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1 Introduction

In this paper we continue the study initiated in [1], whose ultimate goal is to relate scat-

tering amplitudes in N = 4 super Yang-Mills (SYM) theory, and their properties, to the

dilatation operator in the same theory. In a sense, we retrace the history of the develop-

ments in the calculation of loop amplitudes triggered by Witten’s twistor string theory [2]:

in [1] we employed MHV diagrams [3] at loop level [4] in order to compute the dilatation

operator at one loop; here, we proceed to apply a powerful variant of unitarity [5, 6] known

as generalised unitarity [7, 8] which, as we shall see, allows for an even more efficient cal-

culation of the dilatation operator. As generalised unitarity turned out be more practical

than loop MHV diagrams, we will see how our use of generalised unitarity will further

simplify the already remarkably simple calculation of the dilatation operator performed

with MHV rules.

The use of unitarity in deriving the dilatation operator is welcome also from a con-

ceptual point of view, since the only ingredients of the calculation are on-shell amplitudes

— with no off-shell information being introduced. This supports the hope that using this

approach one may be able to connect directly the amplitudes and their hidden structures

and symmetries to the integrability of the dilatation operator in N = 4 SYM.

At one loop, the no-triangle property [5] of the one-loop S-matrix ofN = 4 SYM implies

that maximal cuts employed in [8] are enough to completely determine all amplitudes of

the theory. Similarly, we identify certain quadruple cuts which are sufficient to determine

the dilatation operator at one loop. The reason why this is correct lies in the simplicity

of the object under consideration, namely a two-point function, or a single-scale object

in momentum space. At one loop there are precisely four fields to be connected, which

explains why quadruple cuts are enough.

In more detail, we will focus on the dilatation operator in the SO(6) and SU(2|3) sectors

of N = 4 SYM, which we will derive by computing the two-point functions 〈O(x1)Ō(x2)〉
of the appropriate composite operators. The SO(6) sector was studied in [9], where the

connection to integrable spin chains was first made, and is closed (only) at one loop. The

SU(2|3) sector is closed to all loops and was considered first in [10]. At one loop and
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in the planar limit, only contractions of pairs of adjacent fields survive. In all cases we

consider, the result of our calculation turns out to be proportional to the quadruple cut

of the same integral appearing in the original one-loop calculation performed by Minahan

and Zarembo. This integral is given by

I(x12) =

∫
dDz ∆2(x1 − z) ∆2(x2 − z) , (1.1)

where x12 := x1 − x2 and

∆(x) := −π
2−D

2

4π2
Γ

(
D

2
− 1

)
1

(−x2 + iε)
D
2
−1

, (1.2)

is the scalar propagator in D dimensions. In momentum space, it appears as the Fourier

transform of the simplest single-scale integral, namely a double bubble,

I(x12) =

∫ 4∏
i=1

dDLi
(2π)D

ei(L1+L2)·x12

L2
1 L

2
2 L

2
3 L

2
4

(2π)D δ(D)

(
4∑
i=1

Li

)

=

∫
dDL

(2π)D
eiL·x12

∫
dDL1

(2π)D
dDL3

(2π)D
1

L2
1 (L− L1)2 L2

3 (L+ L3)2
,

(1.3)

where L := L1 + L2. By using the quadruple cut where the propagators with momenta

L1, L2 := L − L1, L3 and L4 := L + L3 are put on shell, we will be able to identify the

coefficient of this double bubble in all relevant cases — without ever performing an integral.

The cut double bubble can then be lifted to a full integral, and by picking its ultraviolet

(UV) divergence I(x12)
∣∣
UV

,

I(x12)
∣∣
UV

=
1

ε
· 1

8π2
· 1(

4π2x212
)2 , (1.4)

we can immediately write down the dilatation operator. Let us also mention that other

applications of unitarity to the calculation of n-point correlators and correlation functions

of Wilson lines have appeared in [11–13]. It is worth stressing the two key reasons why

generalised unitarity is particularly powerful for the case considered here, namely that of the

two-point function. First, as we have already mentioned, quadruple cuts are precisely the

right set of cuts to identify the relevant loop integral; furthermore, the relevant integrals are

guaranteed to have a single scale. The cut integral can then be lifted to a full loop integral

without introducing spurious discontinuities, in complete analogy to the case of splitting

amplitudes studied in [14]. Finally, we also note that our approach to the computation of

the dilatation operator differs from that of [15, 16] in that no infrared divergences appear

at any stage in our calculation.

