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1 Introduction

Conformal field theories (CFTs) describe many physical phenomena, from critical phenom-

ena to string theory to quantum gravity through the AdS/CFT correspondence. While

relatively little is known about CFTs in general, in recent years a number of constraints on

their spectra and amplitudes have been obtained by means of conformal bootstrap tech-

niques [2–4]. In [5, 6], bounds on the conformal dimensions of operators in four-dimensional

unitary CFTs were derived from the condition of crossing symmetry of the four point func-

tion, using explicit expressions for the conformal blocks obtained in [7, 8]. More recently,

similar methods have been applied to CFTs in diverse dimensions with great success [9–16].

In two dimensions, Hellerman [1] used modular invariance of the partition function to

derive a bound on ∆1, the conformal dimension of the lowest nonvacuum primary operator,

in any unitary 2D CFT with no chiral primary operators other than the identity and with

left and right central charge c, c̃ > 1:

∆1 ≤
ctot
12

+ 0.4736 . . . (1.1)

Hellerman also discussed the dual gravitational interpretation of this result, which corre-

sponds to a bound on the lightest massive black hole state in the dual 3D gravitational

theory. More recently, Friedan and Keller [17] investigated additional constraints from

modular invariance systematically. Building on the work of [1], they applied the next sev-

eral differential constraints using the linear functional method and found that for finite ctot
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the bound (1.1) can be lowered somewhat. For large ctot, however, the bounds apparently

all asymptote to ctot
12 as in (1.1).

Additional assumptions on the 2D CFT lead to tighter bounds on ∆1. The paper [18]

(see also [19, 20]), for example, examined 2D CFTs for which the partition function is

holomorphically factorized as a function of the complex structure τ of the torus. In this

class of CFT, it can be shown that the lowest primary operator is either purely left- or

right-moving, and can have a weight no larger than 1 + min
(

c
24 ,

c̃
24

)

. Other work [17, 21]

considers a certain subclass of (2,2) SUSY CFTs that suggest a bound that goes as ∆1 ≤ c
24

for large central charge.

In this paper, we extend the arguments of [1] to derive bounds on the conformal

dimensions ∆2, ∆3 using no additional assumptions. The bounds we obtain take the

same form as Hellerman’s bound (1.1), with the same asymptotic growth ctot/12. We also

investigate the possibility of deriving bounds on primary operator conformal dimensions

∆n for n > 3. We find that in order to obtain a bound for ∆4 or higher ∆n, we need to

assume a larger minimum value for ctot, which grows logarithmically with n. For large ctot
with ctot &

12
π logn, we show that all the ∆n obey a bound of the same form as (1.1):

∆n ≤ ctot
12

+O(1) .

These bounds, satisfied for fixed ctot by all ∆n with log n . πctot/12, collectively imply

that the total number of primaries of dimension ∆ . ctot/12 grows at least exponentially

with ctot

N(ctot/12) & exp

(

πc

12

)

In cases where the CFT has a gravitational dual, our results have implications for the

spectrum of the gravitational theory through the AdS/CFT correspondence. In the final

section, we show that our lower bound on the number of primaries of dimension . c/12 is

consistent with the entropy of a black hole of mass 1/4GN .

2 Review of the bound on ∆1

We begin by reviewing the methods and results of [1]. Consider a 2D CFT on the torus

with modular parameter close to the fixed point τ ≡ (K + iβ)/2π = i, where β is the

inverse temperature and K is the thermodynamic potential for spatial momentum in the

compact spatial direction σ1. The path integral on the square torus corresponds to the

thermal partition function of the CFT compactified on a circle. We can parameterize the

neighborhood of this fixed point conveniently using τ ≡ i exp(s). Then invariance of the

partition function Z(τ, τ̄) under the modular S-transformation τ → − 1
τ can be expressed as

Z(ies,−ies̄) = Z(ie−s,−ie−s̄) (2.1)

By taking derivatives of this expression with respect to s, s̄, one obtains an infinite set of

equations
(

τ
∂

∂τ

)NL
(

τ̄
∂

∂τ̄

)NR

Z(τ, τ̃)

