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1 Introduction

Entanglement entropy has received much attention in recent years, with applications rang-

ing from condensed matter systems to the holographic reconstruction of spacetime. Given

a physical system composed of two subsystems A and B, it provides a measure of the

extent to which information from one subsystem is relevant for the other. For quantum

field theories with a dual AdS/CFT description it can be calculated holographically, at

least when the subsystems arise from a spatial partition of the background geometry into

regions A and B. The entanglement entropy of the region A is then given by the area of

a certain minimal surface extending to the boundary of AdS. Namely, it should end there

on the entangling surface, which is the boundary ∂A of the region A [1].

This rather ad-hoc proposal for the holographic calculation was placed on firmer ground

in [2]. The key is to introduce a notion of gravitational entropy which extends the usual

finite-temperature equilibrium interpretation of Euclidean compact-time solutions [3] to
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the case where there is no U(1) isometry along the S1 time direction. The gravitational

entropy of a configuration with a, possibly asymptotic, boundary which has an S1 direction

is calculated by considering a family of solutions, where the period of the S1 is varied. More

explicitly, with S(n) denoting the on-shell gravity action for the solution with period 2πn,

the gravitational entropy Sg is given by

Sg = −n∂n [logZ(n)− n logZ(1)]n→1 , logZ(n) = −S(n) . (1.1)

The configuration itself is kept periodic with the original period 2π also for n 6= 1. The non-

trivial part then is to evaluate (1.1) for the case where n is not an integer and translations

along the S1 are not a symmetry: there is a clash in keeping the original period for the

boundary conditions and implementing the varying identifications along the S1 direction.

One of the two equivalent prescriptions given in [2] is to avoid that problem by defining

S(n) as follows. One integrates the S1 direction only over [0, 2π) in the action. Since

the geometry should be regular for a period 2πn, this introduces an apparent conical

singularity with opening angle 2π/n at the place where the S1 degenerates, already for the

U(1) symmetric case. To get the full action the result is then multiplied by n, such that

S(n) = nS(n)2π. Using this prescription in (1.1) yields

Sg = lim
n→1

n2∂nS(n)2π . (1.2)

A connection to the holographic calculation of entanglement entropies arises for the

case where the gravity solution is a Euclidean asymptotically-AdS space with a specific

boundary geometry. Namely, the S1 direction should on the boundary encircle the entan-

gling surface ∂A. The family of bulk solutions labeled by n then produces on the boundary

n-fold covers of the original geometry, branched along ∂A. These are precisely the geome-

tries that would be used to calculate the entanglement entropy directly in the CFT, as a

limit of Renyi entropies with the replica trick. With the standard AdS/CFT identification

of the bulk and boundary partition functions [4–6], the calculation of the gravitational

entropy (1.1) is then equivalent to the calculation of the entanglement entropy in the dual

theory with the replica trick. Moreover, as argued in [2], this formula reduces to the area

of the minimal surface ending on ∂A, so it reproduces the proposal of [1].

A topic of recent interest are the entanglement entropy corrections arising when flavor

degrees of freedom are added to the CFT, which have been studied, e.g., in [7–10]. Adding

flavors in the quenched approximation corresponds in the bulk to the addition of branes in

the probe approximation. To calculate the leading-order contribution of the flavors to the

entanglement entropy with the method of [1], one has to compute the backreaction of the

flavor branes on the bulk geometry and then the resulting change in the area of the minimal

surface. As discussed in [7], one can avoid an explicit calculation of the backreaction by

expressing it as a convolution of the brane energy momentum tensor with the gravitational

Green’s function. The resulting double-integral formula offers a crucial simplification: it

turns out that the detailed properties of the internal space only mildly affect the calculation

and can be subsumed into an effective brane energy-momentum tensor. Nevertheless, that

one needs the backreaction at all may seem surprising, given that the leading corrections to
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other quantities, like the thermal entropy density, can be calculated from the on-shell action

of the probe alone. In this paper we show that the method of [2] offers a new perspective

on that issue: by a suitable adaption we can get the leading-order correction to the entropy

without computing the backreaction. The calculation of the entanglement entropy from

on-shell actions, combined with extremality arguments similar to those used in [2], allows

us to argue that the brane embeddings are only needed for the n = 1 geometry, and that we

do not need the backreaction altogether. This naturally is not entirely for free. With the

branes treated in the probe approximation we can not generally reduce the expression (1.2)

to a pure boundary term, and the computation does not explicitly reduce to the area of

the Ryu/Takayanagi minimal surface. However, this can certainly be a reasonable trade

for avoiding the backreaction or a double integral of twice the dimension.

As a specific application we consider the D3/D7 setup [11], which yields a holographic

description of N = 4 super Yang-Mills theory coupled to flavor degrees of freedom, and the

D3/D5 system which adds flavors confined to a codimension-1 hypersurface to the Yang-

Mills theory [12, 13]. We calculate the entanglement entropy of a spherical region A. For

the pure CFT that entropy has been derived in [14], by conformally mapping it to a thermal

one. To calculate the entanglement entropy from the gravitational entropy (1.2), we need

the one-parameter family of bulk solutions described above. For n 6= 1 these turn out to

be the Euclidean versions of hyperbolic AdS black holes, and to get the flavor contribution

we have to consider the D5 and D7 branes in these backgrounds. Nicely enough, though,

it is still sufficient to know the extremal brane embedding for the n= 1 AdS geometry.

The entanglement entropies for massless flavors have previously been calculated in [7, 8],

and our method reproduces those results. We also consider the case where the D7 branes

are separated from the stack of D3 branes, which corresponds to adding massive flavors

to the CFT. Building on the backreacted D3/D7 bulk geometry obtained by means of a

smearing technique in [15], their contribution to the entanglement entropy has been studied

holographically in [9]. In our approach we will not have to deal with the complicated

backreaction, and the case provides an example where the brane embedding breaks the

U(1) isometry along the S1 direction. We find that the universal terms in the entanglement

entropy agree in both calculations. Comparing the remaining scheme-dependent terms is

difficult, since keeping the regularization scheme unaffected by the flavor perturbation is

subtle in the backreaction approach. To allow for a more detailed comparison we also

calculate the change in the Ryu/Takayanagi minimal area with the double integral formula

derived in [7]. This simplifies the backreaction approach rather drastically and allows us

to better keep track of the regularization procedure. Up to differences in the finite terms,

which as we will argue should be expected, we then find completely agreeing results.

The paper is organized as follows. We start in section 2 by calculating the pure CFT

entanglement entropy of a spherical region in terms of the gravitational entropy of the dual

gravity theory, and discuss in detail the relevant family of bulk solutions. In section 3 we

give a general discussion of how branes are incorporated into the generalized gravitational

entropy method and how the probe approximation can be exploited very efficiently. This

method is then applied in section 4 to calculate the entanglement entropy corrections due

to massless and massive flavors in N = 4 SYM theory. In section 5 we give an independent
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calculation of the massive case, following the double-integral approach of [7], and compare

to the previous results. We conclude in the final section 6.

2 Entanglement entropy from generalized gravitational entropy

To set the stage and fix notation we calculate the entanglement entropy of a spherical

region in pure N = 4 SYM. The result itself has already been derived in [1, 8, 14, 16], but

the calculation provides a nice opportunity to highlight the facts about the gravitational

entropy calculation that will be relevant for the probe brane discussion. We consider the

Euclidean CFT on flat Rd with line element

ds2 = dt2 + dr2 + r2dΩ2
d−2 . (2.1)

The region A for which we want to calculate the entanglement entropy corresponds to r < `

at t = 0, and we denote the complement at t = 0 by B. If we wanted to calculate the

entanglement entropy directly as limit of Renyi entropies in the boundary theory by the

replica trick, we would consider n-fold covers of the background geometry, branched along

∂A. Such geometries can be obtained by the coordinate transformation

t =
` sin τ

coshu+ cos τ
, r =

` sinhu

coshu+ cos τ
. (2.2)

This covers the entire Rd and maps the regions A and B to A = {τ = 0, u ∈ R} and

B = {τ = π, u ∈ R}, respectively. The line element becomes

ds2 = Ω2
(
dτ2 + du2 + sinh2(u)dΩ2

d−2

)
, Ω = `(coshu+ cos τ)−1 . (2.3)

The period of the S1 direction τ naturally is 2π, and adjusting the range to 0 ≤ τ < 2πn

yields the desired n-fold covers.

To calculate the CFT entanglement entropy holographically from the generalized grav-

itational entropy of the dual gravity theory, we have to consider asymptotically AdS5×S5

solutions which yield on the boundary of AdS5 the geometry (2.3), with the S1 direction

encircling ∂A. That is, the boundary geometry is precisely the n-fold cover that would be

used in the replica trick. The generalized gravitational entropy of the n= 1 solution can

then be calculated from (1.2) and yields the CFT entanglement entropy.

