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1 Introduction

The discovery of a new resonance, with mass of about 125GeV and properties compatible

with those of a Higgs particle [1, 2] opens up a new era for particle physics, since the

exploration of the Electroweak Symmetry Breaking (EWSB) sector is just at its beginning.

A major priority is now the determination of the Higgs properties, i.e. production cross

sections and branching ratios. This might shed light on the mechanism of EWSB and

remove the veil off any new physics that may control the tera-scale.

If the Higgs has a non trivial substructure, deviations from the Standard Model (SM)

couplings may be observed, while underlying symmetries can protect its mass from danger-

ous quantum corrections. This simple solution to the gauge hierarchy problem is naturally

realized if the Higgs fields are pseudo-Goldstone bosons (PNGB) arising from a sponta-

neous breaking G → H due to some strong dynamics at some scale f [3–6]. Once the strong

sector is integrated out, the residual effective theory can be described in terms of a non-

linear sigma model with the Higgs belonging to the coset space G/H. Interestingly, some
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of these models can be considered as 4-dimensional duals of 5-dimensional gauge-Higgs uni-

fied theories realized in AdS5 space. However, the most important phenomenology can be

extracted from effective theories with fairly general considerations about the strong sector

and in terms of an expansion in the parameter ǫ ≡ v/f , with v the Fermi scale.

Models with minimal [7–9] and non-minimal [10–12] scalar sectors have been studied

in the literature. Let us notice that several complications are introduced once non-minimal

models are considered. The most important issue is to protect the ratio between the vector

boson masses. LEP precision measurements at the Z pole strongly constraint this ratio,

quantified in term of the oblique electroweak parameter T . Two Higgs doublet models are

notorious for breaking the custodial symmetry that protect the T parameter. The situation

is even worse in composite models, which are inherently non-renormalizable implying a less

constrained Lagrangian.

In this paper, we address the T parameter and other issues for models with two Higgs

doublets (2HDM) arising as composite PNGB. Once the embedding of the SM fermions

is defined for each case, the Glashow-Weinberg prescription [13] for natural FCNC of the

Higgs couplings has to be checked and we exhibit two models where it is automatically

realized. Compositeness is also a source of violations of gauge coupling universality and

the models are also selected by their ability to preserve the (relative) agreement of the

SM prediction for the Zb̄LbL couplings with experiment. This is ensured by a rule on the

embedding of the b-quark in the models [15].

The general Lagrangian formalism for the PNGB’s was formulated in [17], but in

the Minimal Composite Higgs Model (MCHM) based on SO(5)/SO(4) [7] the non-linear

realization of the symmetry has also been conveniently formulated in terms of a SO(5)

vector reminiscent of a linear realization of the breaking. Because of its utility, we generalize

here this approach to the various cosets related to 2HDM and write in a compact form the

PNGB Lagrangian, gauge couplings, Higgs potential and Yukawa couplings in terms of the

new variables linearly transforming in fundamental representations. Then, our analysis of

the custodial symmetry and tree-level contributions to T for the different cosets defining

2HDM’s is simplified by the use of these coordinates. As pointed out in [11] and as also

discussed below, in the Sp(6)/Sp(4) × SU(2) case with a specific embedding of the SM

gauge symmetries, there are no contributions to the T parameter. Here, we also describe

another T−safe model based on the coset SO(9)/SO(8).

For concreteness, we first focus on the symmetry breaking patterns SU(5) → SU(4)×H ′

withH ′ = U(1) or nothing. In the former case, eight pseudo Goldstone modes are delivered,

fitting into two SM doublets. In the latter scenario, the breaking leads to an additional

SM singlet. We find how the Higgs couplings to W bosons and fermions are modified

with respect to those of the SM Higgs boson, so that different production and decay

rates are expected. However, in both cases, only by aligning the vacuum expectation

values (vev) of the two Higgs the contribution to T could vanish. The lowest dimensional

representations of SU(5), 5 and 10, provide a natural embedding for the SM fermions.

We perform a systematic study of all the possibilities, clearly differentiating between cases

that can be successfully embedded into a 5d completion and those in which this is not so

straightforward. We find that the embedding of the SM fermions in the 10 can lead to
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a simultaneous resolution of the usual problems of anomalous Zb̄LbL [15] and the flavor

problems [16]. The contribution to the (Coleman-Weinberg) PNGB potential from these

fermions is displayed and, in general, does not have the symmetry to align the Higgs vev’s.

Finally, we propose a SO(9)/SO(8) model, where the two Higgs couplings to the gauge

bosons are much like in the MCHM and, indeed, there are no tree-level contribution to the T

parameter. Another interesting feature of this model is an embedding of the SM symmetries

in SO(8), which preserve an extra U(1) that requires the SM fermions to couple to only

one Higgs doublet. This avoids FCNC problems from the Higgs sector since the other

PNGB doublet becomes inert. The Zb̄LbL issue is also coped with when all the fermions

are embedded in the spinorial representations. We also survey the different C2HDM that

have been studied in the literature in our framework and compare and contrast them with

the new models presented here.

The paper is organized as follows. In sections 2–3 we state the problem and set the

notation studying the coset and discussing the gauge interactions for SU(5)/SU(4)×U(1)

and SU(5)/SU(4). In section 4 we discuss in detail the possible embeddings for the SM

fermions in SU(5) representations and their phenomenological consequences. In section 5

we study the scalar potential in the SU(5) case. In section 6 we introduce the gauge

interactions and the tree level contribution to the T parameter for different cosets. In

section 7 we analyze the SO(9)/SO(8) gauge and fermion couplings to the Higgs sector.

Finally we conclude with some general observations.

2 Non linear realization of the Higgs fields

The general formulation of non linear representations (n.l.r.) is given in CCWZ. Here we

introduce an alternative formulation which has also been used in models with a single

composite Higgs doublet like those quoted above.

We begin with the study the breaking patterns SU(5)/SU(4) and SU(5)/SU(4)×U(1).

The coset space of the two cases is quite similar, although they contain a different number

of Goldstone modes. The Goldstone modes can be parametrized as the matrix

Π =







1√
20
φ014

Φ

Φ̃

Φ† Φ̃† − 4√
20
φ0






, (2.1)

where Φ and Φ̃ are written in terms of two complex SU(2)L doublets φ1 , φ2 as

Φ ≡ φ1 + iφ2√
2

and Φ̃ ≡ φ̃1 + iφ̃2√
2

, (2.2)

with φ̃i = iσ2φ
∗
i (see appendix A for the conventions on the generators of the group).

