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Abstract: We construct a N -function for Lovelock theories of gravity, which yields a holo-

graphic c-function in domain-wall backgrounds, and seemingly generalizes the concept for

black hole geometries. A flow equation equates the monotonicity properties of N with the

gravitational field, which has opposite signs in the domain-wall and black hole backgrounds,

due to the presence of negative/positive energy in the former/latter, and accordingly N
monotonically decreases/increases from the UV to the IR. On AdS spaces the N -function

is related to the Euler anomaly, and at a black hole horizon it is generically proportional

to the entropy. For planar black holes, N diverges at the horizon, which we interpret as

an order N2 increase in the number of effective degrees of freedom. We show how N can

be written as the ratio of the Wald entropy to an effective phase space volume, and using

the flow equation relate this to Verlinde’s notion of gravity as an entropic force. From the

effective phase space we can obtain an expression for the dual field theory momentum cut-

off, matching a previous proposal in the literature by Polchinski and Heemskerk. Finally,

we propose that the area in Planck units counts states, not degrees of freedom, and identify

it also as a phase space volume. Written in terms of the proper radial distance β, it takes

the suggestive form of a canonical partition function at inverse temperature β, leading to a

“mean energy” which is simply the extrinsic curvature of the surface. Using this we relate

this definition of holographic phase space with the effective phase space appearing in the

N -function.
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1 Introduction

In two dimensional conformal field theories (CFTs), the number of degrees of freedom can

be equated with the central charge of the theory c, and its running with scale is described by

a c-function [1]. This is a function which is monotonously decreasing under renormalization

group (RG) flow and which counts number of degrees of freedom in the sense that when

evaluated at ultra-violet (UV) and infra-red (IR) conformal fixed points it yields the central

charge of the theory. Monotonocity then implies cUV ≥ cIR. While this story is well

understood in two dimensions, a proof of existence of a c-function in higher dimensional

CFTs is not available. Part of the problem is that in higher dimensional conformal field
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theories there are several candidates for replacing the role played by c in two dimensions.

It was Cardy [2] who originally suggested that at least for even-dimensional conformal field

theories, the appropriate quantity to consider is A, or Euler anomaly — essentially the

prefactor multiplying the Euler density Ed in the Weyl anomaly of the theory, which looks

schematically as

〈T a
a〉 ≃ (−1)d/2AEd +

∑

BiC
d/2
i + total derivatives, (1.1)

with C the Weyl tensor, and C
d/2
i a set of independent scalars built out of d/2 Weyl tensors.

Recently, evidence for this proposal has been found in the context of the AdS/CFT corre-

spondence [3, 4]. From a holographic perspective it is relatively straightforward to construct

a c-function for gravitational theories described by Einstein gravity in AdS space [5, 6]. Un-

fortunately, Einstein gravity is too simple, and it is not possible to verify what exactly this

c-function matches onto holographically, since all holographic anomalies are essentially the

same in this case. In order to distinguish these one must consider more complicated gravity

theories (for some early work on this see [7]). By examinining holographic c-functions in a

particular set of gravitational theories,1 the work in [11] suggests that the natural quantity

to consider is indeed A, or a certain coefficient appearing in entanglement entropy between

two-halves of a sphere, for odd-dimensional conformal field theories.

One way of thinking about holographic c-functions, is that they provide a notion of

what are the number of degrees of freedom that are active at a given scale, where scale

is identified with the radial coordinate in AdS space. But, a seemingly different point

of view on such degrees of freedom was provided in [12], which argued that the number

of degrees of freedom which holographically describe a given spacetime region should be

proportional to the area in Planck units. Such a proposal leads to the right number of

degrees of freedom for N = 4 supersymmetric Yang-Mills theory at strong coupling. More

recently, [13] has shown that gravitational equations of motion describing a closed region

of spacetime can be recast as thermodynamic relations on its surface. For higher derivative

theories of gravity, the “surface density of degrees of freedom” holographically describing

this region, is directly related to the Wald formula [14, 15] for black hole entropy. It is not

immediately obvious how these different proposals for the number of degrees of freedom

relate to the holographic c-functions.

Another interesting question which has for the moment not been explored, is the

relation between c-functions and black hole entropy. There are many hints that such a

connection might exist. As mentioned above, the association of one degree of freedom

per Planck area leads to the correct state counting, as captured by central charges or

Weyl anomalies of the dual CFT, but it also leads to the correct value for black hole

entropy, a setting which is seemingly far removed from the concept of c-functions, which

describe RG flows in the vacuum state. There is indeed evidence that asymptotically AdS

black hole solutions describe a new, intriguing type of renormalization group flow, between

conformal field theories of different dimensionalities. Perhaps the clearest case for this is

1Note also that conversely, demanding that such a function exists can serve as a useful constraint for

building interesting theories [8–10].
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obtained by considering extremal Reissner-Nördstrom black holes in AdS, which have a

near horizon AdS2 factor associated with an emergent IR conformal field theory [16]; but

even in non-extremal black holes there seems to be an emergent conformal symmetry at

the horizon [17, 18]. These geometries capture renormalization group flow in a field theory

which is in a non-trivial thermal state, or a state at finite density. As such, our usual

intuition on c-functions might not hold here in these cases.

