
J
H
E
P
0
5
(
2
0
1
4
)
0
9
0

Published for SISSA by Springer

Received: March 16, 2014

Revised: April 15, 2014

Accepted: April 20, 2014

Published: May 21, 2014

Two-loop planar master integrals for the production

of off-shell vector bosons in hadron collisions

Johannes M. Henn,a Kirill Melnikovb and Vladimir A. Smirnovc

aInstitute for Advanced Study,

Princeton, NJ 08540, U.S.A.
bDepartment of Physics and Astronomy, Johns Hopkins University,

Baltimore, U.S.A.
cSkobeltsyn Institute of Nuclear Physics of Moscow State University,

119991 Moscow, Russia

E-mail: jmhenn@ias.edu, melnikov@pha.jhu.edu,

smirnov@theory.sinp.msu.ru

Abstract: We describe the calculation of all planar master integrals that are needed

for the computation of NNLO QCD corrections to the production of two off-shell vector

bosons in hadron collisions. The most complicated representatives of integrals in this class

are the two-loop four-point functions where two external lines are on the light-cone and

two other external lines have different invariant masses. We compute these and other

relevant integrals analytically using differential equations in external kinematic variables

and express our results in terms of Goncharov polylogarithms. The case of two equal

off-shellnesses, recently considered in ref. [1], appears as a particular case of our general

solution.

Keywords: NLO Computations, QCD Phenomenology

ArXiv ePrint: 1402.7078

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2014)090

mailto:jmhenn@ias.edu
mailto:melnikov@pha.jhu.edu
mailto:smirnov@theory.sinp.msu.ru
http://arxiv.org/abs/1402.7078
http://dx.doi.org/10.1007/JHEP05(2014)090


J
H
E
P
0
5
(
2
0
1
4
)
0
9
0

Contents

1 Introduction 1

2 Notation 3

3 Differential equations 5

4 Solution in terms of multiple polylogarithms 7

5 Boundary conditions in the physical region 8

6 Analytic continuation 10

7 Master integrals 12

8 Checks of the results 23

9 Conclusions 24

1 Introduction

Production of pairs of vector bosons in hadron collisions is an important process that is

used by ATLAS and CMS collaborations to study QCD dynamics, understand fine details

of electroweak interactions and validate Monte Carlo event generators that are employed

for estimating backgrounds in searches for physics beyond the Standard Model [2–6]. For

this reason, high-quality theoretical predictions for these processes are warranted. Cur-

rently, the theoretical description of pp → V1V2 processes includes next-to-leading order

(NLO) QCD corrections [7, 8], electroweak corrections [9, 10], threshold resummation [11]

and consistent matching of these processes to parton showers [12]. Upgrading theoretical

predictions for vector boson pair production to next-to-next-to-leading order (NNLO) in

perturbative QCD, represents a natural step towards an even better understanding of these

processes. To show how such an improved understanding may be helpful, we describe three

concrete examples where further advances in theory predictions for vector boson production

are extremely valuable.

The first one is related to persistent and significant discrepancies between theoretical

predictions and measured cross-sections and kinematic distributions for pp → W+W− pro-

duction, observed both at 7 and at 8 TeV LHC by ATLAS and CMS collaborations [2–6].

It is important to compute NNLO QCD corrections to this process in order to exclude them

once and for all as a potential reason for that discrepancy. It is also important to explore

other vector boson production processes, such as ZZ and ZW . In case of the latter one,
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calculation of NNLO QCD virtual corrections requires dealing with the situation where

two vector bosons have close, but different, masses.

The second example is related to precise measurements of the Higgs coupling to elec-

troweak bosons at the LHC. Such measurements, important for understanding the mech-

anism of electroweak symmetry breaking, require good control of backgrounds from con-

tinuous vector boson production, a particularly pressing issue in case of pp → W+W− →
l+1 l

−
2 ν1ν̄2 since in this case W -bosons can not be fully reconstructed. NNLO QCD predic-

tions for qq̄ → V V ∗, where one vector boson is on the mass-shell and the other one is off

the mass-shell, will be extremely helpful for this purpose.

To explain the third example, we remind the reader about the recent suggestion to

measure the Higgs boson width at the LHC, by counting the number of ZZ events above

the 2mZ threshold [13] (see also [14]). It is estimated [13, 14] that the Higgs bosons width

as small as ten to twenty times its Standard Model value can be probed. However, since

this is a counting experiment, an accurate prediction for all processes that produce pairs of

Z-bosons at high invariant mass is crucial. The challenge therefore is to compute qq̄ → ZZ,

gg → ZZ as well as the interference of gg → H∗ → ZZ and gg → ZZ amplitudes to the

highest precision possible, to facilitate the model-independent measurement of the Higgs

boson width at the LHC.

Having argued that extending theoretical description of vector boson pair production

to NNLO QCD is important, we note that computing NNLO QCD corrections to hadron

collider processes in general is difficult for several reasons. A practical framework for such

computations did not exist until very recently, but it appears that, after almost ten years

of research, we finally have it. Indeed, as recent NNLO QCD results for pp → 2j [15, 16],

pp → tt̄ [17, 18] and pp → H + j [19] show, we now understand quite well how to combine

infra-red divergent virtual and real emission corrections to arrive at physical results. The

main bottleneck in extending available NNLO QCD predictions to other, more complex,

processes is the lack of known two-loop virtual amplitudes. Indeed, absence of two-loop

scattering amplitudes for qq̄ → V V and gg → V V is the only reason why no NNLO QCD

predictions are available for pp → ZZ and pp → W+W−, both on- and off- the mass-shell.

The standard modern technology for multi-loop computations consists of three primary

steps: re-writing scattering amplitudes through a minimal set of tensor integrals, reduction

of this set to a few master integrals using integration-by-parts identities [20, 21] and, finally,

computation of the master integrals. For a long time, the computation of the master

integrals could have been considered to be the least-understood part of this process since

very often it is performed on a case-by-case basis. A relatively systematic way to study

master integrals is provided by the differential equations in external kinematic variables

that can easily be derived [22, 23] using integration-by-parts identities. However, while

the differential equation method was applied to a large number of various master integrals

(see, e.g., [26, 27]), its systematic applicability for finding master integrals that depend on

a large number of kinematic variables was not always clear.

Recently, it was suggested [28] that, for a generic multi-loop problem, a choice of

master integrals can be made that transforms differential equations in such a way that

their iterative solution in dimensional regularization parameter ǫ = (4 − D)/2 becomes
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straightforward. While this conjecture was never proven in full generality, the technique of

ref. [28] was successfully applied to compute highly non-trivial Feynman integrals [29–31],

suggesting its tremendous utility for practical computations. In this paper we will use this

technique to compute all planar master integrals for qq̄ → V1V2 and gg → V1V2 processes,

where V1,2 stands for vector bosons with different invariant masses. We will show that

all integrals that belong to this class can be computed in a streamlined manner using the

technique of ref. [28].

Before proceeding to the main body of the paper, we will comment on related results

for two-loop four-point integrals with all internal particles massless, that are available in

the literature. The two-loop four-point functions with all, or all but one, external particles

on the light cone are known since long ago [33–38]. Recently, these results were extended

to the case where two external particles have equal invariant masses [1]. The calculation

reported in ref. [1] is the limiting case of the general results that we report here and we use

it extensively to cross-check our calculation. Finally, very recently some master integrals

that belong to the same class that we consider in this paper were computed in ref. [39]

using a variant of the differential equation method. We did not compare our results with

that reference since results presented in ref. [39] are for unphysical Euclidean kinematics

while we compute those integrals directly in the physical region.

The remainder of the paper is organized as follows. In the next section, we introduce

our notation and explain the basic strategy. In section 3 we discuss the differential equations

and point out their general properties that are used later. In section 4 we explain how

we constructed the analytic solutions of these differential equations in terms of multiple

polylogarithms in the physical region. In section 5 we explain how boundary conditions in

the physical region were computed. In section 6 we point out a simple way to perform the

analytic continuation for a certain class of integrals relevant for our analysis. In section 7,

we list all the master integrals and give their boundary asymptotic behaviour in the physical

region. In section 8 we describe checks of our results. We conclude in section 9. Finally, in

attached files, we give matrices that are needed to construct the differential equations for

our basis of master integrals and the analytic results for all the planar two-loop four-point

integrals in terms of Goncharov polylogarithms.

