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1 Introduction

Gauge theories in five dimensions are naively non-renormalizable and hence do not define

complete quantum theories per se. However, under some circumstances, they can be at

fixed points, which can in turn exhibit rather exotic properties such as enhanced global

symmetries of exceptional type [2].

– 1 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
9

Minimal supersymmetry in 5d contains 8 supercharges rotated by an SU(2)R R-

symmetry and exactly like in 4d the whole theory on the Coulomb branch follows from a

prepotential. However the existence of Chern-Simons terms in five dimensions, together

with the 5d analogue of parity anomaly, which generates a CS term upon integrating out

massive fermions, crucially constrains the form of the prepotential, allowing in fact to write

it exactly. It then turns out that upon suitably choosing the gauge group and matter con-

tent one can remove the dimensionful bare coupling and obtain a fixed point theory. Note

that even though the theories do not have tunable parameters, they exist for a range of

ranks such that a large N limit can be defined [3].

A crucial feature of gauge theories in five dimensions is that, for each vector multiplet,

we immediately have a topologically conserved symmetry under which instanton particles

are electrically charged. These instanton particles have a mass proportional to the Coulomb

branch modulus and hence become massless on the Higgs branch. String theory arguments

allow, in certain cases, to identify such Higgs branch with the moduli space of E-type

instantons, with instanton particles playing a crucial role in such an identification.

Given the existence of fixed point theories admitting a large N limit in five dimensions,

it is natural to wonder whether a gravity dual exists in the context of the AdS/CFT

correspondence. Indeed, the answer turns out to be positive. Type I’ string descriptions

dual to five dimensional supersymmetric fixed points with ENf+1 global symmetry were

constructed in [4]. More general 5d gauge theories, in particular of quiver type, have also

been constructed using the correspondence [5, 6]. Although field-theoretic considerations

seem to suggest that quiver gauge theories cannot be at fixed points, as the Coulomb

branch moduli space would develop singularities at finite distance, one could expect that

instantons becoming massless at these singularities could in fact resolve them. While a

complete field theory picture for this resolution is yet not available — see nevertheless [7]

—, it is easy to construct well-behaved AdS6 geometries which should be dual to these

theories. Hence, using the gravity dual as a guiding principle we can conclude that quiver

gauge theories can also be at fixed points [5, 6].

In fact, along these lines, the AdS/CFT correspondence can be used as a tool to search

for potentially new classes of 5d fixed point theories. Although, perhaps not surprisingly, as

one would expect the landscape of 5d CFTs to be more rigid than its 4d analogue, this route

reaches a dead end if one looks for “standard” AdS6×M warped solutions in Type IIA [8],1

a new AdS6 Type IIB background can be constructed [1] if one allows for more exotic

types of solutions. This new AdS6 solution arises as the result of a non-Abelian T-duality

transformation of the known supersymmetric AdS6 solution of massive Type IIA [4], and

should be relevant for defining new classes of 5d fixed point theories through the holographic

correspondence. Alternatively, it can be regarded as the supersymmetric vacuum of a full

embedding [9] of Romans’ F(4) gauged supergravity [10] in Type IIB supergravity.

As opposed to its Abelian counterpart, non-Abelian T-duality is much less understood.

Given the well-documented difficulties in extending Abelian transformations based on

1An obvious point not discussed in [8] is that Hopf T-duality leads to a supersymmetric solution in

Type IIB.
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Kramers-Wannier duality [11] to non-Abelian settings (see for example [12]) it is rather sur-

prising that there is an immediate generalisation [13] of the Buscher procedure [14, 15], or,

more precisely, of the gauging procedure derived by Rocek and Verlinde thereof [16]. Still,

long-standing questions remain, notably the status of the transformation as a string theory

symmetry and the fate of global aspects [17–19]. Indeed, while Abelian T-duality maps an

S1 to another S1 with inverse radius, it is not known what ranges one should attribute to

the dual coordinates of an S3 under non-Abelian T-duality. Despite these open problems,

recently we have witnessed a small resurgence in interest in non-Abelian T-duality, spurred

on by the extension of non-Abelian T-duality to incorporate RR fields [20, 21].2 Provided

one is careful about the R symmetry, it is possible to generate supersymmetry preserving

solutions of relevance in the context of gauge/gravity duality [1, 23, 24] as well as to study

the implications for G-structures [25, 26]. Reversing the logic we will see that it is also

possible to extract some global information by analyzing the implications of the AdS/CFT

correspondence on the newly generated background.

The paper is organized as follows. We start in section 2 by summarizing the main

properties of the supersymmetric AdS6 solution of massive Type IIA constructed in [4]. In

section 3 we present the non-Abelian T-dual background, expanding on the results in [1].

In section 4 we discuss the different charges present in the dual background, which in order

to be properly quantized requires a specific global completion of the dual geometry. This

completion leads to an interpretation in terms of a D5-D7 system, but raises some concerns

on the dual geometry that we discuss. The possibility of a non-compact dual space is also

analyzed. This implies however the existence of a continuous spectrum of fluctuations

through the spherical Bessel function. In section 5 we analyze some of the properties of

the 5d CFT that should be dual to the new AdS6 background through the holographic

correspondence. We explore the Coulomb branch of the theory as well as its instanton

and baryon vertex configurations. These allow for a concrete proposal for a 5d CFT in

terms of two gauge groups and two flavor symmetries. We comment on the apparent non-

existence of a Higgs branch. In section 6 we calculate the entanglement entropy of the dual

background. This implies an S5 free energy for the 5d dual CFT that differs from that of

the original theory. Section 7 contains some Discussion of the open problems left out by our

analysis. Appendix A contains a detailed analysis of the supersymmetry properties of the

Hopf T-dual of the original background. Appendix B contains the supersymmetry analysis

of the non-Abelian T-dual background. Appendix C complements the construction of BPS

probe branes made in section 5 with a kappa symmetry analysis.

2 The D4-D8 brane system

The Coulomb branch of supersymmetric 5d gauge theories is completely contained in a

prepotential severely constrained by the existence of Chern-Simons terms. Inspection of

the prepotential shows that for a USp(2N) gauge theory with one antisymmetric hyper-

multiplet and Nf < 8 fundamental hypermultiplets the bare coupling can be safely removed

by taking it to infinity. The theory is therefore expected to be a strongly coupled fixed

2See also [22] for the role the Fourier-Mukai transform plays in the transformation of the RR fields.
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point theory. On the other hand, this theory can be engineered in string theory on a stack

of N D4 branes probing a O8− plane with Nf coincident D8 branes. Conversely, one can

find a massive IIA solution corresponding to this Type I’ configuration which, in the near-

brane region, becomes the warped product of AdS6 times a half-S4. The corresponding

background is (we use the conventions in [1])

ds2 =
W 2 L2

4

[
9 ds2(AdS6) + 4 ds2(S4)

]
F4 = 5L4W−2 sin3 θ dθ ∧Vol(S3)

e−φ =
3L

2W 5
, W = (m cos θ)−

1
6 (2.1)

where m is the Romans’ mass, m = (8 − Nf )/(2π) (we take ls = 1), L denotes the AdS6

radius and the metric on S4 takes the form

ds2(S4) = dθ2 + sin2 θ ds2(S3). (2.2)

While S4 would have SO(5) isometry, the θ-dependent warping means that this is broken

to SO(4) ∼ SU(2)×SU(2). Upon dimensional reduction, the SU(2)×SU(2) isometry leads

to two gauge fields in AdS6, standing for the global symmetries of the dual CFT. One of

the SU(2) corresponds to the SU(2)R R-symmetry of the field theory and the other one

to the SU(2)M mesonic symmetry acting on the antisymmetric hypermultiplet. Besides,

there is an extra Abelian gauge field in AdS6 coming from the RR 1-form potential, which

stands for the global instantonic symmetry of the dual CFT.

Writing the geometry in terms of α = π
2 − θ, the O8− action involves an inversion of

the transverse coordinate, which translates, in the near-brane region, to α → −α. Hence

the range of α, which would naively be [−π
2 ,

π
2 ] in order to cover the full S4, is reduced

to [0, π2 ] upon modding. This corresponds to θ ∈ [0, π2 ]. The O8− location at α = 0

becomes θ = π
2 , where the dilaton diverges. This is the reflection on the gravity side of

the removal of the dimensionful bare gauge coupling which puts the field theory at a fixed

point. Indeed, resorting to the full string theory picture to resolve the singularity, upon

tuning the dilaton to diverge right on top of the orientifold, the Nf D8 branes on top of

the O8− give rise to the enhanced ENf+1 global symmetry [2].

