently been addressed for

charged non-relativistic fluids in [10].
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Indices onM(d−1) are raised and lowered using gij . Details of Kaluza-Klein decompo-

sition of fluid variables and background fields have been given in appendix A.

Since the fluid we are considering is in local thermodynamic equilibrium, we can write

the fluid variables as a spatial derivative expansion about their equilibrium values

ϑ = ϑo + ∆̄(1)ϑ+ ∆̄(2)ϑ+ . . .

ν = νo + ∆̄(1)ν + ∆̄(2)ν + . . .

vi = vio + ∆̄(1)vi + ∆̄(2)vi + . . . . (2.9)

The terms with subscript ‘o’ are the equilibrium values, while ∆̄(N) designates the N th

derivative corrections.4 The zeroth component of fluid velocity u0 = v also gets derivative

corrections which are determined by the corrections to vi using the four-velocity normal-

ization. Similarly all the transport coefficients can also be expanded using the Taylor

Series expansion

α(ϑ, ν) = αo(ϑo, νo) + ∆̄(1)α+ ∆̄(2)α+ . . . . (2.10)

Therefore the energy-momentum tensor and charge current receive two fold derivative

corrections. First of all we write these expressions as a derivative expansion in terms of

fluid variables in eq. (2.5). Secondly, each term in that expansion can be further expanded

around the equilibrium values of fluid variables according to eq. (2.9). Thus we finally get

π̄ij =
[
π̄ijo(0)

]
+
[
∆̄(1)π̄ij(0) + π̄ijo(1)

]
+
[
∆̄(2)π̄ij(0) + ∆̄(1)π̄ij(1) + π̄ijo(2)

]
. . . ,

ς̄ i =
[
ς̄ io(0)

]
+
[
∆̄(1)ς̄ i(0) + ς̄ io(1)

]
+
[
∆̄(2)ς̄ i(0) + ∆̄(1)ς̄ i(1) + ς̄ io(2)

]
. . . . (2.11)

Expansion of time components can be determined from these using Landau gauge condition

eq. (2.4).

We choose the equilibrium convention for ϑ and ν by identifying their equilibrium

values to be the red-shifted temperature and Wilson loop in the lower dimensional theory

1

ϑo
= βo = β̃

√
−G00 = β̃eσ, νo = β̃A0. (2.12)

In the next section we construct the equilibrium partition function and obtain energy-

momentum tensor and charge current in terms of background data following [4]. After that,

we compare these stress tensor and current with the fluid stress tensor and current order

by order in derivative expansion to find the constraints among the transport coefficients at

any particular derivative order. A typical constraint will connect transport coefficients at

equilibrium {αo(ϑo, νo)} and their derivatives with respect to ϑo and νo (up to a particular

derivative order)

C
(
{αo(ϑo, νo)} , {∂αo(ϑo, νo)}

)
= 0. (2.13)

4In this paper, ∆̃(n)A denotes parity-odd nth derivative corrections to a fluid quantity A, while ∆(n)A

represents the parity-even nth derivative corrections. Entire derivative correction is denoted by ∆̄(n)A =

∆(n)A+ ∆̃(n)A.
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We can extrapolate this constraint to non-equilibrium configurations:

C
(
{α(ϑ, ν)} , {∂α(ϑ, ν)}

)
= 0, (2.14)

while doing this, we are making an error of at least one derivative order higher, which will

be compensated at next derivative order computation. This is how we find the generic con-

straints among fluid transport coefficients. Please note that while the equality constraints

determined by this procedure are generic, the inequality constraints are not determined by

this method.

3 Equilibrium partition function

The equilibrium partition function5 W eqb of the theory can generally be disintegrated into

two parts:

W eqb = W eqb
(C) +W eqb

(A) . (3.1)

The first one is the ‘conserved’ partition function which is gauge and diffeomorphism

invariant, and generates conserved part of currents denoted by T̄ µν(C), J̄
µ
(C). The other piece

is not gauge-invariant and is referred to be ‘anomalous’ partition function. It generates

anomalous piece of ‘consistent currents’ which will not be gauge-invariant in general. By

defining a consistent subtraction scheme (Bardeen-Zumino currents), we can make these

anomalous currents gauge invariant (see [11] for details) which we denote by T̄ µν(A), J̄
µ
(A).

Their value at equilibrium is fixed by anomaly, and upto subleading order is given by:

T̄ µν(A) = −2C(2n)
n∑

m=1

n+1Cm+1ϑ
2
oν
m+1
o ?

(
uo ∧ X∧(m−1)

o1 ∧ X∧(n−m)
o2

)(µ
uν)
o

≡ −2C(2n)
n∑

m=1

n+1Cm+1ϑ
2
oν
m+1
o l

(µ
o(m)u

ν)
o , (3.2)

J̄ µ(A) = −C(2n)
n∑

m=1

(n+ 1) nCmϑoν
m
o ?

(
uo ∧ X∧(m−1)

o1 ∧ X∧(n−m)
o2

)µ
≡ −C(2n)

n∑
m=1

(n+ 1) nCmϑoν
m
o l

µ
o(m). (3.3)

Here {X1,X2} are {−ϑdu, dA+ ϑνdu} projected transverse to uµ, and their equilib-

rium values upon KK reduction reduce to: {f1, f2} =
{
ϑ̃da, dA

}
. Hence we have:6

T̄ i(A) = C(2n)
n∑

m=1

n+1Cm+1eσϑ2
oν
m+1
o lio(m), T̄ ij(A) = T̄(A) = 0, (3.4)

J̄ i(A) = −C(2n)
n∑

m=1

(n+ 1) nCmϑoν
m
o l

i
o(m), J̄(A) = 0. (3.5)

5The partition function may be thought of as the Euclidean action for the fluid living on the background

with coordinate time t compactified on a circle of length β̃.
6To get these and some further results we have to used the ideal order results vo = −eσ, vio = 0, which

we will derive in section 5. We use it here to simplify the notation.
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Let us now concentrate on W eqb
(C) . It’s variation on background (2.7) will determine the

conserved currents:

δW eqb
(C) =

∫
d2nx

√
G

[
−1

2
T̄ µν(C)δGµν + J̄ µ(C)δAµ

]
. (3.6)

And hence,

T̄ µν(C) = 2
δW eqb

(C)

δGµν
, J̄ µ(C) =

δW eqb
(C)

δAµ
. (3.7)

Kaluza-Klein decomposition of eq. (3.7) gives,

T̄ ij(C) = 2ϑo
δW eqb

(C)

δgij
, T̄ i(C) + eσϑoνoJ̄ i(C) = ϑo

δW eqb
(C)

δai
, T̄(C) = e2σϑ2

o

δW eqb
(C)

δϑo
,

J̄ i(C) = ϑo
δW eqb

(C)

δAi
, J̄(C) = − eσ

δW eqb
(C)

δνo
. (3.8)

Here we have switched the basis to ϑo = e−σ/β̃ and νo = β̃A for later convenience. ai is

the Kaluza-Klein gauge field. Note that while W eqb
(C) is gauge invariant, its integrand does

not need to be. We can include a typical Chern-Simons term to it, which is defined such

that its integral is gauge invariant:7∫
M(2n−1)

I2n−1 = −
∫
d2n−1x

√
g

{
n∑

m=1

nCm−1Cm−1Ail
i
o(m) + ϑ̃Cnail

i
o(n)

}
. (3.9)

Here Cm’s are constants. This is indeed a valid Chern-Simons form as at equilibrium lio(m)

is just made of Chern classes of f1 and f2:

lio(m) = ?
(
f
∧(m−1)
1 ∧ f∧(n−m)

2

)i
. (3.10)

For the gauge-invariant integrand, we assume that curvature scales of the background

M(d−1) is much much larger than the mean free path of the fluid, therefore the whole

manifold can be thought of as union of various flat patches. The system can be thought

of in thermal equilibrium in each local patch. On each patch we can define the euclidean

partition function locally, hence giving us

W eqb
(C) =

∫
d2n−1x

√
g β(~x)P (~x) +

∫
d2n−1x

√
g ? I2n−1, (3.11)

where P (~x) is local thermodynamic pressure and β(~x) is local thermodynamic temperature.

Given pressure, we can use the thermodynamic relations in local patch

dP =
ε+ P

ϑ
dϑ+ ϑqdν, ε+ P = ϑs+ νq, (3.12)

to define energy density ε, entropy density s and charge density q of the fluid. All are

functions of ϑ and ν. We can expand W eqb
(C) around its equilibrium value as

W eqb
(C) =

∫
d2n−1x

√
g βoPo + ∆̄W eqb

(C) . (3.13)

7We have left the terms in I2n−1 which can be related to others upto a total derivative.
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Derivative correction to the ideal fluid partition function is denoted by ∆̄W eqb
(C) , which will

contain all the possible gauge invariant scalars made out of background metric and gauge

field components at a particular derivative order. We have computed these scalars (till the

derivative level of our interest) in section 4.

Collating together the conserved currents in eq. (3.8) and the anomalous pieces in

eqs. (3.5), (3.4), and varying the Chern-Simons terms in W eqb
(C) i.e. eq. (3.9), we can fi-

nally write:

T̄ ij = 2ϑo
δW eqb

(C)

δgij
,

T̄ i + eσϑoνoJ̄
i = ϑo

δW eqb
(C)

δai

−ϑo
n∑

m=1

n−1Cm−1

{
n(n+ 1)

(m+ 1)
C(2n)eσϑoνoν

m
o l

i
o(m) + nCmϑ̃l

i
o(m)

}
,

T̄ = e2σϑ2
o

δW eqb
(C)

δϑo
,

J̄ i = ϑo
δW eqb

(C)

δAi

−ϑo
n∑

m=1

n−1Cm−1

{
n(n+ 1)

m
C(2n)νmo l

i
o(m) + nCm−1l

i
o(m)

}
,

J̄ = −eσ
δW eqb

(C)

δνo
. (3.14)

Comparing these to the most generic fluid expressions in eq. (2.8) we can compute the

constraints. Thus, we see that it is only the gauge invariant part W eqb
(C) of the partition

function that we need to evaluate at any desired order.

3.1 Anomalous entropy current

In last section we reviewed a procedure to get equality type constraints among fluid trans-

port coefficients. It is generally known that these very constraints can also be get by

demanding existence of an entropy current whose divergence is positive semi-definite. The

most generic Entropy Current can be written as:

J̄ µS = J̄ µS(C) + J̄ µS(A), (3.15)

where J̄ µS(A) is the part which captures the explicit dependence on anomaly coefficients.

However, the other piece J̄ µS(C) can get implicit dependence on the anomaly coefficients

through the fluid equations of motion. We need to demand this current to be positive

semi-definite,

∇̂µJ̄ µS = ∇̂µJ̄ µS(C) + ∇̂µJ̄ µS(A) ≥ 0, (3.16)

whenever EOM are satisfied. For equilibrium fluid configuration, both the pieces can be

demanded to be positive semi-definite separately. Such decoupling is not always possible,
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as the fluid equations of motion depend on anomaly coefficients, which can induce some

implicit anomaly dependence in J̄ µS(C). However, for equilibrium fluid configurations, the

equations of motion are trivially satisfied and thus entire information of anomaly can be

incorporated in J̄ µS(A). Hence, if any part of ∇̂µJ̄ µS(C) couple to ∇̂µJ̄ µS(A), the respective

transport coefficients will be determined in terms of anomaly coefficients, and hence will be

present in J̄ µS(A) at the first place. Therefore all the information about constraints among

fluid transport coefficients is encoded in the existence of J µS(C). In [12, 13] the author gives

an explicit construction of entropy current from Eqb. Partition Function.

Now concentrating on the second term: at equilibrium, ∇̂µJ̄ µS(A) ≥ 0, since it does not

have any independent coefficients, just constants, one cannot apply any constraints for it

to be satisfied. Therefore J µS(A) must be exact. But any current is always ambiguous upto

some exact terms, and hence we can choose J µS(A) = 0 equally well. We can hence write in

a generic hydrodynamic frame:8

T̄ µν(A) = 2εu
(µ
(A)u

ν)
(C) + 2q̄

(µ
(A)u

ν)
(C) + 2q̄

(µ
(C)u

ν)
(A) + Π̃µν

(A), (3.17)

J̄ µ(A) = quµ(A) + Ῡµ
(A), (3.18)

0 = suµ(A) + Ῡµ
S(A). (3.19)

Note that in the expression for T̄ µν(A) we have used the fact that anomalies are parity-

odd. Now depending on the choice of hydrodynamic frame, these conditions can be used

to determine anomalous dissipative parts of the various currents. For example, if we define

uµ such that it does not contribute to anomaly, i.e. uµ(A) = 0, we will get:

Υ̃µ
(A) = J̄ µ(A), qµ(A) = −T̄ µν(A)uν(C), Π̃µν

(A) = 2T̄ (µα
(A)

(
δν)
α + u

ν)
(C)uα(C)

)
, Υ̃µ

S(A) = 0.