2 Notation

We consider two-loop QCD corrections to the process q(q1)q̄(q2) → V ∗(q3)V
∗(q4). The

four-momenta of external particles satisfy q21 = 0, q22 = 0 and q23 = M2
3 , q

2
4 = M2

4 . The

Mandelstam invariants are1

S = (q1+q2)
2 = (q3+q4)

2, T = (q1−q3)
2 = (q2−q4)

2, U = (q1−q4)
2 = (q2−q3)

2; (2.1)

they satisfy the standard constraint S + T + U = M2
3 +M2

4 . The physical values of these

kinematic variables are M2
3 > 0,M2

4 > 0, S > (M3 + M4)
2, T < 0 and U < 0. Further

1We use Mandelstam variables written with capital letters to refer to the physical process. Later, we

will use Mandelstam variables for families of integrals; those we will write with small letters.
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constraints on these variables can be derived by considering the center-of-mass frame of

colliding partons and expressing the transverse momentum of each of the vector bosons ~q⊥
through T and U variables. We find

~q 2
⊥ =

(TU −M2
3M

2
4 )

S
. (2.2)

In addition, the square of the three-momentum of each of the vector bosons in the center-

of-mass frame reads

~q 2 =
S2 − 2S(M2

3 +M2
4 ) + (M2

3 −M2
4 )

2

4S
. (2.3)

The constraints on T and U for given S,M2
3 ,M

2
4 follow from the obvious inequalities

0 ≤ ~q 2
⊥ ≤ ~q 2. (2.4)

In general, the complete kinematics of the process is defined by four variables that

we take to be S, T , M2
3 and M2

4 . However, the dependence on one of these variables is

redundant, since any Feynman integral can be written as a function of three dimensionless

ratios of these variables and an overall factor that is fully fixed by the mass dimension of

an integral. For all planar integrals we choose the following parametrization

S

M2
3

= (1 + x)(1 + xy),
T

M2
3

= −xz,
M2

4

M2
3

= x2y. (2.5)

This parametrization is motivated by the appearance of a complicated square root in ex-

pressions for master integrals2 that becomes a simple rational function when expressed in

these variables
√

S2 − 2S(M2
3 +M2

4 ) + (M2
3 −M2

4 )
2 = M2

3x(1− y). (2.6)

As we will see in the next section, once we rationalize the square root, the solution of a

system of differential equations is easily achieved using Goncharov polylogarithms. We

note that in terms of the variables x, y, z, the physical region corresponds to

x > 0, y > 0, y < z < 1. (2.7)

All planar two-loop diagrams that are required for the production of two off-shell vector

bosons can be described by a single meta-graph shown in figure 1. Three mappings, that

define three distinct families of integrals, need to be considered:

1. family P12: p1 = −q3, p2 = −q4, p3 = q1, p4 = q2;

2. family P13: p1 = −q3, p2 = q1, p3 = −q4, p4 = q2;

3. family P23: p1 = q2, p2 = −q4, p3 = −q3, p4 = q1.

2These square roots are proportional to a relative three-momentum of the vector bosons, cf. eq. (2.3).

– 4 –



J
H
E
P
0
5
(
2
0
1
4
)
0
9
0

p1
1

5

p2

2

p3

7

p4

3

6

4

Figure 1. Double box graph. The numbering of the internal lines corresponds to the notation used

in eqs. (2.8), (2.9). The ingoing external momenta satisfy
∑

i p
µ
i = 0. Different choices of on-shell

conditions for them define the three planar integral families considered in the main text.

For each of these families, we define a set of integrals that is closed under the application

of integration-by-parts identities. Specifically,

Ga1,...,a9 =

∫

dDk1

iπD/2

dDk2

iπD/2

1

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7 [8]a8 [9]a9
, (2.8)

and

[1] = −k21, [2] = −(k1 + p1 + p2)
2, [3] = −k22,

[4] = −(k2 + p1 + p2)
2, [5] = −(k1 + p1)

2, [6] = −(k1 − k2)
2, (2.9)

[7] = −(k2 − p3)
2, [8] = −(k2 + p1)

2, [9] = −(k1 − p3)
2.

Here, the exponents can take any integer values, with the restriction that a8 ≤ 0 and

a9 ≤ 0. These factors are used to represent irreducible numerators. For each of the three

families, integration-by-parts identities can be used to express all the integrals of that type

to a minimal set of (master) integrals. Our choice of master integrals can be found in

section 7. These master integrals satisfy differential equations in the external kinematic

variables. In the next section we discuss how such systems of equations can be solved.

3 Differential equations

In this section we discuss how the master integrals can be calculated. To this end, we derive

systems of differential equations for each of the above families. This is a relatively standard

procedure, see e.g. [22, 23] and we do not discuss it further. When deriving differential

equations we performed a reduction to master integrals using FIRE [24, 25]. We choose all

master integrals to be dimensionless, such that they depend only on the three variables

x, y, z, and obtain

∂ξ ~f = ǫAξ
~f, (3.1)

where ξ = x, y or z and ~f is a vector of master integrals. The matrices Ãξ contain simple

rational functions. They satisfy the integrability conditions

(∂ξ∂η − ∂η∂ξ) ~f = 0 ⇒ ∂ξAη − ∂ηAξ = 0 , [Aη, Aξ] = 0 , (3.2)
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for ξ, η ∈ {x, y, z}. The structure of the equations can be further clarified by writing them

in the combined form

d ~f(x, y, z; ǫ) = ǫ d Ã(x, y, z) ~f(x, y, z; ǫ) , (3.3)

where the differential d acts on x, y and z. For our choice of master integrals (see section 7),

the matrix Ã can be written in the following way

Ã =
15
∑

i=1

Ãαi
log(αi) , (3.4)

where the Ãαi
are constant matrices, and the arguments of the logarithms αi, called letters,

are simple functions of x, y, z. We find

α = {x, y, z, 1 + x, 1− y, 1− z, 1 + xy, z − y, 1 + y(1 + x)− z, xy + z,

1 + x(1 + y − z), 1 + xz, 1 + y − z, z + x(z − y) + xyz, z − y + yz + xyz}. (3.5)

We call eq. (3.5) the alphabet relevant to the functions ~f . For example, in case of family P12,

the first twelve of these letters are required. Eq. (3.3) makes it manifest that the analytic

solution, to all orders in the ǫ expansion, can be written in terms of multiple polylogarithms

defined by the alphabet (3.5). In general, the solution to eq. (3.3) can be written in the

elegant form
~f(x, y, z; ǫ) = Peǫ

∫
C
dÃ ~f0(ǫ) , (3.6)

where P refers to path ordering of the matrix exponential, and the integrals are Chen

iterated integrals [40] along the contour C in the space of kinematical variables x, y, z. The

vector ~f0(ǫ) represents the boundary value at the base point of the contour C. Eq. (3.6)

is to be understood as a series expansion for small ǫ. The homotopy invariance of (3.6)

allows for many equivalent representations of the same functions, corresponding to different

choices and parametrizations of C.3 For this reason eq. (3.6) is probably the most compact

and invariant representation of the functions ~f . However, for practical applications, we

find it convenient to make a specific choice of the integration contour.

Indeed, the linearity of the alphabet (3.5) allows us to write a simple representation

of ~f in terms of multiple polylogarithms. This can be thought of as a specific choice of

the contour C. Another way to arrive at such a solution is to integrate eqs. (3.1) over one

variable at a time. In the next section, we will discuss this in more detail.

Note that singular points of the differential equations (3.3) can be read off from the

alphabet (3.5). They correspond to special kinematic points such as singular limits, thresh-

old or pseudo-threshold configurations of the multivalued functions ~f . A useful feature of

the differential equations is that they allow one to easily determine the behavior of ~f close

to singular points, and this is helpful in determining the boundary conditions [31]. A

practical example of how this is done can be found in section 5.