2.1 Bulk geometry for a spherical entangling surface

We now discuss the AdS bulk geometry such that the boundary takes the form (2.3).

Starting with AdS in Poincaré coordinates, ds2 = L2z−2
(
dz2 + dt2 + dr2 + r2dΩ2

)
, we can

extend the coordinate transformation (2.2) into the bulk and perform the transformation

z =
1

ρ coshu+ ρ̃ cos τ
, t = z`ρ̃ sin τ , r = z`ρ sinhu , (2.4)

where ρ̃2 = ρ2 − `−2. For ρ → ∞ this turns into (2.2). The resulting geometry is the

S1 ×Hd−1 slicing of AdSd+1 with line element

ds2 = L2
( dρ2

ρ2 − `−2
+ (ρ2`2 − 1)dτ2 + ρ2`2ds2

Hd−1

)
, ds2

Hd−1 = du2 + sinh2(u)dΩ2
d−2 ,

(2.5)
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(a)

z ✲

t = 0

(b)

Figure 1. Illustration of how the coordinates (2.4) cover the Poincaré patch of Euclidean AdS. The

plane on the left hand side represents the boundary at z = 0, the black thick line is A, the red thick

line is the place where the S1 direction τ degenerates, and the blue curves are along constant ρ and

u. The right hand side shows a section of the figure on the left hand side through the plane t = 0.

The blue circular lines correspond to constant ρ and the green perpendicular ones to constant u.

At the red half circle corresponding to ρ = `−1 the S1 direction degenerates. The part inside of it

has τ = 0 and the outside part τ = π.

where the Hd−1 slices have radius of curvature `. Demanding that there be no conical

singularity at ρ = `−1 yields the identification τ ∼ τ + 2π. The Lorentzian version of

that geometry covers the causal completion of the spherical region A on the boundary

of AdS, as discussed in [14]. The Euclidean version, however, covers all of the Poincaré

patch, as illustrated in figure 1. This figure already shows that the place where the S1

degenerates corresponds to the minimal area ending on ∂A, which was used to calculate

the CFT entanglement entropy in [1].

The boundary metric which we extract from that bulk geometry depends on the choice

of defining function h: following the standard procedure [17], the metric on the conformal

boundary is defined by

gbndy := lim
ε→0

h2g|∂Mε
, (2.6)

where Mε denotes the asymptotically-AdS spacetime with a finite spatial cut-off, and

∂Mε the resulting boundary in the ordinary sense. If we now take the bulk metric (2.5)

and choose h = 1/(ρL), the resulting boundary geometry is S1 × Hd−1. On the other

hand, keeping the defining function we had originally used in Poincaré coordinates, h =

z(ρ, τ, u)/L with z as given in (2.4), we get precisely (2.3) as boundary geometry. Changing

the defining function corresponds to a conformal transformation in the boundary theory,

and for a CFT the choice is up to us. Since, however, we will be interested also in the

case where massive flavors are added to the CFT, such that conformal invariance is broken

by a relevant deformation, we have to keep the latter defining function used in Poincaré

coordinates, and thus get (2.3) on the boundary.

It is now not too hard to find the bulk solutions for n 6= 1: these are the Euclidean

versions of the hyperbolic AdS black holes discussed in [18]. With Ch = ρdh − ρ
d−2
h `−2, the
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line element reads

ds2 = L2

(
dρ2

fn(ρ)
+ fn(ρ)`2dτ2 + ρ2`2ds2

Hd−1

)
, fn(ρ) = ρ2 − `−2 − Chρ2−d . (2.7)

The position of the horizon is determined from the absence of a conical singularity for

τ ∼ τ + 2πn. This yields `f ′n(ρh) = 2/n, or more explicitly

`2ρ2
hd− (d− 2) = 2ρh`/n . (2.8)

Translations along τ are an isometry of the metrics for all n, and for n = 1 the geometry

reduces to (2.5). The above discussion of the extraction of the boundary geometry and the

choices of defining functions also applies for n 6= 1, since fn(ρ) becomes independent of n

for large ρ. The boundary geometry thus is — depending on the defining function — either

S1×Hd−1 or (2.3), but with period 2πn. So, with the choice of defining function discussed

above, we have indeed found the family of solutions needed to evaluate the entanglement

entropy from (1.2).

To simplify the following computations, we note that we can also just work with the

bulk geometry (2.7) with ` = 1. To get the boundary metric (2.3) we then have to use

the defining function h= z(ρ, τ, u)`/L. This change of defining function corresponds to a

constant rescaling of the metric on the field-theory side. The usual identification of the

field theory UV cut-off ε−1 with the bulk IR cut-off z > ε is thus changed to z > ε/`.

Likewise, the bulk quantity corresponding to the mass Mq of the flavor fields in the CFT

(up to a rescaling the separation of the flavor branes from the D3 branes) now corresponds

to the dimensionless quantity Mq` on the CFT side. This alternative way of encoding the

radius ` of A in the bulk computation will be used in section 4.

2.2 Gravitational entropy of pure gravity

We now calculate the gravitational entropy of the solution (2.5) via (1.2), which yields

the entanglement entropy for the spherical region A in the dual CFT without flavors. To

get the on-shell action for Einstein-Hilbert gravity on the bulk geometries (2.7) we have

to employ the usual procedure of holographic renormalization. That is, after cutting off

the bulk spacetime at a finite spatial distance, we supplement the action by covariant

counterterms on the cut-off surface, to cancel the divergences. Here we have to deal with

two kinds of divergences: those arising for large AdSd+1 radial coordinate ρ and those for

large Hd−1 radial coordinate u, and we introduce a cut-off in both directions, analogously

to the procedure in [19]. The variation of the finite renormalized actions with n would

then automatically produce a finite entropy. However, in the existing calculations of the

entanglemenet entropy the divergences of the minimal area are kept, to see, e.g., the QFT

area law [20] and to have the universal log terms accessible. As we want to compare to

the existing results, we implement the following partial renormalization of the bulk action:

we subtract off the large-ρ divergences by adding the usual holographic counterterms at a

cut-off surface of fixed large ρ = ρε. This leaves divergences arising for large u, which we

do not cancel. Following [14], we fix the cut-off by noting that, at the horizon ρ = `−1, we

– 6 –
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have from (2.4) that z = `/ coshu. With the usual identification of the field theory cut-off

with the bulk IR cut-off, we thus introduce an upper bound on u, which is given by

coshumax = `/ε . (2.9)

We then have the cut-off surface shown in figure 1(b), but introduce counterterms only on

the part of constant ρ = ρε, which excludes the circular regions.1

We can now turn to the actual calculation. The S5 part of the on-shell action just

contributes a factor of the volume, which we absorb into the definition of the Newton

constant, G := G10d/VS5 . We will also keep the dependence on d for AdSd+1 explicit, since

the final result generalizes accordingly, with an appropriate definition of G to account for

different internal spaces. After integrating over the internal space, we use the (partly)

renormalized action Sbulk,ren = Sbulk + Sct with

Sbulk = − 1

16πG

∫
M
dd+1x

√
g
(
R[g] +

d(d− 1)

L2

)
, (2.10a)

Sct = − 1

16πG

∫
∂M

ddx
√
gε

(
2K − 2(d− 1)

L
+

L

d− 2
R[gε] + . . .

)
. (2.10b)

The metric (2.7) is a solution to the bulk field equations, where we use curvature con-

ventions such that the curvature of AdSd+1 is R = −d(d + 1)/L2. In the second line,

∂M denotes the boundary at a fixed large ρε and gε the metric induced there. There

potentially are more counterterms, depending on d, and specifically for d = 4 we have the

usual log-divergent and finite counterterms constructed from the squared Weyl tensor of gε.

However, the induced metric on the cut-off surface here is S1×Hd−1 and thus conformally

flat, such that these terms vanish. For the metric determinants and the extrinsic curvature,

K = 1
2g
µν
indLNgindµν , we have

√
g = Ld+1`dρd−1√gHd−1 ,

√
gε = L−1f

1
2
√
g , K =

d− 1

ρL
f

1
2 + L−1∂ρf

1
2 . (2.11)

Since the induced metric on ∂M is S1 ×Hd−1, the scalar curvature is just the sum of the

S1 and Hd−1 curvatures, R[gε] = −ρ−2
ε L−2(d− 1)(d− 2)/`2.