In this paper, we will attempt an initial exploration of these questions, by considering

holographic c-functions and their generalization in black hole backgrounds, in the context

of Lovelock theories of gravity [19, 20]. Our choice to focus on these theories stems from

the fact that they have enough structure to distinguish between various kinds of central

charges, or other quantities which would be degenerate in Einstein gravity; and yet are still

amenable to a simple analytic treatment. The downside is that no known string theory

embedding of these theories, although these theories seem to holographically capture a

lot of interesting features of a realistic conformal field theory [21–23]. By examining the

gravitational equations of motion in a class of black hole backgrounds, we will find that

these can be recast as a flow equation for what we will denote as the N -function. This

equation tells us how the N -function varies depending on the local “gravitational field”. For

domain-wall backgrounds describing vacuum RG flows, N directly provides a holographic

c-function, for any Lovelock theory.

For black hole backgrounds the story is more interesting. Depending on the horizon

topology, the behaviour of N changes, although it is always monotonously increasing to-

wards the horizon for vacuum black hole solutions, thus directly contradicting our usual

expectations for the monotonicity of a c-function. We shall see that this directly follows

from the flow equation, and from the fact that the gravitational field points in opposite

directions in domain-wall solutions, where there is negative energy density, and in black

hole solutions where there is positive energy density. We shall find that in any case, N
evaluated at the horizon can be directly related to the black hole entropy. A puzzle appears

however, since N can be divergent, either at the horizon for the planar black hole, or before

it for the spherical one. Softening the divergence by introducing a Planck scale cut-off, then

in the planar black hole case we see that N increases dramatically from the boundary to

the horizon by a factor of (L/lp)
d−2 ≃ N2 for gauge theories at large N . Alternatively, this

divergence could be interpreted as a signal of dimensional reduction, where spatial modes

of a single field are effectively transforming into a new set of decoupled fields. However, it

is hard to make sense of this divergence in the spherical case. We were unable to solve this

puzzle in this work, but we offer some speculations in the discussion section.

The N -function can be written in a simple fashion as the ratio of an entropy to a

certain quantity that we shall interpret as an effective phase space volume Ωeff,

N =
S

4πΩeff

. (1.2)

More concretely, the first is defined as Wald’s formula evaluated on a radial slice, or holo-

graphic screen,

S = −2π

∮ √
h

δL
δRabcd

ǫabǫcd (1.3)
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and is argued to compute the total information content of the region beyond the screen:

the entropy associated with the ignorance about which state is hidden behind the scren.

As for the effective phase space it can be written in the form

Ωeff =

(

L

lp

)d−2 ∮

dd−2x
√
h

√

det

(

Kk
i K

j
k − κ δj

i

L2

r2

)

, (1.4)

with κ the curvature of the transverse d− 2 space. From the field theory point of view this

looks like N2Vd−2(E
2 − m2)(d−2)/2, which indeed counts the number of states accessible

to a single particle excitation. The cut-off, or momentum scale is associated with Kab

the extrinsic curvature, which is also the momentum of the metric associated with radial

translations. In domain-wall backgrounds the resulting expression precisely matches a

proposal for the field theory cut-off given in [24].

In this paper we will also attempt to relate this definition of phase space with the

notion of one degree of freedom per Planck area. More concretely, we define an alternative

version of phase space Ω, interpreting the area in Planck units as counting states, not

degrees of freedom:

Ω =

∮

∂M

dA

ld−2
p

, (1.5)

and accordingly an alternative notion of degrees of freedom based on this

Ndof =
S

4πΩ
. (1.6)

This exactly matches the proposal for the surface density of degrees of freedom given in [13].

However, the above does not satisfy any simple equation of motion, unlike N . In the case

where d− 2 dimensional transverse geometry is flat, there is a simple relation between the

two functions,

N =
Ndof

(L E)d−2
, E =

d log Ω

dβ
. (1.7)

Here β is the proper radial distance. We have chosen to call it β because, when written in

terms of this quantity, the phase space volume Ω looks exactly like a canonical partition

function at inverse temperature β. In fact, taking this analogy further, we can compute

the mean energy and energy squared finding

〈E〉 = −d log Ω

dβ
≃ K, 〈E2〉 ≡ 1

Ω

∂2Ω

∂β2
≃ Rabcdh

acnbnd. (1.8)

with hab the metric of a co-dimension two space-like surface, na a vector pointing in the

normal, spacelike direction to the surface, and K = habKab = ∇an
a. This is suggestive of a

possible thermodynamic interpretation of the AdS geometry, and we offer some speculations

on this in in section 5.3.