Each (φi , φ̃i) transforms as a (2 ,2) of SU(2)L × SU(2)R, while the 9th Goldstone boson,

the singlet φ0, is present only in the SU(5)/SU(4) coset. Correspondingly, the Goldstone

boson matrix for the symmetric coset SU(5)/SU(4) × U(1) is obtained for φ0 = 0. The

matrix Π parametrizes the elements of the cosets in terms of the PNGB fields.
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To write the n.l.r. of the Higgs fields, it is convenient to choose a specific direction

for the vacuum Σ0. The breaking SU(5) → SU(4) can be parametrized either through the

fundamental or the symmetric representation of SU(5),

5 : ΣT
0 = (0 0 0 0 1) 15 : Σ0 = diagonal(0 0 0 0 1) [SU(5)/SU(4)],

while SU(5) → SU(4)×U(1) can be parametrized through the adjoint representation,

24 : Σ0 =
1√
20

diagonal(1 1 1 1 − 4) [SU(5)/SU(4)×U(1)].

The expressions for the n.l.r. in terms of the Goldstone bosons in the two cases are given by

5 : Σ = e
iΠ
f Σ0

15 : Σ = e
iΠ
f Σ0e

iΠT

f

24 : Σ = e
iΠ
f Σ0e

−iΠ
f (2.3)

where the appropriate vacuum Σ0 must be used and f is the scale at which the breaking

occurs.

The n.l.r. is obtained in terms of a 5-components unit vector u as follows. In the

SU(5)/SU(4) case, u reads

u = e
−i 3

5

φ0
f











i
sin

(

ϕ
f

)

ϕ

(

Φ

Φ̃

)

cos
(

ϕ
f

)

+ iφ0

sin
(

ϕ
f

)

ϕ











= e
iΠ
f















0

0

0

0

1















= e
iΠ
f u0 , u†u = 1 , (2.4)

where ϕ =
√

|Φ|2 + |Φ̃|2 + φ2
0 and

Σ = u [5], Σ = uuT [15] (2.5)

In the SU(5)/SU(4)×U(1) case, with φ0 = 0,

u =









i
sin

(

ϕ
f

)

ϕ

(

Φ

Φ̃

)

cos
(

ϕ
f

)









= e
iΠ
f u0, u†u = 1 , (2.6)

where now ϕ =
√

|Φ|2 + |Φ̃|2. In this case the Σ matrix reads

Σ = −
√
5

2

(

uu† − 15
5

)

. (2.7)

Because ϕ is invariant under the preserved SU(4), u linearly transforms as a 4+ 1, like

the Goldstone fields in eq. (2.1). For the SU(5)/SU(4)× U(1) case, the U(1) invariance is

obtained by the multiplication of a phase defined by the transformation of the Goldstone
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bosons: u → gueiθ, with θ = θ(g, φi). This corresponds to the transformation of e
iΠ
f

defined in CCWZ once the SU(4) invariance of vacuum is taken into account. This phase

disappears in the realization Σ as defined in eq. (2.7).

It is useful to formulate the Lagrangian for the PNGB fields and their interactions1

in terms of u. First note that ΣΣ† are projectors along the vector u for the 5 and the 15

vacua. It implies that the insertions of the Σ field in the different terms of the effective

Lagrangian are quite limited. In practice one has only to introduce the minimal number

of u’s needed to ensure the SU(5) invariance. This is equivalent to the insertion of the

unitary matrix U = e
iΠ
f in the CCWZ formalism. However, the breaking by a 15 preserves

an additional parity symmetry: u → −u. Therefore the u’s must come by pairs, hence as

Σ = uuT . For the 24 case, let us remark that the unit matrix in eq. (2.7) is irrelevant as it

does not introduce any new operator in the effective Lagrangian. Therefore we henceforth

replace eq. (2.7) by Σ = uu†, which is a projector, Σ2 = Σ . Therefore, the effective

Lagrangian should only have the minimal number of insertions of the Σ field as needed for

the SU(5) invariance in each interaction, much like in the previous case. This drastically

simplifies the analysis of flavour changing effects from Higgs couplings to fermions below.

We now turn to the analysis of the Goldstone boson Lagrangians. This can be done

in terms of the u’s transforming in the fundamental representation of SU(5), the simplest

n.l.r., from which the other ones can be built. Of course, the Lagrangians for the Goldstone

bosons depend only on the specific coset as shown in CCWZ. We easily determine the

explicit Lagrangians in terms of the u’s by just imposing the equivalence with the general

CCWZ expression. There are two SU(5) invariants with two derivatives since u†u = 1:

∂µu
† ∂µu = u†0∂µU

†(UU †)∂µUu0

u†∂µu ∂
µu†u = u†0U

†∂µUu0 u
†
0∂

µU †Uu0 (2.8)

where U = e
iΠ
f . Notice the projections along the u0 direction. The element of the SU(5)

algebra U †∂µU can be expanded as, idiµT
i+iEa

µT
a+(d/E)0µT

0, where T a are the generators

of SU(4), T 0 the one of the U(1) and T i those of the coset. The component along the U(1)

generator is d0µ for SU(5)/SU(4), and E0
µ for SU(4)×U(1). The dµ’s transform linearly under

local SU(4) and SU(4)×U(1), respectively, while the Eµ’s transform as gauge fields [17, 18].

Replacing these expression in eq. (2.8) and projecting along u0, one gets for the two

invariants two different expressions in terms of diµd
µi and E0

µE
µ0. However, since u0 is a

SU(4) singlet, the correspondent Ea
µE

µa terms are absent in both the global invariants in

eq. (2.8), while the terms diµ transforming as 4+ 4̄ are absent from the quartic one. Then,

the CCWZ Lagrangian, LPNGB = Σid
i
µd

µi is given in each case by the combination that

eliminates or consistently normalizes the singlet term, resulting in local SU(4) invariant

two-derivative PNGB Lagrangians. They are as follows:

LPNGB = f2
(

∂µu†∂µu− u†∂µu ∂µu†u
)

[SU(5)/SU(4)×U(1)]

= f2
(

∂µu†∂µu− 3
8u

†∂µu ∂µu†u
)

[SU(5)/SU(4)] (2.9)

1For a review of the more usual CCWZ approach in the context of EWSB see, e.g., [18].
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Vertex 2HDM C2HDM

hW+W−/ZZ 2
m2

W,Z

v 2
m2

W,Z

v

√
1− ǫ2

h2WW/ZZ
m2

W,Z

v2
m2

W,Z

v2

(

1− 2ǫ2
)

H2WW/ZZ
m2

W,Z

v2
m2

W,Z

v2
rǫ
√
1− ǫ2

A2WW
m2

W

v2
m2

W

v2
rǫ
√
1− ǫ2

A2ZZ
m2

Z

2v2
1
2
m2

Z

v2

(

rǫ
√
1− ǫ2 − 2ǫ2r2ǫ

)

H+H−W+W− 2
m2

W

v2
2
m2

W

v2

(

rǫ
√
1− ǫ2 − 2ǫ2r2ǫ

)

H+H−ZZ 2
m2

Z

v2

(

1− 2
m2

W

m2

Z

)2 2
[

m2

Z

v2
rǫ
√
1− ǫ2−

−4
m2

W

v2

(

1− m2

W

m2

Z

)

r2ǫ

]

H−W+Aµ(H + iA) − ge
2 − ge

2 r
2
ǫ

H−W+ZH g′e
2

g′e
2 r2ǫ

H−W+ZA ig
′e
2 ig

′e
2 r2ǫ

[

1− 2κǫ2
(

1 + g2

g′2

)]

H+H+W−W− × κ
4m2

W

v2
ǫ2r2ǫ

Table 1. Gauge interaction for the Higgs fields in the C2HDM case following from eq. (3.1), as

opposed to the usual renormalizable 2HDM case. The Higgs fields definition is given in eq. (3.2).