With all the ingredients at hand we can now calculate the gravitational entropy of the

n= 1 solution (2.5) by evaluating (1.2), which yields the entanglement entropy SEE in the

dual CFT. The n-dependent on-shell action is obtained by just integrating τ over [0, 2π),

such that

SEE = n2∂n [Sbulk(n)2π + Sct(n)2π]n=1 . (2.12)

A striking point of [2] is that the computation of the gravitational entropy actually reduces

to the evaluation of boundary terms. The arguments used there rely on rewriting the bulk

1One may be worried that this could add counterterms at the Poincaré horizon, corresponding here to

τ =π, u= 0, ρ→∞. This can be avoided by a lower cut-off on u, in addition to (2.9), such that the surface

where counterterms are added does not cross a fixed z = η. This yields coshu> (1−ηρ̃ε cos τ)/(ηρε), which,

as ρε → ∞, only removes the point z → ∞ from the cut-off surface. However, none of our calculations is

sensitive to this procedure.
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part such that it is proportional to the equation of motion, which produces additional

boundary terms at ρε and ρh. For the explicit example at hand we can see that rather

straightforwardly: the only n-dependence in the integrands of (2.10) is through fn(ρ), and

the integrand of Sbulk evaluates to −2dL−2√g, which is actually independent of fn and n.

Without using any integration by parts, only taking into account that the lower bound of

the ρ-integration, ρh = ρh(n), depends on n, the variation with n thus reduces to

−16πGL2 n2∂nSbulk = n2∂n

∫ ρε

ρh

dρddx(−2d)
√
g = −(n2∂nρh)

∫
ρ=ρh

ddx(−2d)
√
g . (2.13)

There is no contribution from a change in the range of the τ -integral, since that was

restricted to [0, 2π) for all n. Both contributions in (2.12) are thus reduced to boundary

terms. In fact, the τ integrations are trivial here, since translations along τ are an isometry,

so both terms calculate — up to coefficients — the volume of Hd−1, which is also the

minimal surface ending on ∂A. For the evaluation of the counterterms we note that the

derivative of fn with respect to n is strongly suppressed for large ρ, namely

∂nfn(ρ) = O(ρ−dfn(ρ)) . (2.14)

Thus, only the GHY term and the volume counterterm, which are the leading terms at

large ρε and of O(ρdε ), can contribute finite parts to the gravitational entropy. With the

explicit expressions given in (2.11) above and

∂nfn(ρ)|n=1 =
2ρ2−d

`d(d− 1)
, ∂nρh|n=1 =

1

`(1− d)
, (2.15)

we can then evaluate (2.12). With VHd−1 denoting the (regularized) volume of Hd−1 with

unit radius of curvature, this yields

SEE =
1

4G
Ld−1VHd−1 . (2.16)

The AdSd+1 minimal surface ending on the sphere ∂A on the boundary is precisely Hd−1 (as

we will see explicitly in section 5.2 below), so this result agrees with the previous derivations.

Evaluating the volume of Hd−1 with the cut-off u ≤ umax as given in (2.9), we find

SEE =
Ld−1VSd−2

4G

∫ umax

0
du sinhd−2 u =

Ld−1VSd−2

4G

∫ 1

ε/`
ds

(1− s2)(d−3)/2

sd−1
. (2.17)

The explicit form of the volume of Sd−2 is VSd−2 = 2π(d−1)/2/Γ(d−1
2 ) and to get the sec-

ond equality we have substituted cosh(u) = 1/s. This result precisely reproduces (3.3)

of [1], where d refers to AdSd+2. We also see explicitly that we could have carried out the

computation with the ` = 1 geometry, just taking into account the modified identification

of the gravity and field theory cut-offs, and we will follow that procedure from now on.

Expanding (2.17) for small ε yields

SEE =
Ld−1VSd−2

4G

(
`2

2ε2
+

1

2
log

ε

2`
− 1

4
+O

(
ε1
))

. (2.18)

The divergent and finite parts generally depend on the regularization scheme and on the

choice of state in the CFT, from which the entanglement entropy is calculated, while the

universal, scheme-independent information is in the coefficient of the log-term [21].
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3 Gravitational entropy of probe branes: reduction to boundary terms

vs. probe approximation

We now include branes embedded into the bulk spacetime into the picture. The gravi-

tational entropy of the combined system of bulk gravity and embedded brane, described

by a total action S = Sbulk + Sbrane, can again be calculated via (1.2). Since solving the

combined system of equations for the bulk fields and brane embedding functions is notori-

ously difficult, the branes are often treated in the probe approximation. This corresponds

to solving for the brane embedding in a fixed gravitational background which is a solution

to the bulk equations of motion. The backreaction of the brane on the bulk geometry is

then only taken into account perturbatively. Since the background solution, into which the

brane is embedded, extremizes the bulk action, the bulk part has an expansion of the form

Sbulk = S
(0)
bulk + t20S

(2)
bulk + . . . , (3.1)

where t0 is the parameter controlling the strength of the backreaction (a combination of

Newton’s constant and the brane tension). The salient feature is, of course, the absence of

a term linear in t0. The brane action, on the other hand, itself is of O(t0) and including the

change of the embedding due to the linearized backreaction again only produces terms of

O(t20). For quantities calculated directly from the on-shell action, the probe approximation

therefore yields correct results at linear order in t0 even without including the backreaction

at all. This unfortunately does not apply to the area of minimal surfaces embedded into

the bulk spacetime: their area is certainly sensitive to O(t0) corrections to the bulk metric.

The extremality of the bulk action just does not (obviously) help here. For a holographic

calculation of the flavor contribution to the entanglement entropy via [1], even at leading

order, one thus has to actually calculate the backreaction. In the following we will discuss

the gravitational entropy contribution of the branes. As it turns out, here we can obtain

the results to O(t0) without calculating the backreaction. Moreover, it is also enough to

know the correct brane embedding, determined from extremizing the DBI action, just for

the n = 1 geometry.

We consider an on-shell bulk configuration with a boundary which has an S1 direc-

tion, possibly without U(1) isometry along the S1, into which a brane should be embed-

ded. The gravitational entropy can then once again be calculated with the formula (1.2),

which becomes

Sg = n2∂n [Sbulk(n)2π + Sbrane(n)2π]n=1 . (3.2)

We are instructed to find a family of bulk configurations where the S1 direction is cov-

ered n times, with n possibly non-integer. Restricting the range of integration for the S1

direction to [0, 2π) introduces an apparent conical singularity with opening angle 2π/n,

whether or not the configuration has a U(1) isometry. For the following general arguments

we use a notation similar to [2], where τ denotes the coordinate along the S1 direction

and r the direction along which the S1 degenerates. The locus where the S1 degenerates

is r= 0, and the boundary corresponds to r→∞. Since we will be explicitly interested in
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asymptotically-AdS spaces, where both the bulk and brane actions have to be renormal-

ized by introducing a cut-off and counterterms at large r, we will explicitly include the

counterterms into the arguments. For other configurations one just has to appropriately

drop or replace the counterterm contribution. We then have

Sbulk(n) =

∫
dr ddxLbulk + Sct,bulk , Sbrane(n) =

∫
dr dpyLbrane + Sct,brane , (3.3)

where x, y denote the transverse coordinates in the bulk and on the brane, respectively. We

start with the contribution of the bulk action to the entropy. The derivative with respect

to n simply becomes

n2∂nSbulk(n)2π

∣∣
n=1

=

∫ rε

0
dr ddxn2∂nLbulk + n2∂nSct,bulk

∣∣∣
n=1

. (3.4)

The derivative with respect to n evaluated at n = 1 can be understood as a first-order vari-

ation, which we simply write as δn. Following [2], we can now rewrite the derivative of the

bulk Lagrangian using integration by parts, such that the integrand becomes proportional

to the equations of motion. We use the notation

δnL =
δL

δgµν
δngµν + ∂µΘµ[δng] , (3.5)

to separate the part yielding the equations of motion from the total derivatives, and anal-

ogously for other fields and the brane action. The total derivatives potentially produce

boundary terms at the cut-off at large rε, as well as at the apparent conical singularity at r =

0. The former are then combined with the variation of the counterterm action, and we find

δnSbulk(n)2π =

∫ rε

0
dr ddx

δLbulk

δgµν
δngµν

+

∫
r=rε

ddx
(
δnLct,bulk +N ε

µΘµ
bulk[δng]

)
+

∫
r∼0

ddxN0
µΘµ

bulk[δng] ,

(3.6)

where the metric represents the entire set of bulk fields. We have also denoted the outward-

pointing unit normal vector fields to the surfaces r = rε and r ∼ 0 by N ε and N0, respec-

tively. If we had the bulk theory alone, we would conclude that for an on-shell configuration

the first term vanishes. The second term vanishes as well, since the holographic countert-

erms are constructed precisely such that the renormalized action is stationary for solutions

of the bulk field equations satisfying appropriate boundary conditions. We would thus be

left with the third term, which evaluates to the area of the locus where the S1 degenerates,

as argued in section 3.2 of [2].