The rest of the paper is organised as follows. In the next section we use generalised

unitarity to obtain the dilatation operator in the SO(6) sector. In section 3 we move on

to the SU(2|3) sector. This case is particularly interesting as it involves fermions as well

as scalars. There are several contributions to consider and the structure of the dilatation

operator is more elaborate than in the pure scalar sector, hence our tests are more stringent.

Finally in section 4 we compare recent on-shell and twistorial approaches for the calculation

of the dilatation operator, and also make a few suggestions for future work.
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Figure 1. The double-bubble integral relevant for the computation of I(x12).

2 The dilatation operator in the SO(6) sector

In this section we will compute the dilatation operator of N = 4 SYM in the SO(6) sector

using generalised unitarity. This calculation was recently performed in [17] and [1] using

MHV diagrams in twistor space and momentum space, respectively. Here we depart from

these off-shell approaches in favour of a fully on-shell calculation.

Operators in the SO(6) sector have the form

OA1B1,A2B2,...,ALBL(x) := Tr
(
φA1B1(x) · · ·φALBL(x)

)
. (2.1)

At one loop and in the planar limit, it is sufficient to consider contractions of pairs of

adjacent fields (in colour space). The relevant part of each operator is then

O(x1) = · · ·φaAB(x1)φ
b
CD(x1) · · ·

(
T aT b

)i
j
,

Ō(x2) = · · ·φcA′B′(x2)φ
d
C′D′(x2) · · ·

(
T cT d

)l
m
.

(2.2)

The calculation is then effectively equivalent to that of the following two-point function〈(
φaABφ

b
CD

)
(x1)

(
φcA′B′φdC′D′

)
(x2)

〉
, (2.3)

whose expected structure is〈
(φABφCD)(x1)(φA′B′φC′D′)(x2)

〉
= AεABCDεA′B′C′D′ + BεABA′B′εCDC′D′ + CεABC′D′εA′B′CD . (2.4)

These three terms are usually referred to as trace, permutation and identity. The dilatation

operator can then be read off from the UV divergences of (2.4), hence we only need to

compute the UV-divergent parts AUV, BUV, CUV of the coefficients A, B and C. These are

expected to be equal to [9]

AUV =
1

2
, BUV = −1 , CUV = 1 . (2.5)

As in [1], we choose the following SU(4) assignments in (2.2) as representatives of these

three flavour structures:
ABCD A′B′C ′D′

Tr 1234 2413

P 1213 3424

1l 1213 2434

(2.6)
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Figure 2. The single cut diagram contributing to the dilatation operator at one loop.

For each case there is a single cut diagram to consider. The integrand is constructed with

four cut scalar propagators with momenta Li, i = 1, . . . , 4, and one on-shell amplitude,

as shown in figure 2. The operators are connected to the amplitude via appropriate form

factors, which in the scalar case are simply

Fφaφ̃b

(
`φ
a′

1 , `φ̃
b′

2 ;L

)
:=

∫
d4x eiL·x

〈
0 |
(
φaφ̃b

)
(x)|φa′(`1), φ̃b

′
(`2)

〉
= (2π)4δ(4)

(
L− `1 − `2

)
δaa

′
δbb

′
,

(2.7)

where we have used φ and φ̃ to denote two scalar fields having distinct R-symmetry indices

as is sufficient for our purposes, see (2.6). Note that the `i represent the on-shell (cut)

versions of the loop momenta Li.