For a generic value of θ away from the orientifold singularity, curvature and dilaton

go like

R ∼ −m
1
3

L2
, eφ ∼ 1

Lm5/6
. (2.3)

Hence, in order to ensure the validity of the solution we need to demand

m
1
3

L2
� 1 , Lm5/6 � 1 . (2.4)

Being m = (8−Nf )/(2π) the Romans mass quantization condition these conditions simply

reduce to L� 1. Using the correct quantization of the four-form flux, one gets

L4m1/3 =
16π

9
N, (2.5)

where N � 1 stands for the number of D4 branes.
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2.1 Supersymmetry

Writing the metric on S3 in terms of a Hopf-fibre over S2,

ds2(S3) =
1

4

[
dφ2

1 + sin2 φ1dφ
2
2 + (dφ3 + cosφ1dφ2)2

]
, (2.6)

omitting details, the Killing spinors take the form

η = (cos θ)−1/12e−
θ
2
γΓθσ1

e−
φ1
2

Γφ3φ2e−
φ2
2

Γφ2φ1 η̃, (2.7)

where γ = Γθφ1φ2φ3 and η̃ denotes the Killing spinor on AdS6. η is subject to a single

projection condition [
sin θΓθσ1 + cos θΓθφ1φ2φ3

]
η = −η, (2.8)

so there are sixteen supersymmetries, the minimum required for a supersymmetric AdS6

geometry. Furthermore, as is evident from the explicit form of the Killing spinor, it is

independent of φ3, so that if one performs an Abelian T-duality transformation along this

direction no supersymmetries will be broken. We show this in detail in appendix A.

3 The AdS6 non-Abelian T-dual

Non-Abelian T-duality with respect to any of the SU(2) subgroups of the SO(4) isometry

group of the S3 contained in the internal space of the previous AdS6 background produces

yet another AdS6 solution, this time in Type IIB, which exhibits an explicit SU(2) sym-

metry [1]. The reduction of global symmetries under non-Abelian T-duality is a generic

feature, with the isometries being dualized typically being destroyed in the duality. Using

spherical coordinates adapted to the remaining SU(2) symmetry the space dual to the S3

is locally R × S2. Its global properties are however mostly unknown, this being related

to our lack of knowledge on how to extend the gauging procedure used to construct the

non-Abelian T-dual [13] to topologically non-trivial worldsheets [18].

The AdS6 non-Abelian T-dual constructed in [1] is given by

ds2=
W 2 L2

4

[
9 ds2(AdS6) + 4 dθ2

]
+ e−2A dr2 +

r2 e2A

r2 + e4A
ds2(S2)

B2 =
r3

r2 + e4A
Vol(S2) e−φ =

3L

2W 5
eA
√
r2 + e4A

F1 = −G1 −mr dr F3 =
r2

r2 + e4A
[−r G1 +me4A dr] ∧Vol(S2) (3.1)

with ds2(S2), Vol(S2) given by

ds2(S2) = dξ2 + sin2 ξ dψ2 , Vol(S2) = sin ξ dξ ∧ dψ , (3.2)

and

eA =
W L

2
sin θ , G1 =

5

8W 2
L4 sin3 θ dθ . (3.3)
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For later purposes, the Hodge-dual RR field strengths are given by

F9 =
36

26
W 3 L7 r2 eA

r2 + e4A

[
5

8
L2 sin3 θ dr −mr e2AW 4 dθ

]
∧ dVol(AdS6) ∧Vol(S2) (3.4)

and

F7 = −26

36
W 3L7

[
5

8
r e−3A L2 sin3 θ dr +me3AW 4 dθ

]
∧ dVol(AdS6) . (3.5)

In [27] the non-Abelian T-dual of a general class of Type II supergravity solutions

with isometry SO(4) ∼ SU(2)×SU(2) was generated and shown to satisfy the supergravity

equations of motion. These results guarantee that (3.1) satisfies the Type IIB equations of

motion for any positive value of r. In order to fully clarify the nature of the space spanned

by dual variables one needs to resort to the sigma-model derivation of the transformation.

As we have said, no global properties can however be inferred from it in the non-Abelian

case. We will assume in what follows that r ∈ [0, R] for some regulator R which might be

taken to infinity, and try to infer global properties by demanding consistency to the dual

background.

In addition to the singularity at θ = π
2 , inherited from the original background, there

is a second singularity at θ = 0. This happens because the S3 shrinks to zero size and is

completely analogous to the singularity that appears after Abelian T-duality on a shrinking

circle. One can also check that the curvature invariants for this geometry are perfectly

smooth for all r ∈ [0, ∞).

Close to r = 0 the metric looks like

ds2 = h−
1
2

[
9 ds2(AdS6) + 4 dθ2

]
+ h

1
2

[
dr2 + r2 ds2(S2)

sin2 θ

]
; h−

1
2 =

W 2 L2

4
, (3.6)

so locally the transverse space becomes just R3. The curvature is in turn given by

R = −m
1
3

L2

(29 + 25 cos 2θ)

3 cos5/3 θ sin2 θ
(3.7)

and the dilaton

eφ =
16

3L4 (m cos θ)1/3 sin3 θ
∼ 1

L4m1/3
. (3.8)

Therefore the solution is valid when

m
1
3

L2
� 1 , L4m1/3 � 1 . (3.9)

At large r we find a geometry of the form

ds2 = h−1/2
[

9 ds2(AdS6) + 4 dθ2 + sin2 θ ds2(S2)
]

+ h1/2

[
dr2

sin2 θ

]
; h−

1
2 =

W 2 L2

4
(3.10)

with a curvature

R = −m
1
3

L2

(69 + 4 cos 2θ − cos 4θ)

18 cos5/3 θ sin2 θ
(3.11)
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and a dilaton

eφ =
4

3L2 r sin θ (m cos θ)2/3
e4A ∼ 1

L2m2/3 r
. (3.12)

The same conditions (3.9) ensure that both dilaton and curvature remain under control,

away of course from the known singularities at θ = 0, π2 . The geometry spanned by θ and

S2 is conformally a singular cone at θ = 0 with an S2 boundary.

The fact that the dual geometry is perfectly well-defined for all r leads to a puzzle for

finite R, as the geometry would be terminating at a smooth point. We postpone a more

detailed discussion of this issue to later sections.

3.1 Supersymmetry

As shown in [1] this new AdS6 background provides the first example of a non-Abelian

T-dual geometry with supersymmetry fully preserved. Appendix B contains the detailed

analysis supporting this statement. To this end, we follow arguments presented in [27]

and demonstrate that the effect of an SU(2) transformation for space-times with SO(4)

isometry is simply a rotation on the Killing spinors. The calculations presented in appendix

B generalise the analysis of [27] to include transformations from massive IIA to Type IIB

supergravity and provide other necessary details. Once again the key observation will

be that there is a rotation of the Killing spinor [27] that allows to recast the Killing

spinor equations for the T-dual geometry in terms of the Killing spinor equations of the

original geometry.

4 Quantization conditions in the dual theory and the cut-off in r

The RR fluxes of the dual AdS6 background are the gauge invariant fluxes (see e.g. [28])

Fp = dCp−1 −H3 ∧ Cp−3 (4.1)

satisfying

dFp = H3 ∧ Fp−2 . (4.2)

It is well-known however that the Page charges are the ones that should be quantized [29],

although they are non-invariant under large gauge transformations of the B2 field. Large

gauge transformations are indeed relevant if 2-cycles exist in the geometry. In view that

at least at large r there is a singular cone in the geometry with an S2 boundary, we can

explore the implications of large gauge transformations on this S2. To that matter, recall

that the B2 field in (3.1) is given by

B2 =
r3

r2 + e4A
Vol(S2) , (4.3)

so we would expect large gauge transformations shifting B2 by nπVol(S2), with n

an integer,

B2 =

(
r3

r2 + e4A
− nπ

)
Vol(S2) , (4.4)

– 7 –
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such that around the S2

b =
1

4π2

∫
B2 ∈ [0, 1] . (4.5)

In the absence of a global definition of the newly generated background it is not clear

whether a non-trivial S2 exists at finite r. Still, we can consider the S2 in (3.10) at large

r. Then n should be chosen such that

B2 ∼
(
r − nπ

)
Vol(S2) , (4.6)

satisfies the quantization condition (4.5). This implies that n should be a function of r.

This is somewhat reminiscent of the cascade in [30], with the important difference that the

cascading does not take place in the holographic direction but in an internal direction. As

we show below this imposes non-trivial conditions on the dual background.