We now want to add probe branes to the system. For simplicity we will also assume that

the brane Lagrangian only involves the volume of the induced metric, the generalization to

additional and possibly higher-derivative brane fields should be straightforward. In general,

the brane embedding will adjust to changes in n, and one has to solve the entire system of

resulting equations for each n. The variation of the brane action then becomes

δnSbrane =

∫
drdpy

(
δLbrane

δgµν
δngµν +

δLbrane

δXµ
δnX

µ

)
+

∫
r=rε

dpy
(
δnLct,brane +N ε

µΘµ
brane[δX]

)
+

∫
r∼0

dpyN0
µΘµ

brane[δX] .

(3.7)
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There are no boundary terms from the variation with respect to the bulk metric, since the

Lagrangian does not involve its derivatives. The combination of boundary terms at rε van-

ishes when evaluated for on-shell embedding functions Xµ, since the brane counterterms are

again constructed such that the action is stationary. Moreover, in contrast to the analogous

terms for the bulk theory, the boundary terms produced at r ∼ 0 vanish as well: in contrast

to the curvature at a conical singularity, the volume stays perfectly finite and shrinks to zero

as the tip of the cone is approached. Thus, as long as the brane Lagrangian just involves the

volume form, there is no additional contribution from r ∼ 0. This may change as curvature

terms are included in the effective brane action, and a nice discussion of curvature invari-

ants at conical singularities can be found in [22, 23]. As emphasized in [2], one should also

not add explicit boundary terms at r = 0, since the conical singularity is just an apparent

one, resulting from our restriction to τ ∈ [0, 2π), while the full geometries are regular. If

we assume the embedding functions Xµ to be on shell for n= 1, we are thus left with

δnSbrane =

∫
drdpy

δLbrane

δgµν
δngµν +

∫
r=rε

dpy
δLct,brane

δgµν
δngµν . (3.8)

The contribution from the brane counterterms is now reduced to the variation with respect

to changes in the bulk metric, which enters through the volume and curvatures of the

induced metric on the cut-off surface on the brane.

We could now use the backreacted metric to evaluate (3.2) with (3.6) and (3.8). The

metric variations in (3.8) then cancel the first two terms in (3.6). This is just the statement

that the backreacted metric solves the combined Einstein equations, and that the countert-

erms are constructed to cancel the boundary terms at rε. We are then left with the third

term in (3.6), evaluated for the backreacted metric. This of course just yields the area of

the minimal surface, now calculated for the backreacted metric, and thus reproduces the

prescription of [1].

But the derivation this far also allows us to take a different route and avoid calculating

the backreaction: Similarly to the arguments given around (3.1) above, we can exploit the

probe approximation to get the entropy to linear order in t0. Since the bulk geometries for

all n are constructed such that they extremize the bulk action (we are deforming along an

on-shell path), we can again use the extremality argument and expand, for each n,

Sbulk(n) = S
(0)
bulk(n) +O(t20) , (3.9)

where S
(0)
bulk(n) is evaluated on the non-backreacted metric. The probe brane contribution

is itself O(t0), and including the backreaction there also only produces O(t20) corrections.

We can thus use the non-backreacted metrics to evaluate (3.2) to linear order in t0. This

yields the first two terms in the expansion Sg = S(0)
g + S(1)

g + O(t20), where t0 is implicit

in S(1)
g . When evaluated on the non-backreacted metric, the zeroth-order term (3.6) again

reduces to the boundary term at the locus where the S1 degenerates: the first two terms

vanish since the bulk equations of motion are solved and the third yields the minimal area.

The leading-order correction (3.8) now can not be further reduced to a boundary term,

which means that we will actually have to calculate the integrated variation of the brane
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Lagrangian. Summing up, we find for the gravitational entropy to linear order in t0

Sg =
Amin[g]

4G
+

∫
drdpy

δLbrane

δgµν
δngµν +

∫
r=rε

dpy
δLct,brane

δgµν
δngµν . (3.10)

The first term is S(0)
g and arises from the last term in (3.6), while the remaining terms

are linear in t0 and yield S(1)
g . The bottom line of this general discussion thus is, that

we can calculate the contribution of the probe branes to the gravitational entropy by just

considering the variation of the DBI action with respect to changes in the bulk metric with

n, as given in (3.10). We do not need to calculate the backreaction and we only need the

correct brane embedding for the n= 1 geometry.

3.1 Euclidean hyperbolic AdS black holes

We now put the calculation of section 2.2 in perspective and evaluate (3.10) for the bulk

geometry (2.7). This will then be used in the next section to calculate the flavor contribu-

tion to the CFT entanglement entropy of the spherical region A. In the coordinates used

in section 2.2, changing n also changes the range of the radial coordinate ρ, which we have

to take into account. For the variation of the bulk action away from n= 1, which produces

the first term of SEE = S(0)
EE + S(1)

EE +O(t20), we found

S(0)
EE = δnSbulk(n)2π = −δρh

∫
ρ=ρh(1)

ddxLbulk +

∫
ρ>ρh(1)

dρ ddx δnLbulk + δnSct,bulk , (3.11)

where δρh = n2∂nρh(n)|n=1. Since the τ integral is fixed to [0, 2π), there was no contribu-

tion from a change of the τ interval. As we had seen in section 2.2, the on-shell Lagrangian

was independent of n already, so rather than using integration by parts to rewrite it as

equation of motion plus boundary terms, we decided to explicitly evaluate the expression

at this point already, to get S(0)
EE. For the brane embedded into (2.7) we analogously find

S(1)
EE = δnSbrane(n)2π = −δρh

∫
ρ=ρh

dpyLbrane +

ρε∫
ρh

dρdpy
δLbrane

δgµν
δngµν + δnSct,brane . (3.12)

As argued above, we have to take into account only the variation with respect to the bulk

metric. If we further assume the brane Lagrangian to be given solely by the volume form,

without contributions of, e.g., worldvolume gauge fields, the DBI action for a Dp-brane

just is

Lbrane = −Tp
√
γ , (3.13)

with the induced metric γ on the worldvolume of the Dp-brane. We note that a positive

tension brane has negative Tp with that sign convention. To calculate the contribution to

the entanglement entropy we need to evaluate (3.12), which then becomes

S(1)
EE = δρh Tp

∫
ρ=ρh

dpy
√
γ − Tp

∫ ρε

ρh

dρ

∫
dpy n2∂n

√
γ + n2∂nSct,brane . (3.14)

Once again, we keep the n = 1 brane embedding and only take into account the change

of the worldvolume due to the change in the spacetime metric. This equation will be the

starting point for the calculations of section 4.
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4 Flavor entanglement entropy from generalized gravitational entropy

We now want to apply the method of the last section to include the contribution of probe

branes to the gravitational entropy. This will yield the entanglement entropy of the dual

CFT with flavor degrees of freedom, which, corresponding to the probe approximation, are

treated in the quenched approximation. Specifically, we consider the D3/D5 and D3/D7

systems, which we introduce in the following. From the spacetime perspective the D7

branes provide an example of spacetime-filling branes, while the D5 branes are codimension

1. The mass of the flavors in the dual theory depends on the separation of the flavor branes

from the D3 branes in the ten-dimensional spacetime. We take the AdS5×S5 background

created by the D3 branes in coordinates where the AdS5 part is given by (2.5) and the S5

part reads

ds2
S5 = L2

(
dψ2 + cos2(ψ)dθ2 + sin2(ψ)dΩ2

3

)
, dΩ2

3 = dϕ2 + sin2(ϕ)dΩ2
2 . (4.1)

The brane embeddings extremizing the DBI action can simply be obtained by transforming

the solutions given in [11] to our coordinates. The D7 branes wrap an AdS5×S3 subspace

of the D3-brane near-horizon geometry, which is defined by θ = 0 and

cosψ = µz =
µ

ρ coshu+ ρ̃ cos τ
, (4.2)

where µ is proportional to the separation between the D7 and D3 branes. The separation

of the branes corresponds to the flavor mass in units of the string tension, and with the

usual AdS/CFT identifications this yields a quark mass Mq =
√
λ

2π µ, as given, e.g., in [24].

However, we will use the rescaling discussed in section 2.1 to set `= 1 in the metric (2.5),

which changes the identification of the bulk quantity µ with the flavor mass to

Mq =

√
λ

2π

µ

`
. (4.3)

At z = 1/µ the S3 wrapped inside the S5 vanishes and so does the effective tension seen

from AdS5, such that the branes end there. Choosing µ 6= 0 breaks the isometries of

AdS5. However, in the hyperbolic slicing the amount of manifest symmetry is reduced

rather drastically: with τ and u appearing in (4.2), the U(1) symmetry of translations

along τ is broken, and only an SO(d − 1) remains of the Hd−1 symmetries. The ISO(d)

transformations acting on the slices of constant z in Poincaré coordinates, or constant

z(ρ, τ, u) in the hyperbolic slicing, are of course symmetries in both coordinates, they may

just not be as obvious. The U(1) isometry along the S1 direction τ , however, is broken.