This paper is structured as follows: in section 2, we briefly describe the set of theories

we will be considering and some of their solutions. In section 3, by analogy with the

Einstein gravity case, we define the N -function, In particular we show how the evolution of

N is determined by the local gravitational field, and how this is quite different in RG flow
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backgrounds and black hole backgrounds. In the former, N directly provides a c-function

for any Lovelock theory. We then analyse the behaviour of N for black holes with different

horizon topology and find that, when evaluated at the horizon, N is directly related to

the entropy. In section 4 we show how N can be written as the ratio of Wald information

to a quantity which we interpret as an effective phase space volume, and comment on

the relation of this result with some of Verlinde’s proposals [25]. Section 5 proposes that

the area in Planck units provides alternative definition of phase space volume. Using

the proper radial distance β leads to intriguing similarities of the AdS-geometries with

a thermodynamical system. We speculate on this subject in section 5.3, where we also

connect this proposal of phase space with the effective phase space appearing in the N
function. We finish with a discussion and directions for future work.

Note added. While this work was being finished, the papers [26, 27] appeared, whose

results partially overlap with ours. In particular, the use of the Wald formula for the

computation of the Euler anomaly A which we do in appendix B has appeared in [26], who

also defined a holographic c-function for Gauss-Bonnet theory in any dimension. Also [27]

has shown how to construct c-functions for any Lovelock theory.

2 Lovelock theories of gravity

Throughout most of this paper, we will be interested in the gravitational dynamics of Love-

lock theories in a certain class of backgrounds. As explained in the introduction, Lovelock

theories are simple enough to be studied in detail, yet contain a lot more structure than

Einstein gravity. A brief review of these theories and some of their elementary properties

is given in appendix A. We will admit the existence of a negative cosmological constant,

and as such in general such theories can support stable AdS vacua. The action is of the

schematic form

Ig =
1

ld−2
p

∫

ddx
√−g

(

R− 2Λ +
K
∑

k=2

nkckE
2k

)

(2.1)

with lp the d dimensional Planck length and where E2k is the 2k-dimensional Euler density,

which is topological in d = 2k and zero for d < 2k. The normalization nk is a number

such that with Λ = −(d − 1)(d − 2)/L2 an AdS vacuum exists with radius L2/f∞, with

f∞ satisfying

Υ[f∞] ≡
K
∑

k=0

(−1)kckf
k
∞

= 0. (2.2)

For definiteness it might be useful to keep in mind the Gauss-Bonnet lagrangian, which is

non-topological for d ≥ 5 and has been extensively studied in the literature. In this case

we have

IGB =
1

ld−2
p

∫

ddx
√−g

(

R+
(d− 1)(d − 2)

L2
+

λL2

(d− 3)(d − 4)
E4

)

(2.3)

with E4 = RabcdR
abcd−4RabR

ab+R2. The AdS vacua are determined by 1−f∞+λf2
∞

= 0.
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We will consider that the action 2.1 is coupled to an arbitrary matter sector,

IM =

∫

ddx
√−gLM , (2.4)

and the matter stress tensor is defined as

Tab = − 2√−g
δSM

δgab
. (2.5)

We will not permit curvature couplings to the matter lagrangian in this work. This implies

for instance that, if covariant derivatives appear in LM , they should be symmetrized.

2.1 Black hole solutions

In the following we will be interested in a class of backgrounds describing black hole so-

lutions. Early work on such solutions in Lovelock theories of gravity can be found in

references [28–30]. We take a metric of the form:

ds2 = −
(

κ+
r2

L2
f(r)

)

dt2

f∞
+

L2dr2

κ+ r2

L2 g(r)
+ r2(dΣd−2

κ )2, (2.6)

with dΣ is the volume element for the space with unit radius and constant curvature2

κ = −1, 0, 1. In the above the factor f∞ is chosen to obtain a unit speed of light at the

boundary. The functions g(r) and f(r) satisfy g(r0) = f(r0) = −L2κ/r20 , so that there is

a horizon at r = r0. The metric is otherwise regular and smooth.