We used the shorthanded notation ǫ = v/f and rǫ = ǫ/arcsin(ǫ).

Notice that in the first lagrangian in (2.9) there is only one invariant under local

SU(4), while the second Lagrangian differs by the presence of a second one, d0d0 =

(5/8)u†∂µu ∂µu†u, since with our normalization of T 0, T 0u0 = −
√

8/5.

It is worth remarking that the use of the u variables and the projection into the u0
automatically eliminates most of the Eµ’s, towards the construction of the locally invariant

Lagrangians. This procedure is generalized in section 6 to other cosets. If useful, the

corresponding expressions for the Σ’s can be obtained by using their expressions in terms

of the u’s. In the next section we show that the anomalous contribution to the T-term is

generally encoded in the quartic term in the u’s of the Lagrangian.

3 Gauge interactions

The gauge Lagrangian for the Goldstone bosons in the effective theory can be written

from eq. (2.9) introducing covariant derivatives for the u variables, ∂ui → ∂ui − i(Ŵu)i,

with Ŵµ = gW+
µ T−

L + gW+
µ T−

L + eAµ(T
3
L + T 3

R) + g sec θWZµ(T
3
L − tan2 θWT 3

R). There-

fore the coupling of the SM gauge bosons to the PNGB fields contains two algebraically

different terms,

u†ŴµŴνu− κu†Ŵµuu
†Ŵνu , (3.1)
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and only the first one, quadratic in u, is analogous to the SM.

The gauge interactions following from the previous expression are given in table (1),

with Higgs fields defined as

φ1 =

(

G+

h+ iG0

)

φ2 =

(

H+

H + iA

)

. (3.2)

and G0,+ the electroweak Goldstone bosons. It is interesting to note that different couplings

between the Higgs boson and the W and Z vectors could be important to explain the cross-

section and branching ratios of the observed excess around 125 GeV [20].

In momentum space, the gauge Lagrangian reads

Lgauge =
1

2
pTµν

[

Π0(q
2)tr(ŴµŴν) + Π1(q

2)(u†ŴµŴνu− κu†Ŵµuu
†Ŵνu)

]

(3.3)

where κ = 1 or 3/8 as in eq. (2.9) and Π0(q
2) and Π1(q

2) are form factors. Of course, this

Lagrangian is not invariant under SU(2)L×SU(2)R ⊂ SU(4) because only the SM subgroup

is gauged. In 2HDM’s, only the alignment between the two doublets in the vacuum ensures

a custodial SU(2) to protect the T parameter.

Indeed, in both the cases under consideration the quartic term spoils the custodial

symmetry already at tree level. To investigate this crucial point, let us keep in eq. (3.3)

only the components of u with electric charge T 3
L + T 3

R = 0, namely, u2 and u3 with the

conventions defined in appendix A. The embedding of the SU(2)L × U(1)Y generators in

SU(2)L × SU(2)R ⊂ SU(4) is uniquely defined by 4 = (2,2), so that the masses of the

gauge bosons are obtained from eq. (3.3) as follows:

L0 = f2
(

〈|u2|2〉+ 〈|u3|2〉
) g2

2

(

W+
µ W−

µ +
1

2 cos2 θW

(

1− κ
(〈|u2|2〉 − 〈|u3|2〉)2
〈|u2|2〉+ 〈|u3|2〉

)

ZµZµ

)

.

(3.4)

The additional contribution to the Z mass only vanishes for 〈|u2|〉 = 〈|u3|〉, which is pre-

cisely the condition for the alignment of the two doublets in the vacuum and the conser-

vation of the custodial symmetry. Since the PNGB potential is generated at loop level,

where SU(2)L × SU(2)R ⊂ SU(4) is explicitly broken, it cannot generically guarantee such

a degeneracy for the solution, so that a large contribution to the T parameter should be

present already at tree level. This would impose an unnatural hierarchy between the two

relevant scales, f ≫ v (slightly less for κ = 3/8).

In principle: i) the custodial symmetry could be effective in a region of the parame-

ter space for the solution of the equations of motion, and ii) the contributions to the T

parameter (both at tree and loop level) from the scalar sector can be partially compen-

sated by fermionic contributions [19]. Nevertheless, the mechanism for this approximate

cancellation must be natural.

The conditions to avoid Higgs misalignments in composite 2HDM have been exhaus-

tively discussed in [11], in particular, by the use of additional discrete symmetries. They

were able to build a model with one Higgs coupled to the SM fermions and an inert Higgs

that does not contribute to the gauge boson masses. The natural discrete symmetry for

– 7 –
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SU(5) is charge conjugation (φ1 → φ1 and φ2 → −φ2, see eq. (2.2)). To investigate this

point, as much as the mostly important flavour issues, we now turn to a study of the SM

fermion embedding and their couplings to the two Higgs bosons.

4 Fermion embeddings

As usual in Composite Higgs models, the coset structure does not fix the embedding of

the fermions in G representations. Moreover, different choices will in principle generate

different terms in the Coleman-Weinberg potential. However, some general considerations

allow to make the model theoretically consistent and phenomenologically viable. Some of

the important issues are:

1. LEP has measured the ZbLb̄L coupling with high precision, finding results in agree-

ment with the SM prediction at nearly 0.25% level.2 As shown in [15], a custo-

dial symmetry can protect this coupling from large contributions due to composite

states. The argument boils down to the conclusion that the left handed quark dou-

blet (at least the third generation) should be embedded in a (2,2)2/3 representation

of SU(2)L × SU(2)R ×U(1)X in order to protect this coupling from getting too large

corrections.

2. If the SM fermions can be embedded into G representations in a unique way, then the

problem of FCNC is considerably reduced [10, 16]. There are cases where this can

be achieved by the addition of discrete symmetries [11]. In the SO(9)/SO(8) model

described below this is done by a U(1) ∈ SO(8).

3. In 5d models of gauge-Higgs unification that are perturbative dual to the strongly

coupled 4d model, where the PNGB are the 5-th component of gauge bosons, the

fermions of both chiralities should be in the same representation of the gauge group

(global group, from the 4d point of view).3 However, this is not a stringent consid-

eration for the purely 4d model, and we will actually explore some of the advantages

of using LH and RH fermions in different representations.