The Page charges in the dual theory are associated to the currents d ? F̂ = ? jPage

where (see e.g. [31])

F̂ = F e−B2 . (4.7)

Explicitly in our background we have

F̂1 = F1 , F̂3 = F3 −B2 ∧ F1 , F̂5 = F5 −B2 ∧ F3 +
1

2
B2 ∧B2 ∧ F1 (4.8)

with

F̂1 = −G1−mr dr , F̂3 =
(

(mr2 −πmn r) dr−π n G1

)
∧Vol(S2) , F̂5 = 0 . (4.9)

These fluxes should satisfy the quantization condition (in `s = 1 units):

1

2κ2
10

∣∣∣∣ ∫
γp

F̂p

∣∣∣∣ = T8−pN8−p , (4.10)

along some compact γp cycle of the dual background.3 In the absence of a clear global

definition for the dual background we are going to assume that non-trivial 1 and 2-cycles

exist in the dual geometry and analyse the implications of this on the dual CFT. We will

see that indeed many qualitative properties of the original CFT will be reproduced in terms

of Type IIB configurations.

Imposing the F̂1 quantization condition we find two integers coming from the two

components of F̂1

N r
7 =

mR2

2
, Nθ

7 =
9

32
L4m

1
3 , (4.11)

where the subscripts r, θ refer to the direction that has been integrated.

The F̂3 quantization conditions lead to

N r
5 =

m

π

∫ R

0
dr (r2 − nπ r) , Nθ

5 =
20

9
N θ

7

∫ π
2

0
dθ n cos

1
3 θ sin3 θ . (4.12)

3Note that we added an absolute value so that all our integers will be positive.
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In these integrals n has to be chosen such that the B2 field satisfies (4.5) for each r and θ.

Note that the relative sign in N r
5 seems to imply that this charge will become zero at some

point and from then on negative, possibly giving rise to tensionless branes. Nevertheless,

taking the implicit r and θ dependence of n into account, one can see that N r
5 remains in

fact positive for all values of R and θ.

In order to keep the correct periodicity as one moves in the internal geometry, the

B2 field should undergo a sequence of large gauge transformations very reminiscent of the

cascade. The large gauge transformations induce then a change in the Page charges, such

that implicitly N r
5 is a function of θ while N θ

5 is a function of r. Since the charges cannot

be integers at the same time for all values of r and θ, the background turns out to be

globally inconsistent. The only way out of this inconsistency is to fix R such that B2 is

not allowed to undergo any large gauge transformation, thus forcing n to be zero in (4.12).

Given (4.6), b will be in [0, 1] as long as r ≤ π. It is then natural to fix R = π, and the

Page charges of our background to4

N r
7 =

mπ2

2
, N r

5 =
mπ2

3
, Nθ

7 =
9

32
L4m

1
3 , Nθ

5 = 0. (4.13)

Note that N r
7 and N r

5 are related to the mass of the original Type IIA background

and clearly they are not independent once R has been fixed. For R = π in particular

both charges satisfy 2N r
7 = 3N r

5 . N θ
7 on the other hand cannot be an integer if L and m

satisfy the conditions given by (2.5). This happens because non-Abelian T-duality changes

the volume of the dual manifold. This change can be absorbed re-defining κ10, as one

does after an Abelian T-duality along a coordinate with periodicity different from 2π (see

for instance [32]). One can check that indeed for a κ̃10 satisfying κ̃2
10 = (2π)8q, with q

an integer such that N4 = qN θ
7 , all dual charges are integers and are related either to

the D8-brane charge (N r
7 , N r

5 ) or the D4-brane charge (N θ
7 ) of the original background.

Consistently, as we will find in the next section when discussing the holographic aspects

of the non-Abelian T-dual, N r
7 and N r

5 will be interpreted as flavor charges and N θ
7 as

color charge. Indeed, we will see that there are BPS stable D-branes responsible for these

charges independently on the existence of non-contractible cycles in the geometry.

Finally, it is interesting to note that if one generates a B-field in a D-brane background

as instructed by ref. [33], then the Page charge of the induced flux is typically zero. Here

N θ
5 = 0 is indicating that this charge is induced.

4.1 On compact vs non-compact r

We have just seen that if r is compact, under reasonable assumptions, the quantization

of the Page charges would imply that its maximum value has to be set to R = π, so as

to have a globally well-defined background where all Page charges are integers. Although

for compact r the spectrum of fluctuations is discrete — which is what one would naively

expect for an AdS background dual to a CFT, as we will discuss in the next section —,

it is very puzzling that the geometry has to terminate at a perfectly well-defined value

4Strictly speaking R ≤ π, but for the sake of concreteness we choose the most natural value R = π.
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at which no invariant quantity blows up.5 The possibility of having tensionless branes

beyond r = R, suggested by the minus relative sign in the expression for N r
5 in (4.12), does

not allow either for a natural cut-off, given that, as we have mentioned, N r
5 turns out to

be strictly positive for all R. We will come back to this issue of the termination of the

background at a regular point in the next section.

One further possibility one might explore is that R→∞, so that quantization of the r

component of fluxes must not be imposed. However, this possibility raises other concerns

inspired in the AdS/CFT correspondence. We have seen that for asymptotically large r

the geometry is given by (3.10), where in particular the r coordinate lives in R+. Therefore

we should expect fluctuations to behave asymptotically as ei k r for continuous k. Since

we expect our background to be holographically dual to a 5d fixed point theory (see next

section) such fluctuations would be dual to operators in the CFT with conformal dimension

proportional to the continuous parameter k, which points at a sick dual CFT. We stress

that this argument alone, regardless of the quantization conditions for Page charges and

the existence of an S2 where we can quantize large gauge transformations of B2, leads to

consider, under the light of the AdS/CFT correspondence, a cut-off space.

In order to sustain this qualitative argument one would require to explicitly compute

the spectrum of fluctuations in the non-Abelian T-dual AdS6 background. In particular,

one might worry that, due to the non-trivial dilaton, warping and fluxes, it might be

that somehow the continuous spectrum is avoided. This analysis appears however as a

daunting task. To this end, we have performed a preliminary check on the technically

simpler AdS3×S3×T 4 background, that gives some evidence for a continuous spectrum of

fluctuations. Therefore, r non-compact raises as well important concerns in the dual theory.

As usual, one should perform a linearised fluctuation analysis around the non-Abelian

T-dual solution, along similar lines to seminal studies of the Kaluza-Klein spectra of Freund-

Rubin solutions [34, 35]. This approach runs into a number of difficulties. Firstly, despite

the original AdS3×S3×T 4 geometry being of Freund-Rubin type, the non-Abelian T-dual

is clearly not. Moreover, the internal space is no longer compact, so one also has to work

without the usual crutch of the Hodge decomposition theorem that allows one to expand

the gauge potentials.

In the face of these difficulties, our approach will be to work at the non-linear level,

borrow intuition from non-Abelian T-duality and at the end linearise the “fluctuations”6

by dropping quadratic terms. For simplicity, we will also focus on a single breathing

mode, A, which can be decoupled and analysed independently from other fluctuations. For

concreteness, we consider the following Ansatz

ds2 = e2A
[
ds2(AdS3) + ds2(S3)

]
+ ds2(T 4) (4.14)

5Such termination at a regular point would seem to demand the inclusion of extra localized sources to

satisfy the equations of motion there. However, motivated by the analysis of the forthcoming sections — to

which we refer —, it is tempting to speculate that the non-Abelian T-dual background is sort of an effective

description of a complete geometry where no such extra localized objets are present.
6Strictly speaking these are not fluctuations as we work at the non-linear level. By “fluctuation”, we

mean any deformation from the underlying solution, which in this case is AdS3 × S3 × T 4.
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where A is a function of the coordinates on both AdS3 and S3, and the latter are normalised

so that Rµν = −1
2gµν and Rmn = 1

2gmn, respectively.7 On its own the addition of the

breathing mode is not consistent and one needs to support it through complementary

fluctuations in order that the equations of motion are satisfied. We will work on the

assumption that this can be done and leave a more detailed analysis to future work.

The above Ansatz then fits into the class of spacetimes with SO(4) isometry and one

can apply the non-Abelian T-duality transformation rules of ref. [27]. Since we are only

affecting one SU(2) factor in the T-duality, it is reasonable to expect that singlet KK modes

with respect to SU(2) will survive the process. For scalars, such as A above, this means

that A should be independent of the coordinates on the S3. This can be easily seen by

taking the vector fields dual to either left or right-invariant one forms on S3 and calculating

the Lie derivative of A with respect to the vectors.