∣

∣

∣

∣

τ=i

= 0 , NL +NR odd (2.2)
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For purely imaginary complex structure τ = iβ/2π, this condition implies

(

β
∂

∂β

)N

Z(β)

∣

∣

∣

∣

β=2π

= 0 , N odd (2.3)

We will assume a unique vacuum and a discrete spectrum. By further assuming cluster

decomposition and no chiral operators other than the stress tensor, the Virasoro structure

theorem implies that the partition function Z(β) can be expressed as a sum over conformal

families:

Z(β) = Zid(β) +
∑

A

ZA(β) . (2.4)

Here Zid(β) is the sum over states in the conformal family of the identity; ZA(β) is the sum

over all states in the conformal family of the Ath primary operator, which has conformal

weights hA, h̃A and conformal dimension ∆A ≡ hA + h̃A.

Hellerman considers CFTs with c, c̃ > 1 and with no chiral operators other than the

stress tensor, which implies the following explicit forms for Zid(β) and ZA(β):

Zid(τ) = q−
c
24 q̄−

c̃
24

∞
∏

m=2

(1− qm)−1
∞
∏

n=2

(1− q̄n)−1 (2.5)

ZA(τ) = qhA−
c
24 q̄h̃A−

c̃
24

∞
∏

m=1

(1− qm)−1
∞
∏

n=1

(1− q̄n)−1 (2.6)

where q = exp(2πiτ). The full partition function with τ = iβ/2π is then given by the

expression

Z(β) = M(β)Y (β) +B(β) (2.7)

with

M(β) ≡ exp(−βÊ0)

η(iβ/2π)2
(2.8)

and

B(β) ≡ M(β)
(

1− exp(−β)
)2
, (2.9)

where Ê0 ≡ E0+
1
12 = 1

12− c+c̃
24 and η is the Dedekind eta function. For real β, the partition

function over primaries Y (β) is

Y (β) =
∞
∑

A=1

e−β∆A . (2.10)

Next, Hellerman applies the differential constraints (2.3) to the partition function (2.7).

To simplify the analysis, we introduce polynomials fp(z) defined by

(β∂β)
pM(β)Y (β)

∣

∣

β=2π
= (−1)pη(i)−2 exp(−2πÊ0)

∞
∑

A=1

exp(−2π∆A)fp(∆A+Ê0) . (2.11)

– 3 –
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The first few polynomials are explicitly

f0(z) = 1

f1(z) = (2πz)− 1

2

f2(z) = (2πz)2 − 2(2πz) +

(

7

8
+ 2r20

)

(2.12)

f3(z) = (2πz)3 − 9

2
(2πz)2 +

(

41

8
+ 6r20

)

(2πz)−
(

17

16
+ 3r20

)

where

r20 ≡
η′′(i)

η(i)
≈ 0.0120 . . .

We also define the polynomials bp(z) by

(β∂β)
pB(β)

∣

∣

β=2π
= (−1)pη(i)−2 exp(−2πÊ0)bp(Ê0) . (2.13)

Explicitly,

b0(z) = 1− 2e−2π + e−4π

b1(z) =

(

(2πz)− 1

2

)

− 2e−2π

(

(

2π(z + 1)
)

− 1

2

)

+ e−4π

(

(

2π(z + 2)
)

− 1

2

)

(2.14)

bp(z) = fp(z)− 2e−2πfp(z + 1) + e−4πfp(z + 2) .

Using these polynomials, the equations (2.3) for modular invariance of Z(β) for odd p

become
∞
∑

A=1

fp(∆A + Ê0) exp(−2π∆A) = −bp(Ê0) (2.15)

It is this expression that is used to derive an upper bound on the conformal dimension

∆1. Hellerman takes the ratio of the p = 3 and p = 1 expressions to get
∑

∞

A=1 f3(∆A + Ê0) exp(−2π∆A)
∑

∞

B=1 f1(∆B + Ê0) exp(−2π∆B)
=

b3(Ê0)

b1(Ê0)
≡ F1 . (2.16)

Or, upon rearrangement,
∑

∞

A=1

[

f3(∆A + Ê0)− F1(Ê0)f1(∆A + Ê0)
]

exp(−2π∆A)
∑

∞

B=1 f1(∆B + Ê0) exp(−2π∆B)
= 0 . (2.17)

Next assume that ∆1 > ∆+
1 , where ∆

+
1 is defined as the largest root of the numerator,

and proceeds to obtain a contradiction. Because ∆A ≥ ∆1, this assumption implies that ev-

ery term in both the numerator and denominator is strictly positive. Then equation (2.17)

says that a sum of positive numbers equals zero — an impossibility. Therefore

∆1 ≤ ∆+
1 .