In terms of the SM fermions, the Lagrangian in momentum space reads [7]

Lfermion = qL /p [Π
q
0 +Πq

1gqL(ui)] qL +

+tR /p [Π
u
0 +Πu

1gtR(ui)] tR + bR /p
[

Πd
0 +Πd

1gbR(ui)
]

bR +

+ftR [Mu
1 gtq(ui)] qL + fbR

[

Md
1 gbq(ui)

]

qL (4.1)

where the Πi(Q
2) and MiQ

2 are form factors controlled by the strong sector and the g(ui)

functions of the Higgs fields. These polynomials are defined by the possible insertions of

2Recent 2 loop calculations indicates that the agreement between SM and experimental values of the

ZbLb̄L coupling may not be as good as previously expected [14].
3In principle, this requirement can be circumvented by introducing extra fermion multiplets and mass

terms in the IR brane . However, this is a potential source of FCNC, so that we discard this assemblage in

our discussion.
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the n.l.r. u’s, or Σ’s in the fermion bilinear terms Ψ
i
Ag

ij(u)Ψj
B, with A,B = L,R that are

SU(5) invariants. The Lagrangian is obtained by restricting the fermion multiplets to their

SM components.

For simplicity, in what follows we will limit ourselves to the lower dimensional repre-

sentations of SU(5), i.e. 5 and 10, although higher dimensional representations in principle

can be used. In terms of SU(2)L × SU(2)R they read

5 = (2,2) + (1,1)

10 = (2,2) + (3,1) + (1,3) (4.2)

Let us first discuss the case in which both the left (LH) and right (RH) fermions

are embedded in the fundamental representation. To accommodate hypercharge, each RH

singlet must be embedded in an independent 5, with appropriate X-charge. This implies

that, by U(1)X invariance, qL must be associated to two 5, respectively Ψt
L and Ψb

L. In a 5D

picture, this is achieved decoupling the additional degrees of freedom through a mass term

in the brane [8, 10]. However, since bL does not belong to (2,2)2/3, the ZbLbL vertex is

not protected. In models with only one Higgs doublet, this is not necessarily a shortcoming

since the breaking is proportional to the relatively small bottom Yukawa coupling [10]. In

2HDM this is a cause for concern for large tanβ.

Turning to the case in which both the LH and RH fermions are embedded in a 10,

the RH singlets must be in a unique (1,3) ∈ 102/3, with T3R = 0 for uR and T3R = −1

for dR. As a consequence, also qL is embedded in a unique representation and ZbLbL is

protected. This is the SU(5) counterpart of the choice of the real 10 for the fermions in

the SO(5)/SO(4) model.

In both cases, there is only one possible embedding of the SM fermions in the SU(2)L×
SU(2)R representations. Another important feature: for all Ψ

i
Ag

ij(u)Ψj
B, we find gij(u) ∝

uu† = Σ. Indeed, Σ is a projector, Σ2 = Σ, and ΣΨi
L,RΣ = 0 for the SM in a 10.

The expressions for the g functions, as defined in eq. (4.1), are collected in table 2 for

both SU(5)/SU(4) and SU(5)/SU(4) × U(1), choosing the appropriate u in eqs. (2.4)–

(2.6). A crucial attribute of the mass terms is that the up quarks get masses only from

one combination of the two Higgs, while the down quarks couple to the orthogonal one.

Therefore there is no flavour violation from the Higgs couplings.

In all the previous cases, a 5-dimensional gauge-Higgs unification can be consistently

constructed. However, from a purely 4d perspective, the embedding of LH and RH fermions

in different representations make sense, so that we will now briefly comment also on this

possibility. Since we are confining ourselves only to the 5 and 10, only for SU(5)/SU(4) the

embedding in different representations is possible. The simplest possibilities are given by:

(a) (ΨL,ΨR) ∈ (5,10), with invariant 5TΣ10R5L. Note that left doublet can be embedded

in the (2,2)2/3, protecting ZbLb̄L.

(b) (ΨL,ΨR) ∈ (10,10), with invariant ǫijkmn(10R)ij(10L)km(5Σ)n. Since bL = (10L)54
and bR = (10R)34/43, a mass term b̄RbL is forbidden and the bottom mass can only

be generated at higher order, explaining in a natural way the bottom/top mass gap.
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5 10

gqL |u3|2 + |u4|2, |u1|2 + |u2|2
(

|u5|2 + |u3|2 u∗4u3

u4u
∗
3 |u5|2 + |u4|2

)

gtR |u5|2 |u1|2 + |u2|2 + |u3|2 + |u4|2

gbR |u5|2 |u3|2 + |u4|2

gtq u5

(

u3

u4,

)†

u∗5

(

u1

u2

)T

(iσ2)

gbq u5

(

u1

u2,

)†

u∗5

(

u3

u4

)T

(iσ2)

Table 2. Couplings between the SM fermions and the u variables, as defined in eq. (4.1), according

to the SU(5) representation in which they are embedded. The result can be applied both to

SU(5)/SU(4) and SU(5)/SU(4)×U(1) choosing the appropriate expression for u. In the case of the

5, the first value for gqL refers to qtL, the second to qbL.

However in both this cases there is no direct couplings between the fermions and the

u5.

(c) (ΨL,ΨR) ∈ (5,5), which leads to a phenomenology similar to the (5,5) case up to a

phase in the Yukawa interactions.

Let us comment on how the flavor problem is solved in our case. As pointed out

in [11], the problem is twofold: on the one hand, one has to face the usual 2HDM problem

of ensuring Minimal Flavor Violation (MFV) in the Yukawa sector; on the other hand,

there could be more invariant Yukawa couplings of the fermions to the Higgs n.l.r. and a

priori there is no reason to have alignment between the different flavor matrices defining

different couplings [16]. In the SU(5) models under consideration, the flavour mixing is

solely given by the mass matrices so that MFV is realized because

(i) the representations considered, 5 and 10, are small enough to allow only one embed-

ding of the up and down quarks, as displayed in eq. (4.2);

(ii) all the fermions only couple to one Σ, so that their couplings to the Higgs are flavour

diagonal.

Hence, there is no tree-level flavour changing from the Higgs sector. Unfortunately,

the t-quark, instrumental in EWSB, couples to u3, which is a combination of the real part

of a Higgs field and the imaginary part of the other, pushing for the misalignment for

their vev’s. To point out this serious problem, we briefly discuss the PNGB potential in

the next section.
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5 Scalar potential

The Higgs fields arise as Goldstone modes, so the shift symmetry forbids a tree level

potential. However, the global symmetry is explicitly broken once the SM group is gauged

and the fermions are coupled to the Higgs system, so that the Goldstone modes get a

Coleman-Weinberg potential. The potential can be computed with standard techniques,

and may be written in general as

V = Vgauge + Vfermion, (5.1)

In terms of the u variables, and to lowest order in g2 and g′2, the gauge part of the potential
for the neutral components reads

Vgauge =
3

2

∫

d2Q

16π2

Π1

Π0

(

3g2 + g′2

4

(

|u2|2 + |u3|2
)

+DADA

)

(5.2)

with DA = gAu
†TAu. This term is the additional contribution arising from the terms

quartic in u in the gauge part of the Lagrangian, as given in eq. (2.9), and closely resembles

the supersymmetric case (without Bµ term).