For the embedding of the D5 branes we make one of the angular variables of the hyperbolic

slices in (2.5) explicit and write

ds2
Hd−1 = du2 + sinh2(u)

(
dφ2 + sin2(φ)dΩ2

d−3

)
. (4.4)

The D5 branes then wrap an AdS4×S2 defined by φ = ϕ = π
2 , θ = 0 and (4.2). Corre-

spondingly, the flavor degrees of freedom in the dual theory are confined to a codimension-1

subspace.
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In the following we calculate the gravitational entropy contribution of the D5 and D7

branes in the probe approximation. To validate our resulting entanglement entropies in the

massive case, we compare to the double-integral formula derived in [7], which represents

the change in the Ryu/Takayanagi minimal area due to the linearized backreaction.

4.1 Massless flavors from D3/D7 and D3/D5

We start with the massless case, µ = 0, when the D5/D7 probe branes are not separated

from the D3 branes, before turning to the more involved massive case. As seen in section 2.2,

we can in fact obtain rather general results and thus again keep the dependence on d for

AdSd+1 explicit. The brane embeddings in the massless case respect the U(1) isometry of

the background geometry in the τ direction. They also preserve the SO(1, d− 1) symmetry

of the Hd−1 hyperbolic slices of AdS for the D7 and, correspondingly, the SO(1, d− 2)

symmetry of the Hd−2 slices for the D5 branes.2 We will use the bulk geometry with ` = 1

and, as explained above, incorporate the radius of the sphere by a proper identification of

bulk and boundary quantities. To keep the expressions simple we will also fix the AdS5

and S5 radii of curvature to L = 1.

4.1.1 D7 branes in AdS5×S5

We now specialize to the D7 brane. To evaluate (3.14) we just need the induced metric,

which simply is the AdS5×S3 part of the bulk metric with line element

ds2
γ =

dρ2

fn(ρ)
+ fn(ρ)dτ2 + ρ2ds2

Hd−1 + dΩ2
3 . (4.5)

Nicely enough, fn(ρ) drops out of the induced volume form, which thus is actually indepen-

dent of n. The second term in (3.14) therefore vanishes in the massless case. The S3 part

of the DBI action just contributes a factor of the volume, and with ρ′h(n)|n=1 = 1/(1− d)

the contribution from the D7-brane action to (3.14) evaluates to

ρ′h(n)T7

∫
ρ=ρh

d7y
√
γ = − 1

d− 1
T0VΣ , (4.6)

where T0 = T7VS3 and VΣ denotes the volume of the S1 × Hd−1 transverse to ρ. This

leaves the contribution of the counterterms to be evaluated. As shown in [25], the usual

covariant counterterms can be reorganized into those for just the AdSd+1 part and those

for a scalar field corresponding to the slipping mode ψ. The relation of Φ used there to

ψ as given in (4.2) simply is Φ = π/2 − ψ. The integral over the S3 internal part then

just produces a factor VS3 , which turns T7 into T0. For the massless case, ψ = π/2, the

resulting counterterms are

SD7,ct = T0

∫
ρ=ρε

ddys
√
γs,ε

(
1

d
− 1

2d(d− 1)(d− 2)
R[γs,ε]

)
, (4.7)

2For the D7 branes the n= 1 embedding in fact extremizes the brane action also for n 6= 1, since they

wrap a maximal S3 in S5 and the entire AdS factor, which is the only part that changes with n.
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where γs,ε denotes the metric induced from the AdSd+1 part of the bulk metric on the cut-

off surface. We have given the coefficients for general d, noting that in higher dimensions

additional counterterms will be required. The log-term for d = 4 once again vanishes since

the cut-off metric is conformally flat, and the sign difference to [25] is attributed to the fact

that AdS has negative curvature in the conventions used here. To evaluate the contribution

of these counterterms to the entanglement entropy via (3.14), we are interested in their

derivative with respect to n. Due to the strong suppression of the derivative of fn with

respect to n by (2.14), again only the volume counterterm can produce a non-vanishing

contribution. Evaluating the third term in (3.14), we thus find

n2∂nSD7,ct =
1

d(d− 1)
T0VΣ . (4.8)

One may be worried that, since the bulk geometry changes with n, the implementation

of the field theory cut-off in the bulk theory also depends on n. However, the asymptotic

expansion of the bulk geometry does not change with n up to terms which are suppressed

by at least ρ−d. The interpretation of the bulk cut-off in the dual theory is thus only

changed at a correspondingly subleading order, which does not affect the entanglement

entropy where the leading divergence is O(ε2−d). Combining (4.6) and (4.8) with (3.14),

using VΣ = 2πVHd−1 , we thus find

S(1)
EE = −π

2
T0VHd−1 = − t0

2d
· VHd−1

4G
, (4.9)

where we have introduced t0 := 16πGT0 in the second equality. This is precisely the result

of (2.16) with an overall factor −t0/(2d), and thus reproduces the result found in [7, 8].

4.1.2 D5 branes in AdS5×S5

We now turn to the D5 brane. The induced metric on the brane is simply the AdSd×S2

part of the bulk geometry, with line element

ds2
γ =

dρ2

fn(ρ)
+ fn(ρ)dτ2 + ρ2ds2

Hd−2 + dΩ2
2 . (4.10)

As in the D7 case, the induced volume form on the branes is independent of n and (3.14) re-

duces to the contribution from ρ = ρh and from the counterterms. The former evaluates to

ρ′h(n)T5

∫
ρ=ρh

d5y
√
γ = − 1

d− 1
T5VS2VΣ . (4.11)

VΣ now denotes the volume of S1×Hd−2, but since we still have ρ′h(n)|n=1 = 1/(1−d), the

overall coefficient is not changed. Turning to the counterterm contribution, we note that the

leading counterterm, which is proportional to the volume of the cut-off slice, only diverges

as ρd−1
ε . Due to (2.14), the counterterms therefore do not yield a contribution that survives

the limit ρε →∞, in contrast to the D7 case. The final result with T0 = T5VS2 thus reads

S(1)
EE = − 2π

d− 1
T0VHd−2 = − t0

2(d− 1)
· VHd−2

4G
. (4.12)
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This again nicely reproduces the entropy corrections derived in [7, 8]. We thus find that

our gravitational-entropy results (4.9), (4.12), which required neither conformally mapping

the entanglement entropy to a thermal one, nor computing the backreaction, agree with

the existing results.

4.2 Massive flavors from separated D3/D7

We now turn to the case where D7 branes are separated from the D3 branes. Of the

AdS5×S5 near-horizon geometry of the D3 branes they then wrap the part of S5 given

by (4.2) with µ 6= 0. At z = µ−1 the D7 branes end in smoke, and to keep the focus on the

essential steps we will discuss the case of small mass, µ< 1. In this case the branes cover

the entire locus ρ= 1 where the S1 degenerates, which is not the case for large mass and

has to be taken into account there. Conformal invariance of the boundary theory is broken

by the presence of the massive flavors, which in the bulk is reflected by the breaking of the

radial isometries evident in Poincaré coordinates. A comment is in order on the change

from Poincaré coordinates to the S1 × Hd−1 slicing (2.5). Changing coordinates clearly is

a perfectly valid thing to do, and since the S1 × Hd−1 slicing of AdSd+1 covers the entire

Poincaré patch in the Euclidean setting, we can actually perform all our calculations in

these coordinates. However, in the massless case, where conformal invariance was intact,

we could have changed in addition the defining function to h = 1/(ρL), which would have

corresponded to considering the dual CFT on S1 × Hd−1. Once conformal invariance is

broken, switching to S1×Hd−1 on the CFT side is not a symmetry anymore, and we have to

do an honest change of coordinates, keeping the original defining function h = z(ρ, τ, u)/L.

To evaluate (3.14), we first need the induced metric γ on the brane, for which we find

ds2
γ =

dρ2

fn(ρ)
+ fn(ρ)dτ2 + ρ2(du2 + sinh2(u)dΩ2

2) +
µ2dz2

1− µ2z2
+ (1− µ2z2)dΩ2

3 . (4.13)

To keep the expression simple, we have denoted z(ρ, τ, u) as given in (2.4) simply by z,

and analogously dz = (∂ρz)dρ + (∂τz)dτ + (∂uz)du. For µ = 0 this reduces to (4.5).

We then need the determinant of the induced metric for n = 1 and its derivative with

respect to n at n = 1. The former can easily be evaluated by transforming the result

from Poincaré coordinates, where the induced metric is given below in (5.4) and, with

dxµdxµ = dt2 + dr2 + r2dΩ2
2, we have

√
γ|n=1 = z−5r2√gS2×S3(1 − µ2z2). For the latter

we have to actually evaluate the derivative of the determinant, to arrive at

√
γn=1 = ρ3 sinh2(u)

√
gS2×S3(1− µ2z2) , [∂n

√
γ]n=1 = µ2√γn=1

(ρ̃2∂ρz)
2 − (∂τz)

2

3ρ2ρ̃4
.