Finally, by analyzing ∆+
1 as a function of ctot Hellerman proves that for the given assump-

tions, ∆+
1 ≤ ctot

12 + (12−π)+(13π−12)e−2π

6π(1−e−2π)
, implying the bound

∆1 ≤
ctot
12

+ 0.4736 . . . (2.18)
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3 Bounds on ∆2, ∆3

In this section, we extend the methods described above to derive bounds on primary op-

erators of second and third-lowest dimension. In order to bound the conformal dimension

∆2, we move the ∆1 term of equation (2.15) to the r.h.s. . We then form the ratio of the

p = 3 and p = 1 equations to get

∑

∞

A=2 f3(∆A + Ê0)e
−2π∆A

∑

∞

B=2 f1(∆B + Ê0)e−2π∆B

=
f3(∆1 + Ê0)e

−2π∆1 + b3(Ê0)

f1(∆1 + Ê0)e−2π∆1 + b1(Ê0)
≡ F2(∆1, ctot) . (3.1)

Moving F2 to the left side, we get

∑

∞

A=2

[

f3(∆A + Ê0)− f1(∆A + Ê0)F2

]

exp(−2π∆A)
∑

∞

B=2 f1(∆B + Ê0) exp(−2π∆B)
= 0 (3.2)

In appendix A, we prove that F2 is finite and nonzero for c, c̃ > 1 and ∆1 in the allowed

range and thus our derivations will carry through without issue.

Before proceeding, we make some definitions. Define ∆+
fp

to be the largest root of

fp(∆ + Ê0) viewed as a polynomial in ∆. The bracketed expression in the numerator is a

polynomial cubic in ∆2; we denote it by P2(∆2), and define the largest root of P2 to be

∆+
2 (ctot,∆1), where Ê0 dependence has been replaced by ctot.

We now assume that ∆2 > max(∆+
f1
,∆+

2 ) and attempt to obtain a contradiction.

From our explicit polynomial expressions, we see that the leading coefficients of both f1
and f3 are positive. Thus both P2(∆2) > 0 and f1(∆2 + Ê0) > 0 for ∆2 > max(∆+

f1
,∆+

2 ).

Because ∆n ≥ ∆2 for all n > 2, we also have P2(∆n) > 0 and f1(∆n + Ê0) > 0 for

∆2 > max(∆+
f1
,∆+

2 ). Thus every term in both the numerator and denominator of the left

side of equation (3.2) is positive for ∆2 > max(∆+
f1
,∆+

2 ). The left side thus can not be

equal to zero, and we have a contradiction. We have thus derived a bound on the conformal

dimension ∆2:

∆2 ≤ max(∆+
f1
,∆+

2 ) . (3.3)

From the explicit form of f1(∆ + Ê0) in (2.12), we see that

∆+
f1

=
ctot
24

+
(3− π)

12π
. (3.4)

We will spend the next section trying to simplify our bound by deriving a manageable

expression for ∆+
2 .

Asymptotic expansion for large central charge. We begin by considering the limit

of large positive total central charge ctot. In the limit ctot → ∞, it is easy to see that ∆+
2 is

proportional to ctot, plus corrections of order c
0
tot. We thus expand ∆+

2 as a series at large

central charge:

∆+
2 ≡

∞
∑

a=−1

d−a(∆1)

(

ctot
24

)

−a

. (3.5)

By definition ∆+
2 satisfies

P2(∆
+
2 ) = 0

– 5 –
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and is the largest real value with that property. Substituting equation (3.5) into the explicit

form of P2(∆
+
2 ) = 0, the equation to leading order in ctot is:

4(d1 − 1)2π2

242
− π2

122
= 0 . (3.6)

The solution d1 = 2 gives the largest root ∆+
2 ,

∆+
2 =

ctot
12

+ d0(∆1) +O(c−1
tot) . (3.7)

Note how this compares to the value ∆+
f1

in equation (3.4). Since we are taking the

maximum of these two quantities, the true upper bound on ∆2 will generically be given

by ∆+
2 .