The relevant amplitudes for the three flavour assignments considered in (2.6) are:1

Tr : A
(

1φ12 , 4φ13 , 3φ24 , 2φ34
)

=
〈13〉〈24〉
〈12〉〈34〉

, (2.8)

P : A
(

1φ12 , 4φ24 , 3φ34 , 2φ13
)

= −1 , (2.9)

1l : A
(

1φ12 , 4φ34 , 3φ24 , 2φ13
)

=
〈13〉〈24〉
〈23〉〈14〉

. (2.10)

Three observations are in order here. First, we note that the same integrands as in the

approach of [1] have appeared, with the important difference that, in that paper, the spinors

associated with the on-shell momenta are given by the appropriate off-shell continuation

for MHV diagrams. Here the spinors for the cut loop momenta do not need any off-shell

continuation. Furthermore, for the case of the P integrand there is obviously no difference

between the two approaches, and the resulting integral is given by a double bubble where

all the four propagators are cut. In the other two cases, this integral is dressed by the

appropriate amplitude. Finally, we note that the colour factor associated with all diagrams

is obtained from the contraction

· · ·
(
T bT a

)i
j
· · ·Tr

(
T aT bT cT d

)
· · ·
(
T dT c

)l
m
· · · = · · ·N2δimδ

l
j · · · , (2.11)

1In the following expressions we omit a factor of g2YM, which will be reintroduced at the end of the

calculation.
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where the trace arises from the amplitude and the factors · · ·
(
T bT a

)i
j
· · · and

· · ·
(
T dT c

)l
m
· · · from the operators (and we indicate only generators corresponding to the

fields being contracted). We now proceed to construct the relevant integrands.

The trace integrand. In this case the relevant amplitude (which multiplies four cut

propagators) can be rewritten as2

〈13〉 〈24〉
〈12〉 〈34〉

=
Tr+(`1 `3 `4 `2)

(`1 + `2)2(`3 + `4)2
= −2(`1 · `3)

L2
, (2.12)

where we have used `1 + `2 = −(`3 + `4) := L. Having rewritten the amplitude in terms

of products of momenta, we lift the four cut momenta off shell. The resulting integral has

the structure of a product of two linear bubbles,

− 2

L2

∫
dDL1

(2π)D
Lµ1

L2
1 (L− L1)2

∫
dDL3

(2π)D
L3µ

L2
3 (L+ L3)2

. (2.13)

Using the fact that ∫
dDK

(2π)D
Kµ

K2(K ± L)2
= ∓L

µ

2
Bub

(
L2
)
, (2.14)

where

Bub
(
L2
)

:=

∫
dDK

(2π)D
1

K2(K + L)2
, (2.15)

we find that (2.13) is equal to 1/2 times a double bubble. Using (1.4) we finally arrive at

AUV = 1/2. Note that in the definitions of AUV, BUV, and CUV, a factor of λ/(8π2) ×(
1/(4π2x212)

)2 × (1/ε) will always be understood, with λ := g2YMN .

The P integrand. No calculation is needed in this case, and the result is simply given

by minus a cut double-bubble integral. Lifting the cut integral to a full loop integral we

get BUV = −1.

The 1l integrand. The relevant amplitude in this case is

〈13〉 〈24〉
〈23〉 〈14〉

= 1 +
〈12〉 〈34〉
〈23〉 〈14〉

. (2.16)

Thus the first term in (2.16) gives the cut double-bubble integral, whereas we can use

on-shell identities to rewrite the second term as

〈12〉 〈34〉
〈23〉 〈14〉

=
〈12〉 〈34〉 [34]

〈23〉 〈14〉 [34]
= − L2

2(`1 · `4)
. (2.17)

Lifting the cut propagators of the second integral to full propagators, it is immediate to

see that this term produces the integral represented in figure 3. This integral is finite in

four dimensions and thus does not contribute to CUV. We then conclude that CUV = 1.

For later convenience, we explicitly write down the form of the UV-divergent part of the

2We define Tr+(abcd) := 〈ab〉 [bc ] 〈cd〉 [da].
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Figure 3. The finite integral corresponding to the term in (2.17). This integral is irrelevant for

the calculation of the dilatation operator.

correlator (2.4),〈(
φABφCD

)i
j
(x1)

(
φA′B′φC′D′

)l
m

(x2)
〉∣∣∣

UV
(2.18)

=
1

ε
· λ

8π2

(
∆2(x12)δ

i
mδ

l
j

)(1

2
εABCDεA′B′C′D′ − εABA′B′εCDC′D′ + εABC′D′εA′B′CD

)
.

