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1 Introduction

A number of remarkable connections have been observed between gauge theories and inte-

grable systems. They appear to be useful to increase our understanding of both subjects.

On the one hand, using powerful integrability techniques one may hope to solve certain

gauge theories non-perturbatively. On the other hand, gauge theory can help to formulate

and solve integrable system. A spectacular example is given by planar N = 4 super Yang-

Mills theory, for which in the last ten years or so tremendous progress has been achieved in

solving the theory based on the underlying integrability and on the AdS/CFT correspon-

dence, see [1] for a recent review. There exists another amazing connection between gauge

theories and integrable models. The gauge theories in this case are N = 2 supersymmetric

gauge theories. They do not need to be planar but the connection with integrable models

is restricted to a special class of supersymmetric observables. In this paper we focus on an

important object in this class, the so-called instanton partition function and its relation

with quantum integrable systems.

In the groundbreaking work of Seiberg and Witten [2, 3], the exact solution for the

low energy effective action of certain N = 2 gauge theories was proposed based on holo-

morphicity properties and electromagnetic duality. The low energy dynamics are encoded

in a single object, called prepotential F(~a). It is a holomorphic function on the Coulomb

moduli space, with coordinates ~a, and can be reconstructed from the so-called Seiberg-

Witten (SW) curve and SW differential. Shortly after, it was realized that this description

provides a direct connection between N = 2 gauge theories and classical algebraically in-

tegrable systems [4–7], see e.g. [8] for a pedagogical introduction. These are essentially a

complex analogue of integrable systems in the sense of Liouville.

The challenging program of obtaining the Seiberg-Witten prepotential by a direct

gauge theory calculation, developed on [9–11], was finalized in [12]. This problem was

solved using powerful localization techniques. Interestingly, this calculation produced a

two-parameter, called ε1 and ε2, deformation of the prepotential. The SW prepotential can

be obtained as

F(~a; q) = lim
ε1,ε2→0

ε1ε2 logZ(~a, ε1, ε2; q) , (1.1)

where we add the explicit dependence on the coupling constant q, but suppress dependence

on further parameters such as masses. The partition function Z receives tree level, one loop

and instanton contributions. The latter part is usually referred to as Nekrasov instanton

partition function.

The parameters ε1, ε2 correspond to a Lorentz rotation Ω, thus the name Ω-deformation,

that encodes certain twisted boundary conditions for the four dimensional gauge theory.

It was first introduced in [9, 10] in order to regularize the volume of the instanton moduli

space. The Ω-deformation can be understood in a simple way by considering the five di-

mensional lift of the N = 2 theory, further compactified on a circle [13]. In this set-up it

is interpreted as twisting of R4 by a Lorentz rotation while going around the circle. Intro-

ducing a two-parameter generalization of the prepotential triggered a huge progress. An

important example is the connection with topological strings. Upon taking ε1 = −ε2 = gs,
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the gauge theory partition function reproduces the topological string partition function

with gs as genus parameter [14, 15]. The question of what is the topological string the-

ory analog of the ε1 6= ε2 case leads to the definition of so-called “refined” topological

strings [16, 17]. Another spectacular example of progress driven by the calculation of the

Nekrasov partition function is given by the Alday-Gaiotto-Tachikawa (AGT) correspon-

dence [18].

More recently, Nekrasov and Shatashvili [19] proposed that upon taking the limit

ε2 → 0 and interpreting ε1 as Plank constant, one obtains a correspondence between su-

persymmetric vacua of a given gauge theory and eigenstates of the corresponding quantum

integrable model. The relation between the SW prepotential and classical integrable sys-

tems is thus quantized. This is usually called Nekrasov-Shatashvili (NS) limit and will

be the main focus of this paper. The central role in this correspondence is played by the

so-called twisted superpotential W(~a, ε1; q) defined as

W(~a, ε1; q) = lim
ε2→0

ε2 logZ(~a, ε1, ε2; q) . (1.2)

The Nekrasov-Shatashvili proposal is that, once this function is known, the eigenstates

of the quantum integrable system are classified by solutions of the following quantization

condition

exp
(∂W(~a)

∂aλ

)
= 1 , λ = 1, . . . r , (1.3)

where r is the rank of the gauge group. These equations identify the twisted superpotential

W with the so-called Yang-Yang (YY) function [20] of the quantum system. The proposed

correspondence provides an efficient general mechanism to define and solve quantum in-

tegral models. Remarkably, it can be argued that the instanton part of the prepotential

Winst, defined via (1.2), can be characterized as the solution of certain non-linear integral

equation of the Thermodynamic Bethe Ansatz (TBA) type [21]. The main goal of this

paper is to develope some of the ideas presented in [19] to give a more explicit derivation,

as well as some generalizations, of such TBA equations.

The proposal above originates as some sort of extension of the so-called Bethe/gauge

correspondence [22, 23]. The latter is based on the observation that the vacuum equations

of two dimensional N = 4 gauge theories, broken to N = 2 by twisted masses, coincides

with Bethe equations for integrable models. The two dimensional twisted superpotential

is equal to the YY function that encodes the Bethe equations and Coulomb parameters

correspond to the Bethe roots. The generators of chiral ring of the gauge theory [24] are

mapped to Hamiltonians of the integrable model, while their expectation values mapped

to the corresponding eigenvalues. In this way one obtaines a large class of integrable

models whose spectrum is characterized by traditional, possibly nested, Bethe equations.

Many integrable models do not belong to this class. The simplest example is given by the

quantum Toda chain, see e.g. [25], whose classical limit is connected to four dimensional

pure SU(N) SYM. From the insight of the Bethe/gauge correspondence it is then natural

to propose [19] the two dimensional twisted superpotential which corresponds to such

integrable models. It is the effective low energy action for the four dimensional N = 2
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gauge theory subject to an Ω-background that preserves two dimensional N = 2 super-

Poincaré symmetry, namely ε2 = 0. This observation provides a stong motivation for the

above correspondence. An interpretation of this correspondence was given using brane

constructions in [26]. A further essential step in understanding the nature of the relation

between quantum integrable systems and gauge theories has been presented in [27].

The proposal of Nekrasov and Shatashvili has inspired many other studies. Let us

mention a few. In [28, 29] it was shown that, similarly to the prepotential F , the twisted

superpotentialW(ε1) can be obtained by calculating period integrals of a suitably deformed

SW differential. This analysis is also inspired by the AGT correspondence, by which the

NS limit corresponds to the semiclassical limit of Liouville CFT [30, 31].

In our work the Coulomb parameters will be assumed to be in generic positions. Extra

considerations are needed if they take special values. For example in the conformal SU(N)

SYM with Nf = 2N , if the Coulomb parameters a are set to be equal to mfund−n ε1, where

n ∈ ZN , one can quantize the corresponding integrable system to obtain a lenght N spin-

chain with infinite dimensional heighest weigth representations of sl2 at each site [32–34].

Its spectrum is described in terms of traditional Bethe Ansatz equations. Such devel-

opments triggered the discovery of a number of new dualities between various integrable

models [35–39]. The NS proposal has also inspired various studies in (refined topological)

string theories [40–47] where the the general Ω-background plays a crucial role.

Despite the importance of this correspondence, the precise mechanism by which the

instanton part of the twisted superpotential defined in (1.2) turns out to be characterized as

the solution of TBA equations is still to be elucidated. In this paper, we will fill this gap. In

order to fully prove the NS’s proposal, at least in some example, one should be able to show

that the same TBA equation characterizes the spectrum of the corresponding integrable

model. In the case of pure SU(N) SYM, which corresponds to the periodic Toda chain with

N sites, this was achieved in [25]. This interesting problem will be studied elsewhere [48].

In the following we briefly outline the main ingredients used in our derivation of the TBA

equations for (1.2), as well as the structure of the paper.

As pointed out in [19], it is convenient to start with the contour integral form of the

instanton partition function. In this representation the instanton partition function can be

interpreted as the partition function of a non-ideal gas of particles. The particular structure

of the two-particle interaction potential makes the study of the ε2 → 0 limit rather subtle.

More precisely, this potential is the sum of a short-range (of order ε2) strongly attractive

piece and a long-range interaction part. In sections 2.1 and 2.2, we consider the simplified

situation in which either the long- or short-range part is set to zero. In order to study

these simplified partition functions in the ε2 → 0 limit, we combine a number of techniques

like Mayer expansion [49] (a standard method in statistical mechanics) and the method

of expansion by regions [50] (a powerful method to compute Feynman integrals in small

parameter expansions). For the case with only long-range interactions, the ε2 → 0 limit

turns the logarithm of the partition function into a sum over certain tree graphs. On the

other hand, the free energy corresponding to only short-range interactions gives rise to the

dilogarithm function Li2, which can be shown either by direct residue calculation of relevant

integrals or via Mayer expansion together with the method of expansion by regions.
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In order to study the full partition function we find it convenient to use an iterated

version of Mayer expansion, see [51]. This expansion effectively creates a new partition

function whose “new particles” are clusters of the original particles. The interaction within

each cluster is governed by the short-range interaction, the one between different clusters

by the long-range part. The iterated Mayer expansion thus produces an expression for the

twisted superpotentialWinst as a sum over tree graphs, with vertices given by clusters. This

expansion is carried over in some details in section 2.3. The expression can be compared

to high order in the instanton number with the expression coming from the solution to the

TBA equation as discussed in section 3.1, providing direct non-trivial check of the equality.

There is an elegant way to prove that this equality holds to all orders in the instanton

counting parameter q. It is based on rewriting the grand canonical partition function of the

non-ideal gas in terms of a (0+1)-dimensional path integral. The analysis needs some spe-

cial care as the potential has an unusual feature of depending in a singular way on ~, which

is identified with ε2 in this case. A slight modification of the argument in [52], together

with the calculation of the contribution from the short range interactions corresponding to

the dilogarithm, shows that the instanton partition function in the ε2 → 0 limit is obtained

by the saddle point evaluation of the path integral. The saddle point equations are nothing

but the TBA equations. This is explained in details in section 3.2.

In section 4 we present a generalization of the TBA equations corresponding to quiver

gauge theories. More precisely, we consider quivers characterized by a Dynkin diagram of

ADE, or ÂD̂Ê type. The twisted superpotential for such theories is shown to satisfy a

set of coupled TBA equations with one equation for each node of the quiver and couplings

corresponding to edges in the quiver. The derivation is a simple extension of the one for

the single gauge group case. This is so as the short range interaction, responsible for the

clustering of particle, is non-vanishing only for particles corresponding to the same gauge

group factor in the quiver.

In order not to overload the main text, in appendices we include some review material

together with a few technical points concerning the derivation. A review of the contour

integral form of the instanton partition function is given in appendix A. Some useful for-

mulas are collected in appendix B. A discussion of the method of expansion by regions is

given in appendix C. In appendix D, we present an alternative derivation of a tree graphs

expansion of the instanton partition function.

The full partition function is a product of three terms Z = ZtreeZ1-loopZinst. In this

paper we will be only concerned with the study of the instanton part Zinst. For this reason

from now on it will be simply denoted by Z.

1.1 NS’s correspondence

To complete the introduction, we present the integral representation of the instanton par-

tition function for pure SU(N) N = 2 super-Yang-Mills and the corresponding TBA equa-

tion. The derivation of the TBA starting from the gauge theory expression of the instanton

partition function is the main goal of the paper.

– 5 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
2

Instanton partition function. The instanton partition function can be written in a

contour integral representation as

Z =

∞∑
k=0

(
ε

ε1ε2

)k qk
k!