(4.14)

We start with the first term of (3.14), i.e. the contribution from the boundary at the

horizon. Using (4.14) with ρ = 1 it evaluates to

ρ′h(n)T7

∫
ρ=ρh

d7y
√
γ = −1

3
T7VS3

(
VΣ − 2πµ2VS2

∫ umax

0
du tanh2 u

)
. (4.15)
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Since we have assumed small mass, µ < 1, the restriction to z < µ−1 does not restrict the

range of the u integration.

We now turn to the counterterm contribution. In addition to the counterterms in (4.7)

we now have those involving the slipping mode. As explained above, the counterterms can

be split into those constructed from the spacetime part of the brane metric for µ = 0,

which is just AdS5, and those involving ψ. In addition to the terms in (4.7) we now have

SψD7,ct = T0

∫
ρ=ρε

d4ys
√
γs,ε

(1

2
Φ2 − 1

2
log(ρε)Φ�W

γs,εΦ + αΦ4 + βΦ�W
γs,εΦ

)
, (4.16)

where Φ = π/2 − ψ = arcsinµz(ρ, τ, u) and �W
γs,ε = �γs,ε − 1

6R[γs,ε] is the Weyl-covariant

Laplacian.3 The coefficients of the finite terms were fixed in [25] by demanding the on-

shell action to vanish, as required by supersymmetry. One could in principle introduce an

explicit n-dependence of the renormalization scheme by varying them with n. However,

this would introduce additional, spurious divergences, as these locally finite terms are

integrated over an infinite volume, and we thus keep them fixed. The leading divergence

in the counterterms (4.16) is just O(ρ2
ε ), so due to (2.14) the derivatives with respect to n

vanish as ρε → ∞. This just leaves us with the contribution from the previously present

counterterms (4.7), as given in (4.8), and we find

n2∂n(SD7,ct + SψD7,ct) =
t0

96G
VH3 . (4.17)

Using the explicit results for the counterterm variation, (4.17), and the contribution from

the change in ρh, (4.15), in (3.14) yields

S(1)
EE = −T7

∫ ρε

ρh

dρ

∫
dΣn2∂n

√
γ − t0

32G

(
VH3 −

4

3
µ2VS2

∫ umax

0
du tanh2 u

)
. (4.18)

This already reproduces the massless result (4.9), as it should since in the massless case

the remaining variation of the brane Lagrangian did not contribute to the entropy.

The remaining thing is to calculate the contribution from the variation of the brane

Lagrangian, i.e. the second term of (3.14). Implementing the integration bound z(ρ, τ, u) <

µ−1 is a bit tricky, since it links the three integration variables in a non-trivial way. There

is a nicer way to do the integral, which we give in appendix A. Setting again coshu = 1/s,

the result reads

T7

∫
z< 1

µ

dρ dΣn2∂n
√
γ =

t0
48G

VS2

∫ 1

a/l
ds
√

1− s2

[
µ2 1− s2

s
− 1

2
µ4s(1− 2s2)

]
. (4.19)

Combining that with (4.18), we thus find

S(1)
EE = − t0VS2

32G

∫ 1

a/l
ds

√
1− s2

s3

(
1− 2

3
µ2s2(1 + s2)− 1

3
µ4s4(1− 2s2)

)
. (4.20)

3To cancel the large-ρε divergence of the on-shell action without having to use integration by parts we

use a slightly modified form where Φ�γs,εΦ→ 2Φ�γs,εΦ− γµνs,ε∂µΦ∂νΦ.
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We note again that µ is proportional to Mq` in the field theory, and this is indeed the

dimensionless combination which we expect to appear in the entanglement entropy. To

isolate the divergent and finite parts we expand the result for small ε, which yields

S(1)
EE = − t0VS2

32G

(
l2

2ε2
+

1

6

(
4µ2 + 3

)
log
( ε

2l

)
− 1

4
+

4µ2

9
− µ4

45

)
. (4.21)

In the case of a CFT we had noted already below (2.18) that the regularization-scheme and

state independent information is in the coefficient of the log-term. For a CFT deformed

by a relevant deformation the analogous question has been studied from the field-theory

side in [26, 27] and holographically in [28, 29]. It turns out that the universal information

is in the coefficients of the terms µd−2−2n log(µε) for 2n ≤ d − 2. To match our result to

that notation, we would expand log(ε/(2`)) = log(µε) − log(2µ`). The conclusion then is

that both parts of the coefficient of the log-term in (4.21) are universal. Comparing our

result to the calculation in [9], we indeed find that the coefficients of the log terms agree.

Matching the finite and power-divergent terms is difficult, since they are regularization-

scheme and state dependent. While the regularization procedure is rather transparent in

the gravitational entropy calculation, there are subtleties when the backreacted geometry

is used. We will come back to this issue below, after giving another calculation of the

massive flavor entanglement entropy where we keep track of these subtleties.

5 Flavor entanglement entropy from the minimal area

We have already seen that the universal terms in the entanglement entropy due to massive

flavors calculated by the gravitational entropy method agree with those found in [9]. To

get a better understanding of the remaining terms we now compare to a computation with

the double-integral formula proposed in [7]. The basic idea here is to calculate the change

in the area of the minimal surface yielding the entanglement entropy in an efficient way.

This would usually involve calculating the linearized backreaction and evaluating

S(1)
EE =

1

4GN

∫
x

1

2
Tµνmin(x)δgµν(x) , (5.1)

where Tµνmin is the energy-momentum tensor corresponding to the minimal surface (up to

coefficients the variation of the induced volume form on the minimal surface with re-

spect to the spacetime metric). The linear backreaction can be calculated in terms of

the probe brane data using the gravitational Green’s function G, resulting in the double-

integral formula

S(1)
EE =

1

4GN

∫
x,y

1

2
Tµνmin(x)

κ

2
Gµν,ρσ(x, y)T ρσprobe(y) . (5.2)

The fact that the minimal surface is always of codimension 2 allows for a crucial simplifi-

cation: The details of the brane embedding in the internal space become largely irrelevant,

and can be subsumed into an effective energy-momentum tensor for the probe branes. The

formula (5.2) can then be reduced to

S(1)
EE = π

∫
xs,ys

Tµsνsmin (xs)Gµsνs,ρsσs(xs, ys)T
ρsσs
eff (ys) , (5.3)
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where the subscript s refers to the fact that only the spacetime components (those cor-

responding to the non-compact part of the geometry) are summed over, and not those in

the internal space. Likewise, also the integral is only over the spacetime coordinates. The

details of the derivation can be found in [7].

5.1 Linearized backreaction

Once we have seen that only the effective spacetime part of the brane energy-momentum

tensor is relevant in (5.3), we can actually just as well calculate the backreaction of that

source on the spacetime part of the metric and go back to (5.1) to get the change in

the entanglement entropy. We thus start by calculating the linearized backreaction of

the D7-branes embedded via (4.2) into the AdS5×S5 background. For the AdS5 part we

use standard Poincaré coordinates and for the S5 part (4.1). As discussed above, in the

gravitational entropy calculation the radius of the spherical region A entered the choice

of coordinates, and the use of the bulk geometry with `= 1 consequently implied that `

entered the identification of bulk and boundary quantities. This is not the case here, and

the separation of the branes directly corresponds to the flavor mass. To avoid confusion

we replace (4.2) by cosψ = mz for this section, and note that Mq =
√
λ

2πm. With that

embedding the induced metric on the brane reads

γ =
L2

z2

(
dz ⊗ dz

1−m2z2
+ dxµ ⊗ dxµ

)
+ L2(1−m2z2)gS3 , (5.4)

and we refer to the first term as γs and to the second as γi. To get the effective energy-

momentum tensor of (5.3), we integrate out the internal part of the D7-brane action

SD7-brane = −T7

∫
d8y
√
γ = −

∫
d5ys

(
T7

∫
dΩ3
√
γi

)
√
γs =: −

∫
d5ysT5d

√
γs . (5.5)

Since the brane direction z parametrizes both, a spacetime and an internal direction, γs
still carries information on the embedding into the internal space and is not induced from

the AdS5 part of the bulk metric. With
√
γi =

√
gS3L3 sin3 ψ(z) we find

T5d = T7VS3L3(1−m2z2)3/2 . (5.6)

From the AdS5 perspective, we get a spacetime-filling brane with a position-dependent

effective tension. Coupling this brane to the effective five-dimensional bulk Einstein-Hilbert

action (2.10a), the resulting energy-momentum tensor appearing on the right hand side of

Einstein’s equations is

Tµsνseff = − 2
√
gs

δSD7-brane

δgs µsνs
=

√
γs√
gs
T5dγ

µsνs = T0(1−m2z2)γµsνs . (5.7)

Nicely enough, this properly rescaled Tµsνseff is conserved from the 5d perspective. We can

thus calculate the backreaction in the 5d effective picture, as advocated above. Noting

that the source respects translations and rotational invariance along the xµ0 directions, we

make the ansatz

δgs =
L2

z2
(f(z)dz ⊗ dz + h(z)dxµ0 ⊗ dxµ0) . (5.8)
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The functions f and g can then be determined by perturbatively solving Einstein’s equa-

tions. This fixes f in terms of h by the relation

f(z) = − t0
12

(
1−m2z2

)2 − zh′(z) . (5.9)

The function h itself is not further constrained by the Einstein equations, and represents

the remaining gauge freedom to make O(t0) changes to the z coordinate. To not spoil the

asymptotically-AdS form of the metric, both of f and h along with their derivatives should

be finite for z → 0, and the equation thus fixes the constant part of f .