In terms of a spin-chain Hamiltonian, this can be represented as [9]

H2 =
λ

8π2

(
1

2
Tr + 1l− P

)
. (2.19)

3 The dilatation operator in the SU(2|3) sector

In this section we consider the closed SU(2|3) sector. This is particularly interesting, as it

involves also fermions. Indeed, operators in this sector are formed with letters taken from

the set
{
ψ1α, φ1A

}
, with α = 1, 2 and A = 2, 3, 4. We thus have one fermion and three

scalar fields. The dilatation operator in this sector was derived in [10]. Its expression is

given by

H2 =
λ

8π2

[{
AB

AB

}
−
{
AB

BA

}
+
{
Aβ

Aβ

}
+
{
αB

αB

}
−
({

Aβ

β A

}
+
{
αB

B α

})
+
{
αβ

αβ

}
+
{
αβ

β α

}]
, (3.1)

where in this notation the three scalar fields are labelled by A,B = 2, 3, 4. In the following

we are going to rederive (3.1) using an application of generalised unitarity.

As for the SO(6) case, in the planar limit only contractions between nearest-neighbour

fields in O(x1) and Ō(x2) have to be considered. The first two terms on the right-hand side

of (3.1) denote the scalar identity 1l and permutation P structures already familiar from

the SO(6) case (the trace structure is absent given the restricted choice of scalar letters).

The novelty is that now we have to consider two additional types of contractions: scalar-

fermion → scalar-fermion, and two-fermion → two-fermion, as indicated in the remaining

terms in (3.1).

Scalar-fermion → scalar-fermion. In this case we are interested in a fermion field

ψ1α and one of the scalars φ12, φ13, or φ14. Without loss of generality we will consider φ12.

There are two cases to consider,

U :
〈(
φa12ψ

b
1α

)
(x1)

(
ψc234 α̇φ

d
34

)
(x2)

〉
, (3.2)
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and

S :
〈(
φa12ψ

b
1α

)
(x1)

(
φc34ψ

d
234 α̇

)
(x2)

〉
, (3.3)

where the letters U and S indicate whether the contractions between the two fields are

unswapped or swapped. The relevant form factor is

Fφa12ψb1α

(
`
φa

′
12

1 , `
ψb

′
1α

2 ;L

)
:=

∫
d4x eiL·x 〈0|

(
φa12ψ

b
1α

)
(x)|φa′12(`1), ψb

′
1 (`2)〉

= (2π)4δ(4)
(
L− `1 − `2

)
λ2α δ

aa′δbb
′
,

(3.4)

and similarly for Ō(x2).

We begin by considering the U case. By contracting the two form factors with the

four planar permutations of the full amplitude, we obtain3

λ2αλ̃
3
α̇ δ

aa′δbb
′
δcc

′
δdd

′
(3.5)

×
[
A
(
1φ12 , 2ψ1 , 3ψ234 , 4φ34

)
Tr
(
T a

′
T b

′
T c

′
T d

′)
+A

(
1φ12 , 2ψ1 , 4φ34 , 3ψ234

)
Tr
(
T a

′
T b

′
T d

′
T c

′)
−A

(
1φ12 , 3ψ234 , 4φ34 , 2ψ1

)
Tr
(
T a

′
T c

′
T d

′
T b

′)−A(1φ12 , 4φ34 , 3ψ234 , 2ψ1
)
Tr
(
T a

′
T d

′
T c

′
T b

′)]
.

At large N there is only one leading contribution, corresponding to the term with the

amplitude

A
(
1φ12 , 4φ34 , 3ψ234 , 2ψ1

)
=
〈13〉 〈34〉
〈14〉 〈23〉

. (3.6)

It is given by

−A
(
1φ12 , 4φ34 , 3ψ234 , 2ψ1

)
λ2αλ̃

3
α̇ = −(`2 ¯̀

1 `3)αα̇
2(`1 · `4)

:= Nαα̇. (3.7)

The cut integral to consider is thus

Iαα̇ :=

∫
d4`1d

4`3 δ
(+)(`21) δ

(+)(`23) δ
(+)
(
(L− `1)2

)
δ(+)

(
(L+ `3)

2
)
·Nαα̇ , (3.8)

where by Lorentz invariance Iαα̇ must have the form

Iαα̇ = ALαα̇ . (3.9)

A simple PV reduction shows that A = 1/2.