(3.20)

This is the neatest frame for anomalies. Similar results for U(1) anomaly were derived

in [14], however these expressions are also applicable to gravitational anomalies.9 Here we

present explicit expressions for the anomalous parts of currents, in presence of both U(1)

and gravitational anomaly. Following the generic expressions given in [8], these can be com-

puted directly from the anomaly polynomial. The anomaly polynomial in 2n dimensions

up to (n+ 1) derivative order is given as [15],

P = C(2n)F∧(n+1) + cmF∧(n−1) ∧ Tr[R ∧R], (3.21)

where, C(2n) is gauge anomaly coefficient which we have already introduced in the last

section and cm is gravitational anomaly coefficient. The two form R is defined in terms of

the Riemann tensor as,

Rα
β = Rαβγδdxγ ∧ dxδ. (3.22)

Taking appropriate derivative of the above, one can find explicit expressions for anomalous

parts of the currents. The leading part of the currents proportional to the gauge anomaly

8We have used the thermodynamic functions ε, q, s here, which will be explicitly proved in section 5.
9Restricted to equilibrium configurations.
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coefficient C(2n) have already been given in eqs. (3.2), (3.3). Here we present the subleading

order contributions to currents coming due to the gravitational anomaly,

J̄ µ(A) = cm(n− 1)

[
?
(
uo ∧ F∧(n−2) ∧ Λαβ

(
ΛαβU − 2Rαβ

))µ
+

n−2∑
m=1

n−2Cm(ϑoνo)
m ?

(
uo ∧ U∧(m−1) ∧ F∧(n−2−m)

∧
(
Rαβ − ΛαβU

)
∧ (Rαβ − ΛαβU)

)µ]
, (3.23)

where,

Λµν =
1

2

(
Uµν − 4

1

ϑo
uo[νPµ]α∇̂αϑo

)
, Uµν = 2P[µαPν]β∇̂αuβ . (3.24)

The heat current has the form,

qµ(A) = −cm
1

ϑo

[
?
(
uo ∧ F∧(n−1)

)µ
ΛαβΛαβ

+

n−1∑
m=2

n−1Cm(m− 1)(ϑoνo)
m ?

(
uo ∧ U∧(m−2) ∧ F∧(n−1−m)

∧
(
Rαβ − ΛαβU

)
∧ (Rαβ − ΛαβU)

)µ
−2

n−1∑
m=1

n−1Cm(ϑoνo)
m ?

(
uo ∧ U∧(m−1) ∧ F∧(n−1−m)

∧Λαβ (Rαβ − ΛαβU)
)µ]

. (3.25)

Finally, the stress tensor looks like,

T̄ µν(A) = 4cm∇̂ρ

[
n−1∑
m=1

n−1Cm(ϑoνo)
m ?

(
uo ∧ U∧(m−1) ∧ F∧(n−m−1) ∧

(
Rρ(ν − Λρ(νU

))µ)

− ?
(
uo ∧ F∧(n−1)Λρ(ν

)µ)
]
− 2ϑou

(µq
ν)
(A). (3.26)

Instead if we are working in Landau Frame, where q̄µ(A) = q̄µ(C) = 0, we will getcondition:

− T̄ µν(A)uν(C) =
(
εGµν + T̄ µν(C)

)
uν(A) =

(
εGµν + Π̄µν

(C)

)
uν(A). (3.27)

We need to invert
(
εGµν + Π̄µν

(C)

)
, which can be done perturbatively in derivatives. To

leading order:

uµ(A) = − 1

ε+ P
T̄ µν(A)uν(C) + . . . , (3.28)
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and hence

Υ̃µ
(A) = J̄ µ(A) +

q

ε+ P
T̄ µν(A)uν(C) + . . . , Π̃µν

(A) = 2T̄ (µα
(A)

(
δν)
α +

ε

ε+ P
u
ν)
(C)uα(C)

)
+ . . . ,

(3.29)

Υ̃µ
S(A) =

s

ε+ P
T̄ µν(A)uν(C) + . . . =

1

ϑ
T̄ µν(A)uν(C) + νJ̄ µ(A) − νΥ̃µ

(A) + . . . . (3.30)

As showed by [14], in presence of just U(1) anomaly, it gives the exact result of Son-

Sorowka [3]. To write a similar expression for gravitational anomaly in Landau Frame, one

will need to find anomalous velocity to subsubleading order, which might be non-trivial.

4 Counting of independent terms

This section is dedicated to develop a systematic procedure to compute independent fluid

data (vectors, tensors transverse to velocity and scalars). First we will review the counting

in parity-even sector in generic dimensions. Then we will extend this idea to parity-odd

sector in generic dimensions at arbitrary derivative order through a procedure we call

‘derivative counting’.

After describing the generic procedure, we explicitly construct leading and sub-leading

order parity-odd and even terms which are important for our current work. Many of these

terms vanish in equilibrium. In tables 2, 1, 5 we list all the leading and sub-leading terms

both parity-odd and even and check if they survive at equilibrium. Further in appendix B

we extend this counting procedure to parity-odd subsubleading derivative order fluid. For

this reason we will keep our illustrations in the construction explicit to subsubleading order.

4.1 Parity-even counting

In this subsection we present the parity-even counting in generic dimensions. One can

always count independent data in the local rest frame (LRF) of the fluid, which turns out

to be easier. We can later covariantize the terms to a generic reference frame by following

simple (and generic) rules.10 In LRF, the fundamental quantities are

• Temperature — ϑ, Chemical Potential — ν.

• Derivatives of fluid velocity11 — ∂0u
i, ∂jui.

• Field Tensor — F ij , E i = F iνuν .

• Curvature — Rijkl, Rijk0, Ri0k0.

All other quantities are merely derivatives of these fundamental quantities. Since LRF is

locally flat, we are using the coordinate derivatives ∂o and ∂i. We introduce a notation for

10The rules can be summarized as: replace 1) ‘0’ index with contraction with uµ, 2) ‘i’ indices with

a projection along Pµν , 3) ∂ with ∇̂, 4) εki2j2...injn with εµ1ν1µ2ν2...µnνnuµ1 , and finally 5) put all extra

factors of projectors and velocities on left-most, so no derivatives act on them.
11uµuµ = −1 would imply uµ∂uµ = 0 and hence in local rest frame ∂u0 = 0.
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parity-even terms which will be useful later in parity-odd counting. Terms with d deriva-

tives and i indices will be denoted collectively as ( id , i, d). When working at equilibrium,

it is also convenient to define:12

Sµν = 2∇(µuν), Uµν = 2∇[µuν], (4.1)

X µνΛ =
{
−ϑUµν , PµαP νβFαβ + ϑνUµν

}
, Λ = 1, 2. (4.2)

The purpose of above notation is revealed in Kaluza Klein formalism: at equilibrium

only spatial components of X µνΛ survive which land exactly to f ijΛ defined by:

aΛ =
{
ϑ̃ai, Ai

}
, f ijΛ = ∇iajΛ −∇

jaiΛ. (4.3)

In the same spirit we define

Kµνρσ = PµαP νβP ργP σδRαβγδ −
(
UµνUρσ +

1

2
UµρUνσ − 1

2
UνρUµσ

)
. (4.4)

Only spatial components of Kµνρσ survive at equilibrium, and they exactly match Rijkl.

The usage of index ‘Λ’ is purely to facilitate counting and computations. Similarly we

define ϑΛ = {ϑ, ν}.

Bianchi identity: in counting, we will extensively use the Bianchi identity to get rid of

many terms, so it would be worth to spend some time on it. The Bianchi Identities for

Field Tensor, Vorticity and Riemann Tensor take the form:

∇̂[µFνρ] = ∇̂[µ∇̂νuρ] = ∇̂[µRνρ]σδ = R[µνρ]σ = 0. (4.5)

However our redefined variables XΛ and K do not satisfy Bianchi Identities. But neverthe-

less we can always use these identities to relate

∇̂[µXΛνρ], ∇̂[µKνρ]σδ, K[µνρ]σ, (4.6)

to other terms, and hence we can safely get rid of these in the following computation. In

rest frame especially (or at equilibrium in any generic frame), one can check that XΛ and

K also satisfy Bianchi Identities.

Killing equation: if the theory has a unit Killing direction ωµ we have the following

Killing equation for a general tensor

£ωT
α1α2··· = 0 =⇒ ωµ∇̂µTα1α2... =

∑
k

Tα1...αk−1σαk+1...∇̂σωαk , (4.7)

12Our conventions are:

A[µν] =
1

2
PµαP

ν
β

(
Aαβ −Aβα

)
, A(µν) =

1

2
PµαP

ν
β

(
Aαβ +Aβα

)
, A〈µν〉 = A(µν) − Pµν

d− 1
PαβAαβ ,

A[ij] =
1

2

(
Aij −Aji

)
, A(ij) =

1

2

(
Aij +Aji

)
, A〈ij〉 = A(ij) − gij

d− 1
gijA

ij .
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which in local rest frame becomes

∂0T
αβγ... = 0. (4.8)

Therefore if we are considering a theory at equilibrium, we do not have to consider the ∂0

derivatives. Secondly, the Killing equation for metric Gµν is given by

∇̂βωα + ∇̂αωβ = 0. (4.9)

Taking ωµ√
−ω2

= uµ and using Killing Equation for scalars this translates to:

∇̂βuα + ∇̂αuβ = 0. (4.10)

Hence in local rest frame Sij = ∂iuj + ∂jui = 0.

4.1.1 First derivative order

Below, we compute all possible terms at first derivative order in LRF.

1. (2, 2, 1): Sij , X ijΛ

2. (1, 1, 1): ∂iϑΛ, ∂0u
i , E i

3. (0, 0, 1): Skk, ∂0ϑΛ

However all these first derivative terms are not independent on-shell. Using first order

equations of motion one can eliminate some of them. The equations of motion are given

by eq. (2.1) (at equilibrium)

1. (1, 1, 1): ∂µT̄ µi = F iαJ̄α + T˜ν
2. (0, 0, 1): ∂µT̄ µ0 = −EαJ̄α + T˜νuν , ∂µJ̄ µ = J˜.

Using these equations we have killed the boxed terms in the counting.

4.1.2 Second derivative order

Below we list all possible pure second derivative terms. By pure we mean they are not

product of two first derivative terms. Product of two lower derivative terms are called

composite terms.

1. (2, 4, 2): Kijkl

2. (3
2 , 3, 2): ∂iSjk, ∂iX jkΛ , Rijk0

3. (1, 2, 2): ∂i∂jϑΛ, ∂iEj , ∂0S
ij , ∂0X ij1 , ∂0X ij2 , Ri k0 0, Kiaja

4. (1
2 , 1, 2): ∂i∂0ϑΛ , ∂0∂0u

i , ∂0E i, ∂iSij , ∂iX ijΛ , Riaa0

5. (0, 0, 2): ∂0S
k
k , ∂0∂0ϑΛ , ∂i∂

iϑΛ, ∂iE i, Kabab, Ra0a0
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Name LRF Covariant Equilibrium

Θ 1
2S

i
i

1
2S

µ
µ 0

V µ
Λ ∂iϑΛ Pµα∇̂αϑΛ ∇iϑΛo

V µ
3 E i − ϑ1V

i
2 Eµ − ϑ1V

µ
2 0

σµν 1
2S
〈ij〉 1

2S
〈µν〉 0

Table 1. Independent leading order parity-even data.

Here also all the terms are not independent because of equations of motion. The second

order equations of motion are given by,

1. (1, 2, 2): ∂(k∂µT µi) = ∂(k
(
F i)αJα + T˜i)), ∂[k∂µT µi] = ∂[k

(
F i]αJα + T˜i])

2. (1
2 , 1, 2): ∂0∂µT µi = ∂0

(
F iαJα + T˜i), ∂i∂µT µ0 = −∂i

(
EαJα − T˜αuα),

∂i∂µJ µ = ∂iJ˜
3. (0, 0, 2): ∂i∂µT µi = ∂i

(
F iαJα + T˜i)), ∂0∂µT µ0 = −∂0

(
EαJα − T˜αuα),

∂0∂µJ µ = ∂0J˜
Again we have killed boxed terms in the counting using equations of motion. We

have provided a list of all terms till second order (also composites) in covariant form and

their equilibrium values in tables 1, 2. We can iterate this procedure to further derivative

orders as required by the cause. Note that, for a pure term at Nth derivative order, the

maximum number of indices possible are N + 2; we will need it later.

4.2 Parity-odd counting

In this section we shall compute the parity-odd leading and sub-leading derivative fluid

data. Calculation in parity-odd sector is a lot more cumbersome, even in LRF. We introduce

here a scheme called ‘derivative counting’ to compute these terms step by step. Any parity-

odd term in (2n)-dimension must have a (2n− 1)-dim Levi-Civita involved in LRF

εii2j2...injn . (4.11)

We are interested in constructing all possible scalars, vectors and symmetric tensors using

it. A bit of thinking will reveal that one needs at least (2n−2)-rank parity-even tensors to

be combined with εii2j2...injn for this purpose. One can subsequently form a list of parity-odd

data types :

1. Vε: vectors with free index on ε (2n− 2 rank parity-even tensor contracted with ε).

2. S: scalars with all indices contracted with ε (2n−1 rank parity-even tensor contracted

with ε).