Thus, if we want to consider KK modes on S3, there is no way from the offset that

we can simply perform non-Abelian T-duality on these modes as they are not singlets.

However, as we shall see for the above scalar, it is possible to reconstruct the spectrum, at

least when one simply focusses on the dilaton equation

R+ 4∇2Φ− 4(∂Φ)2 − 1
12H

2 = 0, (4.15)

which only involves the NS sector.8 In addition to the earlier assumption that the comple-

mentary fluctuations can be found, we will also assume that the original solution has no

dilaton, Φ = 0, and no B-field, H = 0, so that (4.15) is simply R = 0. With the above

Ansatz (4.14), this equation takes the form

R = −e−2A
[
10(∇2

AdS3
+∇2

S3)A+ 20∂MA∂
MA

]
= 0, (4.16)

where the index M ranges over both AdS3 and S3 directions.

Moving along to the non-Abelian T-dual, we adopt the Ansatz that works when A

depends solely on the coordinates of the AdS3 space-time [27], in other words, when it is

a singlet, and simply re-introduce dependence on coordinates (r, θ, φ) after the T-duality.

Note, there is a priori no relationship between (θ, φ) and any of the original coordinates on

the S3. After a plethora of cancellations, one finds that (4.15) for the non-Abelian T-dual

equation simplifies accordingly,

−e−2A
[
10(∇2

AdS3
A+ 20∂µA∂

µA
]
− e−2A

[
10∇2

S2A+ 20∂αA∂
αA
]

(4.17)

−e
2A

r2

[
14∇2

S2A+ 68∂αA∂
αA
]
− e2A

[
14∂2

rA+ 28
1

r
∂rA+ 68(∂rA)2

]
= 0,

where µ = 0, 1, 2 and α = 1, 2 denote AdS3 and S2 coordinates, respectively.

In the first line all r-dependence has disappeared and the second Laplacian is confined

just to the (unit radius) S2. This closely mirrors the original result (4.16) and in the strict

7The choice of normalisation follows from [20, 27] and the conventions for the type II equations of motion

we take from [27].
8The fact that this equation does not depend on the RR fields allows us to ignore them. Naturally, other

equations couple the NS and RR sectors, however this equation only involves the NS sector.
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r →∞ limit, all dependence of A on r can be dropped. Naturally, when A is independent

of internal directions, we find that the equation is the same before and after T-duality,

as expected.

Now, assuming A is suitably small, we can linearise by dropping quadratic terms and

separate the above equation into parts, A = j(r)Yl,m(θ, φ), where Yl,m denote standard

spherical harmonics. In the process, one encounters the spherical Bessel equation

j′′ +
2

r
j′ +

(
k2 − l(l + 1)

r2

)
= 0, (4.18)

where k ∈ R corresponds to the continuous part of the spectrum. Indeed, this is precisely

the equation one encounters when one solves the scalar wave equation in a non-Abelian

T-dual background [36] leading to spherical Bessel functions jl(kr), which are regular at

the origin where the internal space becomes R3. One expects that the analysis here can be

extended to a larger set of fluctuations and that the presence of a warp factor, such as in

the AdS6 case, will not affect the conclusion that the spectrum contains both continuous

and discrete parts.

5 Towards a holographic interpretation of the non-Abelian T-dual

As our non-Abelian dual background is a warped AdS6 geometry, we expect it to be dual

to a fixed point theory with N = 1 SUSY in 5d, to whose analysis we now turn. Since

we have seen that a non compact r direction would lead to a continuous spectrum, we will

assume in the following that r ∈ [0, R] with R = π. As discussed above, this seems to be

the only way to have a globally well-defined SUGRA solution for compact r, modulo the

(very important) caveat of the termination of the geometry at a regular point. For finite

R we might expect four U(1) gauge fields in AdS6. Two would arise from the reduction of

4-form RR potentials over the S2 and either r or θ, and the other two would come from the

reduction of the 2-form potential over either r or θ. This would imply a global symmetry

group whose Cartan is U(1)4. This fits nicely with the quiver candidate for the dual CFT

that we will propose later in this section, even though in the absence of a precise way to

impose the cut-off it could well be that less gauge fields existed.9 On top of this the SU(2)

isometry acting on the S2 should correspond to the SU(2)R R-symmetry of the dual theory.

5.1 Probing the Coulomb branch

On general grounds we can probe the Coulomb branch of the theory by considering the

supersymmetric locii of probe branes filling R1,4. In the following we examine each such

objects separately.

5.1.1 D5 branes

A D5-brane wrapped on R1,4 ×M1, where we denote by M1 the space spanned by the r

variable, experiences a no-force condition when located at θ = 0. This brane should be

responsible for the N θ
5 charge for n 6= 0.

9Note that this does not raise an immediate contradiction, since it is common that in backgrounds with

backreacted flavor branes the flavor symmetry currents are not apparent in SUGRA.

– 12 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
9

Since this D5-brane does not have indices along the S2 it does not capture the H3 flux.

Hence in order to find the corresponding C6 we can just set locally F7 = dC6, finding

C6 = −36 L6

26
r ρ5 d5x ∧ dr . (5.1)

The DBI action reads in turn

SDBI = −T5

∫
e−φ
√
g = −T5

∫
36 L6 ρ5

26

√
r2 + e4A (5.2)

Assuming the brane lives at θ = 0 this is

SDBI = −T5

∫
36 L6

26
ρ5 r (5.3)

which precisely cancels against the WZ term for an anti-D5-brane. Therefore an anti-D5

sitting at θ = 0 does not feel a force.

Upon considering the fluctuations of this brane we find a 5d Chern-Simons term from

the WZ action:

S5dCS =
(2π)3

6
T5

∫
F1

∫
A ∧ F ∧ F = − N r

7

24π2

∫
A ∧ F ∧ F , (5.4)

with coefficient N r
7 . We can also look at the fluctuations of the DBI action to obtain the

effective YM coupling. It is easy to see that such fluctuations lead to

S =
9L2m2/3

128π3

∫
cos2/3 θ

√
r2 + e4A ρF 2

µν (5.5)

which, at θ = 0, reduce to

S =
9L2m−1/3N r

7

128π3

∫
ρF 2

µν =

∫
1

g2
D5

F 2
µν  

1

g2
D5

=
9L2m−1/3N r

7

128π3
ρ (5.6)

We will see in the next subsection that exactly the same theory is obtained by studying

the fluctuations of D7-branes wrapped on R1,4 ×M1 × S2, with N r
7 ↔ N r

5 .

Finally let us note that a D5-brane wrapped on R1,4 times the θ direction does expe-

rience a force for any value of r, and hence is not supersymmetric.

5.1.2 D7 branes

Let us now look at a D7-brane wrapped on R1,4×M1×S2, which should be responsible for

the N θ
7 charge. This brane now captures the B2 flux. Taking the conventions F = 2π F−B2

the CS term reads

SWZ = T7

∫
(C8 − C6 ∧B2) . (5.7)

Using that for our background

d (C8 − C6 ∧B2) = F9 − F7 ∧B2 (5.8)
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we find that

C8 − C6 ∧B2 =
36 L6

26
r2 ρ5 d5x ∧ dr ∧Vol(S2) (5.9)

and therefore

SCS = 4π T7
36

26
L6

∫
r (r − π n) ρ5 . (5.10)

It is easy to check that the DBI action is given by exactly the same expression with opposite

sign at θ = 0. Therefore, we find another no-force condition when the D7-brane sits at

θ = 0. Note that for vanishing n the D7-brane becomes BPS for all θ.

Let us now consider the fluctuations of this brane. We find from the

Chern-Simons action

S5dCS = T7
(2π)3

6

∫
(C2 − C0B) ∧ F ∧ F ∧ F = −T7

(2π)3

6

∫
F̂3

∫
A ∧ F ∧ F (5.11)

where we have used that

d(C2 − C0 ∧B2) = F3 − F1 ∧B2 = F̂3 , (5.12)

as defined in section 4. Performing the integration we find

S5dCS = − N r
5

24π2

∫
A ∧ F ∧ F (5.13)

that is, a worldvolume Chern-Simons theory with coefficient N r
5 . The fluctuations of the

DBI action give in turn

S =
9L2m−1/3N r

5

128π3

∫
ρF 2

µν (5.14)

which is exactly the same expression for the fluctuations of the D5-brane wrapped on

R1,4 × M1, with N r
7 ↔ N r

5 . Note that these are the branes that would have become

tensionless for N r
5 = 0, as discussed in the previous section.