Finally, we wish to point out that the letters in eq. (3.5) all have a definite sign in

the physical regions. This means that all iterated integrals needed for calculating ~f can be

written in a manifestly real way, and imaginary parts appear only through explicit factors

of i. The latter come from the boundary conditions in the physical region.

3For a recent example in the context of Bhabha scattering, see ref. [30].
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4 Solution in terms of multiple polylogarithms

The vector of master integrals ~f can be expanded in powers of ǫ,

~f =
4

∑

i=0

~f (i)ǫi +O(ǫ5). (4.1)

To construct a solution of the differential equation, we need to iteratively solve eq. (3.1)

order-by-order in dimensional-regularization parameter ǫ. Suppose the solution is con-

structed up to i = n− 1. The set of differential equations for ~f (n) is then

∂x ~f
(n) = Ax

~f (n−1), ∂y ~f
(n) = Ay

~f (n−1), ∂z ~f
(n) = Az

~f (n−1). (4.2)

To find ~f (n), we integrate the first equation over x; this determines the solution up to a

function of y, z

~f (n)(x, y, z) = ~h(n)(y, z) +

x
∫

0

dx̄Ax(x̄, y, z)~f
(n−1)(x̄, y, z). (4.3)

It follows from eqs. (3.3), (3.4), and (3.5) that the integration kernels appearing on the right-

hand side of eq. (4.3) only contain terms of the form dx̄/(x̄− a), for some a’s. Therefore,

the integration over x̄ can be performed systematically provided that ~f (n−1) is written in

terms of Goncharov polylogarithms

G(an, an−1, . . . a1, t) =

t
∫

0

dtn
tn − an

G(an−1, . . . a1, tn). (4.4)

For the simplicity of integration, it is important to keep the same order of integration,

e.g. always start with x, for all the integrals that contribute to the vector ~f . If this is

not done consistently — so that integration variables also appear in indices of Goncharov

polylogarithms in addition to their arguments — one has to use various identities between

Goncharov polylogarithm to remedy this situation and enable the integration as in eq. (4.4).

Substituting the solution in eq. (4.3) into the second term in eq. (4.2), we find the differential

equation for the function ~h(n)(y, z)

∂y~h
(n)(y, z) = By

~h(n−1)(y, z), (4.5)

where By is a matrix related to the original matrix Ã in a non-trivial way. Note, however,

that this equation can only depend on the elements of the alphabet that are independent of

x; this provides a non-trivial check of the consistency of reconstructed solutions. Integrating

this equation over y, we find

~h(n)(y, z) = ~g(n)(z) +

y
∫

0

dȳBy(ȳ, z)~h
(n−1)(ȳ, z), (4.6)
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where ~g(n)(z) is an arbitrary function of a single variable z. Substituting eq. (4.3) with
~h(n)(y, z) from eq. (4.6) into the third equation in eq. (4.2), we find a differential equation

for ~g(n)(z) that is independent of y and x

∂y~h
(n)(z) = Cz~g

(n−1)(z). (4.7)

The solution to this equation

~g(n)(z) = ~e(n) +

z
∫

0

dz̄Cz(z̄)~g
(n−1)(z̄), (4.8)

is determined up to a constant of integration ~e(n). This constant of integration has to

be determined from the boundary conditions that we will discuss presently. Once ~f (n) is

found, we employ the same strategy to obtain ~f (n+1).

5 Boundary conditions in the physical region

It is common practice (see e.g. refs. [1, 41]) that a solution to differential equations is first

constructed in an unphysical region, where the solution is real and unique, and then prop-

erly continued into the physical region. We have found it difficult to follow this approach

here. The reason has to do with the mapping from the kinematic variables S, T, U and

masses M2
3 ,M

2
4 , where the analytic continuation is simple, to the x, y, z variables. It is the

non-linear nature of this mapping that makes it difficult to perform the proper analytic

continuation once the result is written in x, y, z variables. Because of that, we decided

to perform computations directly in the physical region. Note that an analysis of master

integrals for qq̄ → V V reported recently in ref. [1] arrives at a similar conclusion: all, but

one, of the integrals described in that reference are obtained using analytic continuation,

while the remaining integral is computed directly in the physical region since the analytic

continuation becomes too cumbersome. We, however, decided in favor of a unified approach

for computing all the integrals for planar graphs.

To understand how solutions in the physical region are constructed, we note that a

Goncharov polylogarithm may develop an imaginary part when its argument is larger than

at least one of the indices. Inspecting the alphabet in eq. (3.5), it is easy to realize that

in the kinematic region of interest, every entry in the alphabet is sign-definite. Therefore,

upon integrating over x, y and z from zero to their actual values, we can explicitly construct

a real-valued solution, thereby by-passing all the subtleties related to analytic continuation

of Goncharov polylogarithms. However, since in the physical region Feynman integrals do

have imaginary parts, we should be able to get them in our approach as well and it is clear

that, in case one has a sign-definite alphabet, imaginary parts can only appear through the

boundary conditions.

To determine boundary conditions, we consider the limit x → 0, z → 1 and y → 1.

Physically, this limit corresponds to the production of two vector bosons, one with the mass

p2 = M2
3 and the other with the mass M2

3x
2. The total energy squared of the collision

– 8 –
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is M2
3 (1 + x)2, which implies that the two vector bosons are at rest in the center-of-

mass frame of the colliding partons. For two families, P12 and P13, the only singularities

that are developed in this limit, are related to the mass of the lightest of the two vector

bosons; for them, y and z can be set to one and the limit of small x-values needs to be

approached carefully. A typical behavior of an integral in that limit is f ∼ fax
−naǫ, where

na is some integer. Unfortunately, for some integrals required for the family P23, the

limit z → 1, y → 1 is also not smooth due to the appearances of the so-called double-

parton scattering singularities [42]. For such integrals, a typical asymptotic in the limit

x → 0, y → 1, z → 1 reads

f ∼ fax
−n1ǫ + fbx

−n2ǫ [(z − y)(1− z)]−n3ǫ , (5.1)

where n1,2,3 are integers. Our goal is to compute constants the fa,b to the relevant order

in ǫ and then use them to construct solutions of differential equations as explained in the

previous section.

There are at least two ways to compute asymptotics in the required limits. One

option is to simply take the limit z → 1, y → 1, x → 0 in an integrand of a relevant

Feynman integral. Since most of the integrals diverge in at least one of these limits, we

need to resort to asymptotic expansions to evaluate them. To this end, one can use the

strategy of expansion by regions [43, 44] (for a recent review see chapter 9 of ref. [45])

and its implementation in an open computer code asy.m [46, 47] which is now included

into FIESTA [49]. To apply this code to a given Feynman integral, one has to specify the

propagators, their powers and the limit of interest, by identifying the small parameter in

the problem. As an output one obtains contributions of regions relevant for the given

limit, in terms of Feynman-parametric integrals. Such integrals are further evaluated by

the method of Mellin-Barnes representation [33, 35, 45]. In fact, for some of the master

integrals of family P23, we considered two limits, x → 0 and z, y → 1. When we evaluated

asymptotics in the second limit, we used parametric integrals obtained after taking the

first limit as an input for the second limit, also using the code asy.m.