To determine d0 we expand P2 to the next order in ctot. Quoting the result obtained in

appendix B, we find that the largest term possible at this order is given by d0 ≈ 0.4736 . . .

— the same bound to this order as for ∆1 in [1]. Thus for large enough central charge ctot,

we can always bound the conformal dimension ∆2 using the expression

∆2 ≤
ctot
12

+ 0.4736 . . .+O(c−1
tot) . (3.8)

An absolute bound on ∆2 can be obtained numerically. We seek a linear bound of the

form ∆2 ≤ ctot
12 +D1, where D1 is a numerical constant independent of ∆1. In order for this

bound to universal, we need to find D1 so that the inequality is valid for all possible values

of ∆1 and all ctot > 2. This can be done by explicitly solving the cubic polynomial P2 (in

terms of radicals of exponentials) and maximizing the expression ∆+
2 − ctot

12 for ctot > 2 and

0 < ∆1 ≤ ctot
12 + 0.4736 . . . . This function attains a global maximum D1 ≈ 0.5338 . . . (for

ctot ≈ 2, ∆1 ≈ 0.2717 . . .). Therefore

∆2 ≤
ctot
12

+ 0.5338 . . . (3.9)

Proof and numerical bound for ∆3. Now that we have obtained a bound on ∆2, it

is natural to extend our arguments to primary operators of higher dimension. A necessary

condition for our arguments to work for ∆n is that Fn, defined as

Fn(Ê0,∆1, · · · ,∆n−1) ≡
∑n−1

i=1 f3(∆i+Ê0) exp(−2π∆i) + b3(Ê0)
∑n−1

i=1 f1(∆i+Ê0) exp(−2π∆i) + b1(Ê0)
, (3.10)

be well-defined for all relevant values of its arguments. We prove in appendix A that F3 is

well-defined for ctot > 2 and thus that there will be no issues. We can thus proceed with

another proof by contradiction. The result is that

∆3 ≤ max(∆+
f1
,∆+

3 ) , (3.11)

where ∆+
f1

is the expression (3.4) from above and ∆+
3 is the largest real root of the poly-

nomial

P3(∆3) ≡ f3(∆3 + Ê0)− f1(∆3 + Ê0)F3 . (3.12)

– 6 –
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At large central charge, one easily finds that ∆+
3 ≈ ctot

12 . Maximizing the expression

∆+
3 − ctot

12 numerically as a function of ∆1 and ∆2 subject to the contraints 0 < ∆1 ≤
ctot
12 + .4736 . . . , 0 < ∆2 ≤ ctot

12 +D1, and ctot > 2 gives the constant D2 = 0.8795 . . . and

the linear bound

∆3 ≤
ctot
12

+ 0.8795 . . . (3.13)

We observe that the values of ∆1,2 that maximize ∆+
3 are degenerate: ∆1 = ∆2.

4 Bounds on ∆n

It should be clear by this point how to extend the proof to higher conformal dimensions.

Assuming that the expression (3.10) is defined and nonvanishing in the appropriate range,

we can proceed as above to obtain a bound

∆n ≤ max(∆+
f1
,∆+

n ) , (4.1)

where ∆+
f1

is given by (3.4) and ∆+
n is the largest real root of the polynomial

Pn(∆n) ≡ f3(∆n + Ê0)− f1(∆n + Ê0)Fn(ctot,∆1, . . . ,∆n−1) (4.2)

and is thus a function of ctot,∆1, · · · ,∆n−1.