∫ k∏
I=1

dφI
2πi

Q(φI)

k∏
J>I

D(φIJ) , (1.4)

where φIJ = φI − φJ , ε = ε1 + ε2, and

D(x) =
x2

(x2 − ε22)

(x2 − ε2)

(x2 − ε21)
, (1.5)

Q(x) =
1

P (x)P (x+ ε)
, P (x) =

N∏
λ=1

(x− aλ) . (1.6)

The origin of this expression is reviewed in appendix A. The parameters entering this

integrals, namely ε1,2 and aλ are taken to be real with a small positive imaginary part i 0.

The domain of integration above should be understood either as a real slice integration or

equivalently, upon closing the integration in the upper-half plane, as a multiple contour

integral. In appendix A.4 we review how the residue evaluation of (1.4) reproduces the

representation of the instanton partition function as sum over N -tuples of Young diagrams.

We emphasize that the precise form of Q(x) and D(x) does not affect the derivation

presented in this paper. This is the main reason why the generalization to quiver gauge

theories is rather straightforward. On the other hand the presence of the factor x2

x2−ε22
in

D(x), which have a particularly singular limit for ε2 small, will play a crucial role and will

be responsible for the appearance of the dilogarithm function in the TBA.

TBA form. The claim of [19] is that the twisted superpotential, defined as

W = Limitε2→0 (ε2 logZ) , (1.7)

can be written as the critical value of the following integral functional:

Y[ρ, ϕ] =
1

2

∫
dx

2πi

dy

2πi
ρ(x)G(x− y)ρ(y) +

∫
dx

2πi

[
ρ(x)ϕ(x) + Li2

(
qQ(x)e−ϕ(x)

) ]
, (1.8)

which is

W = Critρ,ϕ
[
Y(ρ, ϕ)

]
=

∫
dx

2πi

[
− 1

2
ϕ(x) log

(
1− qQ(x)e−ϕ(x)

)
+ Li2

(
qQ(x)e−ϕ(x)

) ]
,

(1.9)

where ϕ(x) is the solution of the following TBA-like equation

ϕ(x) =

∫
dy

2πi
G(x− y) log

(
1− qQ(y)e−ϕ(y)

)
. (1.10)

Q(x) is defined in (1.6), and the propagator G(x) is related to D(x) as

G(x) = Limitε2→0
D(x)− 1

ε2
=

d

dx
log

(
x+ ε1
x− ε1

)
. (1.11)
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2 Mayer-cluster expansion

As mentioned in [19], the contour integral form of the instanton partition function (1.4) can

be interpreted (for each k) as the partition function of a one dimensional non-ideal gas of

particles φ1, . . . , φk, subject to an external potential and a pair-wise interaction potential

respectively given by

U ext(x) = − log

(
Q(x)

ε

ε1ε2

)
, V int(x) = − log (D(x)) . (2.1)

Upon summing over the number of particles k, the instanton partition function takes the

form of a grand canonical partition function. The free energy of this gas can be studied by

Mayer expansion techniques [49] (see for example [53] for a nice introduction), as pointed

out in [19]. In this section, we will perform such kind of expansion in full details. The

limit of ε2 → 0 appears to be rather subtle. In order to perform this limit we need to face

the problem of studying the leading behavior of some multiple integral where a parameter

is small. It turns out that this can be conveniently studied by employing the method of

expansion by regions [50] discussed in appendix C. We introduce this method to provide a

unified framework to study certain integrals, but we stress that all the result of this section

are also obtained without employing such technique.

In order to analyze the behavior of the partition function (1.4) in the limit in which

ε2 is small, it is convenient to split the function D(x), see (1.5), into two parts:

D(x) =
x2

x2 − ε22
D̃(x) , D̃(x) =

x2 − ε2

x2 − ε21
. (2.2)

The reason of such decomposition is as follows. The factor x2

x2−ε22
corresponds to a pair-wise

interaction which is strong and attractive at distances of order ε2 and rapidly decreases at

large distances. The remaining factor D̃(x) corresponds to a pair-wise interaction which

is different from zero only at distances of order ε1. Thus (2.2) corresponds to splitting

the potential into short- and long-range parts. The natural candidate to study such kind

of potentials is the so-called iterated Mayer expansion [51]. As we will see in section 2.3,

this effectively creates a new grand canonical partition function whose “new particles”

correspond to clusters of the original particles. We will start by considering some simplified

situation.

2.1 Only long range interactions

Let us first consider a simplified version of (1.4) without the factors1 φ2
IJ

φ2
IJ−ε

2
2
, i.e

ZLong :=
∞∑
k=0

qk

k!

∫ k∏
I=1

dφI
2πi

Q(φI)

ε2

∏
1≤ I<J≤ k

D̃(φIJ) . (2.3)

The basic idea of Mayer expansion, see e.g. [53], is to introduce the function f̃IJ as

D̃(φIJ) = 1 + f̃IJ , (2.4)

1We also set ε
ε1

to one.
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+

Figure 1. The graph expansion for the k = 3 case. The second line contains all connected graphs.

and expand the interaction products as∏
1≤ I<J≤ k

(
1 + f̃IJ

)
= 1 +

∑
I<J

f̃IJ +
∑

I<J,I′<J ′

f̃IJ f̃I′J ′ + . . . . (2.5)

Each monomial in the right hand side of this equation can be visualized as a graph (not

necessarily connected) on the set [k] = {1, 2, . . . , k}. More precisely, each particle in

{1, 2, . . . , k} corresponds to a vertex, and to each factor f̃IJ we associate an edge between

particle I and J in the corresponding graph. More explicitly,

f̃IJ := I J (2.6)

As an example for the k = 3 case, we have the expansion in terms of graphs shown in

figure 1. It is clear from the left hand side of (2.5) that there are no multiple edges

between two vertices, or edges connecting one vertex to itself.

This expansion is particularly useful, as the logarithm of the grand canonical parti-

tion function can be formally given as a sum over connected graphs [49] (see for example

appendix A of [53] for a simple derivation):

logZLong =

∞∑
k=1

qk

k!

∫ k∏
I=1

dφI
2πi

Q(φI)

ε2

∑
g ∈G[k]

c

∏
e(I,J)∈ g

f̃IJ . (2.7)

Here G[k]
c denotes the collection of connected graphs on the set [k] and e(I, J) belongs to

the graph g if there is an edge between the vertices I and J . Graphs up to four points are

shown in figure 2.

We stress that (2.7) is an exact relation as a formal power series2 in q. In the limit of

small ε2 one has

f̃IJ = ε2G(φIJ) +O(ε22) , (2.8)

where G is defined in (1.11). As each factor of f̃ contributes one power of ε2, the leading

contribution to the sum in (2.7) is given only by connected tree graphs T [k]
c . Such graphs

have the minimal number of edges (k− 1) among the connected graphs. The sum of these

2The interesting question of convergence of the Mayer expansion can be addressed in various ways, see

e.g. [53]. Here, we will not consider this problem or the analog convergence issue for the solution to the

TBA.
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+ + +

higher-points graphs+

+

+ + + + +

3 12

4 12 3 6

Figure 2. Connected graphs in the Mayer expansion. The coefficients correspond to how many

different graphs of the given topology belong to G[k]c . They are obtained from one another by

relabeling the vertices.

+ + + +

+

3 12 4

60 560+ + + higher-point graphs

Figure 3. Connected tree graphs up to five-point. The coefficients corresponds to how many

different graphs of the given topology belong to T [k]
c , which are related to each other by relabeling

the vertices.

tree graphs can be shown to be convergent. Collecting the powers of ε2 we conclude that

logZLong =
1

ε2

∞∑
k=1

qk

k!

∫ k∏
I=1

dφI
2πi

Q(φI)
∑

g ∈T [k]
c

∏
e(I,J)∈ g

f̃IJ + O(ε02) . (2.9)

Graphs up to five points are shown in figure 3. Notice that the leading behaviour of the free

energy (2.9) is at order 1
ε2

. This fact may be not obvious from the definition (2.3) where

for each k the leading contribution is proportional to 1
εk2

. We will see that the similar

behaviour applies to the more complicated situations analized in the following.

2.2 Only short range interactions

Next we study another simplified version of (1.4). Namely, we set D̃, defined in (2.2), to

zero and consider

ZShort :=

∞∑
k=0

qk

k!

∫ k∏
I=1

dφI
2πi

Q(φI)

ε2

∏
1≤ I<J ≤k

φ2
IJ

φ2
IJ − ε22

. (2.10)

The main achievement of this subsection is to show that in the limit of small ε2 the

logarithm of (2.10) is given by

logZShort =
1

ε2

∫
dφ0

2πi
Li2[qQ(φ0)] + O(ε02) . (2.11)
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We will see that, as opposed to the case of long range interactions considered in the previous

subsection, the right hand side of (2.11) is not given by summing over tree graphs but by

a single local term. As will be explained in details in section 2.3, this is the underlying

mechanism by which the short-range interactions turn a group of particles into a single

effective particle. The result (2.11) explains why the dilogarithm function appears in the

TBA. It will also be an essential input in the all order proof presented in section 3.2.

Considering its importance, we will prove (2.11) in two different ways.

2.2.1 Dilogarithm from a sum over residues

In this subsection we will prove (2.11) by direct evaluating (2.10) and (2.11) as a sum over

residues. We find it instructive to first consider the partition function for the U(1) gauge

theory, i.e. we evaluate (2.10) for

Q(x) =
1

(x− a− i 0)(x− a+ ε+ i 0)
, (2.12)

compare to (1.6). In (2.12) a and ε are real and we wrote explicitely the i 0 prescription. For

each k in (2.10), there is only one residue (up to permutation of the integration variables)

in the upper half plane, compare to the general discussion in appendix A.4. It is given by

(φ1, . . . , φk) = (a, a+ ε2, . . . , a+ (k − 1)ε2). It follows that

ZU(1)
Short =

∞∑
k=0

qk

k!

1

εk2

k∏
I=1

1

ε1 + I ε2
. (2.13)

One can also directly calculate the one dimensional integral∫
dφ0

2πi
Q(φ0)` =

(−1)`+1

ε2`−1

(
2`− 2

`− 1

)
, (2.14)

where Q(x) is given in (2.12). Using the identity (B.6) one concludes the the logarithm

of (2.13) in the ε2 → 0 limit is indeed given by (2.11) with (2.14).

For the more general U(N) theory, it is easy to classify the poles contributing to (2.10)

following the same reasoning as in appendix A.4. For fixed k, residues are classified, up to

permutation of the k particles, by a set of integers {s1, s2, . . . , sN} such that
∑

λ sλ = k.

The corresponding pole is given by

φκλ+Iλ = aλ + (Iλ − 1)ε2 , Iλ = 1, . . . , sλ , κλ =
λ−1∑
µ=1

sµ , (2.15)

and λ = 1, . . . , N . As opposed to the full partition function (1.4), for which residues are

classified by N -tuple of Young tableaux with a total number of boxes equal to k, in the

simplified integrals (2.10) only Young tableaux with one row, whose length is denoted by

sλ, contribute. It is straigthforward to calculate and collect all residues, see appendix B,

to obtain

ZShort =
∑

s1,...,sN≥1

N∏
λ=1

(
qsλ R

(λ)
sλ

sλ! εsλ2

) ∏
λ<λ′

∏
Iλ,Iλ′

(aλλ′ + (Iλ − Iλ′)ε2)2

(aλλ′ + (Iλ − Iλ′)ε2)2 − ε22
, (2.16)
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where

R(λ)
s :=

s∏
I=1

Q(λ)(aλ1 + (I − 1)ε2)

ε1 + Iε2
, Q(λ)(x) =

1

P (λ)(x)P (λ)(x+ ε)
, (2.17)

and P (λ)(x) =
∏
µ6=λ(x−aµ). The structure of the result (2.16)–(2.17) represents a simple

generalization of the U(1) computation (2.13). The ε2 → 0 limit of the logarithm of (2.16)

can be readily obtained using the relation (B.7). One recognizes that

log ZShort =
1

ε2

N∑
λ=1

∞∑
`=1

q`

`2
Resφ0=aλ

[
Q`(φ0)

]
+O(ε02) . (2.18)

This result coincides with the evaluation of (2.11) by residues. This calculation provides a

direct proof of (2.11).