An alternative, and in some cases simpler, way to get the boundary conditions for

complicated integrals, is provided by the differential equations. To illustrate it, we consider

a differential equation in the z-variable for the box integral g17 of the family P12. The

definition of the integral can be found in the next section. Writing the differential equation

in the limit z → 1, y → 1, we find

∂zf
P12
17 = ǫ

(

1

z − 1
+

1

z − y

)(

−3

2
fP12
1 +

1

2
fP12
2 + fP12

3 − fP12
6 + fP12

17

)

+ . . . , (5.2)

where ellipses stand for less singular terms. In z → 1, y → 1 limit, all the integrals in the

family P12 must have finite limits. The consistency of this requirement with eq. (5.2) leads

to a relation between different integrals

lim
z,y→1

fP12
17 − 3

2
fP12
1 +

1

2
fP12
2 + fP12

3 − fP12
6 = 0. (5.3)

As can be seen from section 7, where all master integrals are defined, the integrals fP12
1,2,3

are the two-loop two-point functions and fP12
6 is a relatively simple three-point function,

– 9 –
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whose y → 1, z → 1, x → 0 limits are straightforward to obtain. We find

fP12
1 ∼ −x−2ǫ, fP12

2 ∼ −e2iπǫx−4ǫ, fP12
3 ∼ −e2iπǫ, fP12

6 ∼ −e2iπǫ. (5.4)

We then read off the limit of the integral fP12
17 from eq. (5.3) implies

fP12
17 ∼ 1

2
e2iπǫx−4ǫ − 3

2
x−2ǫ. (5.5)

Finally, we note that the boundary conditions in the physical region for all the master inte-

grals are reported in section 7. To make sure that the boundary conditions are correct, we

have often used both strategies described above to evaluate them. An agreement between

these independent computations is a non-trivial check of the correctness of the boundary

conditions.

6 Analytic continuation

In the previous section, we described how we determined the boundary behavior of the

integrals directly in the physical region, thereby avoiding the necessity of any analytic

continuation. As we pointed out, the analytic continuation is not obvious to perform in

the x, y, z variables. The problem is that the change of variables eq. (2.5) is non-linear.

Therefore, our insistence on writing results in terms of Goncharov polylogarithms makes

the analytic structure of the solution less obvious.

Here, we wish to show how the analytic continuation can be easily done in the language

of Chen iterated integrals, in terms of the original variables, S, T,M2
a ,M

2
b . We will take the

integral family P23 as an example. This will also be a useful check of our results, since the

boundary behavior for this integral family is particularly complicated in the physical region.

The integrals of family P23 depend on the variables s, t, p22, p
2
3. We can start from a

non-physical region with s < 0, t < 0, p22 < 0, p22 < 0. The physical region is then reached

by analytically continuing to p22 > 0, p23 > 0, keeping in mind the Feynman i0 prescription.

Note that such an analytic continuation is possible, since the integrals in the P23 family do

not have discontinuities in the Mandelstam variable u, so that the incorrect i0 prescription

for the Mandelstam variable u, induced by the analytic continuation of p22,3, is not relevant.

We will discuss a single-parameter slice of the functions, which is obtained by fixing

two Mandelstam variables and varying the remaining two. Specifically, we choose

s = t = −1 , p22 = p23 = − 2r

1 + r2
. (6.1)

A nice feature of this parametrization is that the alphabet (3.5) needed to describe the

functions becomes simply

α −→
{

r, 1− r, 1 + r, 1 + r2
}

. (6.2)

The boundary constants in the non-physical region r > 0 are easily fixed. In fact, they can

be obtained from the requirement that no branch cuts should start in that region. In the

present case, the potential singularity at r = 1, cf. eq. (6.2), must be spurious. Experience
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shows that such conditions usually allow one to determine all boundary constants without

calculations [29, 31]. The same is true here. For the basis choice ~gP23 made in section 7,

one easily sees that the boundary values at r = 1 are given by

~gP23|r=1 = {b1, b1, b1, b1, 0, 0, 0, 0, b2, 0, b2, 0, b2, b2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} . (6.3)

Here b1 and b2 are just the explicit values of trivial bubble-type integrals. They are given by

b1 =− Γ3(1− ǫ)Γ(1 + 2ǫ)/Γ(1− 3ǫ) , (6.4)

b2 =Γ4(1− ǫ)Γ2(1 + ǫ)/Γ2(1− 2ǫ) . (6.5)

Taking into account that

ln[Γ(1 + ǫ)] = −γEǫ+
∑

k≥2

(−1)kζk
ǫk

k
, (6.6)

we see that after multiplying with e2γEǫ, the ǫ expansion of these functions has uniform

weight. This, together with the differential equations (3.3), shows that the solution has

uniform weight in the ǫ expansion, to all orders in ǫ.

Let us now discuss the analytic continuation in r to negative values of r. The Feynman

prescription implies that r should have a small negative imaginary part. The alphabet in

eq. (6.2) indicates that poles in the complex r plane are located at −1, 0, 1, i,−i, and at

infinity. As we discussed earlier, the pole at r = 1 is spurious. There are branch cuts along

the negative real axis, starting at r = 0, and possibly along the imaginary axis starting

from r = ±i.

It is now clear how to analytically continue to negative values of r. We can choose

a path below the negative real axis, but with ℑ(r) > −1, thereby avoiding branch cuts.

Then we simply evaluate the Chen iterated path integral along this contour. We have done

so for a path consisting of two segments, the first along the real axis from r = 1 to r = 1/2,

and the second along the semi-circle r = 1
2e

−iπt, with t ∈ [0, 1]. In this way, we numerically

verified the values for ~gP23 obtained in the physical region at r = −1/2. In terms of the

x, y, z variables of eq. (2.5), this point corresponds to x = 2, y = 1/4, z = 5/8.

Given the simplicity of the alphabet (6.2) arising from the parametrization (6.1), it

is also possible to perform the analytic continuation in a more algebraic way. Indeed, the

terms that require analytic continuation are the ones that develop logarithmic singularities

as r → 0. In the present case, functions corresponding to the alphabet (6.2) can be

written as Goncharov polylogarithms with indices 0,±1,±i. The terms with logarithmic

divergences are the ones with 0’s at the rightmost entry. This behavior can be made

manifest by using shuffle relations for iterated integrals, e.g.

G(1, 0; r) = G(0; r)G(1; r)−G(0, 1; r) , (6.7)

and so on, where we explicitly see G(0; r) = log r. The logarithmic terms are then an-

alytically continued according to log r → log(−r) − iπ. In this way, one arrives at a

representation valid for r < 0.
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In summary, the formulation of eq. (3.6) in terms of iterated path integrals has many

conceptional advantages; here we exploited its manifest homotopy invariance in order to

perform the analytic continuation. On the other hand, if one first fixes an integration con-

tour, in order, for example, to obtain an expression in terms of Goncharov polylogarithms,

one looses much of this flexibility.

7 Master integrals

For each family of integrals, the Mandelstam variables are given by s = (p1 + p2)
2 =

(p3 + p4)
2, t = (p1 + p3)

2 = (p2 + p4)
2, u = (p2 + p3)

2 = (p1 + p3)
2. Their relation

to the physical Mandelstam variables S, T, U and the ensuing parametrization in terms

of variables x, y, z can be read off using the q → p mapping just before eq. (2.8) and

eqs. (2.1), (2.5).

When choosing the master integrals we followed the strategy proposed in ref. [28]

to find master integrals having uniform weight. As guiding principles for finding such

integrals we analyzed generalized unitarity cuts, as well as explicit (Feynman) parameter

representations of the integrals. Technically this is very similar to the analysis of certain

three-loop massless integrals studied in refs. [29, 31]. In fact, some of the two-loop integrals

with two off-shell legs are contained in those three-loop integrals as subintegrals. For more

detailed explanations and examples, see section 2 of ref. [29]. Additional discussion of how

to choose master integrals was recently given in ref. [32].

Below we present the master integrals, and the boundary conditions in the physical

region that we used to evaluate them. For convenience, we re-scale and renormalize the

master integrals. In particular, for the families P12 and P13 we choose master integrals to

be fP12,P13
i = N0(p

2
1)

2ǫ e2γEǫ gP12,P13i , while for the family P23, we choose master integrals

as fP23
i = N0(p

2
3)

2ǫe2γEǫ gP23i . The normalization constant N0 is

N0 = 1 +
π2

6
ǫ2 +

32ζ3
3

ǫ3 +
67π4ǫ4

360
. (7.1)

Furthermore, to present the master integrals and the results for the limits, we use the

following notation

N1 = 1 + iπǫ− 2π2ǫ2

3
−
(

i
π3

3
− 2ζ3

)

ǫ3 +

(

π4

10
+ 2iπζ3

)

ǫ4,

N2 = 1 + 6ǫ3ζ3 +
ǫ4π4

10
, N3 = 1− iǫπ − π2ǫ2

6
−
(

iπ3

6
+ 14ζ3

)

ǫ3.