3. Tε: tensors with one free index on ε (2n − 1 rank parity-even tensor contracted

with ε).
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Name LRF Covariant Equilibrium

S1Λ ∂i∂iϑΛ Pαβ∇̂α∇̂βϑΛ ∇i∇iϑΛo

S2(ΛΓ) ∂iϑΛ∂iϑΓ Pαβ∇̂αϑΛ∇̂βϑΓ ∇iϑΛo∇iϑΓo

S3(ΛΓ) X ijΛ XΓij X µνΛ XΓµν f ijΛ fΓij

S4 K K R

S5 ∂iV
i

3 Pµν∇̂µV ν
3 0

S6
R00 + 1

ϑ∂i∂
iϑ

−2 1
ϑ2∂iϑ∂

iϑ− 1
4

1
ϑ2X ij1 X1ij

uµuνRµν + 1
ϑS1,1

−2 1
ϑ2 S2,11 − 1

4
1
ϑ2 S3,11

0

S7Λ V i
ΛV3i V µ

Λ V3µ 0

S8 V i
3V3i V µ

3 V3µ 0

S9 Θ2 Θ2 0

S10 SijSij SµνSµν 0

Vµ
1Λ ∂kX kiΛ PµγPαβ∇̂αX βΛγ ∇kfkiΛ

Vµ
2ΛΓ X ikΛ VΓk X µαΛ VΓα f ikΛ ∇kϑΓo

Vµ
3 ∂0V

i
3 Pµβuα∇̂αV3β 0

Vµ
4 ∂iS

ij Pµβ∇̂αSαβ 0

Vµ
5 Ri0 − 1

2ϑ∂kX
ki
1 − 3

2ϑ2X ik1 ∂kϑ PµβuαRαβ − 1
2ϑVµ

1,1 − 3
2ϑ2 Vi

2,11 0

Vµ
6Λ ΘV i

Λ ΘV µ
Λ 0

Vµ
7 ΘV i

3 ΘV µ
3 0

Vµ
8Λ SijVΛj SµνVΛν 0

Vµ
9 SijV3j SµνV3ν 0

Vµ
10Λ X ijΛ V3j X µνΛ V3ν 0

Tµν
1Λ ∂〈i∂j〉ϑΛ P 〈µαP ν〉β∇̂α∇̂βϑΛ ∇〈i∇j〉ϑΛo

Tµν
2(ΛΓ) ∂〈iϑΛ∂

j〉ϑΓ P 〈µαP ν〉β∇̂αϑΛ∇̂βϑΓ ∇〈iϑΛo∇j〉ϑΓo

Tµν
3(ΛΓ) X 〈ikΛ X

j〉
Γk X 〈µαΛ X ν〉Γα f

〈ik
Λ f

j〉
Γk

Tµν
4 K〈ij〉 K〈µν〉 R〈ij〉

Tµν
5 ∂〈iV

j〉
3 ∇̂〈µV ν〉

3 0

Tµν
6

R〈i j〉0 0 + 1
ϑ∂
〈i∂j〉ϑ

−2 1
ϑ2∂
〈iϑ∂j〉ϑ− 1

4ϑ2X
〈i
1 aX

j〉a
1

P 〈µρP ν〉σuαuβRρασβ + 1
ϑTµν

1,1

−2 1
ϑ2 Tµν

2,11 − 1
4ϑ2 Tµν

3,11

0

Tµν
7Λ V

〈i
Λ V

j〉
3 V

〈µ
Λ V

ν〉
3 0

Tµν
8 V

〈i
3 V

j〉
3 V

〈µ
3 V

ν〉
3 0

Tµν
9 Θσij Θσµν 0

Tµν
10 S〈ikS

j〉
k S〈µαS

ν〉
α 0

Tµν
11Λ S〈ikX j〉Λ k S〈µαX ν〉Λ α 0

Table 2. Independent subleading order parity-even data.
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4. Vf : vectors with free index not on ε (2n rank parity-even tensor contracted with ε).

5. VC
ε : vectors formed of contraction of two non-ε indices with free index on ε (2n rank

parity-even tensor contracted with ε).

6. Tf : tensors with no free index on ε (2n+1 rank parity-even tensor contracted with ε).

7. SC : scalars formed of contraction of Tf (2n + 1 rank parity-even tensor contracted

with ε).

8. TC
ε : tensors formed of contraction of two non-ε indices with one free index on ε

(2n+ 1 rank parity-even tensor contracted with ε).

9. VC
f : vectors formed of contraction of two non-ε indices with one free index not on ε

(2n+ 2 rank parity-even tensor contracted with ε).

10. VCC
ε : vectors formed of contraction of four non-ε indices with free index on ε (2n+ 2

rank parity-even tensor contracted with ε)

.

.

.

and so on.

Here we note that given D derivatives, one cannot construct a parity-even term, pure

or composite, with more than 2D indices, because (2, 2, 1) and (2, 4, 2) have the highest

index to derivative ratio, which is 2. Therefore, if we are interested in a fluid at (n− 2 + s)

derivative order (s = 1 corresponds to parity-odd leading order and so on), we can get at

most 2(n− 2 + s) indices. The list of parity-odd data types we gave above is complete till

subsubleading derivative order (s = 3).

Independent data types: we should emphasise that not all parity-odd data-types listed

above are independent. The dependence comes from that fact that when we are working

in 2n − 1 dimensions, any antisymmetrization over 2n or more indices will vanish. Given

that we are dealing with parity-even tensors of arbitrary rank which are to be contracted

with ε, there are a whole lot of these antisymmetrizations possible. Hence, to find the

independent data-types becomes highly non-trivial.

Let’s look at a special case of this dependence. We construct a 2n-antisymmetrization,

ε[i1...i2n−1A
k1]k2...kt

i1...i2n−1
= 0, (4.12)

therefore,

εi1...i2n−1Ak1k2...kt
i1...i2n−1

=

2n−1∑
a=1

(−1)a+1εk1i1...i2n−2Axk2...kt
i1...ia−1xia...i2n−2

. (4.13)

The consequence of this is that the data types [ ]f (i.e. ones with a free index not

on ε) can be expressed in terms of [ ]Cε (i.e. the ones with a free index on ε and an extra

contraction). Hence data-types [ ]f for example Vf ,Tf ,V
C
f are not independent.
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Note that this result is only based on a specific form of 2n-antisymmetrization

(eq. (4.12)). One can in principle go on with any random antisymmetrizations over 2n

or more indices and find relations among the data, which as it turns out, is not a trivial

task to do. We will come back to this issue in section 4.4. For now we continue with

the counting.

4.2.1 Derivative counting

We have classified parity-odd terms in data-types based on the number of parity-even

indices required. We want to construct all allowed parity odd terms with D derivatives.

We observe that it is not required to include all parity-even data type of the form (r, i, d)

in this construction. We will show this below.

For a parity-odd fluid at D = (n − 2 + s) derivative order, we need to construct all

the D derivative parity-even terms with number of indices ranging from 2D (the maximum

possible) to 2(D + 1− s) (= 2n− 2, the minimum required), i.e.

2(D + 1− s) ≤ No of indices of a parity-even D derivative term ≤ 2D.

These D-derivative parity-even terms can be constructed out of pure derivative terms. We

need not consider pure terms with self contractions in parity-even data types as they have

been included in our counting procedure.

We now want to argue that not all parity-even data-types are required for this con-

struction. For a data-type ( i
N , i, N) to be included at least once, the following combination

with (2D − 2N + i) indices must be included:

(D −N)× (2, 2, 1)⊗
(
i

N
, i,N

)
Since the minimum rank of this term must be 2n−2 = 2(D+1−s) and maximum possible

rank is N + 2, therefore we get,

N + 2 ≥ i ≥ 2(N − s+ 1). (4.14)

For this equation to have a solution N ≤ 2s. So we need at max 2s derivative order parity-

even terms, to construct parity-odd terms till (n− 2 + s) derivative order. For example at

leading order, s = 1, only pure terms with at max 2 derivatives are required. The parity

even terms required till s = 3 are enlisted in tables 3, 4. Further, if we were only interested

in finding terms that survive at equilibrium, we can use the Killing condition and drop all

terms with ∂0 derivatives.

Some of the combinations constructed by this procedure using table 3 are:

1. (2D indices): D(2, 2, 1)

2. (a) (2D − 1 indices): (D − 1)(2, 2, 1)⊕ (1, 1, 1)

3. (a) (2D − 1 indices): (D − 2)(2, 2, 1)⊕ (3
2 , 3, 2)

(b) (2D − 2 indices): (D − 2)(2, 2, 1)⊕ 2(1, 1, 1)

(c) (2D − 2 indices): (D − 2)(2, 2, 1)⊕ (1, 2, 2)
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Data Type Decomposition Local Rest Frame Equilibrium

(2, 2, 1) X ijΛ f ijΛ
(1, 1, 1) ∂iϑΛ ∇iϑΛo

(2, 4, 2) Kijkl Rijkl

(3
2 , 3, 2) ∂i(2, 2, 1) ∂iX jkΛ ∇if jkΛ

(1, 2, 2) ∂i(1, 1, 1) ∂i∂jϑΛ ∇i∇jϑΛo

(5
3 , 5, 3) ∂i(2, 4, 2) ∂iKjklm ∇iRjklm

(4
3 , 4, 3) ∂i∂j(2, 2, 1) ∂i∂jX klΛ ∇i∇jfklΛ

(1, 3, 3) ∂i∂j(1, 1, 1) ∂i∂j∂kϑΛ ∇i∇j∇kϑΛo

(3
2 , 6, 4) ∂i∂j(2, 4, 2) ∂i∂jKklmn ∇i∇jRklmn

(5
4 , 5, 4) ∂i∂j∂k(2, 2, 1) ∂i∂j∂kX lmΛ ∇i∇j∇kf lmΛ

(1, 4, 4) ∂i∂j∂k(1, 1, 1) ∂i∂j∂k∂lϑΛ ∇i∇j∇k∇lϑΛo

(7
5 , 7, 5) ∂i∂j∂k(2, 4, 2) ∂i∂j∂kKlmno ∇i∇j∇kRlmno

(6
5 , 6, 5) ∂i∂j∂k∂l(2, 2, 1) ∂i∂j∂k∂lXmnΛ ∇i∇j∇k∇lfmnΛ

(4
3 , 8, 6) ∂i∂j∂k∂l(2, 4, 2) ∂i∂j∂k∂lKmnop ∇i∇j∇k∇lRmnop

Table 3. Parity-even data-types — Surviving at equilibrium.

and so on. . . The counting can be extended arbitrarily to the derivative order we need.

In next section we will construct terms till subleading order, and later in appendix B we

will extend it to subsubleading order. We will suppress the usage of data-type (2, 4, 2) for

brevity; combinations involving it can always be reached by exchanging (2, 4, 2) with two

(2, 2, 1)’s.

4.3 Examples of parity-odd counting

4.3.1 Leading order (D = n − 1) (s = 1)

For s = 1, the required indices are merely 2D = 2n − 2 (Vε), which amounts to the only

combination:

D(2, 2, 1), (4.15)

along with the terms involving (2, 4, 2). However in Vε all the free indices are contracted

with Levi-Civita, which will kill any term involving (2, 4, 2) due to Bianchi Identity. The

only remaining combination is — (n) vectors〈
m−1
n−m

〉i∣∣∣n
m=1

,

where we define,〈
m

n− a−m

〉
µ1ν1...µaνa

=
1

2n−a
εµ1ν1...µnνn

m+a∏
x=a+1

X µxνx1

n∏
y=m+a+1

X µyνy2 ,

〈
m

n− a−m

〉
ii2j2...iaja

=
1

2n−a
εii2j2...injn

m+a∏
x=a+1

f ixjx1

n∏
y=m+a+1

f
iyjy
2 . (4.16)
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Data Type Decomposition Local Rest Frame

(2, 2, 1) σij := 1
2S
〈ij〉

(1, 1, 1) V i
3 := E i − ϑ1V

i
2

(3
2 , 3, 2)

Ξijk := Rijk0 − 1
2ϑo
∇kX ij1 + 1

ϑ2
o

(
f ij1 ∇kϑo + 1

2X
ik
1 ∇jϑo − 1

2X
jk
1 ∇iϑo

)
∂i(2, 2, 1) ∂iσjk

(1, 2, 2)

Ξij := Ri j0 0 + 1
ϑ∂

i∂jϑ− 2 1
ϑ2∂

iϑ∂jϑ− 1
4ϑ2X i1 aX

ja
1

∂0(2, 2, 1) ∂0X jkΛ , ∂0σ
ij

∂i(1, 1, 1) ∂iV j
3

(1
2 , 1, 2) ∂0(1, 1, 1) ∂0∂0ϑΛ, ∂0V

i
3

(4
3 , 4, 3)

∂i(3
2 , 3, 2) ∂iΞjkl

∂0(2, 4, 2) ∂0Kjklm

∂i∂j(2, 2, 1) ∂i∂jσkl

(1, 3, 3)

∂0(3
2 , 3, 2) ∂0Ξijk

∂i(1, 2, 2) ∂iΞjk

∂0∂
j(2, 2, 1) ∂0∂

jX klΛ , ∂0∂
iσjk

∂i∂j(1, 1, 1) ∂i∂jV k
3

(2
3 , 2, 3)

∂0(1, 2, 2) ∂0Ξij

∂0∂0(2, 2, 1) ∂0∂0X klΛ , ∂0∂0σ
ij

∂0∂
j(1, 1, 1) ∂0∂

j∂kϑΛ, ∂0∂
iV j

3

(5
4 , 5, 4)

∂i∂j(3
2 , 3, 2) ∂i∂jΞklm

∂0∂
j(2, 4, 2) ∂0∂

jKklmn

∂i∂j∂k(2, 2, 1) ∂i∂j∂kσlm

(1, 4, 4)

∂0∂
i(3

2 , 3, 2) ∂0∂
iΞjkl

∂i∂j(1, 2, 2) ∂i∂jΞkl

∂0∂0(2, 4, 2) ∂0∂0Kklmn

∂0∂
j∂k(2, 2, 1) ∂0∂

j∂kX lmΛ , ∂0∂
j∂kσlm

∂i∂j∂k(1, 1, 1) ∂i∂j∂kV l
3

(6
5 , 6, 5)

∂i∂j∂k(3
2 , 3, 2) ∂i∂j∂kΞlmn

∂0∂
j∂k(2, 4, 2) ∂0∂

j∂kKlmno

∂i∂j∂k∂l(2, 2, 1) ∂i∂j∂k∂lσmn

Table 4. Parity-even data-types — Vanishing at equilibrium.
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4.3.2 Subleading order (D = n, s = 2) — Surviving at equilibrium

At subleading order, index families required are: 2D = 2n (VC
ε ), 2D − 1 = 2n − 1 (Tε)

and 2D − 2 = 2n− 2 (Vε). We only compute terms surviving at equilibrium because that

is what we need for the current work.