The leading terms in the polynomial with largest root ∆+
n are independent of n; there-

fore the expansion of ∆+
n at asymptotically large central charge again goes as ctot

12 . Thus it

seems reasonable to expect a bound of the same form as before:

∆n ≤ ∆+
n <

ctot
12

+O(1) . (4.3)

However, there is a potential problem with this argument. For the bounds on ∆2 and ∆3,

we proved in the appendices that the functions F2 and F3 were positive and well-defined for

the relevant ranges of our parameters. This is not the case beginning with the expression

F4. The denominator of F4 vanishes when the total central charge equals

cD4 =
2
[
∑3

i=1(−12π∆i−π+3)e−2π∆i−π+3+(26π−6)e−2π+(3−25π)e−4π
]

π
(
∑3

i=1−e−2π∆i−1+2e−2π−e−4π
) (4.4)

As before, we extremize this expression over the appropriate ranges of its variables (0 <

∆1 ≤ ctot/12+0.4736 . . . , etc.). The largest value of the total central charge for which the

denominator of F4 vanishes is given by

c+D4 = 2.3450 . . . (4.5)

Applying the same analysis to the numerator of F4, we find that the largest value of the

total central charge causing it to vanish is

c+N4 = 1.5113 . . . (4.6)

Thus for 2 < ctot < c+D4,we cannot use these specific methods to set a bound on ∆4; there

is a moduli space where our parameters can fundamentally change the polynomial Pn.

– 7 –
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The resolution to this issue is straightforward; we will further restrict the allowed

values for the total central charge to ctot > max(c+D4, c
+
N4). Allowing ctot to range all the

way down to 2.3450 . . . would require an infinite constant in the bound (4.3); however, a

small additional restriction on the range to ctot ≥ 2.5 leads to the bound

∆4 ≤
ctot
12

+ 1.0795 . . . (4.7)

Further restricting ctot gives a tighter bound; for example, ctot ≥ 3 gives ∆4 ≤ ctot
12 +

0.6740 . . . . Similar results can be derived for arbitrary ∆n using the methods described

here. We note that, as before, the values of ∆1,2,3 that saturate the bound (4.7) are

degenerate: ∆1 = ∆2 = ∆3.

For larger values of n, it can be shown that c+Dn > c+Nn and thus we need only re-

strict ctot > c+Dn. We can analytically solve for the value of the central charge cDn which

causes the denominator of (3.1) to vanish. The explicit form is a complicated function of

∆1, . . . ,∆n−1 in terms of Lambert W functions; we provide details in appendix C. We also

show there that when we maximize cDn over all of its arguments, it goes for large n as

c+Dn ≈ 12

π
W0[(n− 1)] ∼ 12

π
log(n) , (4.8)

where W0 is the primary branch of the Lambert-W function. Therefore, if we require

log n .
πctot
12

+O(1) , (4.9)

then Fn will be finite and nonzero. Then an analysis similar to before gives a bound

∆n ≤ ctot
12

+O(1) . (4.10)

The O(1) term in expression (4.10) means O(1) in ctot — these subleading terms

could have dependence on n that contributes to leading order. For example, if the O(1)

term goes as log(n), then by equation (4.9) we could have contributions as large as O(ctot).

Additionally, the specific O(1) term will depend on how we restrict the total central charge.

In appendix D, we show that by considering

n ≪ eπctot/6 +O(1) , (4.11)

we can derive a bound on ∆n for asymptotically large ctot going as

∆n ≤ ctot
12

+O(1) . (4.12)

In the limit (4.11), the O(1) term will be 0.4736 . . . and additional corrections will be

O(nctote
πctot/6). We are already assuming eq. (4.9), so the inequality (4.11) necessarily

follows.

– 8 –
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5 Gravitational interpretation

Our results have implications for gravity in 2 + 1 dimensions through the AdS/CFT cor-

respondence. In the case of AdS3/CFT2, the matching between the central charge of the

CFT and the cosmological constant is given by the identification

c+ c̃ =
3L

GN
, (5.1)

where L is the AdS radius and GN is Newton’s constant. Following [22], we also match the

spectrum of massive states with the spectrum of primary operators — the usual AdS/CFT

dictionary gives the correspondence

E(rest) =
∆

L
, (5.2)

where E(rest) is the rest energy of an object in the bulk of AdS and ∆ is the conformal

dimension of the corresponding boundary operator.