For the S case, we get the single leading contribution to be

−A
(
1φ12 , 4ψ234 , 3φ34 , 2ψ1

)
λ2αλ̃

4
α̇ = −

(
`2 ¯̀

1 `4
)
αα̇

2(`2 · `3)
:= Ñαα̇ . (3.10)

The relevant integral is now

Ĩαα̇ :=

∫
d4`1d

4`3 δ
(+)(`21) δ

(+)(`23) δ
(+)
(
(L− `1)2

)
δ(+)

(
(L+ `3)

2
)
· Ñαα̇

= Ã Lαα̇ , (3.11)

3Two out of the six possible contractions obviously do not contribute at large N .
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where a PV reduction shows that Ã = −1/2. Note that in arriving at this result we have

discarded finite integrals, which do not contribute to the anomalous dimensions (more

precisely, in all calculations the only other finite integral appearing is the kite, depicted

in figure 3).

Summarising, the scalar-fermion→ scalar-fermion case gives ±1/2Lαα̇ times a double-

bubble integral, for the U/S case, respectively. This has to be compared to the tree-level

expression

Itreeαα̇ :=

∫
dDL1

(2π)D
L1αα̇

L2
1(L− L1)2

=
1

2
Lαα̇ . (3.12)

Thus for the two-scalar two-fermion case we get:

1l : 1 , P : −1 , (3.13)

and the corresponding contribution to the spin-chain Hamiltonian is4

λ

8π2

({
Aβ

Aβ

}
−
{
Aβ

β A

})
, (3.14)

in agreement with the corresponding terms in (3.1).

Two-fermion → two-fermion. In this case we consider the four-point correlator〈 (
ψa1αψ

b
1β

)
(x1)

(
ψc234 α̇ψ

d
234 β̇

)
(x2)

〉
. (3.15)

The form factors of O(x1) are given by

Fψa1αψb1 β

(̀
ψa

′
1α

1 , `
ψb

′
1 β

2 ;L

)
:=

∫
d4x eiL·x

〈
0 |
(
ψa1αψ

b
1β

)
(x1)|ψa

′
1 (`1), ψ

b′
1 (`2)

〉
= (2π)4δ(4)

(
L−`1−`2

)
· 1

2

(
λ1αλ

2
β δ

aa′δbb
′−λ1βλ2α δab

′
δba

′
)
,

(3.16)

and similarly for the form factor of Ō(x2). Note the factor of 1/2 appearing because of the

presence of two identical particles in the state. Contracting the two form factors with the

four planar permutations of the full amplitude, we get

− 1

4

(
λ1αλ

2
βδ
aa′δbb

′ − λ1βλ2αδab
′
δba

′
)(

λ̃3α̇λ̃
4
β̇
δcc

′
δdd

′ − λ̃3
β̇
λ̃4α̇δ

cd′δdc
′
)

(3.17)

×
[
A
(
1ψ1 , 2ψ1 , 3ψ234 , 4ψ234

)
Tr
(
T a

′
T b

′
T c

′
T d

′)−A(1ψ1 , 2ψ1 , 4ψ234 , 3ψ234
)
Tr
(
T a

′
T b

′
T d

′
T c

′)
+A

(
1ψ1 , 3ψ234 , 4ψ234 , 2ψ1

)
Tr
(
T a

′
T c

′
T d

′
T b

′)−A(1ψ1 , 4ψ234 , 3ψ234 , 2ψ1
)
Tr
(
T a

′
T d

′
T c

′
T b

′)]
.