2.2.2 By Mayer expansion and separation of regions

We now calculate (2.10) for small ε2 by first applying Mayer expansion and then the so-

called method of expansion by regions. The first step is to decompose the interaction

factor as
φ2
IJ

φ2
IJ − ε22

= 1 + fIJ , fIJ :=
ε22

φ2
IJ − ε22

. (2.19)

In a similar way as (2.7), the logarithm of (2.10) is then given by

logZShort =

∞∑
k=1

qk

k!εk2

∫ k∏
I=1

dφI
2πi

Q(φI)
∑

g ∈G[k]
c

∏
e(I,J)∈g

fIJ . (2.20)

To show that this gives (2.11), we need to evaluate the integrals entering (2.20) as a

Laurant series in ε2. We are actually interested only in the terms with leading negative

powers of ε2. We use a powerful method, usually applied to the evaluation of Feynman

integrals, called expansion by regions introduced in [50]. The method goes as follows: (1)

divide the integration domain into regions and expand the integrand in a Taylor series in

small parameters, (2) extend the integration to the full domain of integration, (3) set to

zero scaleless integrals. This method turns out to be particularly efficient to calculate the

leading term for the integrals (2.20). Concerning these contributions, we do not need to

apply the somewhat subtle point (3) above. A more detailed discussion of this method will

be given in appendix C.

To identify the set of relevant regions, we note that the Taylor expansion of the inter-

action term
ε22

φ2
IJ−ε

2
2

starts at order ε22 except for the region in which φIJ is of order ε2. It

is then natural to expect that regions are classified as follows. Let B[k] denotes the set of

grouping of k labeled particles in clusters, see figure 4 for the k = 3 case. For each grouping

we define the corresponding region as{
|φIJ | ∼ ε2 if I, J are in the same cluster,

|φIJ | � ε2 if I, J are in different clusters.
(2.21)
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+ + + +φ1, φ3 φ2 φ2, φ3 φ1 φ1 φ2 φ3φ1, φ2, φ3 φ1, φ2 φ3

Figure 4. The decomposition of the contribution for k = 3 case. Each square represents a cluster

labeled by corresponding particles in the cluster.

The next step is to Taylor expand the integrand in each region. We denote by T(b) [. . . ]

the operation of Taylor expaning . . . in the region corresponding to the grouping b ∈ B[k].

We have

T(b) [fIJ ] =

{
O(1) if I, J are in the same cluster,

O(ε22) if I, J are in different clusters,
(2.22)

and

T(b)

[
k∏
I=1

Q(φI)

]
=
∏
Y∈ b

Q(φY)|Y| + . . . φY :=
1

|Y|
∑
I ∈Y

φI , (2.23)

the product on the right hand side runs over the clusters in the grouping b and |Y| denotes

the number of particles in the cluster Y. From (2.22)–(2.23) it is clear that, for each k,

the leading contribution to (2.20) comes from the region in which all φI are in the same

cluster. Indeed, if there were two or more clusters, the fIJ factor, with I, J in different

clusters, would decrease the power of ε2, compare to (2.22). An explicit example of this

expansion of k = 3 is given in appendix C. As we will shortly see, the leading contribution

to (2.20) starts at order 1/ε2 for each k. This fact is not obvious from the form (2.20).

By further separating the integration over the “center of cluster” coordinate x̄ as∫ s∏
I=1

dxI F (x1, . . . , xs) =

∫
dx̄

∫ s∏
I=1

dx′I δ

(
1

k

s∑
I=1

x′I

)
F (x̄+ x′1, . . . , x̄+ x′s) , (2.24)

where we applied the change of variables

x̄ :=
1

k

s∑
I=1

xs , x′I := xI − x̄ , (2.25)

one can rewrite (2.20) as

logZShort =
1

ε2

∞∑
k=1

qk

k!

∫
dφ0Q

k(φ0)Jk + O(ε02) (2.26)

where

Jk :=
1

εk−1
2

∫ k∏
I=1

dφI
2πi

δ

(
1

k

k∑
I=1

φI

) ∑
g ∈G[k]

c

∏
e(I,J)∈g

fIJ . (2.27)

Notice that in (2.27) all connected graphs, independently on the number of edges, con-

tribute to the leading term. The next observation to be made is that

if g is not connected
1

εk−1
2

∫ k∏
I=1

dφI
2πi

δ

(
1

k

k∑
I=1

φI

) ∏
e(I,J)∈g

fIJ = 0 . (2.28)
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The validity of this statement can be easily argued as follows. For each connected compo-

nent in g we can define its center as the average of the {φI} in that connected component.

The integrand in (2.28) does not depend on the distance between the centers. As the inte-

gral is calculated by residue, it trivially vanishes in this case as, after integrating trivially

the delta function, the (k − 1)-dimensional residue is absent. The identity (2.28) implies

that in (2.27), we can replace the sum over connected graphs with the sum over all graphs.

Finally using the relation ∑
g ∈G[k]

∏
e(I,J)∈g

fIJ =
∏

1≤I<J≤k
(1 + fIJ) , (2.29)

where G[k] is the set of all graphs on [k], we conclude that Jk = Ik, where, using (2.19),

Ik :=
1

εk−1
2

∫ k∏
I=1

dφI
2πi

δ

(
1

k

k∑
I=1

φI

) ∏
1≤I<J≤k

φ2
IJ

φ2
IJ − ε22

=
1

2πi

k!

k2
. (2.30)

Notice that the evaluation of this integral is exact, see [11] for a derivation. Using this

result we recognize that (2.26) is equal to

logZShort =
1

ε2

∞∑
k=1

qk

k2

∫
dφ0

2πi
Qk(φ0) +O(ε02) =

1

ε2

∫
dφ0

2πi
Li2[qQ(φ0)] +O(ε02) . (2.31)

2.3 Expansion of the instanton partition function

We are now ready to consider the full instanton partition function (1.4). We will combine

the considerations from the previous sections. In section 2.1 we learned that the ε2 → 0

limit singles out certain tree level graphs. In section 2.2 we learned that the factors
φ2
IJ

φ2
IJ−ε

2
2

produce the effect of combining particles into clusters. To exploit the combination of

these two mechanisms in the most transparent way we find it convenient to use the so-

called iterated Mayer expansion advocated at the beginning of our analysis. We start by

reviewing this expansion. Based on this iterative expansion, by combining the discussion

from the two previous sections, one obtains a tree graph expansion for the full instanton

pationtion as given in section 2.3.2. In appendix D we show that the same result can be

obtained by first applying the method of expansion by regions to the original partition

function and then exploiting some combinatorics to conclude that only certain connected

graphs contribute to the free energy.

2.3.1 Iterated Mayer expansion

We start with a review of the iterated Mayer expansion [51]. Consider the partition function

Z =

∞∑
k=0

qk

k!

∫ k∏
I=1

dφIA(φI)
∏

1≤I<J≤k
(1 + FIJ) , 1 + FIJ = e−(V int

S (φIJ )+V int
L (φIJ )) ,

(2.32)

where, as in (2.2), we split the pair-wise interaction potential in a short and long range

part. Next we introduce

gY =
∏

I,J ∈Y
I<J

(
1 + e−V

int
L (φIJ )

)
, 1 + fIJ = e−V

int
S (φIJ ) , (2.33)
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1 + fYa,Yb
=

∏
Ia ∈Ya

∏
Ib ∈Yb

e−V
int
L (φIaIb ) , a 6= b (2.34)

where Y denotes a set of particles or, in other words, a cluster. Iterated Mayer expansion

is the statement that the free enery can be expanded as

log Z =
∞∑
k=1

qk

k!

∑
`≥0

∑
{Y1,...,Y`}∈B

[k]
`

∫ k∏
I=1

dφI S{Y1,...,Y`} , (2.35)

where

S{Y1,...,Y`} =

(∏̀
a=1

gYa SYa

) ∑
g ∈G[`]

c

∏
e(a,b)∈ g

fYa,Yb
, (2.36)

SY =

k∏
I=1

A(φI)
∑
g ∈GYc

∏
e(I,J)∈ g

fIJ , (2.37)

The sum in (2.35) is taken over B[k]
` : groupings of k (labeled) particles into ` clusters.

As the notation may need some time to be digested, in appendix B.3 we spell out the

definitions for k = 2, 3. Note that although the cluster here is in a different context, the

picture of grouping is similar to that used before in expansion by regions, see for example

figure 4 for k = 3 case.

2.3.2 Iterated Mayer expansion for the Nekrasov partition function

We can apply the iterated Mayer expansion reviewed in section 2.3.1 to the full partition

function, compare (2.32) to (1.4), (2.2). Once this is done we need to evaluate the leading

contribution for small ε2 to integrals of the type (2.35). The crucial observation is that the

Taylor expansion D̃(φIJ)−1 ∼ ε2G(φIJ) is valid everywhere in the domain of integration.3

This immidiately implies that in the limit of small ε2 one can write, see definition (2.36),

S{Y1,...,Y`} = ε`−1
2

∏̀
a=1

SYa

∑
g ∈T [`]

c

∏
e(a,b)∈ g

∏
Ia ∈Ya
Ib ∈Yb

G(φIaIb) + . . . (2.38)

where . . . refers to next to leading contributions in ε2. We point out that, in analogy

with (2.9), only connected tree graphs contributes to (2.38). As opposed to (2.9), now they

are tree graphs on the set [`] of ` clusters rather then the set of k fundamental particles.

Notice that we did not expand the SY factor. The integration in (2.35) is still over k

variables.

The next step is to explicitly perform the integration over the distances of particles

within the same cluster. This turns out to be essentially the same as in section 2.2.2. For

each cluster Ya we introduce a “center of cluster” coordinate φa as in (2.24). It is clear

3In the language of the method of expansion by regions we would say that the leading term in the Taylor

expansion of D̃(φIJ)− 1 is the same in any region.
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that the fIJ entering the factors SYa , see (2.37), are independent of the “center of cluster”

coordinates φa. Using this observation and (2.38) we write

∫ k∏
I=1

dφI S{Y1,...,Y`}

=
1

ε2

∫ ∏̀
a=1

[
dφa dµYa

∏
Ia ∈Ya

Q(φa + φIa)

] ∑
g ∈T [`]

c

∏
e(a,b)∈ g

∏
Ia ∈Ya
Ib ∈Yb

G(φab + φIaIb) + . . .

(2.39)

where

dµY :=
1

ε
|Y|−1
2

∏
I ∈Ya

dφI
2πi

δ

(
1

|Y|
∑
I ∈Y

φI

) ∑
g ∈GYc

∏
e(I,J)∈ g

fIJ . (2.40)

As extensively discussed in the previous sections, the leading contribution in ε2 of integrals

of the type (2.39), can be obtained by neglecting the deviation from the center of cluster

coordinate in the functions Q(x) and G(x). Doing so, (2.39) becomes

∫ k∏
I=1

dφI S{Y1,...,Y`} =
1

ε2

∫ ∏̀
a=1

dφaQ
|Ya|(φa)J|Ya|

∑
g ∈T [`]

c

∏
e(a,b)∈ g

|Ya| |Yb|G(φab)+. . .