What we have so far is the form of δgs in the region covered by the D7 branes, z < 1/m,

and we still have to join it to the unperturbed solution for the region z > 1/m, to which

the branes do not extend. The relevant junction conditions are that the induced metric

and the extrinsic curvature on the hypersurface z = 1/m agree. The first condition yields

h(1/m) = 0. The extrinsic curvatures Kµν = 1
2 (Lnh)µν with hµν = gµν − nµnν are

Kz>m−1

µ0ν0 = −L−1gµ0ν0 , Kz<m−1

µ0ν0 =
(zh′(z)− 2h(z)− 2)

2
√
f(z) + 1

L−1gµ0ν0 . (5.10)

Demanding those two to be equal at z = 1/m and using that h(1/m) = 0, we find the

additional condition h′(1/m) = 0. Up to these requirements, the choice of h is not con-

strained.

5.2 Entanglement entropy

With the linearized backreaction at hand, we can now calculate the entanglement entropy

from (5.1). To derive the energy-momentum tensor corresponding to the original minimal

surface, we switch to spherical coordinates on the spatial part of the slices transverse to

the AdS radial direction, such that

dxµ0dxµ0 = dt2 + dr2 + r2dΩ2
2 . (5.11)

The minimal surface can then be parametrized by z = `s , r = `
√

1− s2 and Ω2 =

Ω2(ϕ1, ϕ2). The induced metric on the minimal surface then is H3 in the form

γmin =
L2

s2

(
ds⊗ ds
1− s2

+ (1− s2) gS2

)
. (5.12)

Of the energy-momentum tensor Tmin we only need the diagonal part, since it will be

contracted with δgs, which is diagonal. From (5.12) we find

diag(Tµνmin) =
s2

L2

(
`2(1− s2), 0, `2s2,

1

1− s2
,

1

1− s2
csc2(ϕ1)

)
. (5.13)

The entropy correction due to the change in the minimal area, (5.1), can then be evaluated

with (5.8) and (5.13), which yields

S(1)
EE =

1

4G
L3VS2

∫ 1

ε/`
ds

√
1− s2

2s3

[(
s2 + 2

)
h(ls)−

(
s2 − 1

)
f(ls)

]
. (5.14)
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Note that the cut-off z > ε corresponds to s > ε/l. After replacing f by (5.9), we can use

partial integration to reduce the integral to

S(1)
EE = − 1

4G

t0
24
L3VS2

∫ 1

ε/`
ds

(1− s2)3/2

s3

(
1− (mls)2

)2
+
L3VS2

8G
h(ε)

`2

ε2

[
1− ε2

`2

]3/2

. (5.15)

The dependence on h is thus reduced to its value at the cut-off surface z= ε, or, more

precisely, to the first few terms of its Taylor expansion around z= 0, since it multiplies

an asymptotic series. This reduction should be expected, since different choices for h are

related by gauge transformations. One would usually expect h to drop out entirely, that

it does not is due to the fact that we are dealing with an infinite area and the choice of h

affects the regularization. The remaining integral in (5.15) can then be performed easily.

With µ=ml we find for the expansion around ε = 0

S(1)
EE = −L

3VS2

32G

[
t0

(
`2

6ε2
+

4µ2 + 3

6
log

ε

2`
+

1

4
+

8µ2

9
+
µ4

15

)
− 4h(ε)

(
`2

ε2
− 3

2

)]
. (5.16)

The ambiguities due to the free choice of h reflect the freedom in the perturbed dual field

theory to adjust the regularization scheme: As emphasized already in [7], the identification

of the geometric bulk cut-off zε = ε with a field-theory cut-off Λ = 1/zε generally is spoiled

by the change in the geometry due to the backreaction. This corresponds to an O(Nf/N)

adjustment of the regularization procedure in the dual field theory. In fact, we could have

used even more general ansätze than (5.8). We see, however, that the universal coefficient

of the log-term agrees with the one found in the gravitational entropy (4.21).

5.3 Comparison to gravitational entropy

We now want to discuss in some more detail how the backreaction method relates to

the calculation in terms of the gravitational entropy. Comparing the scheme-dependent

finite and power-divergent terms is notoriously difficult, as it requires a matching of the

regularization schemes. However, before discussing that issue there is another subtlety left

to be taken care of. In the calculation of the gravitational entropy, adding the flavor branes

to the setup does not seem to alter the regularization scheme: once the cut-off procedure

is fixed in the unperturbed theory, it is not affected by the probe branes, unless we choose

to explicitly change it. In the backreaction approach, on the other hand, the change in

the bulk metric does imply that the interpretation of the bulk cut-off in the dual theory

is affected. We thus still have to isolate the entanglement entropy contribution of the

flavors from that due to a change in the regularization scheme. To this end we will now

determine the precise meaning of the cut-off at z= ε in the perturbed CFT, and then fix

the ambiguities in (5.16) by demanding that the regularization schemes in the perturbed

and unperturbed CFTs are the same. In the massless case the perturbed metric is still

AdS, and we could transform it to Poincaré coordinates. The coordinate transformation

depends on h, and the cut-off at z= ε then corresponds, depending on h, to different cut-

offs z′= ε′(ε) in Poincaré coordinates. The latter can then be identified with the cut-off in

the perturbed CFT. The massive case is less straightforward, since the backreacted metric

is not AdS anymore. To relate the bulk and boundary cut-offs we will thus follow the
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covariant procedure discussed in [30]. The basic idea is to determine the minimal length δ

which can be resolved in the cut-off CFT as follows: One starts with a causal diamond of

a given maximal spatial extent on the boundary, and extends it to a causal wedge in the

asymptotically-AdS bulk spacetime. If the spatial extent of the boundary causal diamond is

small enough, its extension into the bulk will be entirely hidden behind the cut-off surface.

The marginal case, where the extension into the bulk just touches the cut-off surface, then

sets the minimal length δ in the CFT, corresponding to the given cut-off in the bulk theory.

The identification for metrics of the form (5.8) has been worked out in [31]. For our gs+δgs
it evaluates to

δ =

∫ ε

0
dz

√
1 + f(z)

1 + h(z)
= ε+

1

2

∫ ε

0
dz (f(z)− h(z)) +O(t20) , (5.17)

where we have dropped terms of higher order in the backreaction to get the second equality.

The second term gives the O(t0) change of the CFT cut-off. Using (5.9) and integration

by parts, we can eliminate h in the integrand, which produces a boundary term at z= ε

and yields

δ = ε− ε

2

[
h(ε) +

t0
12

(
1− 2

3
m2ε2 +

1

5
m4ε4

)]
+O(t20) . (5.18)

To get a consistent result for this new cut-off, we would have to take into account that, due

to the changed cut-off, there is an additional contribution to the entanglement entropy at

O(t0) from the original minimal surface, as emphasized in [7]. Namely, we would have to

add the part of the original minimal surface bounded between z= ε and the surface z= δ,

representing the new CFT cut-off in the unperturbed bulk geometry. The more convenient

variant of course is to just choose h such that the meaning of the cut-off in the CFT is not

changed. We thus have to demand the expression in square brackets in (5.18) to vanish,

which fixes h(ε). With this choice of h the regularization procedure is then unaffected

by the flavors and we have isolated their contribution in the entanglement entropy (5.16),

which becomes

S(1)
EE = − t0L

3VS2

32G

(
`2

2ε2
+

4µ2 + 3

6
log

ε

2`
− 1

4
+

2µ2

3
+
µ4

15

)
. (5.19)

Comparing to the gravitational entropy (4.21), we now find that, in addition to the univer-

sal log-terms, also the scheme-dependent power-divergent terms agree. The only remaining

difference is in the m-dependent finite terms. But this should not come as a surprise, given

that we have not precisely matched the regularization procedures: For the regularization

of the minimal area we have chosen a cut-off at constant z, and then fixed the backreaction

such that the meaning of that cut-off in the field theory is preserved. For the gravita-

tional entropy calculation, on the other hand, we had chosen a different cut-off, shown in

figure 1(b).