In the large-N limit we only need to keep the following terms out of those in (3.17):

− 1

4

[
A
(
1ψ1 , 2ψ1 , 3ψ234 , 4ψ234

)
λ1βλ

2
αλ̃

3
β̇
λ̃4α̇ +A

(
1ψ1 , 2ψ1 , 4ψ234 , 3ψ234

)
λ1βλ

2
αλ̃

3
α̇λ̃

4
β̇

−A
(
1ψ1 , 3ψ234 , 4ψ234 , 2ψ1

)
λ1αλ

2
βλ̃

3
β̇
λ̃4α̇ −A

(
1ψ1 , 4ψ234 , 3ψ234 , 2ψ1

)
λ1αλ

2
βλ̃

3
α̇λ̃

4
β̇

]
,

(3.18)

4Here we also reinstate powers of g2YM from the tree-level amplitudes, of N , arising from colour contrac-

tions, and a factor of 1/(8π2) arising from the UV singularity (1.4) of the double-bubble integral (1.3).
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where the relevant four-fermion amplitudes are

A
(
1ψ1 , 2ψ1 , 3ψ234 , 4ψ234

)
= − 〈34〉2

〈23〉 〈41〉
,

A
(
1ψ1 , 2ψ1 , 4ψ234 , 3ψ234

)
= − 〈34〉2

〈24〉 〈31〉
,

A
(
1ψ1 , 3ψ234 , 4ψ234 , 2ψ1

)
=
〈34〉2

〈13〉 〈42〉
,

A
(
1ψ1 , 4ψ234 , 3ψ234 , 2ψ1

)
=
〈34〉2

〈14〉 〈32〉
. (3.19)

Using (3.19), we can rewrite (3.18) as

1

4

[
(`2 ¯̀

1)αβ( ¯̀
4`3)α̇β̇ + (`1 ¯̀

2)αβ( ¯̀
3`4)α̇β̇

2(`2 · `3)
+ `1 ↔ `2

]
. (3.20)

The term with `1 ↔ `2 is simply a relabelling of the integration variables, and we conclude

that the one-loop integrand is given by

1

2

[
(`2 ¯̀

1)αβ( ¯̀
4`3)α̇β̇ + (`1 ¯̀

2)αβ( ¯̀
3`4)α̇β̇

2(`2 · `3)

]
≡ Nαβα̇β̇ . (3.21)

Thus we have to consider the cut-integral

Iαβα̇β̇ :=

∫
d4`1d

4`3 δ
(+)
(
`21
)
δ(+)

(
`23
)
δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)

2
)
·Nαβα̇β̇ . (3.22)

It depends on only one scale L, hence it has the form

Iαβα̇β̇ = AL2εαβεα̇β̇ +B
(
Lαα̇Lββ̇ + Lαβ̇Lβα̇

)
. (3.23)

Contracting (3.22) and (3.23) with εαβεα̇β̇ and
(
L̄α̇αL̄β̇β + L̄β̇αL̄α̇β

)
we can solve for the

coefficients A and B, with the result

A = 0 , B = 1/6 . (3.24)

At this point we lift the four cut propagators to full propagators, so that the cut double

bubble becomes a full double-bubble integral. The conclusion is then that the UV divergent

part of the integral representing the two-fermion → two-fermion process is a double bubble

with coefficient
1

6

(
Lαα̇Lββ̇ + Lαβ̇Lβα̇

)
. (3.25)

This result has to be compared with the planar contractions at tree level,

Itree
αβα̇β̇

:=

∫
dDL1

(2π)D

L1αβ̇(L− L1)βα̇

L2
1(L− L1)2

. (3.26)

After a similar PV reduction of the L1 integration in (3.26), we find that Itree
αβα̇β̇

is given by

a scalar (single) bubble with coefficient

1

6

(
−L2εαβεα̇β̇ + Lαβ̇Lβα̇

)
, (3.27)
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which using Lαα̇Lββ̇ − Lβα̇Lαβ̇ = L2εαβεα̇β̇ can be rewritten as

1

4

[
−L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
. (3.28)

This is the “identity” or
{
αβ

αβ

}
. The permutation is obtained by swapping α̇ and β̇, or{

αβ

β α

}
. Thus, we can write:

{
αβ

αβ

}
:

1

4

[
−L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
, (3.29){

αβ

β α

}
:

1

4

[
L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
. (3.30)

In this language, the tree-level contraction is represented as{
αβ

αβ

}
. (3.31)

Hence, also reinstating powers of the ’t Hooft coupling, we obtain that the term in the

spin-chain Hamiltonian corresponding to the two-fermion → two-fermion process is

λ

8π2

({
αβ

αβ

}
+
{
αβ

β α

})
, (3.32)

in agreement with the corresponding terms in (3.1). In conclusion, putting together the

purely scalar result of section 2, (2.19), as well as the results (3.14) and (3.32) for the two-

fermion two-scalar and four-fermion cases, we have confirmed the complete expression (3.1)

for the spin-chain Hamiltonian in the SU(2|3) sector.

4 Conclusions

We would like to summarise some of the key points of our paper, compare with other recent

on-shell approaches and finally make a few suggestions for future research.

The calculation of the dilatation operator in N = 4 SYM has been revisited in recent

months using on-shell and twistor (string) inspired approaches. In [15] the complete one-

loop dilatation operator was obtained by calculating form factors for generic single-trace

operators using unitarity, making interesting contact with earlier work of [18]. In particular,

the integral form for the dilatation operator in [18] is mapped to a phase-space integral,

which appears naturally in a unitarity-based approach. The calculation of two-loop form

factors using unitarity was also employed to obtain the two-loop anomalous dimension of

the Konishi operator in [16].

On the other hand, in [17], twistor-space MHV diagrams were used to find the dilata-

tion operator in the SO(6) sector at one loop directly from two-point correlators, leading

to the position-space form of the correlator as found by [9]. In a closely related approach,

in [1] MHV diagrams in momentum space were shown to reproduce the SO(6) one-loop di-

latation operator. In momentum space the calculation gives a single-scale two-loop integral,
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which after Fourier transform gives the expected result. Perhaps one interesting difference

between these two MHV-based approaches is that the twistor-space computation requires

an additional line-splitting regularisation of the operator. Finally, in the current paper we

have simplified the calculation of [1] considerably by directly applying generalised unitarity

to the calculation of the two-point functions, which should have obvious generalisations to

higher loops.

In comparing the two main lines of approach, using form factors or the two-point

correlators, one notices the following main points. In order to extract L-loop anomalous

dimensions from form factors, an L-loop calculation is required, while for the two-point

correlators in momentum space in principle 2L-loop integrals can appear. However, form

factors also have (universal) infrared divergences which need to be disentangled from the

UV divergences, and with increasing loop order one obtains integrals with an increasing

number of scales. In the case of two-point correlators, one has the advantage of only

having to consider single-scale integrals, albeit at higher-loop order in momentum space,

and one never encounters infrared divergences. More work is clearly needed to determine

which method is more efficient, but we think that all approaches have their own merits and

will shed interesting new light on the problem of calculating the dilatation operator, and

hopefully lead to a proof of the integrability conjecture.

Let us now make some concluding comments on our findings and point out future

directions.

1. We stress that in our method no integrals are computed at any stage. We only

identify coefficients of a single quadruple-cut integral, and from its UV divergence we

read off the dilatation operator. Some PV reductions are performed on shell, which

are also of algebraic nature.

2. At one loop, quadruple cuts are sufficient to determine the dilatation operator. This is

related to the fact that at this loop order only four fields are connected (and thus the

four propagators we cut are always present). This circumstance is not related to the

presence of maximal supersymmetry, and hence we can envisage obvious applications

to theories with N < 4 or even no supersymmetry.

3. In the calculations presented here (as well as in [1]) we have made use of amplitudes

with scalars and fermions. The use of gluon amplitudes remains as a future direction

of research, and we expect these to be relevant for the study of the SL(2) sector as

well as for single-trace operators made of field strengths in QCD [19].

4. Clearly the application of our method to higher loops is a crucial testing ground — the

ultimate goal being proving integrability at higher loops (rather than assuming it).

5. It would also be interesting to perform the SU(2|3) calculation with MHV diagrams,

thus extending the approach of [1] to fermions.

We will come back to these issues in future work.
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