(2.41)

Jk was defined in (2.27) and computed in (2.30). For convenience we recall it here

J|Ya| =

∫
dµYa =

1

2πi

|Ya|!
|Ya|2

. (2.42)

In the limit of small ε2, the summands in (2.35) depend only on the sizes n1, . . . , n` ≥ 1

of the clusters corresponding to b ∈ B[k]. Converting the sum in (2.35) from a sum over

groupings of k particles to a sum over the number of clusters ` and their sizes n1, . . . , n`
produces a factor k!

`!n1! ... n`!
. Assembling the pieces together we finally arrive at the main

result

lim
ε2→0

ε2 log Z =
∞∑
`=1

1

`!

∑
n1,...,n`≥1

∫ ∏̀
a=1

dφa
2πi

qna Qna(φa)

n2
a

∑
g ∈T [`]

c

∏
e(a,b)∈ g

na nbG(φab) ,

(2.43)

where we replaced φa with φa. We emphasize once again that the sum has been rearranged

from a sum over particles, weighted by q, to a sum over clusters. More precisely, for each `

there are ` clusters and `− 1 G-factors. For ` = 1 one immediatly recovers the dilogarithm∫
dφ

2πi
Li2 (q Q(φ))) . (2.44)

For ` = 2 one has

1

2

∫
dφ1

2πi

dφ2

2πi
Qeff(φ1)Qeff(φ2)G(φ1 − φ2) , Qeff(φ) = log(1− q Q(φ)) . (2.45)
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The result (2.43) can be visualized diagrammatically in a simple way. For each ` in

the sum one draws all three graphs on the set {1, 2, . . . , `}. To each node a of the graph

is associated an integer na ≥ 1. Once the diagrams are drawn, the corresponding integrals

can be written using the following “Feynann rules”

• Vertex

na =
qna

n2
a

∫
dφa
2πi

Qna(φa) (2.46)

• Propagator

na nb = na nbG(φab) . (2.47)

Here we used a dashed square to indicate that the propagator is associated to the

edge only.

The graphs contributing to ` = 1, 2, 3 are given by

` = 1 :

∞∑
n1=1

n1 (2.48)

` = 2 :
∞∑

n1,n2=1

n1 n2 (2.49)

` = 3 :

∞∑
n1,n2,n3=1

n1 n2 n3 + +n2n1 n3 n3n2 n1 (2.50)

The first two graphs correspond to (2.44) and (2.45) respectively. Notice that each integral

obtained by applying the Feynman rules, should be multiplied by an overall 1
`! factor, which

is explicit in (2.43). Graphs with more vertices, upon dressing the vertices with positive

integers, are as in figure 3.

3 Derivation of the TBA

In this section we show that the logarithm of the instanton partition function in the ε2 → 0

limit, whose structure have been studied in last section, satisfies TBA equations. We will

first provide a perturbative check to a very high order in the instanton counting parameter

q, and then present an all order proof based on rewriting the instanton partition function

as a (0 + 1)-dimensional path integral.

3.1 Perturbative expansion

Let us recall the expression of the superpotential coming from the TBA

W =

∫
dx

2πi

[
− 1

2
ϕ(x) log

(
1− qQ(x)e−ϕ(x)

)
+ Li2

(
qQ(x)e−ϕ(x)

) ]
, (3.1)

where

ϕ(x) =

∫
dy

2πi
G(x− y) log

(
1− qQ(y)e−ϕ(y)

)
, (3.2)
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compare to (1.9) and (1.10). The basic observation is that TBA equation has a natural

expansion in terms of tree graphs, therefore one can compare it directly with the Mayer

expansion of the instanton partition function (2.43).

One writes ϕ and W as

ϕ(x) =

∞∑
k=1

qk ϕk(x) , W =

∞∑
k=1

qkWk . (3.3)

ϕ can be solved recursively via the TBA equation, for example up to the first two orders

ϕ1(x) = −
∫

dy

2πi
G(x− y)Q(y) , (3.4)

ϕ2(x) = −1

2

∫
dy

2πi
G(x− y)Q(y)2 −

∫
dy

2πi

dz

2πi
G(x− y)G(y − z)Q(y)Q(z) . (3.5)

Substituting the expression for ϕ in W and collecting the terms at a given order of q, one

obtains, here up to order q3

W1 =

∫
dx

2πi
Q(x) , (3.6)

W2 =
1

4

∫
dx

2πi
Q(x)2 +

1

2

∫
dx

2πi

dy

2πi
Q(x)G(x− y)Q(y), (3.7)

W3 =
1

9

∫
dx

2πi
Q(x)3 +

1

2

∫
dx

2πi

dy

2πi
Q(x)2G(x− y)Q(y)

+
1

2

∫
dx dy dz

(2πi)3
Q(x)G(x− y)Q(y)G(y − z)Q(z) . (3.8)

One can see that the expansion ofW has a natural interpretation in terms of connected tree

diagrams, with G(x− y) as propagators and Q(x)i as vertices. This is the same structure

as the one obtained starting from the integral representation of the instanton partition

function, see (2.43). The non-trivial thing to show is that not only the structure is similar

but that the coefficients actally match.

By staring at their form, it is not obvious that the Mayer expansion (2.43) and the

TBA actually produce the same result. In particular to obtain the contribution of a single

graph in (2.43) one needs to take into account a large number of terms coming from the

ϕ expansion. This procedure can be straightforward implemented on a compute. We have

checked up to q7 order and found perfect agreement with the Mayer-Cluster expansion of

the instanton partition function. It is remarkable that these two different structures are

actually equivalent with each other. In the next subsection, we will see the equivalence of

the two expansions can be proven to all order in q.

3.2 TBA as saddle-point of a (0 + 1)-dimensional path integral

As we will shortly review, there is a nice way to rewrite a grand canonical partition function

of the form (1.4) as a path integral, based on a trick of Polyakov [52]. Path integrals are

particularly well suited to be studied in the classical limit ~ → 0, identified with ε2 in

this section, where the path integral is obtained by evaluating the classical action on some
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solution to the equations of motion. In the case of the instanton partition function (1.4),

this limit is more subtle as the two particle potential in the original statistical mechanical

problem is singular in this limit. Using the considerations from section 2.2 we will be able

to disentangle such contributions and derive the TBA in a rather transparent way as a

saddle point equation of an appropriate action.

Let us start by reviewing the steps presented in the appendix of [52]. Consider the

partition function

Z =
∞∑
k=0

qk

k!

∫ k∏
I=1

dφI
2πi

k∏
I<J

e−V (φIJ ) . (3.9)

The basic idea is to rewrite the interactions as

k∏
I<J

e−V (φIJ ) = e
∆( δ

δϕ
)

k∏
I=1

e−ϕ(φI)
∣∣∣
ϕ→0

, (3.10)

where

∆
( δ

δϕ

)
= −1

2

∫
dx dy V (x− y)

δ

δϕ(x)

δ

δϕ(y)
. (3.11)

The operator e∆ can be pulled out from the sum over the number of particles k to rewrite

Z = e
∆( δ

δϕ
)
( ∞∑
k=0

1

k!

∫ k∏
I=1

dφI
2πi

e−ϕ(φI)

)∣∣∣∣
ϕ=0

= e
∆( δ

δϕ
)
exp

(∫
dφ0

2πi
e−ϕ(φ0)

) ∣∣∣∣
ϕ→0

. (3.12)

All the information about the interaction in the original gas (3.9) is now encoded in the

operator ∆. To translate the construction above into path integral language one observes

the following equality

e
∆( δ

δϕ
) F[ϕ]

∣∣∣
ϕ=0

=

∫
[DϕDρ] e

1
~ [~∆( iρ

2π~ )+
∫
dx
2πi

ρ(x)ϕ(x)] F[ϕ] . (3.13)

This can be formally proved by Fourier transformation.4 The measure in [DϕDρ] is defined

in such a way that if F[ϕ] = 1 then the resulting path integral should also evaluate to 1.

Notice that the relation (3.13) holds also when the operator ∆ is not quadratic. If ∆ is

linear ∆ =
∫
x γ(x) δ

δϕ(x) , the ρ integration produces a delta function and the resulting path

integral gives F[γ] as it should. Indeed in this case e∆ is just the shift operator.

From the discussion in section 2, it is rather clear that, in the study of the instanton

partition function, we should apply the procedure just described in a sightly modified way.

In particular we will factor out only the long range part of the potential (2.2), corresponding

to D̃, as we will now describe. The first step is to introduce

∆L

( δ

δϕ

)
= −1

2

∫
dx dy VL(x− y)

δ

δϕ(x)

δ

δϕ(y)
, e−VL(x) = D̃(x) . (3.15)

4The relation (3.13) is a path integral analogue of

e∆( ∂
∂x

) f(x)
∣∣
x→0

=

∫
dp

2π
eipx+∆(ip) f̂(p)

∣∣
x→0

=

∫
dpdy

2π
e−ipy+∆(ip)f(y) , (3.14)

where f̂(p) is introduced via Fourier transformation.
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As above, one uses this operator to rewrite the long range interactions as in (3.10), and

factor out their contribution from the sum over the instanton number k as follows

Z = e
∆̃( δ

δϕ
)
F[ϕ]

∣∣∣
ϕ=0

, F[ϕ] =

∞∑
k=0

1

k!

∫ k∏
I=1

dφI
2πi

qQ(φI)e
−ϕ(φI)

ε2

k∏
I<J

φ2
IJ

φ2
IJ − ε22

. (3.16)

Notice that we did not expand the short range interaction
φ2
IJ

φ2
IJ−ε

2
2
, which still appears in

F[ϕ]. The reader may recognize that we already calculated this integral in the ε2 → 0 limit

in section 2.2. More precisely F[ϕ] coincides with ZShort defined in (2.10), upon replacing

Q(x) with Q(x)e−ϕ(x). Using the result (2.11) we can thus rewrite

F[ϕ] = exp

(
1

ε2

∫
dφ0

2πi
Li2[qQ(φ0) e−ϕ(φ0)] +O(ε02)

)
. (3.17)

The appearance of the dilogarithm is quite remarkable. The derivation presented makes

its origin from short range interactions completely transparent. The expression (3.16)

with (3.17), is well suited for the semiclassical analysis in the ε2 → 0 limit. Using (3.13) in

this case, and recalling that VL(x) = −ε2G(x) +O(ε22) one immediatly obtains

Z =

∫
[DϕDρ] exp

[
1

ε2
(Y[ρ, ϕ] +O(ε2))

]
, (3.18)

where Y[ρ, ϕ] is defined in (1.8) and we identified ~ with ε2. In the limit of small ε2
this path integral is calculated by the sadle point method.5 The superpotential is thus

obtained from the critical valeus of the functional Y[ρ, ϕ]. As explained in section 1.1, the

TBA immidiately follows. This complets the derivation.

3.2.1 Multi-particle interactions

Let us mention that the above discussion may be generalized to the cases containing “multi-

particle” interactions, such as

Z =

∞∑
k=0

qk

k!

∫ k∏
I=1

dφI
2πi

qQ(φI)

ε2

k∏
I<J

φ2
IJ

φ2
IJ − ε22

∞∏
m=2

k∏
I1<...<Im

e−Vm(φI1 ,φI2 ,...,φIm ) . (3.19)

One can similarly introduce

∆m

( δ

δϕ

)
= − 1

m!

∫
dmxVm(x1, . . . , xm)

m∏
I=1

δ

δϕ(xI)
. (3.20)

In analogy with (3.13), this can be brought to the following form

Z =

∫
[DρDϕ] exp

[
−
∞∑
m=2

(−1)m

m!