The fermionic contribution Vfermion in eq. (5.1) can be simplified in the reasonable limit

in which bR has a relatively small coupling to the strong sector .With this assumption, and

to lowest order in the ratios of structure functions Πa
1/Π

a
0, defined in eq. (4.1)) the potential

for the neutral components results:

V
(10)
fermion =

∫

d4Q

16π2

[(

ρq3 +
1

2
ρtR
)

(

|u2|2 + |u3|2
)

+

(

ρq3 − f2

Q2
Y 2
t

)

|u3|2

+
1

2
ρtR
(

|u2|2 + |u3|2
)2

+
f2

Q2
Y 2
t

(

|u2|2 + |u3|2
)

|u3|2 + ...

]

(5.3)

for fermions embedded in a 10, and

V
(5)
fermion =

∫

d4Q

16π2

[

ρq3
(

1− |u2|2 − |u3|2
)

+ ρtR
(

|u2|2 + |u3|2
)

− f2

Q2
Y 2
t |u3|2

(

1− |u2|2 − |u3|2
)

+ ρtR |u2|2|u3|2 + ...

]

(5.4)

for fermions embedded in a 5, where the integrands are the ratios,

ρf (Q2) =
Πf

1

Πf
0

, (f = tR, bR, q3) and Yt(Q
2) =

|M t
1|2

Πq3
0 ΠtR

0

(5.5)

Of course, a quantitative discussion of the Higgs vev and the spectrum is pointless in

presence of so many unknown form factors. However, some comments are now in order:

1. To return to the Higgs alignment issue, notice that the important negative contri-

bution in the potential corresponds to the t-quark Yukawa coupling to u3. Hence it

drives the vacuum through the u3 direction which breaks the custodial symmetry as
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already stressed. The b-quark coupling to u2, neglected in (5.3), (5.4), is too small

to compete. As already quoted above, Higgs alignment can be enforced in composite

2HDM by discrete symmetries [11] that allow to restrict the couplings of SM fermions

to a single Higgs in the case of the SU(4)/SU(2)× SU(2)×U(1) model. In our case,

the interesting property of the models is precisely the automatic uniqueness of these

couplings and also the fact that quarks of different charges interact with different

Higgs fields. Therefore, we cannot impose a symmetry that, at most, would kill our

single Yukawa coupling. We have to rely on a partial compensation mechanism.

2. Since the custodial symmetry is essentially broken by the Higgs coupling to qL (see

appendix A) that explicitly breaks SU(2)R, one could try to improve the situation

introducing custodial fermions in the (2,2) of SU(2)L × SU(2)R [21] to alleviate the

constraint from the T -parameter. Interestingly, they might also contribute through

loops to increase BR(h → γγ) [22], in agreement with the recent observations at the

LHC. They naturally provide an interesting phenomenological set up, detailed study

of which is beyond the mandate of this paper.

3. For SU(5)/SU(4), the ϕ0 component of u is a main concern too, since it is the

PNGB associated to a abelian symmetry and, as such, an axion-like scalar sub-

ject to strict experimental bounds.It always appears in the potential as |u5|2 =

1 − sin2
(

ϕ
f

)

|Φ|2+|Φ̃|2
ϕ2 The fact that ϕ0 only appears as a function of ϕ implies that

there is always a massless particle in the spectrum. Indeed, if we consider the sim-

plified case in which u has only one non vanishing component, since V = V (|u|2), at
the minimum the mass matrix in the (u, ϕ0) basis has the form

M2 =





1 ∂|u|2
∂η

∂|u|2
∂η

(

∂|u|2
∂η

)2



 ∂2V/∂|u|2

and has a zero eigenvalue. The result trivially generalizes to more u components.

This problem is independent of the choice of fermion embeddings. It may be solved

introducing two or more right handed neutrinos. Consider N1,2
R , two neutrino that

couple to two different strong sector operators, having representations N1,2
R = 5 +

ζ1,25̄. In this case a potential for the singlet field is generated at the leading order

by the coupling N1
RN̄

2
RΣ + h.c.. This might lead to interesting phenomenological

consequences4 that are beyond the scope of the present paper.

6 Other composite 2HDM’s: non-linear realizations, PNGB Lagrangian

and T parameter

As pointed out in the previous section, the presence of a term quartic in u in the metric

generates a contribution to the T parameter already at tree level. This despite the pres-

ence of a large residual global symmetry H ⊂ G containing the custodial symmetry as a

subgroup.

4In particular, the breaking of lepton number by the strong sector should be treated carefully [12]. We

thank J. Serra for calling our attention on this point.
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In this section we display the PNGB Lagrangian for the different cosets leading to

2HDM’s. We consider cosets G/H1 × H2 with H2 = ∅, U(1), SU(2) and we generalize

the approach in section 2. As already noticed above for G = SU(5), it is useful to intro-

duce as coset coordinates p orthogonal unit vectors uα (α = 1, . . . , p) in the fundamental

representation N of G whose scalar products satisfy:

u†αu
β = δβα tru†u ≡

∑

α

u†αu
α = p (6.1)

where p = 1 for H2 = ∅, U(1) and p = 2 for H2 = O(2), SU(2). They are functions of the

PNGB fields, ξA defined by

u(ξ) = eiΠ(ξ)u(0) Π(ξ) =
∑

A

ξAT
A (6.2)

where ξA are the PNGB fields and TA are the coset charges, while u(0) corresponds to

the vev(’s) of one or more n.l.r. of the Higgs in fundamental representation(s) needed for

the breaking. G acts as u → guh†2(g, ξ). In particular, as already displayed above for

G = SU(5), n.l.r. transforming as larger irreducible transformations are obtained with

Σ = uu† for the adjoint representation, Σ = uuT for the symmetric, etc. Notice the

contraction of the p indices associated to the action of H2.

For G = SU(5) the results are already given in (2.9). For the other cosets associated to

C2HDM’s, we just display the PNGB Lagrangians that are obtained along the same lines.

For simplicity, the Lagrangians are arbitrarily normalized.5 There are two invariants with

two derivatives, one quadratic, and the other quartic in the u’s. By replacing U †∂µU =

idiµT
i + iEa

µT
a as explained in section 2, we recall that by H1 invariance of u(0), the

quadratic term becomes
∑

di 2µ +c
∑′Ea 2

µ , with
∑′ restricted to the H2 charges, while only

the last term is present in the quartic term (with another coefficient). By the appropriate

combination of the two invariants, we thus obtain the CCWZ Lagrangian,
∑

di 2µ , in terms

of the u’s.