2D family: 2D family was already discussed in section 4.3.1, but this time since two

indices are free from ε, one (2, 4, 2) can appear with two antisymmetric indices of Rijkl

contracted. However we are supposed to take a contraction on remaining indices, which

again due to antisymmetry vanish. Only remaining data are — (n− 1) vectors:〈
m−1

n−1−m
〉
ijk
X ja1 X k2a

∣∣∣n−1

m=1
.

2D − 1 family: combinations in (2D − 1) family which survive at equilibrium are:

1. (D − 1)(2, 2, 1)⊕ (1, 1, 1)

2. (D − 2)(2, 2, 1)⊕ (3
2 , 3, 2)

3. (D − 3)(2, 2, 1)⊕ (5
3 , 5, 3)

along with the combinations with (2, 4, 2). In Tε only one index stays free from ε, hence

again (2, 4, 2) and (5
3 , 5, 3) cannot appear. The remaining two combinations will yield:

1. (n− 1)(2, 2, 1)⊕ (1, 1, 1): 2 possibilities — (6n− 4) traceless symmetric tensors and

(2n) scalars

〈
m−1
n−m

〉〈i
∂j〉ϑΛ

∣∣∣n
m=1

,
〈
m−1

n−m−1

〉〈ijk
∂jϑΛX l〉

Γk

∣∣∣n−1

m=1
.

Scalars: 〈
m−1
n−m

〉i
∂iϑΛ

∣∣∣n
m=1

.

2. (n− 2)(2, 2, 1)⊕ (3
2 , 3, 2): 1 possibility — (2n− 2) traceless symmetric tensors

〈
m−1

n−m−1

〉(ijk
∂l)XΛjk

∣∣∣n−1

m=1
.

2D − 2 family: combinations in (2D − 2) family which survive at equilibrium are:

1. (D − 2)(2, 2, 1)⊕ 2(1, 1, 1)

2. (D − 2)(2, 2, 1)⊕ (1, 2, 2)

3. (D − 3)(2, 2, 1)⊕ (3
2 , 3, 2)⊕ (1, 1, 1)

4. (D − 3)(2, 2, 1)⊕ (4
3 , 4, 3)

5. (D − 4)(2, 2, 1)⊕ 2(3
2 , 3, 2)
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Name Term Equilibrium

lµm
∣∣n
m=1

〈
m−1
n−m

〉µν
uν

〈
m−1
n−m

〉i
S̃Λm

∣∣n
m=1

lµm∇̂µϑΛ

〈
m−1
n−m

〉i∇iϑΛo

Ṽ
µ
1m

∣∣n−1

m=1

〈
m−1

n−1−m
〉
µνρσ

uνX ρα1 X σ2α
〈
m−1

n−1−m
〉
kij
f ia1 f

j
2a

Ṽ
µ
2m

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uν∇̂ρϑ1∇̂σϑ2

〈
m−1

n−m−1

〉ijk∇jϑ1o∇kϑ2o

T̃
µν
1Λm

∣∣n
m=1

l
〈µ
mP ν〉α∇̂αϑΛ

〈
m−1
n−m

〉〈i∇̂j〉ϑΛo

T̃
µν
2Λm

∣∣n−1

m=1

〈
m−1

n−m−1

〉(µνρσ
uν∇̂α)XΛρσ

〈
m−1

n−m−1

〉(ijk∇l)fΛjk

T̃
µν
3ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉(µνρσ
uν∇̂ρϑΛX δ)

Γσ

〈
m−1

n−m−1

〉(ijk∇jϑΛof
l)

Γk

Table 5. Independent leading and subleading order parity-odd data at equilibrium.

6. (D − 4)(2, 2, 1)⊕ (5
3 , 5, 3)⊕ (1, 1, 1)

7. (D − 4)(2, 2, 1)⊕ (3
2 , 6, 4)

8. (D − 5)(2, 2, 1)⊕ (3
2 , 3, 2)⊕ (5

3 , 5, 3)

9. (D − 6)(2, 2, 1)⊕ 2(5
3 , 5, 3)

Along with these, we have the combinations with (2, 4, 2). However, Vε has no index free

from ε, and hence Bianchi Identity will not allow (2, 4, 2), (5
3 , 5, 3) and (3

2 , 6, 4). Further,

(1, 2, 2), (3
2 , 3, 2) and (4

3 , 4, 3) will vanish as they cannot be made completely antisymmetric.

Finally only one combination will remain, yielding:

1. (n− 2)(2, 2, 1)⊕ 2(1, 1, 1): 1 possibility — (n− 1) vectors

〈
m−1

n−m−1

〉ijk
∂jϑ1∂kϑ2

∣∣∣n−1

m=1
.

At equilibrium we have (2n) scalars, (2n− 2) vectors and (8n− 6) traceless symmetric

tensors. We have tabulated these data and their equilibrium values in table 5.

4.4 The basis of independent data

As we discussed in section 4.2, the data we have enlisted in the preceding sections is a

‘complete set’ but not independent. There might exist numerous relations among them

through antisymmetrizations of 2n or more indices. If we look back at section 2, the need

of all independent data arose to write down the most generic form of the constitutive

relations. We write the energy-momentum tensor and charged current as a combination of

all independent tensors and vectors respectively up to some undetermined coefficients which

are called transport coefficients. We then determine the same quantities from equilibrium
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partition function and compare with the fluid results. It turns out that the transport

coefficients which destroys the positivity of entropy current divergence are set to zero

by this procedure. We call these transport coefficients unphysical. Put differently, the

partition function generates only the physical transport coefficients in the constitutive

relations (eq. (3.14)) at equilibrium.

Now if we relax the condition ‘independence’ while writing fluid constitutive relations,

i.e., add more terms to these relations which could have been determined in terms of others;

they can be regarded as redundant transport coefficients in our system. Since the charge

current and the energy-momentum tensor we derive from the partition function remain

unchanged, we get relations between the transport coefficients (including the redundant

coefficients) and the coefficients appearing in partition function. However, we still have

our answers — the independent transport coefficients and distinct constitutive relations.

Let us explain with an example. Suppose at some particular derivative order, we

have total I number of vectors V µ
i . We can write charge current at this order as, Jµ =∑I

i=1 aiV
µ
i , where ai’s are transport coefficients. On the other hand, suppose our partition

function has X number of independent coefficients Cj ’s, and it generates a charge current

Jµ =
∑I

i=1 ci(Cj)V
µ
i . ci(Cj) are some functions of Cj ’s. By comparison we will get

ai = ci(Cj). These are I relations with X free parameters, and thus imposes I − X

constraints on ai.

Now let’s add to our set K more vectors V µ
α , α = I + 1, . . . , I + K which could in

principle be determined as: V µ
α =

∑I
i=1CαiV

µ
i . Then we would have guessed our ansatz to

be Jµ =
∑K+I

i=1 biV
µ
i , and by varying partition function we will get Jµ =

∑K+I
i=1 di(Cj)V

µ
i .

di(Cj) are some functions of Cj ’s determined by relation ci =
(
di −

∑I+K
α=I+1 dαCαi

)
, as

our partition function is still the same. By comparison we will get bi = di(Cj). These are

K + I relations with X free parameters, and thus imposes K + I − X constraints on bi.

We hence get exactly K extra constraints, to kill the K extra degrees of freedom we added

in the system. But once we have imposed these constraints, we will only be left with X

independent transport coefficients.

However, note that we still need independent set of scalars that enters the equilibrium

partition function, for our arguments to make sense. We check it here before we proceed.

At leading order there are no scalars. At subleading order the scalars do not have enough

indices for 2n or more antisymmetrizations, as a result all the scalars we get are indepen-

dent. At higher order however, it may not be so easy to find out all the independent set

of scalars.

Lets look at an example of such residual 2n-antisymmetrization conditions. In

eq. (4.13) if we chose B to be of the form Sgij , we will get:

n−1∑
a=1

(−1)a+1ε〈pi1...in−2A
q〉

i1...ia−1 ia...in−2
= 0, (4.17)

where 〈 〉 denotes the traceless symmetric part of a matrix. Hence one of these matrices of

type Tε (after making traceless) is not independent for a given A. A similar argument is

valid on other tensors like TC
ε using SCgij . But as we are treating all symmetric traceless
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tensors (of type [ ]ε) to be independent, this should reflect in our final constraints, and as

we will see, it will. It turns out that till subleading order, eq. (4.17) is the only remaining

residual constraint, and thus we can construct an independent basis; but this issue might

turn more subtle at higher derivative orders. To illustrate the procedure we will not start

with the independent basis even for subleading order, and show that we get consistent

results at the end.

5 Fluid constitutive relations

Having all the data we require, we are ready to find the constitutive relations for fluid.

We start with the results which are already known in literature, i.e. fluid up to leading

derivative order. We revisit the results in our notation. Later we consider charged fluid

at subleading order in section 5.3. We also set up the notation and architecture for sub-

subleading order parity-odd fluid in this formalism in appendix B. However we do not

compute the constitutive relations explicitly, as we will discuss, the calculation becomes a

lot non-trivial.

5.1 Ideal fluid

At zero derivative order only energy-momentum gets a transverse contribution:

Πµν
(0) = APµν , (5.1)

where A is some arbitrary function of ϑ and ν. Now comparing eq. (2.8) with eq. (3.14)

we can write at ideal order,

Eov
i
ov
j
o +Aog

ij = gijPo,

−Eovio
√

1 + viovio −
vio√

1 + viovio
+ ϑoνoQov

i
o = 0,

Eo(1 + viov
i
o) +

viov
i
o

(1 + viovio)
= εo,

Qov
i
o = 0,

Q
√

1 + viovio = qo. (5.2)

The identifications will then give

vo = −eσ, vio = 0, A = P, Q = q, E = ε. (5.3)

Note that we have identified A,Q,E exactly, and not just at equilibrium, as we explained

in section 2. Therefore, the energy-momentum tensor and charge current for ideal fluid

can be written as,

T µν(0) = εuµuν + PPµν , J µ(0) = quµ. (5.4)
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5.2 Leading order fluid

One can divide the constitutive relations in hydrodynamics in two different sectors — parity

even and parity odd. Ideal fluid belongs to the first sector (in d > 2). The first non trivial

derivative corrections in parity-even sector appears at the first derivative order e.g. shear

viscosity term in energy-momentum tensor. Whereas in the parity-odd sector, the leading

terms appear at (n− 1) derivative order for a fluid in 2n dimensions. All these terms and

the corresponding transport coefficients (at leading order) have already been found in [6].

We shall discuss their result in our notation.