∫
dmx

(2πi)m
Vm(x1, . . . , xm)

m∏
I=1

ρ(xI)

ε2
+

∫
dx

2πi ε2
ρ(x)ϕ(x)

]
F[ϕ].

(3.21)

5Alternatively, one can also integrate out ρ exactly, as it appears quadratically in the action, before

taking the ε2 → 0 limit. The resulting path integral, in ϕ in the limit of small ε2, is dominant by the saddle

point of ϕ, where the saddle point equation is exactly the TBA equation (1.10).
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Notice that if m > 2 one can no longer integrate out ρ exactly. The tri-particle interaction

is directly related to certain gauge theories. The main example is given by quiver theories

containing matter in the trifundamental representation of U(2)3 [54]. The contour integral

representation of the instanton partition function for this case can be found in [55]. Notice

that one has V2 = −ε2G+O(ε22), V3 = ε22G3 +O(ε32). This is the right scaling to produce

a 1
ε2

factor in the exponent of (3.21) which is crucial for the semiclassical analysis.

4 Generalization to quiver gauge theories

Until now the object of study has been the instanton partition function for pure N = 2

Super-Yang-Mills with gauge group SU(N), see (1.4). This partition function admits a

natural generalization corresponding to other N = 2 gauge theories. In order to specify

an N = 2 supersymmetric gauge theory the first step is to fix the following data: a gauge

group G and a set of irreducible representations R of G corresponding to its matter content.

Such datum gives rise to a consistent, or UV-complete, theory only if the beta function

βv associated to each simple factor of G =
∏

v Gv satisfies βv ≤ 0. This requirement puts

strong constraints on R and G. A classification of consistent theories can be found in

the recent work [56]. In particular, with the exception of G = SU(2)V with R given by

trifundamentals introduced in [54], each irreducible component of R is charged under at

most two Gv. In the following we restrict to the case

G =
V∏

v=1

SU(Nv) , R =
∑
v,w

cv w (�v,�w) +
∑
v

nv�v . (4.1)

Theories in this family with vanishing beta functions falls into three classes, referred to as

type I, II, II* in [57]. The matrix c in (4.1) is then identified with the adjacency matrix

of the Dynkin diagram of type ADE (type I) and ÂD̂Ê (type II and II*). Any other

consistent theory in the family (4.1) can be obtained as appropriate limit of theories of

type I, II, II*.

We fix G and R as in (4.1). We denote respectively by V and E the set of vertices and

edges of the graph represented by cv w. We denote the number of vertices by V = |V|. The

instanton partition function depends on the following quantities

• Ω-deformation parameters ε1 and ε2, we set ε = ε1 + ε2

• gauge couplings qv, v ∈ V

• Coulomb parameters a ∈ Cartan subalgebra of Lie(G), av,λ for v ∈ V, λ = 1, . . . , Nv

• fudametal masses mv,f , v ∈ V, f = 1, . . . , nv

• bifundamental masses6 me, e ∈ E.

6To avoid confusion we recall that in our conventions a bifundamental hypermultiplet associated to the

edge e corresponds to a factor (�se , �te) + (�te , �se) in (4.1).
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We package masses and Coulomb parameters into polynomials as follows

Mv(x) =

nv∏
f=1

(x−mv,f ) , Pv(x) =

Nv∏
λ=1

(x− av,λ) . (4.2)

The contour integral representation of the Nekrasov partition function takes the form

Z =
∞∑

k1, ..., kV

(
ε

ε1 ε2

)k qk1
1

k1!
. . .

qkVV
kV !

∫ ∏
v∈V

(
[dφv] z

gauge
v, k (φv) z

fund
v, k (φv)

) ∏
e∈E

zbifund
e, k (φse , φte)

(4.3)

where k =
∑
kv and [dφv] =

∏kv
I=1(2πi)−1dφv,I . As above, V and E are respectively set

of vertices and edges of the quiver. Moreover, given an edge e, its orientation defines two

vertices called se (source) and te (target). Using the expressions for zgauge
v , zfund

v and zbifund
e

given in appendix A.3 we rewrite the integrand of (4.3) as

∏
v∈V

( kv∏
I=1

Qv(φv,I)

)  ∏
1≤I<J≤ kv

D(φv,I − φv,J)

 ∏
e∈E

 kse∏
I=1

kte∏
J=1

De(φse,I − φte,J)


(4.4)

where

Qv(x) =
Mv(x)

Pv(x)Pv(x+ ε)

∏
v

e→v′

Pv′(x−me)
∏
v

e←v′

Pv′(x+me + ε) , (4.5)

D(x) = ∆(x) ∆(−x) , De(x) = [∆(me + x) ∆(me − x)]−1 , ∆(x) =
x (x+ ε1 + ε2)

(x+ ε1) (x+ ε2)
,

(4.6)

Note that D is the same as for pure SYM, see (1.5). Moreover, we have the manifest

symmetry D(x) = D(−x) and De(x) = De(−x).

Explanations regarding the origin of this expression are collected in appendix A. The

expression for the contribution to the partition function from bifundamental matter can be

found in [58] and [59]. For more general gauge groups and representation see e.g. [55, 60]

and references therein.

4.1 TBA for quiver gauge theories

The partition function (4.3) in the limit ε2 → 0 can be studied in a similar way as for

the simpler case of pure SU(N) SYM, see (1.4). In particular it can be characterized as

solution of certain TBA equations given below. The important observation to be made

is that as long as the bifundametal masses me are large compared to ε2, the pair-wise

interaction term in the non-ideal gas interpretation of (4.4) splits into two terms with

different scales, compare to (2.2). The first term x2

x2−ε22
, present for each gauge group,

gives rise to the dilogarithm function in the TBA. The remaining factor in the pair-wise

interaction is responsable for the kernel term in the TBA non-liear integral equation.
The resulting TBA is summarized as follows. As in [19], the partition function can be

written as the critical value of the Yang-Yang functional

Y(ρ, ϕ) =
1

2

∑
v,w

∫
dx

2πi

dy

2πi
ρv(x)Gvw(x−y)ρw(y) +

∑
v

∫
dx

2πi

[
ρv(x)ϕv(x) + Li2

(
qvQr(x)e−ϕv(x)

) ]
,

(4.7)
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where the variations with respect to ϕv(x) and ρv(x) give

ρv(x) = − log
[
1− qvQv(x)e−ϕv(x)

]
, ϕv(x) = −

∑
w

∫
dy

2πi
Gvw(x− y)ρw(y) . (4.8)

The twisted superpotential for the quiver gauge theory is obtained as

W =
∑
v

∫
dx

2πi

[
− 1

2
ϕv(x) log

(
1− qvQv(x)e−ϕv(x)

)
+ Li2

(
qvQv(x)e−ϕv(x)

) ]
, (4.9)

where ϕv(x) satisfy the TBA equation

ϕv(x) =
∑
w

∫
dy

2πi
Gvw(x− y) log

[
1− qwQw(y)e−ϕw(y)

]
. (4.10)

The various functions which contain the data of quiver theory are

Gvw(x) =
d

dx

[
δvw log

(
x+ ε1
x− ε1

)
+ cvw log

(
x+mvw

x+mvw + ε1

)
+ cwv log

(
x−mwv − ε1
x−mwv

)]
,

(4.11)

and Qv(x) defined in (4.5). In (4.11) we defined mvw := me if the vertices v and w are

connected by the edge e and mvw := 0 otherwise. The expression for the propagator Gvw(x)

given above is obtained as as

Gvw(x) =


Limitε2→0

D(x)−1
ε2

for v = w

Limitε2→0
De(x)−1

ε2
for v

e
— w

0 otherwise

(4.12)

Note that in this definition we have Gvw(x) = Gwv(−x).

5 Conclusion and Discussion

In this paper we studied the instanton partition functions of four dimensional N = 2 gauge

theories in a special limit of Ω deformation parameters, namely, taking ε2 → 0 but keeping

ε1 finite. We show explicitly that the instanton part of the twisted superpotential W,

which in statistical mechanics language is equal to the free energy, satisfies TBA equations.

It is thus naturally identified with the Yang-Yang function of some quantum integrable

model [19]. Based on the proof, we are also able to generalize the correspondence to a

general class of N = 2 quiver theories. In this case one obtains a set of coupled TBA

equations with one equation for each node of the quiver.

The starting point of the derivation is the contour integral representation of the

Nekrasov partition function. It can be interpreted as the grand canonical partition function

of a non-ideal gas of particles. Due to the singular structure of the two-particles interac-

tion, an interesting effective description of this gas emerges in the ε2 → 0 limit. In this

effective description the “new particles” are clusters of the original particles and are sub-

ject to certain tree-level interaction only. This picture is best obtained by employing the
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so-called iterated Mayer expansion [51]. This structure is nicely captured by the TBA, in

particular the clustering of particles and their effective interaction is nicely reproduced by

the presence of the Li2 function.7 An all order proof in the instanton counting parameter

q of the TBA equations is given applying a (0 + 1)-dimensional path integral trick, dating

back to Polyakov [52].

In studying the NS limit of the instanton partition function, one has to face the problem

of evaluating integrals when some parameter, in our case ε2, is small. There is a systematic

way to do so, particularly successful for calculating Feynman integrals, called the method

of expansion by regions. While our results are obtained also independently of this method,

it provides a simple way to single out the leading 1
ε2

behavior of the logarithm of the

partition function. This structure is somewhat reminiscent of the exponentiation of infrared

divergences in gauge theories. It would be interesting to further study the applicability of

this method to the type of integral considered here.

In this paper we considered quiver gauge theories involving only U(N) gauge group

factors and matter in the fundamental/antifundamental or bifundamental representations.

It is natural to extend this work by deriving TBA equation in the case of the other classical

gauge groups SO(N), SP (2N) and to other matter content, e.g. symmetric and antisymmet-

ric representations of U(N) or trifundamental of U(2)3. Other interesting generalizations

are the deformation of the partition function by chiral ring operators and the five dimen-

sional lift of the partition funtion. The details of these studies will be reported elsewhere.

One of the most challenging question for the future is to understand how the proposed

TBA equations emerge from the quantum integrable model point of view. In the case of

pure SU(N) N = 2 super Yang-Mills, which corresponds to the periodic Toda chain with N

sites, this has been achieved in [25]. In the derivation a crucial role is played by the so-called

Baxter Q-operator, which is currently the most powerful and universal tool for determining

the spectrum of quantum integrable systems. Despite successful applications in many cases,

see [65] (and also [66]) for recent progress and relevant references, a complete theory of

Q-operators is still to be established. In particular a systematic construction is currently

not available in the case for which the representation of the relevant quantum group is not

of highest-weight type, see [67] and references therein for some progress in this direction.

Via the NS proposal, quantum integrable systems of this type can be systematically solved

by gauge theory methods, offering an entirely new perspective on the structure underlying

integrable models.

TBA equations of a similar type also appeared in the context of wall crossing effects

for the BPS spectrum in N = 2 gauge theories [68, 69]. It would be interesting to study

the connection with our work and find the quantum integrable models corresponding to the

TBA appearing there. Another connection is to the study of minimal surfaces in AdS [70,

71]. In this case, the area of such surfaces is equal, via the AdS/CFT correspondence, to

the strong coupling limit of the logarithm of null Wilson-loop expectation values in N = 4

SYM. In [72, 73], it has been proposed that the exact expectation value can be written as

7This makes it drastically different from some other TBA obtained by simply applying saddle point

method [61–63]. See also [64].
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a sum of multiple integrals involving some basic building blocks called pentagon transition

functions. This form is structurally identical to the contour integral representation of the

Nekrasov partition function. Moreover, the strong coupling limit correspond to the NS

limit with 1√
λ
∼ ε2. Techniques of the type presented in this paper can be also used to

show, directly from this representation of the Wilson loop, that in the strong coupling limit

it satisfies the TBA equations derived from the analysis of classical strings in AdS [74, 75].