First, consider SO(6)/SO(4) × SO(2) ≡ SU(4)/SU(2) × SU(2) × U(1) and let us first

consider the construction in terms of two 4 representations of SU(4) satisfying the previous

rules, namely, uαi (α = 1, 2 ; i = 1, . . . , 4), H2 = SU(2). Then,

LPNGB = f2tr
(

∂µu†∂µu− u†∂µu ∂
µu†u

)

(SU(4)/SU(2)2 ×U(1)) (6.3)

But, this can be also written in terms of two (real) vectors of SO(6), denoted vαa (α =

1, 2 ; a = 1, . . . , 6), H2 = SO(2) to obtain,

LPNGB = f2tr
(

∂µvT∂µv − vT∂µv ∂
µvT v

)

(SO(6)/SO(4)× SO(2)) (6.4)

which, up to a normalization, is the same as (6.3) if one replaces vαa = ūαΓau
α, where Γa

are SO(6) Dirac matrices.

5Actually the normalization can be fixed the end, having fitted to data the expressions for the gauge

boson masses and normalized the Higgs boson kinetic term.
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The Sp(6)/Sp(4) × SU(2) model has some interesting properties. With H1 = Sp(4)

and H2 = SU(2), the n.l.r. can be displayed in terms of two 6-vectors such that u2 = Ωu∗1
leading to a triplet of quaternions as discussed in appendix D. With the procedure described

above we get

L = f2tr
(

∂µu†∂µu− ∂µu†uu†∂µu
)

(Sp(6)/Sp(4)× SU(2)) (6.5)

The SO(9)/SO(8) manifold is the 8-sphere, resulting in the corresponding metric for

the Lagrangian for the real 9-vector u,

LPNGB = f2tr
(

∂µuT∂µu
)

(SO(9)/SO(8)) (6.6)

Here, H1 = SO(8) and, since there is no H2, the quadratic terms already contains only the

PNGB part.

The next step is to define the embedding of the SM charges inside H1 × H2. Then,

substituting the standard derivatives with the SM covariant derivatives, ∂ui → ∂ui −
i(Ŵu)i, with Ŵµ = gW+

µ T−
L + gW+

µ T−
L + eAµ(T

3
L + T 3

R) + g sec θWZµ(T
3
L − tan2 θWT 3

R),

the gauge boson masses and possible contributions to the T parameter can be read from

the previous expressions. All 2HDM’s have SU(2)L × SU(2)R as a subgroup of the linear

symmetry of the coset with the Higgs fields transforming in two (2,2), so to define the

wanted custodial symmetry. Let us take first SU(2)L × SU(2)R ⊂ H1. The mass matrix

for the gauge bosons can be written,

M2
AB

gAgB
= u†{TA, TB}u− κu†TAuu†TBu (6.7)

where κ is given in the different LPNGB above, and where only the neutral components are

retained, so that (T 3
L+T 3

R)u = 0. Since all the states are doublets or singlets of each SU(2),

u†{TA, TB}u = 1/2δAB sin2(ϕ/f). The first term is analogous to the SM gauge bosons

mass term. The second term is easily calculated, and gives the additional contribution

to the Z-mass in (3.4) and the corresponding anomalous contrition to the T -parameter.

Although the calculation is straightforward, we justify the results from a group theoretical

point of view in appendix B.

Up to the factor κ the result is the same for all models where the SM gauge symmetries

are embedded in H1 and that are strongly constrained by T unless the Higgs are aligned.

The exception are the models based on SO(9)/SO(8) which have only the quadratic part. In

view of this success it deserves some limelight and it is further analysed in the next section.

The Sp(6)/Sp(4) × SU(2) models are special because, according to the embedding of

the SM they can have enough symmetry to preserve the custodial symmetry that protects

theT parameter [11]. Indeed, with the Higgs bosons in the (2,2), one of the factors in

SU(2)L × SU(2)R must be in H2 = SU(2) and the other in H1 = Sp(4). The latter can

come from a maximal subgroup SU(2) × U(1) of Sp(4) or from the SU(2) × SU(2) one.

Only the latter has sufficient symmetry to protect T , since the two Higgs vev’s become

invariant under the SU(2)C defined by the sums of the charges in the three SU(2) factors.

This is further discussed in appendix B and the final result is

MW = MZ cos(θW ) =
gf√
2
sin(h/f) cos(h/f) (6.8)
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where h is the combined vev’s of the two Higgs. Notice that higher order couplings of the

Higgs sector to the gauge bosons are present at tree-level even if ρ = 1 and, also, the factor

cos(h/f) with respect to the other models.

7 A composite two Higgs doublet model based on SO(9)/SO(8)

We turn now to a composite 2HDM based on the symmetry breaking pattern SO(9)/SO(8).

As stressed in section 6 , there is no tree-level contribution to the T parameter. The n.l.r.

is a 9-vector

u = e
iΠ
f u0 =

(

sin(ϕ/f)
ϕ φ

cos(ϕ/f)

)

, (7.1)

where ϕ =
√

φTφ, and φ the vector containing the eight NGBs belonging to a 8V of SO(8).6

The PNGB Lagrangian has the single term in eq. (6.6). We need to embed the SM gauge

group in SU(2)×SU(2) ⊂ SO(8) to include the necessary custodial symmetry, and the two

Higgses in the 8V transform as two (2,2). The selection of these embeddings are given in

appendix C. There are two inequivalent choices that basically differ by a U(1) factor that

differentiates between the Higgs doublets:

8V = (2,2) + (2,2) ∈ SU(2)× SU(2) ⊂ SO(8)

8V = (2,2)+1 + (2,2)−1 ∈ SU(2)× SU(2)×U(1) ⊂ SO(8)

In the first case, the fermions can couple to both Higgs doublets, which is a source of

flavour changing. We do not investigated possible discrete symmetries and concentrate on

the second embedding where the Higgs doublets have opposite U(1) charges.

To guarantee a correct electroweak charge assignment for the Higgs doublets, the

additional U(1) should not take part in the definition of the hypercharge, still given by

Y = T 3
L + T 3

R. With these assignments, replacing the SM covariant derivative in eq. (6.6),

one obtains the masses of the gauge bosons

Lm =
1

2
g2f2 sin2(ϕ/f)

(

W+
µ W−

µ +
1

2 cos θW
ZµZµ

)

, (7.2)

so that there are no tree-level restriction on v/f , independently of the alignment between

the two Higgs doublet in the vacuum.

Let us turn now to the fermions. Once the NGBs are assigned to the 8V of SO(8)

decomposing under SU(2) × SU(2) × U(1) as (2,2)+1 + (2,2)−1, the other two eight-

dimensional representations of SO(8) transform under the SU(2)× SU(2)×U(1) subgroup

as: 8s = (1,1)+2+(1,1)−2+(3,1)0+(1,3)0 and 8c = (2,2)−1+(2,2)+1. The assignments

for U(1)X are parallel to those in section 4. Barring larger representations, there are two

choices for the fermions, which are made explicit below together with, in brackets, their

embeddings in SO(9)×U(1)X :

6We use here the conventions for the SO(8) representations and subgroups from [24]
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1. tL ∈ 8V(∈ 92/3), bL ∈ 8V(∈ 9−1/3), bR ∈ 1(∈ 1−1/3), tR ∈ 1(∈ 12/3). A brane mass

term allows for the reconstruction of the qL doublet as sketched in section 4. The

Yukawa couplings are the singlets in the products 8V × 8V × 1 ∈ 9× 9× 1.