5.2.1 Parity-odd

Since there is no parity odd scalar and transverse symmetric traceless tensor at (n − 1)

derivative order (see table 5), only charge current gets parity-odd corrections:

Υ̃µ
(n−1) =

n∑
m=1

n−1Cm−1ωml
µ
m. (5.5)

The combinatorial factor is introduced for convenience. It also ensures we do not

surpass the limits of m. The fluid variables receives following corrections,

ϑΛ = ϑΛo + ∆̃(n−1)ϑΛ, vi = vio + ∆̃(n−1)vi. (5.6)

Further, there is no parity-odd gauge invariant scalar at equilibrium on M2n−1, im-

plying that ∆̃(n−1)W eqb
(C) = 0. Now comparing eq. (2.8) with eq. (3.14) we will find the

constraints at parity-odd leading derivative order:

ωm = − ϑ2n

ε+ P

[
sCm−1 + qCm + (n+ 1)

(
s

m
+

qν

m+ 1

)
C(2n)νm

]
. (5.7)

And the corrections to fluid variables,

∆̃(n−1)ϑ = ∆̃(n−1)ν = 0, ∆̃(n−1)vi =

n∑
m=1

n−1Cm−1αo(m)l
i
o(m), (5.8)

where,

αm = − ϑ2n

ε+ P

[
Cm−1ν − Cm +

(n+ 1)

m(m+ 1)
C(2n)νm+1

]
. (5.9)

Here we present these relations for completion as well as to set up our notations

and conventions. We would also like to make some interesting observations about these

functions. One can verify that

sαm + qαm+1 = νωm − ωm+1 ∀ m ∈ {1, n− 1} , (5.10)

P (1,0)ωm = s
(
P (1,0)αm

)(0,1)
+ q

(
P (1,0)αm+1

)(0,1)
∀ m ∈ {1, n− 1} . (5.11)

Here pressure P (ϑ, ν) is function of temperature ϑ and redefined chemical potential ν. For

any function Q(ϑ, ν) we define Q(m,n) = ∂m+n

∂mϑ∂nνQ. These will come handy in subleading

order calculation.
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Note that the entire leading order parity-odd sector is determined in terms of unknown

coefficients Cm’s. It turns out that some of them are forced to be zero by requiring CPT

invariance, while the others can be related to the gravitational and mixed anomalies by

keeping the fluid on a cone [11]. These relations to gravitational and mixed anomalies

however, do not show up in derivative counting.

5.2.2 Parity-even

The most generic current corrections at parity-even leading derivative order are

(see table 1):

Υµ
(1) =

3∑
Λ=1

λΛV
µ

Λ , Πµν
(1) = −2ησµν − ζPµνΘ, (5.12)

while at equilibrium the only surviving contributions are:

Υµ
o(1) =

2∑
Λ=1

λoΛV
µ
oΛ, Πµν

o(1) = 0. (5.13)

There are no gauge-invariant parity-even scalars at equilibrium that appear at this order.

Therefore, ∆(n−1)W eqb
(C) = 0. Now comparing eq. (2.8) with eq. (3.14) we will find at

parity-even leading derivative order that all corrections vanish

πijo(1) = ς io(1) = ∆(1)ϑ = ∆(1)ν = ∆(1)vi = 0. (5.14)

We hence get the constraints:

λ1 = λ2 = 0. (5.15)

So finally the form of currents is

Υµ
(1) = λ3V

µ
3 , Πµν

(1) = −2ησµν − ζPµνΘ. (5.16)

We also get to know that no fluid quantities (ϑ, ν, vi) get order one parity-even correction.

5.3 Subleading order fluid

In this section, we shall describe the constraints on charged fluid in arbitrary even dimen-

sions at subleading derivative order (i.e. n order), in presence of U(1) anomaly. Where

as, the subleading correction to parity-even sector comes at second order in derivative ex-

pansion. Some aspects of four dimensional fluids at sub-leading order have already been

performed in [7, 16].

5.3.1 Parity-odd

Sub-leading order parity-odd fluid dynamics in four spacetime dimensions has already

been discussed in [7]. Here, we generalize the results in arbitrary even dimensions and

find the constraints on the transport coefficients. We see that, much like in [7], the higher

dimensional transport coefficients depend on first order transport coefficients η, ζ.
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From counting we can see that the n order parity-odd corrections (at eqb.) are given

by (see table 5)

Υ̃µ
o(n) =

n−1∑
m=1

n−2Cm−1

(
ν̃o1,mṼ

µ
o1,m + ν̃o2,mṼ

µ
o2,m

)
, (5.17)

Π̃µν
o(n) =

n−1∑
m=1

n−2Cm−1

(
τ̃o1,ΛmT̃

µν
o1,Λm + τ̃o2,ΛΓmT̃

µν
o2,ΛΓm

)
+

n−1∑
m=1

n−1Cm−1τ̃o3,ΛmT̃
µν
o3,Λm

+ Pµνo

n∑
m=1

n−1Cm−1σ̃oΛmS̃oΛm. (5.18)

Sum over the relevant ‘Λ,Γ’ indices is understood. We explicitly write the m index con-

traction to emphasize that the sum runs over different values for different terms. We do

not state non-equilibrium contributions as they won’t be required in this computation.

From eq. (2.8) and eq. (3.14) we get,

∆(n)T̄ = e2σ∆̃(n)ε = e2σϑ2
o

δW eqb
(C)

δϑo
, (5.19)

∆(n)J̄ = − eσ∆̃(n)q = −eσ
δW eqb

(C)

δνo
. (5.20)

Now,

∆̃(n)ε =

(
∂ε

∂ϑ

)
o

∆̃(n)ϑ+

(
∂ε

∂ν

)
o

∆̃(n)ν, ∆̃(n)q =

(
∂q

∂ϑ

)
o

∆̃(n)ϑ+

(
∂q

∂ν

)
o

∆̃(n)ν. (5.21)

Therefore from eq. (5.19) and eq. (5.20) we can write,

∆̃(n)ϑΛ = ϑoEoΛΓ

δ∆̃(n)W eqb
(C)

δϑoΓ
, (5.22)

where,

EΛΓ =

(
ϑ∂ϑ∂ε

∣∣
q
, 1
ϑ
∂ϑ
∂q

∣∣
ε

ϑ∂ν∂ε
∣∣
q
, 1
ϑ
∂ν
∂q

∣∣
ε

)
, ϑΛ = {ϑ, ν} . (5.23)

Similarly comparing the T̄ i equations in (2.8) and (3.14) we get,

εo + Po
ϑo

∆̃(n)vi = ϑoνo
∂W eqb

(C)

∂Ai
− e−σ

∂W eqb
(C)

∂ai
, (5.24)

which can be written as,

∆̃(n)vi = (−)Λ µoΛ

P
(1,0)
o

δ∆̃(n)W eqb
(C)

δaΛi
, (5.25)

where,

AΛ = ∂ΓPEΓΛ =
(
ϑ∂P∂ε

∣∣
q
, 1
ϑ
∂P
∂q

∣∣
ε

)
, µΛ = {ϑ, νϑ} , aiΛ =

{
ϑ̃ai, Ai

}
. (5.26)
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One can check that EΛΓ is symmetric matrix and ∂Λ = ∂
∂ϑΛ

. We would like to em-

phasize that these are purely notations, to make the calculations tractable and easy to

digest. There is a summation on repeated Λ,Γ indices. Now comparing T̄ ij and J̄ i in

eq. (2.8) with eq. (3.14) at parity-odd subleading derivative order, we have corrections to

constitutive relations

1

ϑo
π̃ijo(n) = 2

δ∆̃(n)W eqb
(C)

δgij
− gijAoΛ

δ∆̃(n)W eqb
(C)

δϑoΛ
− 1

ϑo
∆̃(n−1)πij(1),

P (1,0)
o ς̃ io(n) = ϑoSoΛ

δ∆̃(n)W eqb
(C)

δaΛi
− P (1,0)

o ∆̃(n−1)ς i(1), (5.27)

where,

SΛ =
∂P

∂µΛ̄

= {q, s} . (5.28)

Λ̄ swaps the value of Λ : 1↔ 2. The generating functional ∆̃(n)W eqb
(C) contain all scalars

S̃oΛm. But one can check that S̃o1m can be connected to S̃o2m by a total derivative. So we

take the partition function

∆̃(n)W eqb
(C) =

∫
d2n−1x

√
g

n∑
m=1

n−1Cm−1S̃mS̃o2,m. (5.29)

We compute the variation of generating functional with respect to different fields and

find that

δ∆̃(n)W eqb
(C)

δgij
= 0,

δ∆̃(n)W eqb
(C)

δϑoΛ
= −(−)Λ

n∑
m=1

n−1Cm−1S̃(1,0)
m S̃oΛ̄,m,

δ∆̃(n)W eqb
(C)

δaΛi
= (n− 1)

n−1∑
m=1

n−2Cm−1S̃(1,0)
m+2−ΛṼ

i
o2,m. (5.30)

Using the form of lower order currents corrections from eq. (5.16) we can write,

∆̃(n−1)πij(1) = −2ηo∆̃
(n−1)σij − ζogij∆̃(n−1)Θ

= −2ηoϑo
n−1Cm−1∂Λ

(
αo(m)

ϑo

)
T̃ij
o1,Λm

− ηo n−2Cm−1(n− 1)αo(m+2−Λ)T̃
ij
o2,Λm

− gijζoϑo n−1Cm−1∂Λ

(
αo(m)

ϑo

)
S̃oΛm (5.31)

∆̃(n−1)ς i(1) = λo3∆̃(n−1)E i

= λo3
n−2Cm−1(n− 1)

[
αo(m+1) + νoαo(m)

]
Ṽ
i
o1m. (5.32)
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One can now use the results, obtained in eqs. (5.30) and (5.32) in eq. (5.27) and comparing

these expressions with eq. (5.18) to get the constraints,

τ̃1,Λm = 2ηϑ∂Λ

(αm
ϑ

)
, τ̃2,Λm = η(n− 1)α(m+2−Λ), τ̃3,ΛΓm = 0,

− 1

A2

(
σ̃1m −

ζ

2η
τ̃1,1m

)
=

1

A1

(
σ̃2m −

ζ

2η
τ̃1,2m

)
= P (1,0)χ̃m,

ν̃1m = −λ3(n− 1) (αm+1 + ναm) , ν̃2m = −(n− 1) (qχ̃m+1 + sχ̃m) . (5.33)

Hence everything is determined in terms of a known function αm and a new coefficient

χ̃m. Note that if we had used the 2n-assymetrization condition eq. (4.17) to get rid of one

traceless symmetric tensor to start with; a consistent choice would have been to remove

T̃
µν
3,Λ1m entirely and T̃

µν
3,Λ2m for m = 1 (see table 5). The coefficients of these terms are set to

zero already by our constraints, which means the other leftover constraints are independent.

Finally we get the corrections to fluid variables using eq. (5.25) as

∆̃(n)ϑΛ = n−1Cm−1(−)ΓEoΛΓχo(m)S̃oΓ̄,m,

∆̃(n)vi = (n− 1)

n−1∑
m=1

n−2Cm−1

(
χo(m+1) − νoχo(m)

)
Ṽ
i
o2,m. (5.34)

5.3.2 Parity-even

Next, we present the results for sub-leading order (two-derivative) parity even sector for

the fluid. From counting we can verify that at the second order, parity-even corrections

(at eqb.) are given by (see table 2):

Υµ
o(2) =

∑
#

νo#Vµ
o#,

1

ϑo
Πµν
o(2) =

∑
#

τo#Tµν
o# + Pµνo

∑
#

σo#So#. (5.35)

# refers to sum over all relevant indices. Now comparing eq. (2.8) with eq. (3.14)

at parity-even subleading derivative order, and performing a similar manipulation as last

section, we have corrections to constitutive relations:

1

ϑo
πijo(2) = 2

δ∆(2)W eqb
(C)

δgij
− gijAoΛ

δ∆̃(2)W eqb
(C)

δϑoΛ
− P (1,0)

o ∆̃(1)v〈i∆̃(1)vj〉

+ gij∆̃(1)vk

{
Ao2ς̃

k
o(1)+

(
1

ϑo
Ao1P

(1,0)
o +

1

2ϑo
Ao2P

(0,1)
o − 1

3
P (1,0)
o

)
∆̃(1)vk

}
,

P (1,0)
o ς io(2) = ϑoSoΛ

δ∆(2)W eqb
(C)

δaΛi
− P (1,0)

o ∆̃(1)ς̃ i(1) , (5.36)

while the fluid variables get the corrections:

∆̃(2)ϑΛ =ϑoEoΛΓ

δ∆̃(2)W eqb
(C)

δϑoΓ
−
(

AoΛ−
1

2
P (0,1)
o EoΛ2

)
∆̃(1)vi∆̃

(1)vi − ϑoEoΛ2∆̃(1)viς̃
i
o(1) ,

∆(2)vi=(−)Λ µoΛ

P
(1,0)
o

δ∆(2)W eqb
(C)

δaΛi
. (5.37)
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Notice that the boxed terms only contribute for four dimensional fluids (n = 2). Out

of the scalars enlisted in table 2, So1Λ can be related to others by a total derivative. Hence

∆(2)W eqb
(C) is given by:

∆(2)W eqb
(C) = −1

2

∫ {
dxi
}√

g
{
SRSo4 + SfΛΓSo3(ΛΓ) + SϑΛΓSo2(ΛΓ)

}
. (5.38)

Now we can find the variations of ∆(2)W eqb
(C) ,

2
δ∆(2)W eqb

(C)

δgij
= −∂ΛSRTij

o1,Λ − (∂Λ∂ΓSR − SϑΛΓ) Tij
o2,ΛΓ + 2SfΛΓTij

o3,ΛΓ + SRTij
o4

+gij

[(
1− 1

d− 1

)
∂ΛSRSo1,Λ

+

(
∂Λ∂ΓSR −

1

d− 1
∂Λ∂ΓSR −

1

2
SϑΛΓ +

1

d− 1
SϑΛΓ

)
So2,ΛΓ

−1

2

(
1− 4

d− 1

)
SfΛΓSo3,ΛΓ −

1

2

(
1− 2

d− 1

)
SRSo4

]
, (5.39)