We can interpret our bounds as saying that the dual gravitational theory, when it

exists, must have massive states in the bulk (without boundary excitations) with rest

energies Mn = ∆n/L satisfying

Mn ≤ M+
n ≡ 1

L
∆+

n

∣

∣

ctot=
3L
GN

. (5.3)

Using our asymptotic bound (4.10), this inequality becomes

Mn ≤ 1

4GN
+

Dn

L
(5.4)

where Dn is an O(1) or smaller constant and n is constrained in the same appropriate

manner. In the flat-space limit L → ∞, this inequality becomes

Mn ≤ 1

4GN

It is interesting that 1
4GN

is close to the mass of the lightest BTZ black hole in pure (2+1)-D

gravity.

Since n can be of exponentially large order in c according to eq. (4.9), this inequality

indicates a high density of gravitational microstates of mass ≤ 1/4GN . Indeed, the log-

arithm of the number N of such states should be at least equal to the upper bound on

log(n) of eq. (4.9),

logN ≥ πctot
12

+O(1) =
πL

4GN
+O(1) (5.5)

The density of these states should be strongly peaked at the upper limit of the mass range,

so this may be interpreted as a lower bound on the entropy of a spinless (2+1)-D black hole

of mass 1/4GN . Indeed, the actual entropy of a spinless black hole of this mass is [23, 24]

S =
πctot
6

=
πL

2GN

which is indeed consistent with the bound (5.5).

– 9 –
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A Behavior of F2, F3

In this appendix, we prove that the functions F2, F3 are defined for all relevant values of

our parameters. The function F2 is given by

F2 ≡
f3(∆1 + Ê0) exp(−2π∆1) + b3(Ê0)

f1(∆1 + Ê0) exp(−2π∆1) + b1(Ê0)
(A.1)

and the polynomials fi and bi are given in equations (2.12) and (2.14). By inspection, we

see that F2 will only become undefined if the denominator equals zero. The value of the

central charge when f1(∆1 + Ê0) exp(−2π∆1) + b1(Ê0) = 0 is

c+D2 =
2

π

(12π∆1+ π−3)e−2π∆1+π−3−26πe−2π+6e−2π+25πe−4π−3e−4π

e−2π∆1+1−2e−2π+e−4π
(A.2)

The maximum possible value that c+D2 can take for ∆1 > 0 is c+D2 = 1.0868 . . . .

This value of the total central charge, however, is outside of the assumed range ctot > 2.

Therefore the function F2 is defined for all relevant values of ctot,∆1.

Our proof can also run into problems if F2 is vanishing for any values of our parameter

space. The condition for vanishing F2 is

f3(∆1 + Ê0) exp(−2π∆1) + b3(Ê0) = 0 . (A.3)

We once again solve for the total central charge satisfying this equation and label it.

This expression can be maximized numerically; it has a maximum value given by c+N2 =

0.9632 . . . . This value of the total central charge is also outside of the relevant range

ctot > 2. Therefore the function F2 is well-defined and non-vanishing — in fact, positive

— for all relevant values of ctot,∆1, and our proof by contradiction will be valid.

A similar analysis applies to the function F3 given by

F3 ≡
∑2

i=1 f3(∆i + Ê0) exp(−2π∆i) + b3(Ê0)
∑2

i=1 f1(∆i + Ê0) exp(−2π∆i) + b1(Ê0)
. (A.4)

Once again, we are interested in where this function vanishes or becomes undefined. This

can be studied by solving for values of the central charge at which either the numerator or

denominator vanishes. These solutions will be labeled as cN3 and cD3; they are functions

of ∆1 and ∆2. We maximize cN3 and cD3 over the allowed range of ∆1,∆2 and find

c+N3 ≈ 1.3929 . . . (A.5)

– 10 –
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and

c+D3 ≈ 1.8022 . . . (A.6)

These values of the central charge, however, are again outside of the relevant range for ctot,

since we have restricted our work to ctot > 2. Therefore the function F3 is defined and

positive for all relevant values of ctot,∆1, and ∆2.