R12 =
√

p21 + (p22 − s)2 − 2p21(p
2
2 + s), R13 =

√

p21 + (p23 − t)2 − 2p21(p
2
3 + t),

R23 =
√

(s+ t)2 − 4p22p
2
3. (7.2)

The pictures below are intended to give a general idea of how the corresponding master

integrals look like, but obviously do not show doubled propagators or numerators and

prefactors. Also, in some cases we chose linear combinations of integrals as master integrals,

and in those cases only one representative figure is given. Finally, we note that some of the
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integrals that we present below are rather simple to compute, even by traditional methods,

and some have already appeared in the literature, see [48] and references therein.

The master integrals and their boundary asymptotic behaviour at the point x → 0, y →
1, z → 1 for the family P12 read

p1

p2 p4

p3

gP12
1 = ǫ2 t G0,0,0,0,1,2,2,0,0 , (7.3)

fP12
1 ∼ −x−2ǫ ,

p1

p2

p4

p3

gP12
2 = ǫ2 p22 G0,0,0,1,2,2,0,0,0 , (7.4)

fP12
2 ∼ −e2πiǫ x−4ǫ ,

p1

p2 p4

p3

gP12
3 = ǫ2 p21 G0,0,1,0,2,2,0,0,0 , (7.5)

fP12
3 ∼ −e2πiǫ ,

p1

p2 p4

p3

gP12
4 = ǫ2 s G0,1,2,0,0,2,0,0,0 , (7.6)

fP12
4 ∼ −e2πiǫ ,

p1

p2
p4

p3

gP12
5 = ǫ3 R12 G0,0,1,1,1,2,0,0,0 , (7.7)

fP12
5 ∼ 0 ,

p1

p2
p4

p3

gP12
6 = ǫ2

[

− 1

2
ǫ(p21 − p22 − s)G0,0,1,1,1,2,0,0,0 + sG0,0,2,1,1,2,0,−1,0

]

,

fP12
6 ∼ −e2πiǫ, (7.8)

p1

p2 p4

p3

gP12
7 = ǫ3 (p22 − t) G0,1,0,0,1,1,2,0,0 , (7.9)

fP12
7 ∼ −x−2ǫ

2
+

x−3ǫ

2
N1,

p1

p2
p4

p3

gP12
8 = ǫ3 R12 G0,1,1,0,1,2,0,0,0 , (7.10)

fP12
8 ∼ 0,

p1

p2
p4

p3 gP12
9 = ǫ2

[3

2
ǫ(p21 − p22 + s)G0,1,1,0,1,2,0,0,0 + (1 + ǫ)p21sG1,1,1,0,1,2,0,0,0

]

,

fP12
9 ∼ 3e2iπǫ

2
− x−2ǫe2iπǫN2, (7.11)
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p1

p2
p4

p3

gP12
10 = ǫ2p22sG0,1,1,2,2,0,0,0,0 , (7.12)

fP12
10 ∼ x−2ǫe2iπǫN2,

p1

p2 p4

p3

gP12
11 = ǫ3(p21 − t)G1,0,0,0,1,1,2,0,0 , (7.13)

fP12
11 ∼ −x−2ǫ

4
+ e2iπǫ

(

1

4
+

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

,

p1

p2
p4

p3

gP12
12 = ǫ3 R12 G1,0,0,1,1,2,0,0,0 , (7.14)

fP12
12 ∼ 0 ,

p1

p2
p4

p3 gP12
13 = ǫ2

[3

2
ǫ(s− p21 + p22)G1,0,0,1,1,2,0,0,0 + (1 + ǫ)p22sG1,1,0,1,1,2,0,0,0

]

,

fP12
13 ∼ e2iπǫ

2
x−4ǫ, (7.15)

p1

p2
p4

p3

gP12
14 = ǫ2 p21 s G1,0,1,2,2,0,0,0,0 , , (7.16)

fP12
14 ∼ e2iπǫN2,

p1

p2 p4

p3

gP12
15 = ǫ3 s G1,1,0,0,0,1,2,0,0 , (7.17)

fP12
15 ∼ e2iπǫ

(

1

4
+

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

,

p1

p2 p4

p3

gP12
16 = ǫ2 s2 G1,2,1,2,0,0,0,0,0 , (7.18)

fP12
16 ∼ e2iπǫN2,

p1

p2 p4

p3

gP12
17 = ǫ3stG0,0,1,1,1,2,1,0,0 , (7.19)

fP12
17 ∼ e2iπǫx−4ǫ

2
− 3x−2ǫ

2
,

p1

p2 p4

p3

gP12
18 = ǫ4(p21 − s− t)G0,1,1,0,1,1,1,0,0 , (7.20)

fP12
18 ∼ 0,

p1

p2 p4

p3

gP12
19 = ǫ3stG0,1,1,0,1,2,1,0,0 , (7.21)

fP12
19 ∼ −3x−2ǫ

2
+ x−3ǫN1,
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p1

p2
p4

p3

gP12
20 = ǫ4R12G0,1,1,1,1,1,0,0,0 , (7.22)

fP12
20 ∼ 0,

p1

p2 p4

p3
gP12
21 = −ǫ4(p22 − s− t)G1,0,0,1,1,1,1,0,0 , (7.23)

fP12
21 ∼ −e2iπǫ

(

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

− x−2ǫ

4

+
x−2ǫ

4

(

1 +
π2ǫ2

3
+ 14ζ3ǫ

3 +
2π4ǫ4

3

)

,

p1

p2 p4

p3

gP12
22 = ǫ3 s t G1,0,0,1,1,2,1,0,0 , , (7.24)

fP12
22 ∼ e2iπǫx−4ǫ

2
− x−2ǫ

(

1− π2ǫ2

3
− 7ζ3ǫ

3 − π4ǫ4

3

)

,

p1

p2
p4

p3

gP12
23 = ǫ4 R12 G1,0,1,1,1,1,0,0,0 , (7.25)

fP12
23 ∼ 0,

p1

p2 p4

p3

gP12
24 = ǫ3 s t G1,1,0,0,1,1,2,0,0 , (7.26)

fP12
24 ∼ −3x−2ǫ

4
+

x−3ǫ

2
N1,

p1

p2 p4

p3

gP12
25 = ǫ3R12G1,1,0,0,1,1,2,0,−1 , (7.27)

fP12
25 ∼ 0,

p1

p2
p4

p3

gP12
26 = ǫ3R12sG1,1,1,2,1,0,0,0,0 , (7.28)

fP12
26 ∼ 0,

p1

p2 p4

p3

gP12
27 = −ǫ4s(p22 − t)G0,1,1,1,1,1,1,0,0 , (7.29)

fP12
27 ∼ e2iπǫx−4ǫ

4
+

3x−2ǫ

4
− x−3ǫN1,

p1

p2 p4

p3
gP12
28 = −ǫ4s(p21 − t)G1,0,1,1,1,1,1,0,0 , (7.30)

fP12
28 ∼ −e2iπǫ

4

(

1 + ǫ2π2 + 30ζ3ǫ
3 +

7ǫ4π4

10

)

+
x−2ǫ

4

(

1 +
π2ǫ2

3
+ 14ζ3ǫ

3 +
2π4ǫ4

3

)

,
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p1

p2 p4

p3

gP12
29 = ǫ4 s2 t G1,1,1,1,1,1,1,0,0 , , (7.31)

fP12
29 ∼ −e2iπǫx−4ǫ

4
+ x−3ǫN1 −

x−2ǫ

2

(

2 +
π2ǫ2

6
+ 7ζ3ǫ

3 +
π4ǫ4

3

)

,

p1

p2 p4

p3 gP12
30 = ǫ2

[

− 1

2
ǫ p21sG0,1,1,0,1,2,1,0,0 −

1

2
ǫ p22sG1,0,0,1,1,2,1,0,0 , (7.32)

+ǫ(p21 + p22)sG1,1,0,0,1,1,2,0,0 + ǫ2s2G1,1,1,1,1,1,1,−1,0

]

,

fP12
30 ∼ 3

4
x−2ǫ − x−3ǫ

2
N1,

p1

p2 p4

p3

gP12
31 = ǫ4R12sG1,1,1,1,1,1,1,0,−1 , (7.33)

fP12
31 = 0.