δ∆(2)W eqb
(C)

δϑoΣ
= SϑΣΛSo1,Λ +

(
∂(ΓSϑΛ)Σ −

1

2
∂ΣSϑΛΓ

)
So2,ΛΓ

−1

2
∂ΣSfΛΓSo3,ΛΓ −

1

2
∂ΣSRSo4, (5.40)

δ∆(2)W eqb
(C)

δaΛi
= 2SfΛΓVi

o1,Γ − 2∂ΣSfΛΓVi
o2,ΓΣ. (5.41)

Using the form of lower order corrections from eq. (5.5) for n = 2 we can write,

∆̃(1)ς̃ i(1) = ωoΣl
i
oΣ

= (−)ΣωoΣ
{
µoΣ̄αΛ̄Vi

o1,Λ − ∂Γ (µoΣ̄αΛ̄) Vi
o2,ΛΓ

}
. (5.42)

We can now put the variations of generating functional along with lower order correc-

tions worked out above in eq. (5.36). Using eqs. (5.10), (5.11) and eliminating partition

function coefficients S’s we will find following 7 constraints,

τ1,Λ + ∂Λτ4 = 0, (5.43)

σo1,Λ =
d− 2

d− 1
∂Λτ4 −AΣ∂Σ∂Λτ4 −AΣτ2,ΣΛ, (5.44)

2σ2,ΛΓ = ∂Λ∂Γτ4 −AΣ∂Σ∂Λ∂Γτ4 −
d− 3

d− 1
τ2,ΛΓ

−2AΣ∂(Λτ2,Γ)Σ + AΣ∂Στ2,ΛΓ, (5.45)

4σ3,ΛΓ = −d− 5

d− 1
τ3,ΛΓ + AΣ∂Στ3,ΛΓ, (5.46)

2σ4 = −d− 3

d− 1
τ4 + AΣ∂Στ4, (5.47)

ν1,Λ =
ϑ

P (1,0)
SΓτ3,ΛΓ, (5.48)

ν2,ΓΛ = − ϑ

P (1,0)
SΣ∂Λτ3,ΓΣ. (5.49)
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Coincidently none of the constraints depend on n = 2 special contributions. On the

other hand fluid variables corrections are given by eq. (5.37):

∆̃(2)ϑΩ = ϑoEoΩΣ

[
(τo2,ΣΛ + ∂Λ∂Στo4) So1,Λ

+

(
∂(Γτo2,Λ)Σ −

1

2
∂Στo2,ΛΓ +

1

2
∂Σ∂Λ∂Γτo4

)
So2,ΛΓ

−1

4
∂Στo3,ΛΓSo3(ΛΓ) −

1

2
∂Στo4So4

]
+

1

2

[
1

2
ϑoEoΩΣ∂Σ

(
P (1,0)
o αoΛ̄αoΓ̄

)
−AoΩαoΛ̄αoΓ̄

+ϑoEoΩ2αoΛ̄

(
1

2
qoαoΓ̄ − ωoΓ̄

)]
So3(ΛΓ)

, (5.50)

∆(2)vi = (−)Λ µoΛ

P
(1,0)
o

[(
τo3,ΛΓ − P (1,0)

o αoΛ̄αoΓ̄

)
Vi
o1,Γ

−∂Σ

(
τo3,ΛΓ − P (1,0)

o αoΛ̄αoΓ̄

)
Vi
o2,ΓΣ

]
(5.51)

This completes our calculation of subsubleading derivative order fluid.

6 Conclusions

In this paper we computed the energy momentum tensor and charge current for a fluid

system in 2n dimensions with U(1) anomaly up to subleading order in derivative expansion

(for both parity odd and parity even sectors) from the equilibrium partition function of

the fluid. We described a novel counting prescription to construct the fluid data. However,

an important issue we encountered here is that it is non-trivial to find independent vectors

and tensors at arbitrary derivative order. But we were still able to find the independent

transport coefficients and distinct constitutive relations. We showed that the knowledge of

independent scalars at the required derivative order is sufficient for this purpose. This is

a powerful observation and it enables us to carry on the computation at (n+ 1) derivative

order, where, we could find the independent scalars. We observe that the parity odd trans-

port coefficients which appear at n derivative order in constitutive relations are constrained

and some of them depend on the first order transport coefficients like η, ζ etc. It would be

interesting to find the similar dependence in a holographic set up [17]. We plan to explore

the holographic computation in future.

It is also interesting to find the fluid constitutive relations in presence of both U(1) and

gravitational anomaly in arbitrary 2n dimensions. But, since the gravitational anomaly

appears at two higher derivative level compared to the U(1) anomaly in derivative ex-

pansion1, it requires to carry on our analysis to one higher derivative (sub-sub-leading)

order, i.e. to (n+ 1) derivative order. Fortunately, as mentioned earlier, even at this order,

we could determine the independent scalars and hence, in principle, the computation is

possible. We have carried a large part of it in appendix B.
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A Kaluza-Klein decomposition

If a (d+ 1)-dim spacetime M(d+1) has a preferred time-like direction ωµ, it can be decom-

posed into S1 ×M(d), where S1 is the euclidean time circle. A k-rank tensor decompose

in 2k parts in this scheme:

1. S does not decompose.

2. Vµ decompose in ωµVµ and PµνVν .

3. T µν decompose in ωµωνTµν , ωµPανo Tµν , Pαµo ωνTµν and Pαµo P βνo Tµν ,

and so on. Where Pµνo = Gµν − ωµων

Gαβωαωβ
is the projection operator. If we are studying

theory at equilibrium, we already have a preferred direction along the Killing vector of the

theory ωµ = ∂0. In this case we know that a (d+ 1)-vector Vµ will yield a scalar:

ωµVµ ⇒ V0 := V, (A.1)

and a (d)-vector:

Pµνo Vν ⇒ V i := V i. (A.2)

Hence we see that a U(1) gauge field Aµ will be decomposed in
{
A0(~x),Ai(~x)

}
. Similarly

a tensor T µν decomposes in T00, T i0, T i
0 , T ij . It is the similar way the metric Gµν on

M(d+1) decomposes, hence we define:

G00 = −e2σ, Gi0 = 0, Gij = gij , (A.3)

where we define gij as metric on M(d). Now using the diffeomorphic invariance one can

work out the full form of Gµν

ds2 = Gµνdxµdxν = −e2σ(~x)
(
dt+ ai(~x)dxi

)2
+ gij(~x)dxidxj , (A.4)

Gµν =

[
−e2σ −e2σaj
−e2σai

(
gij − aiaje2σ

)] , Gµν =

[
(−e−2σ + a2) −aj

−ai gij

]
, (A.5)

where time redefinition invariance requires that ai is an independent gauge field, named as

Kaluza-Klein gauge field. Using the euclidean time period β̃ we can define the local equilib-

rium temperature of the theory as: ϑo = 1/βo = e−σ/β̃. Our higher dimensional metric is

hence disintegrated in a scalar (Temperature), a gauge field and a lower dimensional metric.
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We can now use the metric Gµν to raise/lower the components of vectors:

Vi = gijVj + aiV0, V0 = −e−2σV0 − ajVj . (A.6)

which are not Kaluza-Klein gauge invariant. From here we read out the (d)-covectors:

Vi = (Vi − aiV0) . (A.7)

Determinant of metric in two spaces can be related as:

G = − detGµν = e2σ det gij = e2σg. (A.8)

We have the Levi-Civita symbol in lower spatial dimensions:

εijk... = eσε0ijk... = −e−σε ijk...0 , (A.9)

where ε0123... = 1/
√
G and ε123... = 1/

√
g.

It is useful to see how higher dimensional contractions behave in lower dimensions:

AµBµ = −e−2σAB +AiBi (A.10)

εiµ1µ2...µn−1Aµ1µ2...µn−1 , = e−σεij1j2...jn−2
∑
a

(−1)aAj1...ja−10ja...jn−2 . (A.11)

A.1 Derivatives of metric

Once the metric is known we can reduce the derivatives of metric, i.e. the Christoffel Symbol

and the Riemann Tensor. The Christoffel Symbol is defined by:

Γ̂λµν =
1

2
Gλα (∂µGαν + ∂νGαµ − ∂αGµν) . (A.12)

Pretending it to be a tensor at the moment, if we define its indices to be raised and

lowered with the metric Gµν . We can reduce it for Kaluza-Klein form of the metric:

Γ̂000 =0, Γ̂i00 =− e2σ ∂
iϑo
ϑo

, Γ̂ i
0 0 =Γ̂ i

00 = e2σ ∂
iϑo
ϑo

,

Γ̂ij0 =Γ̂i j0 =
1

2
e2σf ij , Γ̂ ij

0 =− 1

2
e2σgiagjb (∂aab + ∂baa) , Γ̂kij =gilgjmΓklm, (A.13)

where Γkij is Christoffel Symbol on M(d), which is raised and lowered by gij . Also we

define KK field tensor:

f ij = ∇iaj −∇jai. (A.14)

Γ̂ ij
0 is not KK gauge invariant, even though it has time index down and spatial index

up, which is the manifestation of Γ̂ not being a tensor.

Lets define the higher dimensional covariant derivative as ∇̂ and lower dimensional as

∇, whereas the usual derivative is given by ∂. We can check that:

∇̃iVj = ∇iV j +
1

2
f ijV,

∇̂iV0 = ∇iV + βoV∇iϑo +
1

2
e2σf ijVj ,

∇̂0V i = V
∇iϑo
ϑo

+
1

2
e2σf ijVj ,

∇̂0V0 = e2σV i∇iϑo
ϑo

, (A.15)
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similarly,

∇̂iVjk = ∇iVjk +
1

2
f ijV k

0 +
1

2
f ikVj0,

∇̂iVj0 = ∇iVj0 +
1

2
f ijV00+ = Vj0

∇iϑo
ϑo

+
1

2
e2σf ikVjk,

∇̂iV00 = ∇iV00 + 2V00
∇iϑo
ϑo

+
1

2
e2σf ik

(
V k

0 + Vk0
)
,

∇̂0V ij = V i0
∇jϑo
ϑo

+ V j
0

∇iϑo
ϑo

+
1

2
e2σf jkV

ik +
1

2
e2σf ikVkj ,

∇̂0V i0 = V00
∇iϑo
ϑo

+
1

2
e2σf ikVk0 + e2σV ij∇jϑo

ϑo
,

∇̂0V00 = e2σ
(
V i0 + V i

0

) ∇iϑo
ϑo

. (A.16)

Finally the Riemann Curvature Tensor is defined using an arbitrary vector Xµ as:

RµνρσXσ =
1

2

(
∇̂µ∇̂ν − ∇̂ν∇̂µ

)
Xρ, (A.17)

using which we can define:

Rµν = R α
µαν , R = Rαα. (A.18)

Now a straight away computation will yield:

R = R− 4
1

ϑ2
o

∇iϑo∇iϑo + 2
1

ϑo
∇i∇iϑo +

1

4
e2σf ijfij ,

uµuνRµν = e−2σR00 = 2
1

ϑ2
o

∇iϑo∇iϑo −
1

ϑo
∇i∇iϑo +

1

4
e2σf ijfij ,

uµRiµ = e−σRi0 = eσ
1

2

(
∇kfki +

3

ϑo
f ik∇kϑo

)
,

Rij = Rij − 2
1

ϑ2
o

∇iϑo∇jϑo +
1

ϑo
∇i∇jϑo +

1

2
e2σf iaf

ja,

uαuβRi jα β = e−2σRi j0 0 = 2
1

ϑ2
o

∇iϑo∇jϑo −
1

ϑo
∇i∇jϑo +

1

4
e2σf iaf

ja,

Rijkαuα = e−σRijk0 =
1

2ϑo
∇kf ij1 −

1

ϑ2
o

(
f ij1 ∇

kϑo +
1

2
f ik1 ∇jϑo −

1

2
f jk1 ∇

iϑo

)
. (A.19)

Here Rijkl is defined to be lower dimensional Riemann tensor, and Rij = Rikjk,

R = Rii.

A.2 Derivatives of gauge field

Now let us have a look at derivatives of gauge field Aµ. Being a vector it decomposes as:

A = A0 = −e2σ
(
A0 + ajA

j
)
, Ai = Ai, Ai = (Aj − ajA) . (A.20)

The gauge transformation Aµ → Aµ + ∂µΛ translates to:

A→ A, Ai → Ai + ∂iΛ. (A.21)
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Hence Ai is a gauge field onM(d), while A is a scalar. Using β̃ (euclidean temperature)

we define the local equilibrium potential νo = β̃A. Higher dimensional field tensor however

decomposes as:

Fµν = ∇̂µAν − ∇̂νAµ ⇒ F ij = F ij + eσϑoνof
ij , F i0 = eσϑo∇iνo, (A.22)

where,

F ij = ∇iAj −∇jAi. (A.23)

Now we define the four vector electric field:

Eµ = Fµνuν ⇒ E0 = −eσϑovi∇iνo, E i = −e−2σveσϑo∇iνo + vj
(
F ij + eσϑoνof

ij
)
.