2. qL ∈ 8c(∈ 92/3), tR, bR ∈ 8s(∈ 8s2/3) so that all fermions transform under SO(9) ×
U(1)X as a 16 = 8s + 8c of SO(8), both tR and bR belonging to the (1,3) of SU(2)×
SU(2). The Yukawa invariants are in the products 8V × 8s × 8c ∈ 9× 16× 16.

The latter seems more attractive, in particular because it is naturally consistent with

gauge-Higgs unification scenarios. In both cases, the fermions couple only to the Higgs

doublet with opposite U(1) ⊂ SO(8) charge, so that the other one is a so-called inert Higgs.7

Therefore the FCNC effects are suppressed because each fermion couples to only one and

the same Higgs doublet and each fermion can be uniquely embedded in SO(8) × U(1)

representations. The model satisfies all the items in our fermion shopping list at the

beginning of section 4.

8 Conclusions

In this paper we have studied some composite Higgs models with extended scalar sectors. A

detailed analysis has been carried out for the cosets SU(5)/SU(4)×U(1), and SO(9)/SO(8),

which deliver two SM doublets or, for SU(5)/SU(4), two SM doublets and one singlet.

In both the SU(5) cases, a contribution to the T parameter is present already at tree

level unless there is an unexpected alignment of vevs in the scalar potential. A survey of

various C2HDM’s shows that this is naturally expected in other examples of this class of

models, unless the symmetries defining the coset are large enough so that any element in

the coset is invariant under an SU(2), so defining the custodial symmetry. We observe that

two specific cosets, Sp(6)/Sp(4)×SU(2) and SO(9)/SO(8) exhibit such a group theoretical

property, hence no invariants contributing to T can be written. This ensures an effective

custodial symmetry at tree level independent from the scalar potential.

Turning to fermions, we analyzed the embedding of the matter fields in the smallest

SU(5) and SO(9) representations, paying attention to the effects on the Zbb̄ vertex and on

the presence of Higgs-mediated FCNC. In the SU(5) cases, we find that Zbb̄ is protected

only when the SM fermions are embedded in a 10, while Higgs-mediated FCNC are always

absent because the non linear Higgs has a single coupling to fermions. The up and down

type quarks couple to different linear combinations of the Higgs doublets, so that the latter

are both active. However the t quark coupling tends to misalign the Higgs vev’s and

increases the contribution to T . Therefore, these SU(5) models do need a compensation

mechanism to be phenomenologically viable.

In the SO(9) case an additional abelian charge embedded in SO(8) can be used to

ensure the fermions to be coupled to just one of the doublets, making the other one inert.

Moreover, when the left handed quark doublet is embedded in the spinorial representation,

also the Zbb̄ vertex is protected.

7For a recent discussion of inert Higgs phenomenology see [11].
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A Embedding of the Standard Model fermions in SU(5) representations

The SM charges, embedded in the first four entries of the 5× 5 SU(5), are given by

T i
L = 12×2 × τ i, T 3

R = τ3 × 12×2 (A.1)

with τ i the usual SU(2) generators. In terms of (T 3
L, T

3
R) charges, this choice corresponds

to a SU(5) fundamental decomposed as

5 =















(+,+)

(−,+)

(+,−)

(−,−)

(0, 0)















.

The SU(5) fundamental decomposes as 5 = (2,2)+(1,1) under SU(2)L×SU(2)R. For

SU(5)/SU(4), the two LH quarks must be embedded in different bidoublets:

qtL ∈ (2,2)2/3 withtL = (+,−)

qbL ∈ (2,2)−1/3 withbL = (−,+)

uR ∈ (1,1)2/3

dR ∈ (1,1)−1/3

where in the last column we specified the (T 3
L, T

3
R) assignment.

The specific embeddings are

Ψqt
L
=







02×1

qL
0







2/3

Ψqb
L
=







qL
02×1

0







−1/3

ΨtR =







02×1

02×1

tR







2/3

ΨbR =







02×1

02×1

bR







−1/3

(A.2)

Turning to the SU(5) symmetric representation, it corresponds to 10 = (2,2)+(1,3)+

(3,1) under SU(2)L × SU(2)R. To accommodate hypercharge, the U(1)X charge has to be

fixed to X = 2/3, with assignment

qL ∈ (2,2)2/3 with tL = (+,−), bL = (−,−)

uR ∈ (1,3)2/3 with tR = (0, 0)

dR ∈ (1,3)2/3 with bR = (0,−1)

– 17 –
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The explicit embeddings are

ΨqL =
1

2







04×4
02×1

qL

01×2 qTL 0






,

ΨtR =
tR
2







02×2 iσ2 02×1

iσ2 02×2 02×1

01×2 01×2 0






,

ΨdR =
bR√
2







02×2 02×2 02×1

02×2 iσ2 02×1

01×2 01×2 0






. (A.3)

B Algebraic analysis of the T -parameter

In this appendix we give a more detailed analysis of the terms corresponding to anomalous T

parameters. The so-called D-terms, DA = u†TAu, where TA are the generators of a group

G in the (arbitrary) representation of u, have been studied in the context of supersymmetry.

For completeness, this appendix contains a the study of the anomalous T parameter defined

in (6.7) as DADA, based on [25], from where we borrow the following lemma.

Given u defined by its little group H ⊂ G, DA = u†TAu 6= 0, if and only if TA ∈ G/H

and commutes with the elements of H.

This lemma has been very useful in the study of symmetry breaking in supersymmetric

theories where the fields are complex, even when they transform in real representations if

they belong to chiral supermultiplets. Here it is just a curiosity since the calculations are

straightforward.

To apply it in our case, let us take G = SU(2) × SU(2) and u ∈ (2,2), and write it

as a vector ui = xi + yi, (i = 1, . . . , 4) such that the generators are real, antisymmetric

and act on u as a 4-rotation, T ijuk = δjkui − δikuj . Notice that any u can be rotated

in the plane u1 = u2 = 0, with little group H = U(1) generated by the (electric) charge,

T 12. Then T 34 is the only charge in the coset G/H that commutes with T 12. Indeed,

u†T 34u = i(y3x4 − y4x3) is the only non-vanishing component of the D-terms and, in this

basis, T 34 is the charge corresponding to Z and the anomalous contribution to the Z mass

is proportional to (D34)2.