The master integrals for the family P13 and their limits in the kinematic point x →
0, y → 1, z → 1 read

p1

p2 p4

p3

gP13
1 = ǫ2tG0,0,0,0,1,2,2,0,0 , (7.34)

fP13
1 ∼ −e2iπǫ,

p1

p2 p4

p3

gP13
2 = ǫ2p21G0,0,1,0,2,2,0,0,0 , (7.35)

fP13
2 ∼ −e2iπǫ,

p1

p2 p4

p3

gP13
3 = ǫ2sG0,2,2,0,0,1,0,0,0 , (7.36)

fP13
3 ∼ −x−2ǫ,

p1

p2 p4

p3

gP13
4 = ǫ2p23G1,0,0,0,0,2,2,0,0 , (7.37)

fP13
4 ∼ −e2iπǫx−4ǫ,

p1

p2 p4

p3

gP13
5 = ǫ3R13G0,0,1,0,1,2,1,0,0 , (7.38)

fP13
5 ∼ 0 ,

p1

p2 p4

p3
gP13
6 = ǫ2

[1

2
ǫ(t− p21 + p23)G0,0,1,0,1,2,1,0,0 + p23G0,0,2,0,1,2,1,−1,0

]

,

fP13
6 ∼ −e2iπǫx−2ǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

, (7.39)
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p1

p2
p4

p3
gP13
7 = ǫ3(p21 − s)G0,0,1,1,1,2,0,0,0 , (7.40)

fP13
7 ∼ e2iπǫ

2
− x−ǫ

2
N1,

p1

p2 p4

p3

gP13
8 = ǫ3(p23 − s)G0,1,1,0,0,2,1,0,0 , (7.41)

fP13
8 ∼ −x−2ǫ

2
+

x−3ǫ

2
N1,

p1

p2 p4

p3

gP13
9 = ǫ3R13G1,0,0,0,1,2,1,0,0 , (7.42)

fP13
9 ∼ 0,

p1

p2 p4

p3

gP13
10 =

1

2
ǫ2
[

ǫ(p21 + p23 − t)G1,0,0,0,1,2,1,0,0 + 2p21G1,0,0,0,2,2,1,0,−1

]

,

fP13
10 ∼ −e2iπǫ, (7.43)

p1

p2
p4

p3 gP13
11 = ǫ3(p21 − s)G1,0,0,1,1,2,0,0,0 , (7.44)

fP13
11 ∼ −x−2ǫ

4
+ e2iπǫ

(

1

4
+

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

,

p1

p2 p4

p3
gP13
12 = ǫ2p21p

2
3G2,0,2,0,1,0,1,0,0 , (7.45)

fP13
12 ∼ e2iπǫx−2ǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

,

p1

p2
p4

p3 gP13
13 = ǫ2p21sG2,0,2,1,1,0,0,0,0) , (7.46)

fP13
13 ∼ eiπǫx−ǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

,

p1

p2 p4

p3

gP13
14 = ǫ3(p23 − s)G1,1,0,0,0,1,2,0,0 , , (7.47)

fP13
14 ∼ 1

4
e2iπǫx−4ǫ − x−2ǫ

(

1

4
+

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

,

p1

p2 p4

p3

gP13
15 = ǫ2p23sG1,2,1,0,0,0,2,0,0 , (7.48)

fP13
15 ∼ eiǫπx−3ǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

,

p1

p2 p4

p3 gP13
16 = ǫ2s2G1,2,1,2,0,0,0,0,0 , (7.49)

fP13
16 ∼ x−2ǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

,
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p1

p2 p4

p3

gP13
17 = ǫ3stG0,0,1,1,1,2,1,0,0 , (7.50)

fP13
17 ∼ −3

2
x−ǫN1 + x−2ǫe2iπǫ

(

1 + 6ζ3ǫ
3 +

π4ǫ4

10

)

,

p1

p2 p4

p3

gP13
18 = ǫ4(p21 − s− t)G0,1,1,0,1,1,1,0,0 , (7.51)

fP13
18 ∼ 0,

p1

p2 p4

p3

gP13
19 = ǫ3stG0,1,1,0,1,2,1,0,0 , (7.52)

fP13
19 ∼ −3

2
x−2ǫ + x−3ǫN1,

p1

p2 p4

p3

gP13
20 = ǫ4(p23 − s− t)G1,0,0,1,1,1,1,0,0 , (7.53)

fP13
20 ∼ e2iπǫ

(

π2ǫ2

12
+

ζ3ǫ
3

2
+

π4ǫ4

40

)

− x−2ǫ

4

(

π2ǫ2

3
+ 14ζ3ǫ

3 +
2π4ǫ4

3

)

,

p1

p2 p4

p3

gP13
21 = ǫ3stG1,0,0,1,1,2,1,0,0 , (7.54)

fP13
21 ∼ e2iπǫ

2
x−4ǫ − 3x−2ǫ

2
+

x−2ǫ

2

(

1 +
π2ǫ2

3
+ 14ζ3ǫ

3 +
2π4ǫ4

3

)

,

p1

p2 p4

p3

gP13
22 = ǫ4R13G1,0,1,0,1,1,1,0,0 , (7.55)

fP13
22 ∼ 0,

p1

p2
p4

p3

gP13
23 = ǫ4(p21 − s)G1,0,1,1,1,1,0,0,0 , (7.56)

fP13
23 ∼ x−2ǫ

(

−π2ǫ2

12
− 7ζ3ǫ

3

2
− π4ǫ4

6

)

+
e2iπǫ

2

(

−π2ǫ2

6
− ζ3ǫ

3 − π4ǫ4

20

)

−x−ǫ

(

−π2ǫ2

6
+

(

− iπ3

6
− 4ζ3

)

−
(

π4

24
+ 4iπζ3

)

ǫ4
)

,

p1

p2 p4

p3

gP13
24 = ǫ3stG1,1,0,0,1,1,2,0,0 , (7.57)

fP13
24 ∼ e2iπǫx−4ǫ

4
− 3x−2ǫ

4

(

1 +
π2ǫ2

3
+ 2ζ3ǫ

3 +
π4ǫ4

10

)

,

p1

p2 p4

p3

gP13
25 = ǫ4(p23 − s)G1,1,1,0,0,1,1,0,0 , (7.58)

fP13
25 ∼ x−2ǫ

2

(

π2ǫ2

6
+ ζ3ǫ

3 +
π4ǫ4

20

)

+x−4ǫ

(

π2ǫ2

12
+

(

iπ3

6
+

7ζ3
2

)

ǫ3 + 7iπζ3ǫ
4

)

−x−3ǫ
(π2ǫ2

6
+

(

iπ3

6
+ 4ζ3

)

ǫ3 +

(

π4

24
+ 4iπζ3

)

ǫ4
)

,
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p1

p2 p4

p3

gP13
26 = ǫ4(p21(p

2
3 − s) + st)G1,0,1,1,1,1,1,0,0 , (7.59)

fP13
26 ∼ 0 ,

p1

p2 p4

p3

gP13
27 = ǫ4[p21p

2
3 + s(t− p23)]G1,1,1,0,1,1,1,0,0 , (7.60)

fP13
27 ∼ −x−3ǫ

(

π2ǫ2

3
+

(

8ζ3 +
iπ3

3

)

ǫ3 +

(

π4

12
+ 8iπζ3

)

ǫ4
)

+x−2ǫ

(

π2ǫ2

4
+

3ζ3ǫ
3

2
+

3π4ǫ4

40

)

+
x−4ǫ

2

(

π2ǫ2

6
+

(

iπ3

3
+ 7ζ3

)

ǫ3 + 14iπζ3ǫ
4

)