It would be very interesting to study the possible connection with our work in this respect.
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A On the integral representation form of the Nekrasov partition function

In this appendix we present a brief, non-self-consistent review, together with a collection

of references, on the origin of the contour integral form of the instanton partition func-

tion (1.4), [9, 11].

The first step is to localize the path integral for the given N = 2 supersymmetric gauge

theory in the Ω-background to configuration of fields satisfying the self-duality equation

F+(A) = 0 and the Dirac equation DA q = 0, see e.g. [76]. Solutions to the self-duality

equation F+(A) = 0 modulo gauge transformations that are trivial at infinity defines the

instanton moduli space Minst. The space of solutions to the Dirac equation forms a fiber

over the instanton moduli space.

If the gauge group is one of the classical groups U(N), SO(N), SP (2N) (or a product

thereof), Minst admits a particular nice description, the ADHM construction [77]. Let us

review this construction for gauge group U(N) and instanton number k. First introduce

the linear data

x = (B1,B2, I,J) ∈ XN,k := Hom(V, V )⊕Hom(V, V )⊕Hom(W,V )⊕Hom(V,W ) , (A.1)

where V ' Ck and W ' CN carry the defining GL(k) and GL(N) action. We refer to (A.1)

as ADHM matrices. On such matrices the group GL(2)×GL(k)×GL(N) acts as follows

(Bα, I,J) 7→
(
gφ (Mβ

α Bβ) g−1
φ , ga I g−1

φ , det(M) gφ J g−1
a

)
, (A.2)
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where α, β = 1, 2, the summation over β is understood and

M ∈ GL(2) , ga ∈ GL(N) , gφ ∈ GL(k) . (A.3)

The next step is to introduce the ADHM equations

µR := I I† − J† J + [B1, B†1] + [B2, B†2] = 0 , (A.4)

µC := I J + [B1, B2] = 0 . (A.5)

These equations are covariant under the group action given by (A.2). The k-instanton

moduli space is decribed as

MN,k = {x ∈ XN,k such that µC(x) = 0} /GL(k) . (A.6)

There are two non-trivial steps involved in this definition: (1) impose the ADHM equations,

(2) divide the resulting space by the action of GL(k). In the following we will see how

these two steps give rise to the contour integral form of the instanton partition function

following two different procedures. We anticipate that in both cases the integration over

(φ1, . . . , φk) in (1.4) originates from quotienting over GL(k).

A.1 D-instanton action and its localization

There is a natural way to understand the ADHM construction within the language of

branes [78–80]. In the simplest example, the starting point is a system of k D(-1) branes

and N D3-branes . The idea is to look at this system either as the theory leaving on

the D3-branes, which corresponds to a four dimensional N = 2 gauge theory, or as the

d = 0 + 0 dimensional theory on the D(-1) brane. In the latter case one identifies the

ADHM equations with D and F-flatness conditions of the auxiliary 0-dimensional theory.

In this way the instanton moduli space MN,k is identified with the Higgs branch of the

theory on the D-instanton.

From the point of view of the four dimensional gauge theory the D-instanton partition

function originates as an integral over the k-instanton moduli space. Following [9], see

also [76], one can present the integration over the instanton moduli space MN,k, see (A.6),

in terms of the one over XN,k, see (A.1), and certain “auxiliary fields”. The latter, as em-

phasized after equation (A.6), are introduced in order to implement the ADHM constraints

and the operation of taking quotient by GL(k). See also [84, 85].

The correspoding partition function reads

Zk =

∫
Dφ

Vol(U(k))
[DxDψ] [DχDH]

[
DφDη

]
e−SΩ . (A.7)

This equation needs some explanation. Measure factors in [. . . ] correspond to BRST dou-

blets

Q

xχ
φ

 =

ψH
η

 , Q

ψH
η

 = δtorus
φ,a,ε1,2

xχ
φ

 . (A.8)
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The variable x corresponds to ADHM matrixes (A.1), χ = (χR, χC) belong to the same

space as the ADHM equations (A.4), (A.5) and φ ∈ Hom(V, V ). Their BRST partners

(ψ,H, η) have the same transformation properties under GL(N) × GL(k) × GL(2). The

variable φ has no BRST partner, it satisfies Qφ = 0. (x,H, φ, φ) are bosonic, (ψ, χ, η)

fermionic. The action of δtorus ∈ Lie(torus) is defined as taking the infinitesimal version

of the transformation (A.2) with

ga − 1 ∼ diag(a1, . . . , aN ) , gφ − 1 ∼ diag(φ1, . . . , φk) , M − 1 ∼ diag(ε1, ε2) .

(A.9)

It is clear from the action of Q that Q2 = δtorus. The action has the schematic form

SΩ = Q
(
χ · µ(x) + t χ ·H + t′η[φ, φ] + t′′ ψ φx

)
, (A.10)

where µ(x) are the ADHM equations. The parameter t, t′, t′′ have a fixed value in the

original problem, but, as the partition function is independent of their values, we can cal-

culate it for the most convenient choice. The suffix Ω refers to the so-called Ω-deformation

introduced to regularize the infinite volume of moduli space [9, 10].

The variables (η, χ,H, φ) come into a quartet that can be integrated out in the following

way [9, 11, 76]. Add to the action a Q-exact term

δS = sQ
(
χR · φ

)
+ s′Q (xψ) . (A.11)

For s → ∞, the HR, χR integration produces the constraints φ = 0 = η. Next taking

t→∞ the HC integration is Gaussian and produces a trivial factor, the χC integration is

Gaussian (fermionic) and produces the factor

detµC Q
2 = εk

∏
1≤I<J≤k

(
φ2
IJ − ε2

)
. (A.12)

The notation detµC refers to taking the determinant in the vector space to which χC
belongs which is the same as the space of ADHM equations µC, see (A.5). To calculate the

determinant we also reduce the φ integration from GL(k) to its maximal torus

Dφ→ 1

k!

k∏
I=1

dφI
2πi

∏
1≤I<J≤k

φ2
IJ . (A.13)

Finally the integration over (x, ψ), is done sending s′ → ∞. The (B1,2, ψB1,2) integration

produces the factor
1

detB1,2 Q2
=

1

εk1,2

∏
1≤I<J≤k

1

φ2
IJ − ε21,2

, (A.14)

and the (I, , ψI), (J, ψJ) integration produces the factor

1

detI,J Q2
=

k∏
I=1

N∏
λ=1

1

(φI − aλ) (φI − aλ + ε)
. (A.15)

We have thus performed all the integration in (A.7) except for (φ1, . . . , φk). Putting

together (A.12), (A.13), (A.14), (A.15) one recognizes that Zk given in (A.7) coincides

with (1.4). This ends the discussion of pure SYM with gauge group U(N). The discussion

can be generalized to other classical gauge groups and quiver gauge theories, see e.g. [59]

and references therein.
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A.2 The instanton partition function from 5d perspective

As a different picture, we consider the lift of the given N = 2 four dimensional gauge theory

to five dimensions. The Ω deformation can be understood as imposing the identification

(x, y) ∼ (eβΩx, y + β), where y is the coordinate of the circle of compactification and Ω

the generator of an infinitesimal SO(4) rotation. The important fact is that the 5d parti-

tion function Zd=5
k reduces to the twisted Witten index for the supersymmetric quantum

mechanics on the instanton moduli space MN,k [13], as fermions have periodic boundary

condition (up to the twist) along y direction.

As descibed in details in [81], by the ADHM description of the instanton moduli

space (A.6), the 5d index can be given as

Zd=5
k =

1

|Wk|Vol(Tk)

∫
Tk

k∏
I=1

dφI
∏

α∈∆+

(
ei 〈α,φ〉 − e−i 〈α,φ〉

) ∏(1− ϕADHM equations)∏
(1− ωADHM matrices)

.

(A.16)

The factors ϕADHM equations and ωADHM matrices are the weights under a certain torus action,

of which (A.9) is the infinitesimal version, of the ADHM equations (A.5) and ADHM

matrices (A.1) respectively. The structure of (A.16) originates from the two step procedure

emphasized after equation (A.6): the term
∏

(1−ϕADHM equations) encodes the constraints

from the ADHM equation, the integration, and the Vandermonde factor, implements the

GL(k) quotient. In the following we spell out this formula for pure N = 2 SYM with gauge

group U(N).

Consider an element in the maximal torus T ⊂ GL(k)×GL(N)×GL(2) given by gφ =

diag(ei βφ1 , . . . , ei βφk), ga = diag(ei βa1 , . . . , ei βaN ), M = diag(q1, q2) with |q1|, |q2| < 1,

compare to (A.2). The eigenvalues of the torus action on the ADHM matrices Bα, I, J are

qα e
i β φIJ , ei β (aλ−φI) , q1 q2 e

i β (φI−aλ) , (A.17)

where α = 1, 2, I, J = 1, . . . , k, and λ = 1, . . . , N . One thus obtains

1∏
(1− ωADHM matrices)

∣∣∣
I,J

=

k∏
I=1

1

P+β(e−i β φI )P−β(q1 q2 ei β φI )
, (A.18)

1∏
(1− ωADHM matrices)

∣∣∣
B1,2

=
1

(1− q1,2)k
1

∆β(q1,2)
, (A.19)

where

Pβ(t) :=
N∏
λ=1

(1− t ei β aλ) , ∆β(t) :=
∏
I 6=J

(1− t ei β φIJ ) . (A.20)

It is not a coincidence that these equations are in correspondence with (A.15), (A.14).

Next consider the the contribution from the complex ADHM equations (A.5). Its

weight under the thorus action gives∏
(1− ϕADHM equations) = (1− q1 q2)k ∆β(q1 q2) . (A.21)
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Compare to (A.12). Finally the Vandermonde is equal to ∆β(1). Putting things together

according to equation (A.16) we obtain

(1− q1 q2)k

(1− q1)k(1− q2)k
∆β(1) ∆β(q1 q2)

∆β(q1) ∆β(q2)

k∏
I=1

1

Pβ(e−i β φI )Pβ(q1 q2 e−i β φI )
. (A.22)

The cases of SO(N) and SP (2N) are similar upon modifying ADHM data and related

thorus action, [81], see also [82]. Matter can also be included in this picture. The limit

β → 0 can be easily taken upon setting q1,2 = ei βε1,2 . Notice that the condition |q1|, |q2| <
1 translates into a small imaginary part for ε1,2.

A.3 Building blocks for quiver gauge theories

We now present the recipe to obtain the integrand for the instanton partition function

corresponding to the class of quiver gauge theories introduced in section 4. To which we

refer for the notation used here. From the discussion above it is expected that the integrand

should be written in terms of the following data:

(1) an element q = q(ε1,2, a, φ,m) ∈ T ⊂ SO(4)Lorentz ×Ggauge ×Ginst ×Gflavour,

(2) a “collection” of weights ω`, more precisely eigenvalues ei ω` , under this torus action.

From this data the integrand can be constructed using the following rule∑
`

n` e
i ω` 7→

∏
`

(ω`)
−n` , (A.23)

where n` = ±1.

Let us introduce the following modules for the torus action:

Wv ' CNv , Vv ' Ckv , Mv ' Cnv , L ' C2 ' R4 . (A.24)

They carry, respectively, the defining representation of GL(Nv), GL(kv), GL(nv),

SO(4)Lorentz and thus of the maximal torus. We denote the corresponding characters as

χW,V,M = trW,V,M (q), for example χV =
∑k

I=1 e
i φI . We denote their conjugate modules as

W v, V v, M v.