(A.24)

B Subsubleading order fluid

In this appendix we extend the counting discussed in section 4 to subsubleading order fluid.

We form a complete set of data at this order and classify the respective scalars, vectors

and symmetric tensors. Later using the independent scalars at this order we construct

an equilibrium partition function and compute its variation. We were however unable to

process the constraints explicitly, as the calculations are analytically intractable.

B.1 Counting at equilibrium

At subsubleading order (D = n+1, s = 3), index families required are: 2D = 2n+2 (VCC
ε ),

2D−1 = 2n+1 (TC
ε ), 2D−2 = 2n (VC

ε ), 2D−3 = 2n−1 (Tε) and 2D−4 = 2n−2 (Vε). We

only compute terms surviving at equilibrium, as non-equilibrium pieces are not required till

subsubsubleading order parity-even or subsubsubsubleading order parity-odd calculation.

2D family: 2D family was already discussed in section 4.3.1, but this time since four

indices are free from ε, two (2, 4, 2) can appear with two antisymmetric indices of Rijkl

contracted. We will find 3 combinations — (19n− 20) vectors of type VCC
ε :

1. 2(2, 4, 2)⊕ (n− 3)(2, 2, 1): 1 possibility — (n− 2) vectors〈
m−1

n−m−2

〉ijklmK ab
jk Klmab

∣∣∣n−2

m=1
.

2. (2, 4, 2)⊕ (n− 1)(2, 2, 1) — 4 possibilities — (8n− 10) vectors〈
m−1
n−m

〉iK∣∣∣n
m=1

,
〈
m−1

n−m−1

〉ijkXΛjaKak
∣∣∣n−1

m=1
,
〈
m−1

n−m−1

〉ijkK ab
jk XΛab

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉ijklmK ab
jk XΛalXΓbm

∣∣∣n−2

m=1
.

3. (n+ 1)(2, 2, 1) — 3 possibilities — (10n− 8) vectors〈
m−1
n−m

〉iX jkΛ XΓjk

∣∣∣n
m=1

,
〈
m−1

n−m−1

〉ijkXΛjaXΓkbX abΣ

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉ijklmX1ajX a2kX1blX b2m
∣∣∣n−2

m=1
.
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2D−1 family: 2D−1 family was already discussed in section 4.3.2, but this time three

indices are free from ε. So only one among (2, 4, 2) and (5
3 , 5, 3) can appear, and not more

that once. We will find 5 combinations of type TC
ε :

1. (2, 4, 2) ⊕ (n − 2)(2, 2, 1) ⊕ (1, 1, 1): 3 possibilities — (8n − 12) symmetric traceless

tensors

〈
m−1

n−m−1

〉〈ijk
∂jϑΛK a〉

k

∣∣∣n−1

m=1
,
〈
m−1

n−m−1

〉〈ijkK a〉b
jk ∂bϑΛ

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉〈ijklm
∂jϑΛXΓkbK

a〉b
lm

∣∣∣n−2

m=1
.

2. (n)(2, 2, 1)⊕ (1, 1, 1): 5 possibilities

(a) Contraction between (2, 2, 1) and (1, 1, 1) — (12n− 8) symmetric traceless ten-

sors and (4n) scalars〈
m−1
n−m

〉〈iX j〉kΛ ∂kϑΓ

∣∣∣n
m=1

,
〈
m−1

n−m−1

〉〈ijkX l〉ΛjXΓka∂
aϑΣ

∣∣∣n−1

m=1
.

Scalars: we can take trace and get 4n scalars:〈
m−1
n−m

〉
i
X ikΛ ∂kϑΓ

∣∣∣n
m=1

(b) Contraction between (2, 2, 1) and (2, 2, 1) — (14n − 18) traceless symmetric

tensors and (2n− 2) scalars〈
m−1

n−m−1

〉〈ijkX a1jX2ak∂
l〉ϑΛ

∣∣∣n−1

m=1
.
〈
m−1

n−m−1

〉〈ijkXΛjaX l〉aΓ ∂kϑΣ

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉〈ijklmX a1jX2akX
n〉
Λl ∂mϑΓ

∣∣∣n−2

m=1
.

Scalars: taking trace we get 2n− 2 scalars:〈
m−1

n−m−1

〉ijkX a1jX2ak∂iϑΛ

∣∣∣n−1

m=1
.

3. (2, 4, 2)⊕(n−3)(2, 2, 1)⊕(3
2 , 3, 2): 1 possibility — (2n−4) traceless symmetric tensors

〈
m−1

n−m−2

〉〈ijklmK a〉b
jk ∂bXΛlm

∣∣∣n−2

m=1
.

4. (n− 1)(2, 2, 1)⊕ (3
2 , 3, 2): 7 possibilities

(a) Contraction within ( 3
2 , 3, 2) — (6n − 4) traceless symmetric tensors and

(2n) scalars 〈
m−1
n−m

〉〈i
∂kX

kj〉
Λ

∣∣∣n
m=1

,
〈
m−1

n−m−1

〉〈ijkX a〉Λj∂
bXΓbk

∣∣∣n−1

m=1
.

Scalars: taking trace we get 2n scalars:〈
m−1
n−m

〉i
∂kXΛki

∣∣∣n
m=1

.
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(b) Contraction between (2, 2, 1) and (3
2 , 3, 2) — (20n − 28) traceless symmetric

tensors and (4n− 4) scalars.〈
m−1

n−m−1

〉〈ijkXΛjb∂
bX a〉Γk

∣∣∣n−1

m=1
,
〈
m−1

n−m−1

〉〈ijkXΛjb∂
a〉X bΓk

∣∣∣n−1

m=1
,

〈
m−1

n−m−1

〉〈ijkX a〉bΛ ∂bXΓjk

∣∣∣n−1

m=1
,
〈
m−1

n−m−2

〉〈ijklmX a〉ΛjXΓkb∂
bXΣlm

∣∣∣n−2

m=1
.

Scalars: taking trace we get 4n− 4 scalars:〈
m−1

n−m−1

〉ijkXΛib∂
bXΓjk

∣∣∣n−1

m=1
.

(c) Contraction between (2, 2, 1) and (2, 2, 1) — (2n−4) traceless symmetric tensors〈
m−1

n−m−2

〉〈ijklmX b1jX2bk∂
a〉XΛlm

∣∣∣n−2

m=1
.

5. (n− 2)(2, 2, 1)⊕ (5
3 , 5, 3): 3 possibilities — (4n− 6) traceless symmetric tensors

〈
m−1

n−m−1

〉〈ijk
∂aKal〉jk

∣∣∣n−1

m=1
,
〈
m−1

n−m−1

〉〈ijk
∂jK a〉

k

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉〈ijklm
∂jK a〉b

kl XΛbm

∣∣∣n−2

m=1
.

2D − 2 family: 2D − 2 family was already discussed in section 4.3.2. Here again,

one among (2, 4, 2) and (5
3 , 5, 3) can appear, and not more that once. We will find 7

combinations — (39n− 46) vectors of type VC
ε :

1. (2, 4, 2)⊕ (D − 4)(2, 2, 1)⊕ 2(1, 1, 1): no combinations possible

2. (n− 1)(2, 2, 1)⊕ 2(1, 1, 1): 3 possibilities — (12n− 10) vectors

〈
m−1
n−m

〉i
∂kϑΛ∂

kϑΓ

∣∣∣n
m=1

,
〈
m−1

n−m−1

〉ijkXΛja∂
aϑΓ∂kϑΣ

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉ijklmX a1jX2ak∂lϑ1∂mϑ2

∣∣∣n−2

m=1
.

3. (n− 1)(2, 2, 1)⊕ (1, 2, 2): 2 possibilities — (6n− 4) vectors

〈
m−1
n−m

〉i
∂k∂

kϑΛ

∣∣∣n
m=1

,
〈
m−1

n−1−m
〉ijkXΛja∂

a∂kϑΓ

∣∣∣n−1

m=1
.

4. (n− 2)(2, 2, 1)⊕ (3
2 , 3, 2)⊕ (1, 1, 1): 3 possibilities — (16n− 24) vectors

〈
m−1

n−m−1

〉ijk
∂jϑΛ∂

aXΓak

∣∣∣n−1

m=1
,
〈
m−1

n−m−1

〉ijk
∂aXΛjk∂

aϑΓ

∣∣∣n−1

m=1
,〈

m−1
n−m−2

〉ijklmXΛja∂
aXΓkl∂mϑΣ

∣∣∣n−2

m=1
.

5. (n− 2)(2, 2, 1)⊕ (4
3 , 4, 3): 1 possibility — (2n− 2) vectors

〈
m−1

n−m−1

〉ijk
∂a∂

aXΓjk

∣∣∣n−1

m=1
.
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6. (n− 3)(2, 2, 1)⊕ (5
3 , 5, 3)⊕ (1, 1, 1): no possiblities

7. (n− 3)(2, 2, 1)⊕ 2(3
2 , 3, 2): 1 possibility — (3n− 6) vectors

〈
m−1

n−m−2

〉ijklm
∂aXΛjk∂

aXΓlm

∣∣∣n−2

m=1
.

2D − 3 family: we are interested in combinations in (2D − 3) family which survive at

equilibrium. We generated them through a Mathematica code and found 22 of them. We

won’t list all of them here, because it won’t be required. Due to properties of Tε, most of

them will not contribute. We will be only left with 3 combinations — (7n− 9) symmetric

traceless tensors:

1. (n− 2)(2, 2, 1)⊕ 3(1, 1, 1): 1 possibility — (2n− 2) symmetric traceless tensors

〈
m−1

n−m−1

〉〈ijk
∂jϑ1∂kϑ2∂

l〉ϑΛ

∣∣∣n−1

m=1
.

2. (n−2)(2, 2, 1)⊕(1, 1, 1)⊕(1, 2, 2): 1 possibility — (4n−4) symmetric traceless tensors

〈
m−1

n−m−1

〉〈ijk
∂jϑΛ∂k∂

l〉ϑΓ

∣∣∣n−1

m=1
.

3. (n−3)(2, 2, 1)⊕(3
2 , 3, 2)⊕2(1, 1, 1): 1 possibility — (2n−4) symmetric traceless tensors

〈
m−1

n−m−2

〉〈ijklm
∂jϑ1∂kϑ2∂

a〉XΛlm

∣∣∣n−2

m=1
.

2D−4 family: there are 51 combinations in (2D−4) family which survive at equilibrium.

However none of them will contribute due to properties of Vε.

All the subsubleading parity-odd data surviving at equilibrium has been summarized

in tables 6, 7, 8.

Independent scalars: as we discussed in section 4.4, we only need to construct inde-

pendent scalars which enter in equilibrium partition function. At subsubleading order one

can find antisymmetrizations which will determine S3Λm and S4ΛΓm in terms of S1Λm and

S2ΛΓm respectively:

X [i1j1
1 . . .X im−1jm−1

1 X imjm2 . . .X in−1jn−1

2 X aΛb∇̂b]ϑΓ

∣∣∣n
m=1

= 0, (B.1)

X [i1j1
1 . . .X im−1jm−1

1 X imjm2 . . .X in−1jn−1

2 ∇̂bX
ba]
Λ

∣∣∣n
m=1

= 0. (B.2)

Each of S1Λm and S2ΛΓm, on the other hand is a unique scalar per choice of the parity-

even tensor used to construct it by contracting with ε. Since antisymmetrization conditions

cannot alter the tensor structure, these scalars are independent.
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Name Term Equilibrium

Ṽµ1Λm

∣∣n
m=1

lµS1Λ

〈
m−1
n−m

〉i∇k∇kϑΛo

Ṽµ2(ΛΓ)m

∣∣n
m=1

lµS2(ΛΓ)

〈
m−1
n−m

〉i∇kϑΛo∇kϑΓo

Ṽµ3(ΛΓ)m

∣∣n
m=1

lµS3(ΛΓ)

〈
m−1
n−m

〉i
fabΛ fΓab

Ṽµ4m
∣∣n
m=1

lµS4

〈
m−1
n−m

〉i
R

Ṽµ5ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνVΛρV1Γσ

〈
m−1

n−m−1

〉ijk∇jϑΛo∇afΓak

Ṽµ6ΛΓΣm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνVΛρV2ΓΣσ

〈
m−1

n−m−1

〉ijk∇jϑΛofΓka∇aϑΣo

Ṽµ7ΛΓm

∣∣n−1

m=1

〈
m−1

n−1−m
〉µνρσ

uνXΛρα∇̂α∇̂σϑΓ

〈
m−1

n−1−m
〉ijk

fΛja∇a∇kϑΓo

Ṽµ8Λm

∣∣n−1

m=1

〈
m−1

n−1−m
〉µνρσ

uνXΛραKασ
〈
m−1

n−1−m
〉ijk

fΛjaR
a
k

Ṽµ9(ΛΓ)Σm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνXΛραXΓσβXαβΣ

〈
m−1

n−m−1

〉ijk
fΛjafΓkbf

ab
Σ

Ṽµ10ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνV

α
Λ ∇̂αXΓρσ

〈
m−1

n−m−1

〉ijk∇aϑΛo∇afΓjk

Ṽµ11Λm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνP

αβ∇̂α∇̂βXΛρσ

〈
m−1

n−m−1

〉ijk∇a∇afΛjk

Ṽµ12Λm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνK αβ

ρσ XΛαβ

〈
m−1

n−m−1

〉ijk
R ab
jk fΛab

Ṽµ13m

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνX1κρX κ2σ∇̂αϑ1∇̂βϑ2

〈
m−1

n−m−2

〉ijklm
f1ajf

a
2k∇lϑ1o∇mϑ2o

Ṽµ14m

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνX1κρX κ2σX1δαX δ2β

〈
m−1

n−m−2

〉ijklm
f1ajf

a
2kf1blf

b
2m

Ṽµ15ΛΓΣm

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνXΛκρ∇̂κXΓσαVΣβ

〈
m−1

n−m−2

〉ijklm
fΛaj∇afΓkl∇mϑΣo

Ṽµ16(ΛΓ)m

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνP

δκ∇̂δXΛρσ∇̂κXΓαβ

〈
m−1

n−m−2

〉ijklm∇afΛjk∇afΓlm

Ṽµ17(ΛΓ)m

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνK κδ

ρσ XΛκαXΓδβ

〈
m−1

n−m−2

〉ijklm
R ab
jk fΛalfΓbm

Ṽµ18m

∣∣n−2

m=1

〈
m−1

n−m−2

〉µνρσαβ
uνK δκ

ρσ Kαβδκ
〈
m−1

n−m−2

〉ijklm
R ab
jk Rlmab

Table 6. Subsubleading order parity-odd vectors at equilibrium.