To elaborate a bit further on this point, we recall the identification of the cut-off bulk

theory with the cut-off CFT in the approaches to the holographic renormalization group

in [31, 32], focusing on a bulk scalar field φ. One rewrites the full bulk partition function
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Z[φ0] in terms of the partition functions ZIR on the cut-off spacetime and ZUV on the

remaining part as

Z[φ0] =

∫
Dφε ZIR[φε]ZUV[φ0, φε] , (5.20)

where φ0 and φε are the boundary values on the conformal boundary and on the cut-off

surface, respectively. The correlators of the dual operator in the cut-off CFT are then

obtained from

ZIR[φε] =
〈

exp
{∫

φεO
}〉

CFT,ε
. (5.21)

In the semiclassical limit, where the bulk path integral is dominated by the on-shell action,

this gives the one-point function as the normal derivative of φ at the cut-off. When the

cut-off surface approaches the conformal boundary, this turns into the usual AdS/CFT

prescription where the subleading mode on the boundary gives the one-point function. We

now turn to the D7 branes. For the slipping mode ψ, the boundary-dominant solution

was chosen in (4.2), which sources as dual operator the mass term of the flavor fields.

There is no contribution from the subdominant mode, which would produce a vacuum

expectation value and corresponds to a deformation of the state. This clear split is lost in

the cut-off theory: the slipping mode (4.2) does not satisfy a pure Dirichlet or Neumann

boundary condition at the cut-off surface. Evaluating (5.21) thus produces a non-vanishing

one-point function, and adding the flavor branes perturbs the Hamiltonian and the state

in the cut-off CFT. As the cut-off approaches the conformal boundary, we get back to the

pure deformation of the Hamiltonian in the full CFT. However, here we have studied the

cut-off CFT, and choosing different cut-off surfaces corresponds to different admixtures

of perturbations to the state. As pointed out in [28], that affects the finite terms of the

entropy: while the divergent parts are generally independent of the state, i.e. the full

density matrix from which the entanglement entropy is calculated, this is not the case for

the finite parts. We thus conclude that the universal terms agree in both calculations, and

even the scheme-dependent power-divergent parts do, which is as much as we can expect.

6 Conclusions

In this work we have studied the gravitational entropy introduced in [2], with a focus on

practical applications in AdS/CFT. While its conceptual relevance for the calculation of

entanglement entropies in AdS/CFT is clear, as it permits an actual derivation of the

minimal-area prescription [1], one may näıvely expect it to be of little practical value,

precisely because it reduces to the minimal area. We have shown that it does offer practical

advantages, too, focusing on the case where the bulk theory is perturbed by the addition of

probe branes. The minimal-area prescription does not allow to efficiently exploit the probe

approximation, and one has to calculate the backreaction to get the leading correction to

the CFT entanglement entropy. Our general discussion of probe branes in section 3 has

shown that for the gravitational entropy, on the other hand, we can directly exploit that the

branes perturb an on-shell configuration, and thus avoid calculating their backreaction. The

line of arguments is in fact not limited to the case of probe branes. Rather, generally when
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a deformation of the gravity theory is considered only perturbatively, it should be possible

to use analogous arguments to get the entropy without calculating the backreaction. This

applies for the gravitational entropy itself, and in particular for the case where it is used

with AdS/CFT to calculate entanglement entropies for the dual CFT.

As a specific application we studied holographically the contribution of various types

of flavors in N = 4 SYM theory to the entanglement entropy of a spherical region. We have

validated our method by comparing to existing calculations in the literature. In comparison

to the computation of the backreacted minimal area, which in particular for the case of

massive flavors involves non-trivial techniques like a smearing of the flavor branes over the

internal space, the calculation has become very straightforward. For the case of massive

flavors we also compared to another approach, which simplifies the calculation from a

different perspective: the double-integral method of [7] does in fact boil down to computing

the backreaction, but only of an effective source on the AdS part. This allowed for an

independent concise derivation, which confirmed our result obtained from the gravitational

entropy. After subtleties in the regularization procedure due to the backreaction were taken

into account, also the scheme-dependent power-divergent parts agreed. It is worthwhile to

compare the two methods in a bit more detail. The double-integral formula offers a rather

drastic simplification of the backreaction approach. Its simplest form has limitations when

the brane sources non-metric bulk fields which already have background values in the bulk

solution. But if that is not the case, one just needs the backreaction of an effective source,

with the effective tension obtained from the full brane action, on the non-compact part

of the bulk geometry. It thus allows to be agnostic, to some extent, about the details

of the internal space. The gravitational entropy method, on the other hand, avoids the

complications of the backreaction altogether, and only needs the brane action. It also

does not interfere with the interpretation of the bulk cut-off in the dual CFT, as the

n= 1 solution is not deformed. It does, however, need the one-parameter family of bulk

geometries with varying period of the S1. As we have seen for the brane embeddings, one

does not need the full solutions, just the background geometry is enough. Yet, finding

that family of geometries can be non-trivial. Depending on the case at hand, one of the

approaches or the other may thus be more convenient. The gravitational entropy method is

particularly easy to implement once the one-parameter family of bulk solutions is known. It

thus calls for further application, in particular for a spherical region A. For another choice,

where A is a half space, the family of bulk solutions has been discussed in [2]. It should,

among other things, be possible along the arguments given in section 3, to incorporate non-

trivial worldvolume gauge fields and study entanglement in the dual CFT at finite density.
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A Integrating δn
√
γ for separated D7

For completeness we now explain in a bit more detail how the result (4.19) is obtained.

With (4.14) the left hand side of (4.19) becomes

T7

∫
z< 1

µ

dρ dΣ δn
√
γ = T7 µ

2

∫
z< 1

µ

dρdτdu

∫
S2×S3

ρ3 sinh2(u)(1− µ2z2)
(ρ̃2∂ρz)

2 − (∂τz)
2

3ρ2ρ̃4
, (A.1)

where z again denotes z(ρ, τ, u) as given in (2.4) and the volume forms on S2 and S3 are

implicit. Implementing the restriction to z < 1/µ in our coordinates is a bit tricky, but we

can actually circumvent it: as an intermediate step, we perform the integration over the

full AdS5 corresponding to z ∈ R+, and then subtract the part with z > µ−1. Substituting

coshu = 1/s we find

T7

∫
z< 1

µ

dρdΣ δn
√
γ =

t0VS2

48G

∫ 1

a/l
ds
√

1− s2

[
µ2 1− s2

s
− 1

2
µ4s(1− 2s2)

]
− T0 µ

2VS2

∫
z> 1

µ

dρdτduρ3 sinh2(u)(1− µ2z2)
(ρ̃2∂ρz)

2 − (∂τz)
2

3ρ2ρ̃4
.

(A.2)

Since the integral is over the n= 1 geometry, which is just Euclidean AdS5, we might as

well switch to Poincaré coordinates for the remaining part. We could try to invert the

coordinate transformation (2.4), but we find it is easier to use explicit parametrizations of

the AdS hyperboloid. For L = 1 the Euclidean versions of the parametrizations in [14] read

y−1 = ρ coshu , y0 = ρ̃ sin τ , yd = ρ̃ cos τ , ya = ρ sinhu ωa , (A.3)

for the hyperbolic slicing, where a = 1, . . . , d− 1 and
∑
ω2
a = 1. For the Poincaré coordi-

nates we use

y−1 + yd = z−1 , y−1 − yd = z + z−1xµxµ , yi = xi/z , (A.4)

where i = 0, . . . , d − 1. Using these parametrizations and the explicit expression for

z(ρ, τ, u), we can then express the terms of the integrand in (A.2) as

∂τz = tz , ρ̃2∂ρz = z2y−1/ρ− ρz , ρ̃2 = t2z−2 + y2
d . (A.5)

The volume form transforms to dρdτduρ3 sinh2(u) = dzdrdt r2z−5. While the bound

z > 1/µ is implemented straightforwardly in Poincaré coordinates, the integrand itself

becomes rather bulky. However, for z > 1 we see from (A.4) and (A.5) that ρ̃ > 0. The

integrand thus has no poles and the integral can be performed straightforwardly. The

second line of (A.2) then evaluates to zero after the t and r integrations,

−T0 µ
2VS2

∫
z> 1

µ

dzdrdt r2z−5(1− µ2z2)
z2
(
(ρ− zy−1/ρ)2 − t2

)
3ρ2ρ̃4

= 0 . (A.6)

We have also confirmed this result numerically, and the first line of (A.2) thus is the final

result.
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