From the description of the tangent space to the instanton moduli space in terms of

linearized ADHM equations and infinitesimal gauge transformations, see [12], one finds,

for each gauge group factor

Ch(TMN,k) = χW χV − (ei ε1 − 1)(ei ε2 − 1)χV χV + ei ε χV χW . (A.25)

Appling the rule (A.23) to this character one obtains the integrand (1.4). The contribution

of bifundamental matter is given by

Ch(�v,�w) = − eimv w
[
χWv χV w

− (ei ε1 − 1)(ei ε2 − 1)χVv χV w
+ ei ε χVv χWw

]
. (A.26)

Notice the overall minus sign compared to (A.25). Applying the rule (A.23) one obtains

Ch(�v,�w) 7→ (−1)kwNv

kv∏
I=1

kw∏
J=1

Pv(φw,J −mv w)Pw(φv,I +mv w + ε)

∆(mv w + φv,I − φw,J)
=: z̃v wkv kw . (A.27)
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From this expression it follows that the contribution from Ch(�v,�w) + Ch(�w,�v) is

given by

zbifund
k = z̃v wkv kw z̃

w v
kw kv . (A.28)

Finally fundamental matter gives the character

Ch(�v) = −χV χM
(A.23)−→ zfund

k =

k∏
I=1

n∏
f=1

(φI −mf ) . (A.29)

The expressions above can also be found in [58, 59].

A.4 Contour and classification of poles

The poles contributing to (1.4) correspond to solutions of simple algebraic equations. As

we will now review following [86], these solutions are classified by N-tuple of Young dia-

grams [12]. Let

A(x) :=
N∏
λ=1

(x− aλ) , E(x) :=
(x− ε1)(x− ε2)

x(x− ε1 − ε2)
. (A.30)

We want to classify solutions of

A(xi)
∏
j 6=i

E(xi − xj) , for i = 1, . . . , k, (A.31)

modulo permutations of {xi}. Notice that, compare to (1.4), only “half of the poles” of

the integrand contributes. This is so as a consequence of the choice of contour. It is clear

that at least one x has to be a zero of A. Without loss of generality we set x1 = aλ1 and

get k − 1 equations

A′(xi)
∏
j>1

j 6=i

E(xi − xj) , for i = 2, . . . , k, (A.32)

where A′(x) := A(x)E(x − aλ1). For the same argument as above applied now to (A.32),

we set A′(x2) = 0. We have to recall that we must keep xi − xj 6= 0 and xi − xj 6=
ε1 + ε2 otherwise the denominator in E(x) vanishes. Iterating this procedure one finds that

solutions of (A.31) modulo permutations are classified by the N-tuple of Young diagrams.

For example for k = 3 one has

{aλ1 , aλ2 , aλ3} , {aλ1 , aλ2 , aλ2 + εα} , {aλ1 , aλ1 + εα, aλ1 + 2εα} , {aλ1 , aλ1 + ε1, aλ1 + ε2} ,
(A.33)

where α = 1, 2 and the aλ are different from each other.

B Useful formulas

B.1 Computing (2.16)

In the following we present the explicit calculation of the residue corresponding to the

pole (2.15). First we introduce the notation

Y1 = {1, . . . , s1} , Y2 = {s1, . . . , s1 + s2} , . . . ,YN = {s1 + · · ·+ sN−1, . . . , k} .
(B.1)
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The next step is to split the interaction term
∏ φ2

IJ

φ2
IJ−ε

2
2

in the integrand as

∏
1≤I<J≤k

φ2
IJ

φ2
IJ − ε22

=

 N∏
λ=1

∏
I<J

I,J ∈Yλ

φ2
IJ

φ2
IJ − ε22

 ∏
λ<λ′

∏
Iλ,Iλ′

φ2
IλIλ′

φ2
IλIλ′

− ε22
, (B.2)

Only the factor in square bracket on the right hand side is singular in the limit in which

φI take the value give by (2.15). For these terms we use the simple result

lim
φκλ+Iλ

→aλ+(Iλ−1)ε2

sλ∏
I=2

(φκλ+Iλ − aλ − (Iλ − 1)ε2)
∏
I<J

I,J ∈Yλ

φ2
IJ

φ2
IJ − ε22

=
εsλ−1
2

sλ
, (B.3)

We also use

lim
φκλ+1→aλ

(φκλ+1 − aλ)
∏
I ∈Yλ

Q(φI) =
1

εsλ−1
2

1

(sλ − 1)!

sλ∏
I=1

Q(λ)(aλ + (I − 1)ε2)

ε1 + Iε2
. (B.4)

where

Q(λ1)(x) =
1

P (λ1)(x)P (λ1)(x+ ε)
, P (λ1)(x) =

∏
λ 6=λ1

(x− λ) . (B.5)

The result (2.16) immediately follows.

B.2 Exponentiation of residues

One has

∞∑
k=0

qk

k!εk

k∏
I=1

f(x+ (I − 1)ε) = exp

(
1

ε

∞∑
`=1

q`

`2

(
1

(`− 1)!

d`−1

dx`−1
f(x)`

)
+O(ε0)

)
(B.6)

as formal series in ε.
We present the following generalization of (B.6)

∑
s1,...,sN≥1

N∏
λ=1

(
qsλ

∏sλ
I=1A(xλ + (I − 1)ε))

sλ! εsλ

) ∏
1≤λ<λ′≤N

sλ∏
Iλ=1

sλ′∏
Iλ′=1

(xλλ′ + (Iλ − Iλ′)ε)2

(xλλ′ + (Iλ − Iλ′)ε)2 − ε2

= exp

(
1

ε

N∑
λ=1

∞∑
`=1

q`

`2

(
1

(`− 1)!

d`−1

dx`−1λ

A(xλ)`

)
+ O(ε0)

)
(B.7)

as formal series in ε. We do not present a proof of this result, but it can be easily checked

orderby order in q.

B.3 Illustrative Examples for Iterated Mayer expansion

In the following we spell out the definition (2.36) for k = 2, 3. For k = 2 (2.36) reads

S{{1,2}} = S{1,2} g{1,2} = (D12 − 1) D̃12 , S{{1},{2}} = f{1},{2} = D̃12 − 1 , (B.8)
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and the sum of this two terms is by the definitions above F12. For k = 3, (2.36) reads

S{{1,2,3}} = S{1,2,3} g{1,2,3} , (B.9)

S{{I,J},{K}} = S{I,J} g{I,J} f{{I,J},{K}} , (B.10)

S{{1},{2},{3}} = f{{1},{2}} f{{2},{3}} + f{{1},{3}} f{{2},{3}} + f{{1},{2}} f{{1},{3}}

+f{{1},{2}} f{{2},{3}} f{{1},{3}} . (B.11)

C Expansion by regions for instanton partition functions

One recurrent question in this paper is how to evaluate multiple integrals as a Laurent

expansion in some small parameter,8 namely ε2. There is a powerful method to address

this question, it is the so called method of expansion by regions, usually applied to the

evaluation of Feynman integrals [50, 87]. The method can briefly summarized as follows:

(1) divide the integration domain into regions and expand the integrand in a Taylor series

in small parameters, (2) extend the integration to the full domain of integration, (3) set the

scaleless integrals to zero. It has been applied successfully in many situations in the context

of Feynman integrals, see [88] for a recent study including proof under some assumptions.

We apply the same idea to the integrals of instanton partition functions.

It might look surprising that the prescription above works at all. In particular one

may worry about multiple counting of contributions. Let us describe how this problem is

circumvented in a simple example, the k = 2 case in (2.10)

F =

∫
dφ1

2πi

dφ2

2πi
Q(φ1)Q(φ2)

φ2
12

φ2
12 − ε22

. (C.1)

The first step is to identify the set of relevant regions. For this, one may note that the

interaction term
φ2

12

φ2
12−ε22

is different from one only in the region in which φ12 is of order ε2.

We thus define two separate integration regions as follows

DS : |φ12| ∼ O(ε2) , and DL : |φ12| � ε2 , (C.2)

where S and L denote short and long distance respectively, and the whole integration

domain is given as D = DS ∪DL.

The next step is to Taylor expand the integrand in each region. To do so it is convenient

to perform the change of variables φ0 := φ1+φ2

2 , φ̃ := φ1 − φ2. In the region DS one Taylor-

expands the Q functions for small9 φ̃, and in region DL one expands the interaction term
φ̃2

φ̃2−ε22
. Accordingly we introduce the Taylor expansion operators as follows

TS[I] =

∞∑
k=0

TS
k [I] =

∞∑
k=0

Qk(φ0) φ̃2k φ̃2

φ̃2 − ε22
, (C.3)

TL[I] =

∞∑
l=0

TL
l [I] =

∞∑
l=0

Q(φ1)Q(φ2)
( ε22
φ̃2

)l
, (C.4)

8We are actually interested only in the leading 1
ε2

behavior of the logarithm of the partition function.
9Note that φ0 will be equal to the poles given by Coulomb parameters aλ � ε2.
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where

Qk(x) :=
1

22k

k∑
m=−k

(−1)k+m

(k +m)!(k −m)!
Q(k−m)(x)Q(k+m)(x) . (C.5)

After the Taylor expansion, one extends the integration region to be the full region D.

According to the prescription, one has

F = FS + FL , FS =
∞∑
k=0

∫
D
TS
k [I] , FL =

∞∑
l=0

∫
D
TL
l [I] . (C.6)

The fact that this equality holds is a very non-trivial statement. In particular one may

worry about multiple-counting of contributions. One can verify (C.6) directly upon giving

a certain prescription for the evaluation of the relevant integrals. Here we provide a formal

argument, following closely [88], which can be easily generalized to the k-tuple integrals

entering the instanton partition function. An honest decomposition of (C.1) will proceed

as follows

F =
∑
k

∫
DS

TS
k [I] +

∑
l

∫
DL

TL
l [I] = FS + FL −

(∑
k

∫
DL

TS
k [I] +

∑
l

∫
DS

TL
l [I]

)
. (C.7)

In order to show that this is equal to (C.6), one has to show that the terms in the bracket

give zero. These terms can be written nicely as∑
k

∫
DL

∑
l

TL
l

[
TS
k [I]

]
+
∑
l

∫
DS

∑
k

TS
k

[
TL
l [I]

]
=
∑
k,l

∫
D
T(S,L)
j,l [I] , (C.8)

where we use the fact that the double expansion of the integrand is independent of the

order in which short or long range expansions are applied,10 so that

TL
l TS

k = TS
k TL

l =: T(S,L)
k,l . (C.9)

Explicitly, each term in (C.8) is given as∫
D
T(S,L)
j,l [I] = ε2l2

∫
dφ0

2πi
Qk(φ0)

dφ̃

2πi
(φ̃2)k−l . (C.10)

This is indeed zero since ∫
dφ̃ (φ̃2)n = 0 , for integer n . (C.11)

One can take (C.11) as the analogue of setting “scaleless integrals” to zero in the case

of Feynman integrals. As in that case, this step is essential in order for the method of

expansion by regions to work.

The above considerations seem to be easily generalized to the multi-particle cases. In

this case one deals with k-folded integrals. It is expected that the double Taylor expansion

in different regions, compare to (C.9), will produce some factorized term in the form of∫
dφ̃ (φ̃)n. This is set to zero as in (C.11).

10This corresponds to the case of “commuting expansion” in [88].
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Before proceeding to some concrete examples, let us make some important remarks.

When applied to the calculation of Feynman integrals, the method of expansion by regions

presents the characteristic feature of introducing extra divergences in individual integrals.