Now consider a critical u, such that xi and yi are aligned and can be rotated to

u1 = u2 = u3 = 0. Its little group is the vectorial (or custodial) H = SU(2) of rotations

in this hyperplane. The coset G/H is given by the three axial charges that transform as a

triplet under H. Therefore all Dij = 0 and there is no anomalous term in the Z mass. The

conclusion is that the complex character of the u coordinates, related to H2 = U(1) in the

cosets defining the Higgs doublet as PNGB, is at the origin of the anomalous T parameter

in these cases, unless one can ensure the two Higgs alignment.

The case where SU(2)×SU(2) is embedded in bothH1 andH2, is different since now the

equivalent of the D-terms DA = u†TAu, are matrices. Let us concentrate on the relevant

instance of Sp(6)/Sp(4) × SU(2) and choose the embedding of the SM subgroup through
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the SU(2)2 ∈ Sp(4), hence SU(2)3 ∈ Sp(6), so that u decomposes as (2,1,2) + (1,2,2)

while the bottom components are invariant. Due to the large symmetry, the two Higgs in

u can be aligned so that the generic u encoding the two Higgs PNGB’s has a little group

the custodial group defined, with some convention, as the sum of the three SU(2) charges,

defining the custodial SU(2)C . Therefore, the T parameter must be non anomalous.

The two Higgs behave as (2,2) if we choose SU(2)L ∈ the sum of those in H1 =

Sp(4) and SU(2)R as the remaining one in H2, or vice-versa. We recall that the latter

‘acts from the right’. After the gauging of the SM symmetries one immediately finds the

masses of the gauge bosons by rotating the Higgs quaternions in u to the element uT =

(u0 sinβ 12, u0 cosβ 12, cos(h/f) 12), u0 = h sin(h/f), and h is the usual combination of

the Higgs vev’s. The result,

f2

2

(

g2W+
µ W−µ +

(

gW 0
µ − g′Bµ

)2
)

sin2(h/f) cos2(h/f), (B.1)

where the term in sin4(h/f) comes from the quartic term in the PNGB lagrangian, is

clearly consistent with the custodial symmetry, introducing a correction factor cos2(h/f)

with respect to the results in the other 2HDM cosets.

C Embedding of the Standard Model charges in SO(9)

In this appendix we describe the embeddings of the SO(9)/SO(8) coset (PNGB) 8V =

(2,2) + (2,2) ∈ SU(2) × SU(2) ⊂ SO(8). A systematic way to find them is to follow all

the chains of maximal subgroups starting from those of SO(8) down to those that contain

SU(2) × SU(2) and discard all those that lead to the wrong decomposition for the 8V of

PNGB. We follow the conventions in [24] and the results are easily checked form the tables

therein. We simplify the notations by writing SU(2)n for the × product of n SU(2)’s.

Two of the so-defined chains, namely SO(8) → SU(4) × U(1) → SU(2)2 × U(1) and

SO(8) → Sp(4)× SU(2) → SU(2)2 ×U(1), yield the decomposition:

8V = (2,2)+1 + (2,2)−1 8c = (2,2)−1 + (2,2)+1 (C.1)

8s = (1,1)+2 + (1,1)−2 + (3,1)0 + (1,3)0 (C.2)

where the U(1) charges are also displayed for each SU(2)2 representation.

Three other chains, namely, SO(8)→SO(7)→SU(4) →SU(2)2, SO(8)→SO(7)→ SU(2)3

→SU(2)2 and SO(8)→SU(2)4 →SU(2)2, have the same SU(2)2 decompositions, but since

there is no U(1) factor, there is no distinction between the two (2,2)’s or the two (1,1)’s.

Finally, note that besides the quadratic invariant for each 8, there is the invariant

8s8V8c that will be useful in the analysis of Yukawa couplings.

D Analysis of the Sp(6)/Sp(4) × SU(2) coset

Sp(6) is the group of unitary transformations such that Ω ≡ 13 × σ2 is invariant , i.e.,

UΩUT = Ω. It is useful to work in terms of quaternions: Q = qαeα , with ei = iσi, e4 = 12
Notice that: Q†Q =

∑

qi2 12, σ2Q = Q∗σ2. Then, the Sp(6) algebra can be written as the
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3×3 hermitian quaternion matrices with elements iQij such that iQ4
ii = 0. The diagonal el-

ements iQii, (i = 1, 2, 3) are then associated with the SU(2)3 sub algebra. Adding only iQ12

it is upgraded to Sp(4)×SU(2), while iQ13and iQ23 define the coset Sp(6)/Sp(4)×SU(2),

transforming as a (4,2) of Sp(4)×SU(2). In particular, the associated PNGB matrix Π

can be written as

Π =







04
−iH1

−iH2

iH†
1 iH†

2 02






(D.1)

where the Hi ≡ hαi eα are the two Higgs doublets reshuffled into the familiar quaternion

form.

We then define the vector with quaternion components ui, , (i = 1, 2, 3) such that:

u = eiΠ(Hi)u(0) =
sin(h/f)

h







H1

H2

cot(h/f)1






u(0) =







02
02
12






(D.2)

where h2 = tr
∑

i=1,...,4

(

hi 21 + hi 22
)

so that it transforms as defined in section 6, namely,

u → guh†2(g,Hi) with g ∈ G and h2 ∈ H2. Therefore u can be also viewed as two orthogonal

6-vectors uα, α = 1, 2, each one transforming as the 6 of Sp(6), with u2 = iΩu∗1. Notice

that, as quaternions, Ωu = u∗σ2.
Another possible parametrization for the breaking Sp(6)→Sp(4)×SU(2) is given by

the vacuum

Σ0 =







02
02

σ2






, (D.3)

in an antisymmetric 14 of Sp(6). Then the n.l.r. can be written in terms of the PNBG as

Σ = UΣ0U
T = uσ2u

T .

Following the procedure described in sections 2 and 6 to combine the invariants to

have equivalence with the CCWZ construction, the kinetic Lagrangian results

L =
f2

4

(

∂µu†∂µu− ∂µu†uu†∂µu
)

, (D.4)

so that a tree-level contribution to T is expected from the second term.

Using the SU(2)3 symmetry both quaternions H1 and H2 can be rotated and aligned

along their components e4 = 12, which is invariant under a (diagonal) SU(2), the custodial

symmetry. The effectiveness of custodial symmetry can also be explicitly checked substi-

tuting the ordinary derivatives in D.4 with covariant ones: ∂µu → ∂µu+iW a
µ (T a

Lu− utaL)+

iBµY u. In the notation of the previous sections, we are specializing to the case in which

U(1)Y ⊂Sp(4) and SU(2)L = H2, so that the latter acts on u both from the left and from

the right. It is immediate to write the covariant derivative for the other case.

Turning to the fermions, the smaller Sp(6) representations decompose under SU(2)

× Sp(4) as

14 = (2,4) + (1,5) + (1,1)

21 = (2,4) + (1,10) + (3,1) (D.5)
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Since there are several ways to embed the SM fermions, a severe problem of Flavor Changing

Neutral Currents is present.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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