Finally, one can see that D7-branes wrapped on R1,4 × S2 times the θ direction and

on AdS6 × S2 do experience a force for any value of r or (r, θ).

5.1.3 D7-branes from D5-branes

In this section we show that the D5 and D7 branes that we have just discussed are related

through Myers dielectric effect. We restrict the analysis for simplicity to vanishing large

gauge transformations. n in this section will refer to the number of coincident D5-branes.

Schematically the DBI action describing n coincident D5-branes is given by (see [37]

for more details)

SDBI = −T5

∫
STr{e−φ√g

√
detQ} (5.15)

where

Qij = δij +
i

2π
[Xi, Xk](g −B2)kj (5.16)

and i, j, k run over the transverse non-Abelian directions. Taking the D5-branes to expand

into a fuzzy S2 and using Cartesian coordinates we can impose the condition
∑3

i=1(xi)2 = 1
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at the level of matrices if the Xi are taken in the irreducible totally symmetric representa-

tion of order n, with dimension n+ 1,

Xi =
1√

n(n+ 2)
J i (5.17)

with J i the generators of SU(2), satisfying [J i, J j ] = 2iεijkJ
k. We then have that

[Xi, Xj ] =
2i√

n(n+ 2)
εijkX

k . (5.18)

Substituting in the DBI action we find a dielectric contribution

SDBI = −T5

2π

36

25
L6 n+ 1√

n(n+ 2)

∫
r2ρ5 . (5.19)

This action gives in the supergravity limit, n→∞, the DBI action for a D7-brane wrapped

on R1,4 ×M1 × S2, discussed previously

SDBI = −4π T7
36

26
L6

∫
r2ρ5 . (5.20)

For the CS action we find in turn

SCS = i
T5

2π

∫
(iXiX)(C8 − C6 ∧B2) =

T5

2π

36

25
L6 n+ 1√

n(n+ 2)

∫
r2ρ5 (5.21)

We then see that for a system of coincident D5-branes the monopole couplings, dominant

in the supergravity limit, cancel at θ = 0, giving rise to a no-force condition. The dipole

couplings, in turn, give in the large n limit the action describing a D7-brane wrapped on

R1,4 ×M1 × S2, which in the absence of large gauge transformations is supersymmetric

for all θ.

5.2 Instantons

In the previous subsection we have seen that the Coulomb branch of our putative dual CFT

seems to be two dimensional, as we have two branes — the D5 extended on r and the D7

extended on r and S2 — which we can move independently. This would naively suggest

a dual theory with two gauge groups. On the other hand, in five dimensions each vector

multiplet automatically comes with a topologically conserved instantonic current. Hence,

our naive identification would demand two types of instantonic particles. Note that on the

Coulomb branch these must be non-gauge invariant, being the charge proportional to the

Chern-Simons term of the corresponding U(1) Coulomb branch. In the gravitational dual

this translates into the fact that these instanton states must be dual to wrapped branes

with a tadpole given by the CS coefficients, which we found to be N r
5 and N r

7 .
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5.2.1 D1 instantons

Let us consider a D1-brane wrapping the M1 space. This brane has the expected world

volume tadpole coming from the WZ coupling:

SWZ = −2π T1

∫
F1

∫
At = −N r

7

∫
At (5.22)

Its DBI action reads in turn

SDBI = −9

4
T1 L

2m2/3 cos2/3 θ

∫ √
r2 + e4A ρ (5.23)

and therefore vanishes at θ = π
2 , while we find for θ = 0:

S = −
∫

16π2

g2
D5

(5.24)

which is the expectation for an instantonic particle.

For multiple D1-branes we can consider as well the dielectric couplings

Sdiel
WZ = −i T1

∫
(iXiX)(F3 − F1 ∧B2) ∧A = −i T1

∫
(iXiX)F̂3 ∧A (5.25)

These terms are responsible for the expansion of the D1-branes into a D3-brane wrapped

on the internal S2. Taking F̂3 as given in (4.9)10 and the non-commutative ansatz given

by (5.17) we find for a set of n D1-branes:

Sdiel
WZ = − n+ 1√

n(n+ 2)
N r

5

∫
At (5.26)

The action (5.26) gives in the large n limit the WZ action of a D3-brane wrapped on

M1×S2, which, as we show in the next subsection, has a tadpole with charge equal to N r
5 .

The DBI action

SDBI = −T1

∫
STr{e−φ√g

√
detQ} ⊃ Sdiel

DBI (5.27)

where, as in the previous section

Qij = δij +
i

2π
[Xi, Xk](g −B2)kj , (5.28)

gives in turn the following dielectric contribution

Sdiel
DBI = −T1

9

4π
L2m2/3 cos2/3 θ

n+ 1√
n(n+ 2)

∫
ρ r2 . (5.29)

Taking θ = 0 this gives

Sdiel
DBI = − n+ 1√

n(n+ 2)

∫
16π2

g2
D7

(5.30)

which reproduces in the large n limit the action for a D3-brane wrapped on M1 × S2.

10As in the previous subsection we restrict the analysis to zero large gauge transformations.
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5.2.2 D3 instantons

To complete the analysis of the previous subsection let us now consider a D3-brane wrapping

the M1 × S2 space. This brane has a tadpole

SWZ = −2π T3

∫
F̂3

∫
At (5.31)

with F̂3 given in (4.9). Integrating over the S2 we find the expected tadpole

SWZ = −N r
5

∫
At . (5.32)

The DBI action reads in turn

SDBI = −9π T3 L
2m2/3 cos2/3 θ

∫
ρ r2 (5.33)

As before, this vanishes for θ = π
2 , while we find for θ = 0:

S = −
∫

16π2

g2
D7

(5.34)

which is the expectation for an instantonic particle.

5.3 Flavors and D5-branes wrapping AdS6

We can find a BPS D5-brane wrapped on the AdS6 spacetime and located at θ = π/2,

r = 0, which should be responsible for the charges N r
7 and N r

5 , which as we have seen are

not independent. Indeed, being extended along the infinite AdS radial direction, this brane

cannot be interpreted as a color brane. Instead, it should correspond to a global flavor

symmetry in the dual theory.

The relevant RR-potential reads

C6 = −36

27
L6

[
5r2 +

3

23
W 4L4

(
1 +

1

2
cos2 θ

)]
ρ4dρ ∧ d5x (5.35)

The DBI action reads in turn

SDBI = −T5

∫
e−φ
√
g = −T5

37

28

∫
W 2L8 sin θ ρ4

√
r2 + e4A (5.36)

Assuming the brane lives at r = 0 this is

SDBI = −T5
37

210

∫
W 4L10 sin3 θ ρ4 (5.37)

which precisely cancels the CS term at θ = π/2. Thus the D5-brane experiences a no-force

condition precisely when located at what would be the naive location of the orientifold

fixed plane in the dual background (see the Discussion).
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Starting from multiple D5-branes it is easy to see that they can expand into D7-branes

wrapped on AdS6×S2, which become however non-BPS for any value of r, θ. The relevant

dielectric terms read11

S = −T5

2π

37

27
L8 n+ 1√

n(n+ 2)

∫
W 2 sin θ r2 ρ4 +

T5

2π

35 5

25
L6 n+ 1√

n(n+ 2)

∫
r3ρ4 , (5.38)

which give in the large n limit the action for a D7-brane wrapped on AdS6 × S2. As we

can see from (5.38) this brane experiences a force unless r = 0, in which case each term

identically vanishes.

5.4 A dual CFT with two gauge groups? Ranks and branes with tadpoles

In the preceding subsections we have seen that the probe brane analysis of the background

is consistent with a putative dual CFT with two gauge groups, with induced CS levels N r
5 ,

N r
7 . This suggests that the gauge groups see a number of flavors proportional to N r

5 and

N r
7 , respectively.

In order to elucidate the rank of the gauge groups we now turn to the analysis of

baryon-like operators, since on general grounds these should be dual to branes wrapped in

the internal geometry with a tadpole that is proportional to the rank of the gauge group.

In the original AdS6 background a D4-brane wrapped on the θ direction times the S3 in

the internal space develops a tadpole with charge N , the number of color D4-branes. This,

would be, baryon vertex is however removed from the spectrum by the orbifold projection

Iθ : θ → π − θ. This corresponds to the fact that USp baryons are unstable against

decay into mesons. Given that in the non-Abelian dual background global properties —

in particular orientifold projections — are unclear,12 it is not obvious whether similar

baryons will actually be stable or not. Nevertheless, blindly considering them will give us

qualitative information about the rank of the dual gauge groups, as it did in the original

AdS6 geometry.