B The O(1) term in ∆+

2

In this appendix, we calculate the O(1) term in the expansion of the largest root ∆+
2 of

polynomial P2 for asymptotically large total central charge. In the body of the text, we

reasoned that the leading coefficient in the large-ctot expansion of ∆+
2 ,

∆+
2 ≡

∞
∑

a=−1

d−a(∆1)

(

ctot
24

)

−a

,

is d1 = 2. Expanding P2(∆
+
2 ) = 0 to next order in ctot, we find the expression

−1

e−2π∆1+(1−e−2π)2
π

18

(

−πe−2π∆1−6πd0e
−2π∆1−13πe−4π+14πe−2π−6πd0−π−24e−2π

+12e−4π+12e−2π∆1+12−6πd0e
−4π+12πd0e

−2π−6π∆1e
−2π∗∆1

)

= 0 .

Solving for d0 gives us

d0(∆1) =
−(−14πe−2π+13πe−4π+π−12e−2π∆1+24e−2π−12e−4π+6π∆1e

−2π∆1+πe−2π∆1−12)

6π
(

e−2π∆1+(1−e−2π)2
)

To keep our bound universal we should take the maximum possible value of this func-

tion. This occurs as ∆1 → ∞ meaning d0(∆1) → 0.4736 . . . — the same constant appearing

in the bound on ∆1. Thus for large enough central charge ctot, we can always bound the

conformal dimension ∆2 using the expression

∆2 ≤
ctot
12

+ 0.4736 . . .

C Condition on n, ctot

Here we will sketch the proof of the condition on ctot given by equation (4.8). We begin

with the condition that the denominator of Fn vanishes

n−1
∑

A=1

f1

(

∆A +
1

12
− c+Dn

24

)

e−2π∆A − b1

(

1

12
− c+Dn

24

)

= 0 . (C.1)

Upon expansion, this can be rearranged to give

πc+Dn

12

(

(1− e−2π)2 +
n−1
∑

A=1

e−2π∆A

)

=

n−1
∑

A=1

2π∆Ae
−2π∆A +

(

π

6
− 1

2

)(

(1− e−2π)2 +

n−1
∑

A=1

e−2π∆A

)

− 4πe−2π(1− e−2π) .

Dividing through by the parenthetical expression on the l.h.s. gives an expression for cD.

– 11 –
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We wish to consider total central charge larger than cDn in equation (C.1). We maxi-

mize cDn by differentiating with respect to ∆i to find critical points. It can be shown that

cDn attains a local maximum when

∆1 = · · · = ∆n−1 =
1

2π
W0[A(n− 1)] +

1

2π
− 2

e2π − 1
, (C.2)

A ≡
exp

(

− 1−(1+4π)e−2π

1−e−2π

)

1− 2e−2π + e−4π
= 0.3780 . . .

For small n we have numerically confirmed that this is a global maximum, and we assume

that this continues to be the case for all n. In appendix D we show that this is the case

given appropriate assumptions. Substituting (C.2) into equation (C.1) gives a complicated

expression involving the Lambert-W function, defined by

z = W0(z)e
W0(z) ⇒ e−W0(z) =

W0(z)

z
.

After some algebra, we find the expression

c+D =
12

π

(

W0[A(n− 1)] + C1

)

, (C.3)

C1 ≡ − 4π

e2π − 1
+

π

6
− 1

2
. (C.4)

We consider central charge such that ctot > c+D, and use the fact that W0(z) ≈ log(z)

plus O
(

log
(

log(z)
))

corrections. Then for large n only the first term on the r.h.s. of (C.3)

will survive, and we deduce

c+Dn ≈ 12

π
W0[A(n− 1)] ∼ 12

π
log(n)

as in eq. (4.8).

D Derivation for ∆n

Here we will provide a derivation of the bound (4.12). We define x ≡ 2π(∆1 + Ê0)− 3
2 in

order to depress the cubic polynomial Pn of eq. (4.2) to

Pn(x) = x3 + Ĉ1(Ê0)x+ Ĉ0(Ê0)x ,

Ĉ1(Ê0) ≡ Ĉ0(Ê0)−
3

2
, (D.1)

Ĉ0(Ê0) ≡ −Fn + 6r20 −
1

8
.