,

p1

p2 p4

p3

gP13
28 = ǫ4s2tG1,1,1,1,1,1,1,0,0 , (7.61)

fP13
28 ∼ −x−2ǫ

(

1 +
5π2ǫ2

12
+

29ζ3ǫ
3

2
+

71π4ǫ4

360

)

+x−3ǫ

(

1 + iπǫ+

(

iπ3

3
+ 18ζ3

)

ǫ3 +

(

4π4

15
+ 18iπζ3

)

ǫ4
)

−x−4ǫ

(

1

4
+

iπǫ

2
− 5π2ǫ2

12
−

(

iπ3

6
− 7ζ3

2

)

ǫ3 +

(

π4

6
+ 7iπζ3

)

ǫ4
)

,

p1

p2 p4

p3

gP13
29 = ǫ4s

[

(p21 − p23 + t)G1,1,1,0,1,1,1,0,0 + (p23 − s)G1,1,1,1,1,1,1,−1,0

]

, (7.62)

fP13
29 ∼ x−2ǫ

(

−3

4
+

π2ǫ2

3
− 4ζ3ǫ

3 +
23π4ǫ4

180

)

+x−3ǫ

(

1 + iπǫ− 2π2ǫ2

3
+

(

− iπ3

3
+ 2ζ3

)

ǫ3 +

(

π4

10
+ 2iπζ3

)

ǫ4
)

+x−4ǫ

(

−1

4
− iπǫ

2
+

7π2ǫ2

12
+

(

iπ3

2
+

7ζ3
2

)

ǫ3 +

(

−π4

6
+ 7iπζ3

))

ǫ4.

Finally, for the family P23 a convenient set of master integrals and the corresponding

boundary conditions are

p1

p2 p4

p3

gP23
1 = ǫ2tG0,0,0,0,1,2,2,0,0 , (7.63)

fP23
1 ∼ −x−2ǫ,

p1

p2

p4

p3

gP23
2 = ǫ2p22G0,0,0,1,2,2,0,0,0 , (7.64)

fP23
2 ∼ −x−4ǫe2iπǫ,

p1

p2 p4

p3

gP23
3 = ǫ2sG0,2,2,0,0,1,0,0,0 , (7.65)

fP23
3 ∼ −x−2ǫ,
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p1

p2 p4

p3

gP23
4 = ǫ2p23G1,0,0,0,0,2,2,0,0, , (7.66)

fP23
4 ∼ −e2iπǫ,

p1

p2 p4

p3

gP23
5 = −2ǫ3(p23 − t)G0,0,1,0,2,1,1,0,0 , (7.67)

fP23
5 ∼ x−2ǫ

2
− e2iπǫ

2

(

1 +
π2ǫ2

3
+ 2ζ3ǫ

3 +
π4ǫ4

10

)

,

p1

p2
p4

p3 gP23
6 = −2ǫ3(p22 − s)G0,0,1,1,1,2,0,0,0 , (7.68)

fP23
6 ∼ −1

2
e2iπǫx−4ǫ + x−2ǫ

(

1

2
+

π2ǫ2

6
+ ζ3ǫ

3 +
π4ǫ4

20

)

,

p1

p2 p4

p3

gP23
7 = −2ǫ3(p22 − t)G0,1,0,0,1,1,2,0,0 , (7.69)

fP23
7 ∼ x−2ǫ − x−3ǫN1,

p1

p2 p4

p3

gP23
8 = −2ǫ3(p23 − s)G0,2,1,0,0,1,1,0,0 , (7.70)

fP23
8 ∼ x−2ǫ

2
+−e2iπǫ

2

(

1 +
π2ǫ2

3
+ 2ζ3ǫ

3 +
π4ǫ4

10

)

,

p1

p2
p4

p3

gP23
9 = ǫ2p22p

2
3G0,2,2,0,1,0,1,0,0 , (7.71)

fP23
9 ∼ x−2ǫe2iπǫN2,

p1

p2
p4

p3

gP23
10 = −2ǫ3(p22 − s)G0,1,2,0,1,1,0,0,0 , (7.72)

fP23
10 ∼ x−2ǫ − x−3ǫN1,

p1

p2
p4

p3

gP23
11 = ǫ2p22sG0,2,2,1,1,0,0,0,0 , (7.73)

fP23
11 ∼ x−3ǫeiπǫN2,

p1

p2 p4

p3

gP23
12 = −2ǫ3(p23 − s)G1,1,0,0,0,2,1,0,0 , (7.74)

fP23
12 ∼ −e2iπǫ + eiπǫx−ǫ

(

1− π2ǫ2

6
+ 2ζ3ǫ

3 − π4ǫ4

40

)

,

p1

p2 p4

p3

gP23
13 = ǫ2p23sG1,2,2,0,0,0,1,0,0 , (7.75)

fP23
13 ∼ x−ǫeiπǫN2,
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p1

p2 p4

p3

gP23
14 = ǫ2s2G1,2,2,1,0,0,0,0,0 , (7.76)

fP23
14 ∼ x−2ǫN2,

p1

p2 p4

p3

gP23
15 = −2ǫ3(p22p

2
3 − st)G0,0,1,1,2,1,1,0,0 , (7.77)

fP23
15 ∼ 6iπǫx−4ǫ[(z − y)(1− z)]−2ǫ,

p1

p2 p4

p3

gP23
16 = 4ǫ4R23G0,1,1,0,1,1,1,0,0 , (7.78)

fP23
16 ∼ 0,

p1

p2 p4

p3

gP23
17 = −2ǫ3(p22p

2
3 − st)G0,1,1,0,1,2,1,0,0 , (7.79)

fP23
17 ∼ 4iπǫN3x

−4ǫ [(z − y)(1− z)]
−3ǫ

,

p1

p2 p4

p3

gP23
18 = −2ǫ3p22(p

2
3 − s)G0,2,1,0,1,1,1,0,0 , (7.80)

fP23
18 ∼ x−4ǫ

(

1 +
2iπǫ

3
+

π2ǫ2

3
+

(

2iπ3

9
− 2ζ(3)

)

ǫ3 +

(

−7π4

90
− 4iπζ3

3

)

ǫ4
)

+x−2ǫ

(

2 + 4iπǫ− 4π2ǫ2 +

(

−8iπ3

3
+ 12ζ3

)

ǫ3 +

(

23π4

15
+ 24iπζ3

)

ǫ4
)

−3x−3ǫN1 −
2iπǫ

3
N3x

−4ǫ[(z − y)(1− z)]−3ǫ,

p1

p2 p4

p3

gP23
19 = −2ǫ3p23(p

2
2 − s)G0,1,2,0,1,1,1,0,0 , (7.81)

fP23
19 ∼ x−4ǫ

(

−1

2
− iπǫ

3
− π2ǫ2

6
+

(

− iπ3

9
+ ζ3

)

ǫ3 +

(

7π4

180
+

2iπζ3
3

)

ǫ4
)

+x−3ǫ

(

2 + 2iπǫ− 4π2ǫ2

3
+

(

−2iπ3

3
+ 4ζ3

)

ǫ3 +

(

π4

5
+ 4iπζ3

)

ǫ4
)

−3x−2ǫ

2
− 2iπǫ

3
N3x

−4ǫ[(z − y)(1− z)]−3ǫ,

p1

p2 p4

p3

gP23
20 = −2ǫ3p23(p

2
2 − t)G0,1,1,0,1,1,2,0,0 , (7.82)

fP23
20 ∼ fP23

19 ,

p1

p2
p4

p3

gP23
21 = 4ǫ4(p22 − s)G0,1,1,1,1,1,0,0,0 , (7.83)

fP23
21 ∼ x−2ǫ

(

π2ǫ2

3
+ 2ζ3ǫ

3 +
π4ǫ4

10

)

+x−4ǫ

(

π2ǫ2

3
+

(

2iπ3

3
+ 14ζ3

)

ǫ3 + 28iπζ3ǫ
4

)

+x−3ǫ

(

−2π2ǫ2

3
−
(

2iπ3

3
+ 16ζ3

)

ǫ3 −
(

π4

6
+ 16iπζ3

)

ǫ4
)