On one hand, a D1-brane wrapped on the θ direction has a tadpole with charge N θ
7

coming from the F1 flux

SWZ = 2π T1

∫
dθ G1

∫
At = −N θ

7

∫
At (5.39)

On the other hand, a D3-brane wrapped on θ and the S2 captures the θ component of

the 3-form flux, inducing a tadpole of

SWZ = 2nπ2 T3 Vol(S2)

∫
dθ G1

∫
At = −nN θ

7

∫
At = −N θ

5

∫
At (5.40)

Thus, we seem to find two baryon vertices, consistent with the two gauge groups

which we have conjectured. Furthermore, the tadpoles suggest that the ranks of the gauge

groups are proportional to N θ
7 and N θ

5 . Note that the latter is proportional to n through

11Again in this calculation we set to zero the large gauge transformations of B2 and n refers to the number

of coincident branes.
12See however the Discussion.
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Figure 1. Schematic proposal for the dual CFT.

eq. (4.12), which is actually vanishing in our background with r ≤ R, R = π. It is

tempting to speculate that this might be related to the origin of the subtle behaviour of

the background.

5.5 Putting it all together: a conjecture for the dual CFT

The presence of two directions in the Coulomb branch, together with the existence of two

instantonic particles, suggest a dual CFT with two gauge groups. Let us call R1 and R2

their corresponding ranks. There are also non-compact branes, which should correspond

to flavor symmetries. Since on general grounds we expect one flavor symmetry, Fi, for

each gauge group, a schematic proposal for the dual CFT could be as shown in figure 1.

Moreover, identifying R1 = N θ
7 , R2 = N θ

5 we have that each gauge group should feel,

respectively, F1 +R2 = N r
5 and F2 +R1 = N r

7 flavors.

Note that as shown in section 4, N θ
5 should actually be zero in order to have a globally

well-defined dual background for compact r. Therefore, strictly speaking we find in that

case a, to say the least, subtle dual CFT, since it contains a fully depleted gauge group.

It is tempting to conjecture that this happens in the CFT as a consequence of the fact

that we had to terminate the background at a point that is perfectly regular, in order

to find well-defined quantization conditions. It may be that a clear prescription for the

global properties of the dual background could generate a perfectly regular background

for arbitrary large gauge transformations with non-depleted gauge groups, such that the

non-Abelian T-dual geometry arises as a limit of this conjectured background.

The fate of global orientifold-like identifications in the dual theory is another global

aspect that cannot be worked out with our current knowledge of non-Abelian T-duality.

Although in general grounds we expect the dual CFT to involve two baryonic U(1) symme-

tries and two topological U(1)T symmetries, giving rise to the expected four U(1)′s, it is not

clear whether the baryon vertices would remain in the spectrum after the dual orientifold

projections. In the original background the orientifold projection was indeed forbidding

the baryon vertex, consistently with the fact that there are no Sp baryons. Therefore we

cannot elucidate whether the gauge groups are unitary, symplectic or orthogonal — or

some more exotic possibilities.
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5.6 On the Higgs branch

The dual CFT that we have just proposed has been designed to provide quantitative

agreement between the Coulomb branch and the spectrum of branes extended in R1,4. If

this proposal is to be sensible we should also expect a whole Higgs branch in the moduli

space where hypermultiplets take VEVs.

The situation in the original AdS6 background is such that the 5d dual CFT contains

operators in the Higgs branch which correspond in the gravity dual to giant gravitons sitting

on top of the O8/D8 system [6]. In particular, mesonic operators made out of bifundamental

or antisymmetric fields correspond to D4-brane dual giant gravitons [38, 39] wrapped on

an S4 submanifold inside AdS6 and propagating on the fiber and/or the azimuthal angle of

the internal S3. Note that these configurations only capture the part of the Higgs branch

not involving fundamental fields.

The natural candidates for similar giant graviton configurations in the non-Abelian

dual background are D5 (D7) branes wrapped on S4×M1 (S4×M1×S2), with S4 ⊂ AdS6.

In this case these branes can only propagate on the azimuthal angle of the S2, given that

the fiber direction of the S3 disappears after the dualization. Note that this already poses

a problem, as the phase space corresponding to such branes would not be of complex

dimension 2, and hence cannot be a hyperkähler variety as one would expect for a Higgs

branch. Nevertheless one can explicitly show that indeed these candidates do not behave

as giant gravitons.

Let us consider first a D5-brane moving on ψ, the azimuthal angle of the internal S2,

and wrapped on S4 ×M1, with S4 ⊂ AdS6. We consider global coordinates for the AdS6

part of the geometry:

ds2(AdS6) = −(1+ρ2) dt2+
1

(1 + ρ2)
dρ2+ρ2 ds2(S4) , dVol(AdS6) = ρ4 dt∧dρ∧dVol(S4)

(5.41)

This brane couples to the RR potential

C6 =
36

26
L6r ρ5 dt ∧Vol(S4) ∧ dr , (5.42)

with the full action given by

S = −36

26
T5 Vol(S4)L6

∫
ρ4
√
r2 + e4A

√
1 + ρ2 − r2 sin2 θ sin2 ξ

9 (r2 + e4A)
ψ̇2

+
36

26
T5 Vol(S4)L6

∫
r ρ5 (5.43)

The equation of motion for ξ is satisfied for ξ = 0 and π/2. Obviously only the latter can

be a giant. However the equation of motion for θ gives θ = 0 as the only solution, and here

the D5-brane does not propagate.

A similar calculation for a D7-brane wrapped on S4 ×M1 × S2 and propagating on

the, now worldvolume, ψ direction gives

S = −36

26
T7 Vol(S4)L6 Vol(S2)

[∫
ρ4 r2

√
1 + ρ2 − r2 ρ5

]
(5.44)

where we can see that the dependence on ψ̇ simply disappears for any θ.
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Thus, the gravity dual suggests that the dual CFT has no Higgs branch. Our proposed

gauge theory seems to have however a Higgs branch, with operators involving fundamental

fields as well as operators made only of bifundamentals. That the former are not seen in the

non-Abelian dual background could be expected given that already in the original AdS6

background the D4 dual giant gravitons were only capturing the subset of the Higgs branch

not involving fundamental fields (i.e. those associated to D8 − D4 strings) [6]. In other

words, the SO(2Nf ) is not visible in the geometry. However, we would expect the operators

associated to mesons made out of bifundamentals to span a Higgs branch captured by the

gravity dual, which is however not present. Since for compact r one of the gauge groups

has zero rank one could argue that these fields are not really present and explain in this

way the apparent non-existence of a Higgs branch in the dual geometry.

6 Entanglement entropy

The entanglement entropy [40, 41] can be determined through calculating [42]

S =
4π

2κ2
10

∫
d8x e−2φ√g, (6.1)

where g is the induced eight-dimensional metric in string frame. The result of this calcula-

tion should provide information about the S5 free energy of the dual CFT, following [43].

The measure e−2φ√g is a well-known invariant of (Abelian) T-duality, so we could

expect the entanglement entropy of the non-Abelian T-dual geometry to also resemble the

first. Following a similar calculation in [42], the difference we can quantify by comparing

the entropy of the original background (2.1) against that of its non-Abelian T-dual (3.1)

S =
37L10R3m

1
3π4

26 5

1

2κ̃2
10

∫
ρ(z)3

√
1 + ρ′(z)2

z4
dz (6.2)

where we have allowed for a different κ10 as required by the correct quantization of the

charges. The minimal surface equation is solved for

ρ =
√
R2 − z2. (6.3)

When the integral with respect to z is performed and the universal part extracted, we get

an additional factor of 2
3 , leading to a free energy in terms of the conserved charges N θ

7 , N r
7

F = −(2κ̃2
10)

3R4

5 27π10

(N θ
7 )5/2

(N r
7 )1/2

. (6.4)

The free energy in the original theory reads in turn [42]

Forig = −9π1/2

5

N
5/2
4

m1/2
. (6.5)