It is known [25] that the largest real root of a depressed cubic obeys the inequality

x+ ≤

√

4|Ĉ1|
3

cos

(

φ

3
+

2πk

3

)

(D.2)

=
2√
3

√

∣

∣

∣

∣

Fn − 6r2 +
13

8

∣

∣

∣

∣

cos

(

φ

3
+

2πk

3

)

,

where | cos(φ)| ≡
√

−27Ĉ2

0

4Ĉ3

1

and k = 0, 1, 2.

– 12 –
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The difference between the bound on ∆1 and the bound on ∆n is the presence of factors

of n in terms multiplying Fn. Therefore we will first consider what limits suppress this

additional dependence. It can be shown by explicit computation that the function Fn (3.10)

has a maximum when ∆1, . . . ,∆n−1 are degenerate. As we will soon see explicitly (though

somewhat apparent from eq. (D.2)), maximizing Fn maximizes the bound on ∆n. Thus we

need to maximize Fn as a function of ∆1. Differentiating and solving to leading order in

ctot for the critical point ∆max
1 gives that ∆max

1 ∼ ctot
12 plus subleading corrections.

From the definition of Fn, we see that it contains terms depending on n as large as

nc3tote
−2π∆1 ∼ nc3tote

−πctot/6. We therefore impose the condition

n ≪ c−3
tote

πctot/6. (D.3)

In order for Fn to be nonvanishing and finite in the case of large n, we are already restricting

ourselves to the case

log(n) <
πctot
12

. (D.4)

Thus we will have no issues suppressing these n-dependent terms in Fn.

Although the argument for a bound going as ctot/12 follows immediately, we will

continue algebraic manipulations in order justify previous statements. In the limit (D.3),

Fn will be of the form

Fn ≈ a3c
3
tot + a2c

2
tot + a1ctot + a0

ā1ctot + ā0

= c2tot
a3
ā1

(

1 +O(c−1
tot)

)

. (D.5)

The ai and āj are obtained from eq. (3.10) evaluated at n = 0, except that a0, ā0 have

corrections much smaller than O(1). Because Ĉ0 and Ĉ1 are just Fn plus constants, in

the limit we consider they will be of the same form as above, with a1 and a0 replaced by

different constants; that is, both Ĉ0 and Ĉ1 grow asymptotically like c2tot.

We now turn our attention to the cosφ terms in eq. (D.2). From the definition of cosφ

and considerations of the preceding paragraph, the leading behavior of cos(φ) is O(c−1
tot).

By the series expansion of arccosine, we then have φ ≈ ±π
2 +O(c−1

tot). This in turn implies

max

[

cos

(

φ

3
+

2πk

3

)]

=

√
3

2
+O(c−1

tot)

plus subleading corrections. Then to leading order eq. (D.2) becomes

x+ ≤
√

|Fn| , (D.6)

plus subleading corrections. Given eq. (D.5), the leading term eq. (D.2) is

x+ ≤ πctot
12

+O(1) . (D.7)

Finally, the definition of x+ gives the result

∆+
n ≤ ctot

12
+O(1) . (D.8)

– 13 –
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As previously stated, this result could have been argued once we placed the appropriate

restrictions on n and ctot. The details of the preceding paragraph can also be used to

justify our assertion that the above bound on ∆n is attained at the minimum allowed

central charge. To see this, consider maximizing the expression
(

∆+
n − ctot

12

)

. Inspection of

eqs. (D.5) and (D.6) shows that the subleading ctot dependence comes from the expansion

of the square root of the ratio of polynomials in powers of c−1
tot. Analysis of this square root

shows that it is monotonically decreasing over the allowed range of ctot. So to maximize

the square root, we should let ctot take its smallest allowed value.

We have noted that the allowed range for ctot should not extend all the way to the

pole at c+D (C.3); otherwise the constant appearing in (D.8) will diverge. It turns out this

restriction is not necessary. By considering the ratio of the p = 3, 5 constraints, one can

show that a bound of form (D.8) is implied, with a smaller O(1) term that remains finite

all the way down to the value of c+D found above. Thus, eq. (C.3) is indeed a true lower

bound on the number of primary operators satisfying ∆ . ctot/12.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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