These new divergences must be regularized and should cancel after summing over all re-

gions in order to reproduce the correct result.11 The situation in the case of the integrals

entering the instanton partition function is somehow similar. By staring at (C.3)–(C.4) one

realizes that upon Taylor expansion, one produces arbitrary integer powers of φ̃2. These

are positive powers for TS[I] and negative for TL[I]. The integration along the real line

would produce higher order UV divergence in the short regions expansion, and higher or-

der IR divergence in the long range expansion. As in the case of Feynman integrals these

divergences needs to be regularized. In the examples below the regularization corresponds

to a certain contour integral interpretation of the integrals. This prescription works in all

examples we considered. We recall that the leading term in ε2, the term we are actually

interested in, does not need any regularization of this type.

C.1 Checks of expansion by regions

In this appendix we check the method of expansion by regions via explicit residue compu-

tations for two cases. For simplicity, we will consider the U(1) case, namely in the following

we take

Q(x) =
f(x)

x− a− i 0
, f(x) :=

1

x− a+ ε+ i0
, (C.12)

where we introduce f(x) for convenience as it does not have any pole inside the contour of

integration.

Example one. We first consider the integral (C.1). It is straightforward to compute it

by summing over the residues of two poles: (φ1, φ2) = (a, a+ ε2), (a+ ε2, a). One has

F = f(a)f(a+ ε2) =
∑
k=0

εk2f(a)f (k)(a)

k!
. (C.13)

On the other hand, by the method of expansion by regions, the integral is also given as the

sum FS + FL. One can check that indeed this form reproduces the residue result order by

order in ε2 expansion. It is interesting that FS contributes only to the terms of odd power

of ε2, while FL contributes to the terms of even power.

Let us spend a few more words on the integrals in FL∫
dφ1

2πi

dφ2

2πi

f(φ1)f(φ2)

(φ1 − a− i0)(φ2 − a− i0)(φ1 − φ2)2k
. (C.14)

The main issue is how to treat the new denominators φ2k
12 in the expansion. We will

apply the following prescription. We first do integration for φ1. There is a simple pole at

11For example, in the dimensional regularization D = 4 − 2ε, this corresponds to higher order 1
ε

singu-

larities, corresponding to either UV or IR divergence. The new UV and IR divergences cancel with each

other from different regions. These divergence may also be understood as from the scaleless integral, where

the UV and IR divergences canceled within the scaleless integral itself (see examples in [88]).
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φ1 = a+ i0. After taking the residue, the remaining integral for φ2 has a (2k + 1)th-order

pole of φ2 = a, the finally residue is given as

f(a)f (2k)(a)

2k!
. (C.15)

This prescription works for the next example as well. This provides a strong support for it.

Example two. We consider an integral which appear at k = 3 order in (2.20)

F =

∫ 3∏
I=1

dφI
2πi

Q(φI)
1

φ2
12 − ε22

1

φ2
13 − ε22

. (C.16)

As in the example above, one can compute the integral directly by residues. As there is

no φIJ terms in the numerators, also poles for which different φ’s are at the same position

contribute. Let us summarize the result of the residue calculation. The poles of (φ1, φ2, φ3)

and the corresponding residues are given as follows:

(a, a, a) :
f(a)3

ε4
, (C.17)

(a, a, a+ ε2) + (a, a+ ε2, a) : −f(a)2f(a+ ε2)

ε4
, (C.18)

(a+ ε2, a, a) 12 :
f(a)2f ′(a+ ε2)

4ε3
− f(a)2f(a+ ε2)

2ε4
, (C.19)

(a, a+ ε2, a+ ε2) :
f(a)f(a+ ε2)2

4ε4
, (C.20)

(a+ ε2, a+ ε2, a) + (a+ ε2, a, a+ ε2) :
f(a)f(a+ ε2)f(a+ 2ε2)

4ε4
. (C.21)

One can see that each pole starts at the order 1/ε42. However, summing over the residues

one finds that the first two orders are cancelled, the leading order starts at 1/ε22, which

gives

6f(a)f ′(a)2 + 3f(a)2f ′′(a)

8ε22
+

3f(a)f ′(a)f ′′(a) + f(a)2f (3)(a)

3ε2
+O(ε02) . (C.22)

While for our applications, see (2.20), we are interested only in the leading contributions

(in the normalization used here this is at order 1
ε22

). In the following we will verify that also

the next to leading contribution is reproduced by the method of expansion by regions.

Let us compute (C.16) by the method of expansion by regions. According to the

discussion in section 2.2.2, there are five regions to consider in this case, we have

F = F {{1,2,3}} + F {{1,2},3} + F {{1,3},2} + F {{2,3},1} + F {{1},{2},{3}} . (C.23)

In the first region, there is only one cluster, and one only Taylor expands the Q functions

around the center of cluster coordinate φ, where

φ :=
φ1 + φ2 + φ3

3
, φ̃I := φI − φ0 , (C.24)

12Note in this case, φ1 = a + ε2 should be taken as a double pole, due to φ12 − ε2 and φ13 − ε2 in the

denominator.
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and
∑3

I=1 φ̃I = 0. One has

F {{1,2,3}} =

∫
dφ

3∏
I=1

dφ̃I
2πi

δ
(∑3

I=1 φ̃I
3

)(
Q3(φ) + 0× φI +O(φ̃2

I)
) 1

φ̃2
12 − ε22

1

φ̃2
13 − ε22

.

(C.25)

The leading term is straightforward to compute. By integrating out φ̃I ’s one has

1

4ε22

∫
dφ

2πi
Q(φ)3 , (C.26)

which after integrating φ0 exactly reproduces the leading contribution in (C.22). The

remaining terms in the Taylor expansion will contribute to O(ε02) order (since φ̃2
I ∼ ε22).

These will constribute to the O(ε02) order in (C.22).

In the next relevant region, there are two clusters. Introduce the center coordinate for

the two-particle cluster as

φa :=
φ1 + φ2

2
, a = {1, 2} , φ̃ := φ1 − φ2 . (C.27)

and set the coordinate in the one particle cluster φb = φ3, where b = {3}. Doing Taylor

expansion one has

F {{1,2},{3}} =

∫
dφa
2πi

dφb
2πi

dφ̃

2πi

Q2(φa)Q(φb) +O(φ̃, ε22)

φ
2
ab (φ̃2 − ε22)

(C.28)

where O(φ̃, ε22) corresponds to higher order terms in the Taylor expansion, which are sub-

leading in the small ε2 expansion. To compute the leading term in this region, one needs

to evaluate the integral∫
dx

2πi

dy

2πi

f(x)2f(y)

(x− a− i0)2(y − a− i0)(x− y)2
, (C.29)

where, for simplicity, we considered the case corresponding to the U(1) gauge theory. This

integral is similar to (C.14). To evaluate it, one can first integrate out x by taking residue

at the double pole x = a+ i0 then do integration for y. One can also first do integration for

y and then for x, the result is the same. By summing the leading contributions from both

regions13 {{1, 2}, {3}} and {{1, 3}, {2}}, one reproduces the next-to-leading order term

in (C.22). It is clear that the region {{1}, {2}, {3}} where all particles are well separated,

compare to (C.23), contributes O(ε02) to (C.22).

This example provides a non-trivial check for the correctness of the method of ex-

pansion by regions. In particular, it shows that if one is only interested in the leading

contribution, the method of expansion by regions turns out to be extremely efficient.

13The region {{2, 3}, {1}} in this case contributes to higher order, since there is no 1
φ2
23−ε

2
2

factor in the

integral.
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D Alternative derivation of (2.43)

In this appendix we rederive (2.43) by applying the method of expansion by regions before

taking the logarithm of the partition function. This provides a further independent check

of the result. The validity of the method of expansion by regions is argued in appendix C,

here we mainly exploit the combinatorics coming from the labeling of the regions.

The simple fact on which Mayer expansion is based on is

∏
1≤I<J≤k

(1 + fIJ) =
∑

g ∈G[k]

∏
e(I,J)∈ g

fIJ =
∑

b∈B[k]

∏
Y∈ b

 ∑
g ∈GYc

∏
e(I,J)∈ g

fIJ

 . (D.1)

For convenience we summarize the notation used in the text here: GX (respectively GXc ),

where X is a set, denotes the set of graphs (respectively connected graphs) with the elements

of X as vertices. BX is the set of grouping of the elements of X into clusters. We set

[k] = {1, 2, . . . , k}. Finally, e(I, J) ∈ g means that there is an edge connecting the vertices

I and J in the graph g.

The rewriting (D.1) together with basic properties of the exponential implies that only

connected graphs contibutes to the logarithm of the grand canonical partition function.

The expansion (D.1) is not particularly convenient when expanding the integrand in a

region, see section 2.2.2. There is a refined version of (D.1) that we will now present. For

any fixed b ∈ B[k] we can rearrange the integrand as

k∏
I=1

UI
∏

1≤I<J≤k
(1 + fIJ) =

∏
Y∈ b

UY

∏
Y1,Y2 ∈ b
Y1<Y2

(1 + fY1Y2) , (D.2)

where

UY :=
∏
I ∈Y

UI
∏

I,J ∈Y
I<J

(1 + fIJ) , 1 + fY1Y2 :=
∏

I1 ∈Y1
I2 ∈Y2

(1 + fI1I2) . (D.3)

The factors UY, fY1,Y2 respectively takes into account “interactions” within each cluster

Y and between pairs of clusters Y1, Y2. Applying the same reasoning as in (D.1) to the

right hand side of (D.2) we rewrite

k∏
I=1

UI
∏

1≤I<J≤k
(1 + fIJ) =

∏
Y∈ b

UY

∑
b′ ∈B[Nb]

∏
Y′ ∈ b′

 ∑
g ∈GY′c

∏
e(Y1,Y2)∈ g

fY1Y2

 . (D.4)

The number Nb denotes the number of clusters in the grouping b. The sum over B[Nb]

in (D.4) is interpreted as a sum over clusters of clusters.

Assuming the validity of the method of expansion by regions we have

Z =
∞∑
k=0

qk

k!

∑
b∈B[k]

∫
k
T(b) [Integrandk] , (D.5)
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where we define Integrandk as the r.h.s. of (D.4). The symbol T(b) [. . . ] means the following:

Taylor expand its argument in the region labeled by b. Based purely on combinatorics one

rewrites

log Z =

∞∑
k=0

qk

k!

∑
b∈B[k]

∫
k
T(b)

 ∏
Y∈ b

UY

∑
g ∈G[Nb]

c

∏
e(Y1,Y2)∈ g

fY1,Y2

 . (D.6)

The explicit Taylor expansion gives

T(b) [UY] =

(
Q(φY)

ε2

)|Y| ∏
I,J ∈Y

I<J

φ2
IJ

φ2
IJ − ε22

+ . . . , φY :=
1

|Y|
∑
I ∈Y

φI , (D.7)

T(b) [fY1,Y2 ] = ε2 |Y1| |Y2|G(φY1 − φY2) + . . . (D.8)

From (D.8) one concludes immediatly that only connected tree graphs contributes to the

sum in (D.6). This produces a factor of εNb−1
2 . Next, for each cluster we separate the

integration variables into center of the cluster and distances between particles in the same

cluster. The latter contribution facorizes from (D.7) to produce

1

ε
|Y|
2

∫ ∏
I ∈Y

dφI
2πi

δ

(
1

|Y|
∑
I ∈Y

φI

) ∏
I,J ∈Y

I<J

φ2
IJ

φ2
IJ − ε22

=
1

ε2

1

2πi

|Y|!
|Y|2

. (D.9)

We have thus reproduced the result (2.41).
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