One can then see that for κ̃2
10 = (2π)8 q, as required by the correct quantizations of

the charges of the dual background, the free energies satisfy

F =
π

2
pForig (6.6)
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where p is the integer satisfying N r
5 = 2πpm. Thus, the S5 free energies of the dual CFT’s,

differ by a constant in the original and non-Abelian dual backgrounds.13

7 Discussion

An important drawback of non-Abelian T-duality is that it cannot be used to extract

global properties of the dual space. This global information is however crucial in order to

find out the string theory realization of the dual solution. Combining partial information

derived from non-Abelian T-duality with consistency requirements on the dual CFT we

have proposed a candidate dual CFT with two gauge groups. Some of these consistency

requirements have in turn been used to extract partial global information about the newly

generated geometry. Indeed, our construction works on the basis of a compact M1 × S2

dual space. This poses on the other hand an important puzzle on the dual theory, with the

geometry terminating at a perfectly well-defined point where no invariant quantity blows

up. As raised above, it is tempting to conjecture that the termination of the geometry

at a smooth point is intimately related to the depletion of the rank of one of the gauge

groups. It might well be that there is a regular solution which can be extended beyond

R = π and which does not have a depleted gauge group. Note that such depletion is very

reminiscent of the cascade, which, for theories with 8 supercharges, is more accurately

thought of as a Higgsing sequence [45]. Thus it might well be that there exists a regular

and well-defined solution such that, upon appropriately choosing a point on its moduli

space, the non-Abelian T-dual background is the effective description at least in some

range of the coordinates. Note that in the end we are performing a (non-Abelian) T-

duality transformation, which naively would result in smeared brane configurations hence

somehow choosing a point in the Coulomb branch; intuition which is also reminiscent of

these lines. The lack of global information through non-Abelian duality does not allow

however to explore further this and other open issues left out by our analysis.

One such open issue is the nature of the dual gauge groups. Finding this out requires

precise knowledge of the orientifold projection in the dual theory. The picture that seems

to arise is that a Dp-brane in the original background wrapped on the S3 that is being

dualized gives rise to both a D(p − 1)-brane transverse to the M1 and a D(p − 3)-brane

transverse to M1 × S2. If on the other hand the original Dp-brane is transverse to the S3,

both a D(p + 1)-brane wrapped on M1 and a D(p + 3)-brane wrapped on M1 × S2 arise.

Showing that the two dual branes coming out from the same original brane carry charges

that are not independent requires however some non-trivial input.

We have seen through our analysis that the D5 and D7 charges that arise from the

D8-brane of the original AdS6 background depend on the cut-off that must be imposed

on the M1 space such that a continuous spectrum of fluctuations can be avoided. The

way the value of this cut-off is set is however quite subtle, coming from imposing global

consistency on the dual background under large gauge transformations of the B-field. This

13We remark that if the entanglement entropies were to agree, then the six-dimensional Newton constants,

as evaluated in [44], would also be the same. In this case however the charges are not properly quantized

in the dual background.
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consistency requirement allows to also set to zero the charge of the D5-branes wrapped on

M1 dual to the D4-branes of the original background, leaving the D7-branes wrapped on

M1 × S2 as the only color branes in the dual theory. We would like to stress that even

if non-contractible 2-cycles turn out not to exist in the dual geometry for finite r, these

branes would still be supersymmetric and their stability would therefore be guaranteed.

Within the previous “phenomenological” picture, the O8− fixed plane of the original

background would be mapped under the non-Abelian T-duality onto a O7− fixed plane

transverse to M1 and a O5− fixed plane transverse to M1 × S2. The mapping of the IθΩ

orientifold action of the original geometry under the transformation: g−1∂+g = MT∂+χ,

g−1∂−g = −M∂−χ, responsible at the level of the sigma-model of the non-Abelian T-dual

background (see [46]) gives a dual IθIχΩ orientifold action, which suggests that the O8−

is mapped onto both a O5− orientifold fixed plane located at θ = π/2, r = 0 and a O7−

plane located at the same place but wrapped on the S2. The second turns out however to

be non-BPS through a similar analysis as that performed in section 5.4. The D5-branes

wrapped on AdS6 discussed in section 5.4 are however BPS exactly at the location of

the O5− orientifold fixed plane. It would be interesting to elucidate whether the dual

background that we have constructed came out indeed as the near horizon geometry of

this D5-D7 system, thus realizing the conjecture suggested above.

The picture of 4 gauge fields in AdS seems to fit nicely in the quiver that we have

proposed — a flavored 2-node quiver in 5d would come with 2 baryonic currents and 2

instantonic currents captured by RR potentials. However the existence of such gauge fields

in AdS does depend on global issues of the background which are not well under control.

We would like to stress that even if some of these gauge fields turned out not to exist

this would not raise an immediate contradiction. In fact, it would not be surprising that

symmetries associated to backreacted flavor branes are not seen — e.g. in the original

Brandhuber-Oz solution the SO(2Nf ) currents are just not seen in the AdS6 background.

As we have seen, supersymmetric probes corresponding to operators in any putative

dual CFT are not guaranteed to survive the non-Abelian T-duality process. A recent

example that springs to mind is the existence of a supersymmetric M2-brane probe in the

context of ref. [24], which should correspond to the canonical BPS operator identified in [47].

Interestingly, there is a well-known theorem [48] identifying supersymmetric embeddings of

M2-branes dual to chiral primary operators in the most general class of such geometries [49],

and it would be instructive to reconcile these results.

Lastly, in the light of the uniqueness statement for supersymmetric solutions in mas-

sive IIA [8], and recent success in the identification of (numerical) supersymmetric AdS7

solutions in massive IIA [50],14 it is an open direction to classify the supersymmetric AdS6

solutions to Type IIB supergravity in the hope that a future classification may reveal new

solutions of relevance to AdS/CFT. Alternatively, if none exist, a statement confining so-

lutions to the Abelian and non-Abelian T-dual of the Brandhuber-Oz solution [4] would

be welcome.

14The same paper shows that there are no solutions in Type IIB.
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A Hopf T-duality

For completeness in this section we illustrate Hopf T-duality for the original AdS6 × S4

space-time of massive IIA supergravity [4]. To the extent of our knowledge, Hopf T-

duality of AdS6 × S4 first appeared in [51], however the implications for supersymmetry

post T-duality were not discussed. Notable examples of Hopf T-duality in the literature

include [52] and [53], where in the case of the former, supersymmetry is broken.

Here we will confirm that Hopf T-duality on the Brandhuber-Oz solution [4] preserves

all supersymmetry at the level of supergravity. This observation is very much in line with

expectations, since once the S3 corresponding to the SO(4) isometry is written in terms of

a Hopf-fibration, the manifest symmetry becomes U(1) × SU(2)R, where U(1) is a global

symmetry and the Killing spinors do not depend on this direction. The explicit form of

the original Killing spinor can be found in (2.7).

Now, performing the T-duality in the standard way, the Hopf T-dual solution takes

the form

ds2=
1

4
W 2L2

[
9ds2(AdS6) + 4dθ2 + sin2 θ

(
dφ2

1 + sin2 φ1dφ
2
2

)
+

16

W 4L4 sin2 θ
dφ2

3

]
,

B = − cosφ1dφ2 ∧ dφ3, eφ =
4

3L2(m cos θ)2/3 sin θ
,

F3 =
5

8
L4(m cos θ)1/3 sin3 θ sinφ1dθ ∧ dφ1 ∧ dφ2, F1 = mdφ3. (A.1)

This satisfies the equations of motion, so one just needs to check supersymmetry.

Borrowing our conventions from [27, 54], we can plug this solution into the Killing spinor

equations. The dilatino variation implies that the underlying projection condition is[
cos θΓφ1φ2φ3θσ3 + sin θΓφ3θiσ2

]
η = η. (A.2)

Now if we momentarily add tildes to the above Killing spinors, we can compare our new

projector (A.2) with the original projector (2.8)

ε̃+ = ε+, ε̃− = Γφ3ε−, (A.3)

where we have decomposed the Killing spinors η, η̃ in terms of their Majorana-Weyl com-

ponent spinors, ε±, ε̃±. Note here that the presence of Γφ3 means that the chirality of ε−
is flipped, which is expected in the transition from massive IIA to type IIB supergravity.

Using our single projection condition, the remaining conditions from the vanishing of

the gravitino variations may be solved in turn leading to the solution

η = (cos θ)−1/12e−
θ
2

Γφ1φ2σ1
e−

φ1
2

Γφ1θe−
φ2
2

Γφ2φ1 η̃, (A.4)
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where η̃ is a solution to the Killing spinor equation on AdS6, ∇µη̃ = 1
2ΓµΓθφ1φ2σ1η̃. This

concludes our illustration of the preserved supersymmetry of the Hopf T-dual.