,
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p1

p2 p4

p3

gP23
22 = −2ǫ3(p22p

2
3 − st)G1,0,0,1,1,2,1,0,0 , (7.84)

fP23
22 ∼ 12iπǫx−4ǫ[(z − y)(1− z)]−2ǫ,

p1

p2 p4

p3

gP23
23 = −2ǫ3(p22p

2
3 − st)G1,1,0,0,1,1,2,0,0 , (7.85)

fP23
23 ∼ 6iπǫx−3ǫ[(z − y)(1− z)]−2ǫ,

p1

p2 p4

p3

gP23
24 = 4ǫ4(p23 − s)G1,1,1,0,0,1,1,0,0 , (7.86)

fP23
24 ∼ −π2ǫ2

3
−
(

2iπ3

3
+ 2ζ3

)

ǫ3 +

(

17π4

30
− 4iπζ3

)

ǫ4

−x−2ǫ

(

π2ǫ2

3
+ 14ζ3ǫ

3 +
2π4ǫ4

3

)

+x−ǫ

(

2π2ǫ2

3
+

(

2iπ3

3
+ 16ζ3

)

ǫ3 +

(

π4

6
+ 16iπζ3

)

ǫ4
)

,

p1

p2 p4

p3 gP23
25 = 4ǫ4s(p22 − t)G0,1,1,1,1,1,1,0,0 , (7.87)

fP23
25 ∼ x−4ǫ

(

−8iπǫ

3
+ 5π2ǫ2 +

(

34iπ3

9
+ 10ζ3

)

ǫ3 +

(

−67π4

45
+

76iπζ3
3

)

ǫ4
)

+4iπǫx−4ǫ[(z − y)(1− z)]−2ǫ − 4iπǫ

3
N3x

−4ǫ[(y − z)(1− z)]−3ǫ,

p1

p2 p4

p3

gP23
26 = 4ǫ4s(p23 − t)G1,1,1,0,1,1,1,0,0 , (7.88)

fP23
26 ∼ x−4ǫ

(

−1− 2iπǫ

3
− π2ǫ2

3
+

(

−2iπ3

9
+ 2ζ3

)

ǫ3 +

(

7π4

90
+

4iπζ3
3

)

ǫ4
)

+x−ǫ

(

2 + 2iπǫ+

(

2iπ3

3
+ 36ζ3

)

ǫ3 +

(

8π4

15
+ 36iπζ3

)

ǫ4
)

−x−2ǫ

[

5 + 8iπǫ− 23π2ǫ2

3
−
(

16iπ3

3
− 38ζ3

)

ǫ3 +

(

56π4

15
+ 48iπζ3

)

ǫ4
]

+4x−3ǫN1 + 4iπǫx−3ǫ [(y − z)(1− z)]
−2ǫ

−4iπǫ

3
N3x

−4ǫ [(z − y)(1− z)]
−3ǫ

,

p1

p2 p4

p3
gP23
27 = −4ǫ4s(−p22p

2
3 + st)G1,1,1,1,1,1,1,0,0 , (7.89)

fP23
27 ∼ −8iπǫ

(

1− 3iπǫ+
π2ǫ2

2
− 15ζ(3)ǫ3

)

((z − y)−2ǫ(1− z)−2ǫx−4ǫ

+24iπǫ2x−4ǫ [(z − y)(1− z)]
−2ǫ

ln((z − y)(1− z))

+8iπǫN3x
−4ǫ [(z − y)(1− z)]

−3ǫ
,
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p1

p2 p4

p3

gP23
28 = ǫ2

(

2ǫp22(p
2
3 − s)G1,0,0,1,1,2,1,0,0 − 4ǫp22(p

2
3 − s)G1,1,0,0,1,1,2,0,0 (7.90)

+4ǫ2s(−p23 + s)G1,1,1,1,1,1,1,−1,0

)

,

fP23
28 ∼ x−4ǫ

(

2 +
8iπǫ

3
− 4π2ǫ2

3
+

(

−4iπ3

9
+ 12ζ3

)

ǫ3 +

(

53π4

90
+

80iπζ3
3

)

ǫ4
)

+x−ǫ

(

−2− 2iπǫ+

(

−2iπ3

3
− 36ζ3

)

ǫ3 +

(

−8π4

15
− 36iπζ3

)

ǫ4
)

+x−3ǫ

(

−6− 6iπǫ+
8π2ǫ2

3
+

(

2iπ3

3
− 44ζ3

)

ǫ3 +

(

−14π4

15
− 44iπζ3

)

ǫ4
)

+x−2ǫ

(

6 + 8iπǫ− 20π2ǫ2

3
+

(

−16iπ3

3
+ 68ζ3

)

ǫ3 +

(

133π4

30
+ 48iπζ3

)

ǫ4
)

+
4iπǫ

3
N3 [(z − y)(1− z)]

−3ǫ
x−4ǫ − 12iπǫx−4ǫ[(z − y)(1− z)]−2ǫ

−8iπǫ

3
(1− 3iπǫ+

ǫ2π2

2
− 15ζ3ǫ

3)x−4ǫ[(z − y)(1− z)]−2ǫ

+8iπǫx−3ǫ[(z − y)(1− z)]−2ǫ +
8iπǫ

3
x−4ǫ[(z − y)(1− z)]−2ǫ

+8iπǫ2x−4ǫ[(z − y)(1− z)]−2ǫ ln((y − z)(1− z)).

8 Checks of the results

In this section, we describe some checks of our results. We begin by making a few nearly

self-evident comments. First, we emphasize that all the integrals are computed using

one and the same method. While this, obviously, does not guarantee that results are

correct, it reduces the number of issues that can appear if every integral is computed

with a new technique. Second, we stress that, once the choice of master integrals is made

and suitable variables are found, the integration procedure is straightforward and can be

thoroughly checked by differentiating the obtained result to ensure that it satisfies the

original differential equations in x, y, z variables. Unfortunately, this procedure does not

check the boundary conditions which, therefore have to be checked in some other way.

As we already mentioned in the Introduction, when we require external masses to be

equal M2
3 = M2

4 = M2, we obtain a class of integrals considered recently in ref. [1]. Using

the results for the integrals appended to the arXiv submission of ref. [1], we have compared

numerical values for a large number of integrals that we compute in this paper with integrals

computed in ref. [1], finding perfect agreement.4 As another check, we have computed

some of our integrals numerically using the new version of the program FIESTA [49], that

is capable of calculating Feynman integrals in the physical region. A perfect agreement

with our analytic result is found for a few randomly selected (x, y, z) points.

Finally, a procedure of analytic continuation discussed in section 6 can also be used

to independently construct solutions in the physical region for integrals of the P23 family.

4For integral gP23
16 , which corresponds to the integral I

(B)
213,1 of ref. [1], ζ in that reference should be ζ+ i0.

We thank L. Tancredi for clarifying this point to us.
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As we explained there, that procedure can also be implemented by means of numerical

integration over contour in the complex plane starting from a point in unphysical region

where the boundary conditions are simple. We have checked that, for a randomly selected

point, this procedure gives results for master integrals of family P23 that are in agreement

with our analytic solutions.

9 Conclusions

In this paper we reported on the computation of all two-loop planar master integrals that

are required to describe production of two off-shell vector bosons in hadron collisions.

We constructed the differential equations for the carefully-chosen basis of master integrals

following the strategy suggested in ref. [28]. We have computed boundary conditions for

these integrals in the physical region and integrated them to obtain analytic results in

terms of Goncharov polylogarithms. The results are fairly large. We note, however, that

we did not try to simplify these results although such simplifications should be possible.

Probably the most compact and flexible form can be achieved in terms of Chen iterated

integrals, at the cost of giving up the feature of a linear parametrization. The matrices Ã

specifying them are included in the arXiv submission, as well as files with results for the

integrals in terms of Goncharov polylogarithms.

The method for calculating multi-loop master integrals suggested in ref. [28] appears to

be quite promising. We look forward to its application to even more complicated two-loop

integrals and, in particular, to the non-planar ones required for the complete description

of the off-shell production of two vector bosons at the LHC.
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