B.2 Attempt for fluid constraints

In the equilibrium partition function ∆̃(n+1)W eqb
(C) we can include the scalars: S̃o1Λm,

S̃o2ΛΓm. But it can be checked that antisymmetric part of S̃o2[ΛΓ]m can be related through

a total derivative to S̃o1Λm. So we have:

∆̃(n+1)W eqb
(C) =

∫ {
xi
}√

g n−2Cm−1

{
Q1,ΛmS̃o1,Λm +Q2,ΛΓmS̃o2,(ΛΓ)m

}
. (B.3)

Sum over relevant indices is understood. Varying the partition function we will get:

δ∆̃(n+1)W eqb
(C)

δgij
= n−2Cm−1

[
Q1,Λm

(
T̃ijo9,12Λm + T̃ijo8,21Λm

)
+ 2Q2,ΛΓmT̃ijo7,ΛΓm

]
−n−3Cm−1(n− 2)

[
Q1,ΛmT̃ijo18,2Λm−Q2,ΛΓ(m+2−Σ)T̃

ij
o19,ΛΣΓm

]
, (B.4)

δ∆̃(n+1)W eqb
(C)

δϑoΛ
= n−2Cm−1

(
2∂[ΛQ1,Γ]mS̃o1,Γm−Q1,ΛmS̃o2,[12]m+∂ΛQ2,ΓΣmS̃o2,(ΓΣ)m

)
,(B.5)
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T̃µν1Λm

∣∣n
m=1

l
〈µ
mV

ν〉
1Λ

〈
m−1
n−m

〉〈i∇kfkj〉Λ

T̃µν2Λm

∣∣n
m=1

l
〈µ
mV

ν〉
2ΛΓ

〈
m−1
n−m

〉〈i
f
j〉k
Λ ∇kϑΓ

T̃µν3Λm

∣∣n−1

m=1
Ṽ
〈µ
1mV

ν〉
Λ

〈
m−1

n−m−1

〉〈ijk
fa1jf2ak∇l〉ϑΛ

T̃µν4Λm

∣∣n−1

m=1
Ṽ
〈µ
2mV

ν〉
Λ

〈
m−1

n−m−1

〉〈ijk∇jϑ1o∇kϑ2o∇a〉ϑΛo

T̃µν5ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνVΛρ∇̂σ∇̂α〉ϑΓ

〈
m−1

n−m−1

〉〈ijk∇jϑΛo∇k∇a〉ϑΓo

T̃µν6Λm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνVΛρK α〉

σ

〈
m−1

n−m−1

〉〈ijk∇jϑΛoR
a〉
k

T̃µν7ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXα〉ΛρV1Γσ

〈
m−1

n−m−1

〉〈ijk
f
a〉
Λj∇bfΓbk

T̃µν8ΛΓΣm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXα〉ΛρV2ΓΣσ

〈
m−1

n−m−1

〉〈ijk
f
a〉
ΛjfΓkb∇bϑΣo

T̃µν9ΛΓΣm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXΛραX δ〉αΓ VΣσ

〈
m−1

n−m−1

〉〈ijk
fΛjbf

a〉b
Γ ∇kϑΣo

T̃µν10ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXΛρδ∇̂α〉X δΓσ

〈
m−1

n−m−1

〉〈ijk
fΛjb∇a〉f bΓk

T̃µν11ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXΛρδ∇̂δX

α〉
Γσ

〈
m−1

n−m−1

〉〈ijk
fΛjb∇bf

a〉
Γk

T̃µν12ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνXα〉δΛ ∇̂δXΓρσ

〈
m−1

n−m−1

〉〈ijk
f
a〉b
Λ ∇bfΓjk

T̃µν13Λm

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uνVΛαK κ〉α

ρσ

〈
m−1

n−m−1

〉〈ijk∇bϑΛoR
a〉b

jk

T̃µν14m

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uν∇̂αK κ〉α

ρσ

〈
m−1

n−m−1

〉〈ijk∇bR a〉b
jk

T̃µν15m

∣∣n−1

m=1

〈
m−1

n−m−1

〉〈µνρσ
uν∇̂ρK α〉

σ

〈
m−1

n−m−1

〉〈ijk∇jR a〉
k

T̃µν16Λm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uν∇̂ρϑ1∇̂σϑ2∇̂κ〉XΛαβ

〈
m−1

n−m−2

〉〈ijklm∇jϑ1o∇kϑ2o∇a〉fΛlm

T̃µν17Λm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uνX δ1ρX2δσ∇̂κ〉XΛαβ

〈
m−1

n−m−2

〉〈ijklm
f b1jf2bk∇a〉fΛlm

T̃µν18ΛΓm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uνX δ1ρX2δσX

κ〉
ΛαVΓβ

〈
m−1

n−m−2

〉〈ijklm
f b1jf2bkf

a〉
Λl∇mϑΓo

T̃µν19ΛΓΣm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uνX κ〉ΛρX δΓσ∇̂δXΣαβ

〈
m−1

n−m−2

〉〈ijklm
f
a〉
Λjf

b
Γk∇bfΣlm

T̃µν20ΛΓm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uνVΛρXΓσδK

κ〉δ
αβ

〈
m−1

n−m−2

〉〈ijklm∇jϑΛofΓkbR
a〉b

lm

T̃µν21Λm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uν∇̂δXΛρσK κ〉δ

αβ

〈
m−1

n−m−2

〉〈ijklm∇bfΛjkR
a〉b

lm

T̃µν22Λm

∣∣n−2

m=1

〈
m−1

n−m−2

〉〈µνρσαβ
uνXΛδρ∇̂σK

κ〉δ
αβ

〈
m−1

n−m−2

〉〈ijklm
fΛbj∇kR

a〉b
lm

Table 7. Subsubleading order parity-odd symmetric traceless tensors at equilibrium.

S̃1Λm

∣∣n−1

m=1
Ṽ
µ
1mVΛµ

〈
m−1

n−m−1

〉ijk
f1aif

a
2j∇kϑΛo

S̃2ΛΓm

∣∣n−1

m=1

〈
m−1

n−m−1

〉µνρσ
uνXΛµδ∇̂δXΓρσ

〈
m−1

n−m−1

〉ijk
fΛia∇afΓjk

S̃3Λm

∣∣n
m=1

lµmV1Λµ

〈
m−1
n−m

〉i∇kfΛki

S̃4ΛΓm

∣∣n
m=1

lµmV2ΛΓµ

〈
m−1
n−m

〉i
fΛij∇jϑΓo

Table 8. Subsubleading order parity-odd scalars at equilibrium.
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δ∆̃(n+1)W eqb
(C)

δaΩi
= n−2Cm−1

[
(−)Ω∂ΓQ1,ΛmṼio6,ΓΩ̄Λm−(−)ΩQ1,Λm

(
Ṽio7,Ω̄Λm +

1

2
Ṽio10,ΛΩ̄m

)
−2∂Σ∂ΓQ2,ΩΛmṼio6,ΣΛΓm+∂ΓQ2,ΩΛm

(
4Ṽio5,ΓΛm+2Ṽio7,ΛΓm+Ṽio10,ΓΛm

)
+2Q2,ΩΛm

(
2Ṽio8,Λm + Ṽio11,Λm + Ṽio12,Λm

)]
+(n− 2) n−3Cm−1

[
− 2

(
(∂ΓQ2,ΩΛ(m+2−Σ)

−1

2
∂ΓQ2,ΛΣ(m+2−Ω)

)
Ṽio15,(ΣΛ)Γm

+

(
Q2,ΩΛ(m+2−Σ) −

1

2
Q2,ΛΣ(m+2−Ω)

)(
Ṽio16,(ΣΛ)m − 2Ṽio17,(ΣΛ)m

)]
(B.6)

On the other hand from counting we can see that the third order parity-odd corrections

(at eqb.) are given by (see tables 6, 7, 8):

Υ̃µ
o(n+1) =

∑
#

φo#Ṽµo#, Π̃µν
o(n+1) =

∑
#

$o#T̃µνo# + Pµνo
∑
#

γo#S̃o#. (B.7)

# corresponds to all the relevant indices. Similar to subleading order, here also we will have

special contributions for n = 2, as 3 leading order (n−1) parity odd corrections can combine

to give a 3n − 3 order parity-odd corrections, which will be equal to n + 1 only at n = 2

(Remember we are not considering n = 1 case). Now comparing eq. (2.8) with eq. (3.14)

at parity-odd subsubleading derivative order, we have corrections to constitutive relations:

1

ϑo
π̃ijo(n+1) = 2

δ∆̃(n+1)W eqb
(C)

δgij
− gijAoΛ

δ∆̃(n+1)W eqb
(C)

δϑoΛ
+ gij

2

ϑo
AoΛ∂ΛPo∆̃

(n−1)vk∆(2)vk

+ gijAo2∆̃(n−1)vi

(
ς io(2) + ∆̃(1)ς̄ i(1)

)
− gijAo2∆(2)vk

(
qo∆̃

(n−1)vk − ς̃ko(n−1)

)
− 2P (1,0)

o ∆̃(n−1)v(i∆(2)vj) − 1

ϑo

(
∆̃(n−1)πij(2) + ∆̃(n)πij(1)

)
,

P (1,0)
o ς̃ io(n+1) = ϑoSoΛ

δ∆̃(n+1)W eqb
(C)

δaΛi
−
[
P (1,0)
o ∆(2)q − 1

ϑ2
o

P (0,1)
o ∆(2)(ε+ P )

]
∆̃(n−1)vi

+ qo∆̃
(n−1)vj

(
3

2
P (1,0)
o ∆̃(1)vi∆̃(1)vj +

1

ϑo
πijo(2)

)
− P (1,0)

o

(
∆(2)ς̃ i(n−1) + ∆̃(n−1)ς i(2) + ∆̃(n)ς i(1)

)
, (B.8)

while the fluid variables get corrections:

∆̃(n+1)vi = (−)Λ µoΛ

P
(1,0)
o

δ∆̃(n+1)W eqb
(C)

δaΛi
− 1

P
(1,0)
o

∆̃(n−1)vj

(
1

ϑo
∆(2)(ε+ P )gij +

1

ϑo
πijo(2)

)
− 3

2
∆̃(1)vi∆̃(1)vj∆̃(1)vj ,
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∆̃(n+1)ϑΛ = ϑoEoΛΓ

δ∆̃(n+1)W eqb
(C)

δϑoΓ
− 2AoΛ∆̃(n−1)vk∆(2)vk

−EoΛ2ϑo∆̃
(n−1)vi

(
ς io(2) + ∆̃(1)ς̄ i(1)

)
+EoΛ2ϑo∆

(2)vi

(
qo∆̃

(n−1)vi − ς̃ io(n−1)

)
.

(B.9)

From here onwards in principle the way would be to solve eq. (B.8) and find constraints

for transport coefficients appearing in eq. (B.7). To solve we would need to plug in the fluid

variable corrections to all lower orders, along with corrections to lower order constitutive

relations due to fluid variable corrections. The terms which were zero at equilibrium at

lower orders will also start to contribute by gaining the fluid variable corrections. Leav-

ing aside terms specifically for n = 2, still we would have to deal with a large mess in

eq. (B.8) which is analytically not quite tractable. So we leave these expressions at this

point for reference.

Readers are advised that expressions eqs. (B.8), (B.9) does not contain contributions

from gravitational and mixed anomaly, and conserved Chern Simons form. Recall that

while we set up relations eq. (3.14), we only used the form of anomalous currents eq. (2.2)

and conserved Chern-Simons form eq. (3.9) to subleading derivative order. At subsublead-

ing order, they will receive further gravitational corrections.
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