B Supersymmetry of the non-Abelian T-dual

In this appendix we follow arguments presented in [27] and demonstrate that the effect of

an SU(2) transformation for space-times with SO(4) isometry15 is simply a rotation on the

Killing spinors. The calculations presented here generalise the analysis of [27] to include

transformations from massive IIA to Type IIB supergravity and provide details necessary

to support statements in [1].

Once again the key observation will be that there is a rotation of the Killing spinor [27]

η = eX η̃ = exp

(
−1

2
tan−1

(
e2A

r

)
Γα1α2σ3

)
η̃ , (B.1)

where A is an overall warp factor for the S3 of the original space-time, r is the T-dual

coordinate in [0, R] and η, η̃ are Killing spinors for the T-dual and original geometry re-

spectively. In addition, to avoid confusion with the θ direction we have introduced the

coordinates αi, i = 1, 2 to parametrise the residual two-sphere that encodes the SU(2)

R-symmetry.

Once this rotation is taken into account, it is a straightforward exercise to see how

the Killing spinor equations for the T-dual geometry can be recast in terms of the Killing

spinor equations of the original geometry. We begin by examining the gravitino variation

in the r direction. After rearranging appropriately, this takes the form

δψr = eX
[

1

2
/∂AΓr −

e−A

4
Γα1α2σ3 (B.2)

+
eφ

8

(
miσ2 + e−3A /G1Γrα1α2σ1 + /G2σ

1 − /G3Γrα1α2iσ2

)]
η̃ = 0,

where we have redefined G3 = ∗7G4.

The strategy now is to show that all the remaining Type IIB Killing spinor equations

can be expressed in terms of the original IIA Killing spinor equations and the variation

δψr. As an immediate consequence, when δψr is set to zero, we will be able to identify all

the conditions on the Killing spinors of the T-dual background.

Once the Killing spinors are rotated as prescribed by (B.1), the gravitino variation

along the directions unaffected by the duality transformation becomes

δψµ = eX
[
∇µ −

1

8
HµνρΓ

νρσ3

+
eΦ

8

(
mΓriσ2 + e−3A /G1Γα1α2σ1 + /G2Γrσ1 − /G3Γα1α2iσ2

)
Γµ

]
η̃ . (B.3)

This IIB variation can be mapped back to the corresponding Killing spinor equation for

Type IIA by employing the redefinitions:

ε̃+ = Γ7ε+, ε̃− = ε−, Γrα1α2 = −Γ789. (B.4)

15See section 4 of [27] for further details of the transformation from massive IIA to Type IIB supergravity.
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So we can conclude that the gravitino variations in these directions are satisfied provided

the original geometry preserved some supersymmetry.

We now focus on the residual S2 corresponding to the R symmetry. For concreteness,

we analyse only one of the directions on the S2 with the other following from symmetry.

The gravitino variation along the α1 direction may be written as

δψα1 =
e2X

√
r2 + e4A

(
e2AΓrα2σ3 − e4A

r
Γrα1

)
δψr

+
eX
√
r2 + e4A

r

[
e−A∂α1 +

1

2
Γα1µ∂µA+

e−A

4
Γrα2σ3

+
eΦ

8

(
mΓrα1iσ2 − e−3A /G1Γα2σ1 + /G2Γrα1σ1 + /G3Γα2iσ2

)]
η̃ . (B.5)

Using the expression for δψr again, we can bring this equation to the simpler form

δψα1 = e4XΓrα1δψr +
e−A
√
r2 + e4A

r

(
∂α1 +

1

2
Γrα2σ3

)
η̃ . (B.6)

Note that, when δψr = 0, the remaining condition is the expected Killing spinor equation

on S2. As a result it imposes no condition.

Finally, the dilatino variation can be recast in a similar fashion to [27]:

δλ = eX
[

1

2
/∂φ− 1

24
/Hσ3

]
η̃ +

[
r2 + 3e4A

r2 + e4A
Γr − 2re2A

r2 + e4A
Γrα1α2σ3

]
δψr

− eX
[
eΦ

8
(5mΓriσ2 + e−3A /G1Γα1α2σ1 + 3/G2Γrσ1 + /G3Γα1α2iσ2)

]
η̃ . (B.7)

Neglecting the δψr factor, once one redefines the spinors along the lines of (B.4), one realises

that the remaining terms are simply the dilatino variation of the original geometry.

Thus, the essential message of the above analysis is that provided δψr = 0, we can map

these Killing spinor equations back to those of the original geometry. One simply has to

guarantee that any conditions arising from δψr are consistent with the conditions already

imposed on the Killing spinors.

Therefore, specialising to the geometry of interest to our paper, one can evaluate δψr
and one encounters a single projection condition[

cos θΓθrα1α2σ3 − sin θΓθriσ2
]
η̃ = −η̃. (B.8)

Up to chirality, i.e. through redefinitions (B.4), this is simply the projection condition of

the original background. Or to put it another way, once this single condition is imposed, all

the Killing spinor equations are satisfied and we conclude that supersymmetry is preserved

when one performs a non-Abelian T-duality on the AdS6 × S4 solution of massive IIA

supergravity. The explicit form of the IIB Killing spinor is

η = eX η̃ = eX(cos θ)−1/12e−
θ
2

Γα1α2σ1
e−

α1
2

Γrα2σ3
e−

α2
2

Γα2α1ηAdS6 , (B.9)

where we have absorbed all dependence on the AdS6 factor.
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C Supersymmetric probes

In this section we complement the DBI analysis presented in the text by exploiting kappa

symmetry to confirm that the probes are indeed supersymmetric. We recall that the

condition for a probe Dp-brane to be supersymmetric is that it satisfies

Γκη = η, (C.1)

where η is the Killing spinor of the background geometry and Γκ is a projection matrix,

expressible in the notation of [55, 56], as

Γκ =

√
|g|√

|g + F|

∑
n=0

1

2nn!
γj1k1...jnknFj1k1 . . .FjnknJ

(n)
(p) , (C.2)

where p refers to the probe Dp-brane, F is a combination of Born-Infeld two-form field

strength, F , and the background NS two-form, B2, F = 2πF − B2, g denotes the de-

terminant of the induced world-volume metric, g + F is the latter including F,B2, and

finally γi denote induced world-volume gamma matrices. Furthermore, J
(n)
(p) depends on

the Dp-brane probe and n

J
(n)
(p) =

 (Γ11)n+ p−2
2 Γ(0),

(−1)n(σ3)n+ p−3
2 iσ2Γ(0),

(C.3)

where upper and lower entries on the r.h.s. distinguish IIA and IIB probes and the matrix

Γ(0) is given by

Γ(0) =
1

(p+ 1)!
√
|g|
εi1...i(p+1)γi1...i(p+1)

. (C.4)

D5-brane probes. For D5-branes wrapping the Minkowski directions R1,4 and the r-

direction, the κ-symmetry matrix takes the simple form

Γ(r)
κ = Γ01234r σ

1. (C.5)

Referring the reader to the explicit form for the background Killing spinor quoted in the

text (B.9), we note that this projection condition anti-commutes with the Γα1α2σ3 term

appearing in eX , which can be set to zero provided θ = 0. If instead of the r-direction, the

D5-brane wraps the θ-direction, it is not possible to have supersymmetry for finite r.

D7-brane probes. Here we consider D7-branes wrapping the Minkowski R1,4, the R

symmetry S2 and either r or θ in the absence of large gauge transformations.16 Here the

B-field pulls back to the world-volume of the brane, so we get the following κ-symmetry

projection conditions:

Γ(r)
κ = −Γ01234r σ

1 e−2X , Γ(θ)
κ = −Γ01234θ σ

1 e−2X , (C.6)

16In the presence of large gauge transformations, an additional projector appears that anti-commutes

with the Γα1α2σ3 term appearing in the eX factor in the Killing spinor. One can reconcile this projector

only when θ = 0.
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where we have made use of the rotation introduced earlier (B.1). These gamma matrices

act on the Killing spinors η = eX η̃ and a pleasing cancellation means that the eX factors

drop out so that the κ-symmetry conditions become respectively

Γ01234r σ
1η̃ = η̃, Γ01234θ σ

1η̃ = η̃. (C.7)

One notices that both of these commute with the projection condition (B.8). However,

when the explicit form of the Killing spinor is used (B.9) one sees that the first projector

commutes through the various exponentials, whereas the second projector, corresponding

to a D7-brane wrapping θ, requires that α1 = 0. This contradicts the assumption that the

S2 is wrapped. As a result, only the D7-brane wrapping the r-direction is supersymmetric,

a property it possesses for θ ∈ [0, π2 ].
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