The entropy of these black holes is computed by means of the Wald formula [14, 15]

(see also [31]):

SBH = −2π

∮ √
h

δL
δRabcd

ǫabǫcd (2.7)

where the integral is taken over the black hole horizon, L is the gravitational lagrangian

and ǫab are the horizon binormals. Using the results of appendix A.3 we find

S = 4πVd−2

(

r0
lp

)d−2 K
∑

k=1

(d− 2)k

d− 2k
ck

(

κ
L2

r20

)k−1

, (2.8)

where Vd−2 will generically stand for the volume of the transverse space, regardless of

the value of κ. In the particular case where there is no matter present, exact black hole

solutions can be found, with f(r) = g(r) and

Υ[g(r)] ≡
K
∑

k=0

ckg(r)
k =

(

r0
r

)d−1

Υ[g(r0)]. (2.9)

While this algebraic equation has many solution branches, there is only one (the one

corresponding to the smaller positive root) which is ghost-free and regular (see [32] and

also [33, 34] for more recent papers analysing some of these issues).

2More concretely, for κ = 1 we have dΣ = dSd−2, the volume element for a (d−2) sphere; for κ = −1 dΣ =

dHd−2 the volume element for the d − 2 hyperbolic space. Finally for κ = 0 we take dΣ2 = L−2
P

i
(dxi)2.

– 6 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
3

3 Holographic c-functions and beyond

In the presence of a matter sector, there could be several stable AdS vacua with different

radius of curvature. It is then possible to consider backgrounds which interpolate between

such two vacua, which would describe a renormalization group flow between two confor-

mal field theories with different central charges. Such “RG flow” backgrounds take the

generic form

ds2 = dβ2 + e2A(β)
(

−dt2 + dx2
)

. (3.1)

With A(β) =
√
f∞β/L the above describes an AdS background with radius L/

√
f∞. In

general A(β) will be some function interpolating between two such AdS spaces located

at β = ±∞.

In Einstein gravity it is possible to define a holographic c-function [6]. This takes the

simple form

c(β) =

(

1

lp

)d−2 1

A′d−2
. (3.2)

By construction, when evaluated on AdS spaces this function gives the ratio of the AdS

length to the Planck length to the power of d − 2, which is exactly as required of a c-

function, since in Einstein gravity, all conformal anomaly coefficients are proportional to

this quantity. The second requirement of a c-function is that it is monotonous along RG

flows. This follows directly from the Einstein equations for such a background which give

(d− 1)A′′(β) = ld−2
p

(

T t
t − T β

β

)

. (3.3)

If we demand that the null energy condition [35] is satisfied, the right hand side of the

equation above is negative. This immediately implies that c(β) monotonously decreases as

one moves towards the interior of the geometry.

We would now like to generalize this construction to Lovelock theories of gravity. Our

strategy will be to find the equations of motion for the background and from that guess

what the correct c-function should be. We shall however be more general than up to now,

by considering black hole metrics such as 2.6. Notice that the RG flow geometries 3.1 may

be obtained from these by choosing κ = 0 and performing the change of variables

r → LeA(β), g(r) → (LA′(β))2. (3.4)

The motivation for this generalization is that such geometries are still easily tractable, and

should also describe renormalization group flows of a dual field theory, albeit in a non-

trivial state. We will see that the equations of motion take a very simple form for these

backgrounds, which ultimately justifies our interest in studying them.

3.1 Lovelock theory: equations of motion

Given the total action S = Sg + SM we will be interested in gravitational backgrounds

which are static and preserve translational invariance along spatial directions. The most

general metric ansatz with these characteristics is the familiar black hole solution given

– 7 –
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in 2.6. For Lovelock gravity, the equations of motion describing this background are easily

found, as shown in appendix A. Consider first the tt component of the Einstein equations,

Et
t =

ld−2
p

2
T t

t ≡ −
ld−2
p

2
ρ, (3.5)

where we have defined the energy density ρ. The sign is such that a free scalar field will

have positive ρ. In more detail, the equation takes the form

d

dr

(

rd−1Υ[g]
)

=
L2 ld−2

p

d− 2
rd−2ρ (3.6)

with

Υ[g] =

K
∑

k=0

ckg
k(r) = 1 − g(r) + λg(r)2 + . . . (3.7)

The radial equation Er
r also takes a simple form. We obtain

(d− 1)Υ[g] + Υ′[g]

(

κL2 + r2 g

κL2 + r2 f
rf ′ + κ

f − g

κL2 + r2 f

)

=
L2 ld−2

p

d− 2
T r

r ≡
L2 ld−2

p

d− 2
pr (3.8)

where we have defined the “radial pressure” pr. In particular notice that

Et
t −Er

r =
d− 2

2

(−Υ′[g])

L2 + r2f

[

κL2

r

(

r2g − r2f
)

′

+ r3(fg′ − gf ′)

]

(3.9)

= −
ld−2
p

2
(ρ+ pr) (3.10)

If the null energy condition is satisfied the righthand side of this equation is negative. We

will come back to this point later on. Going back to the tt equation, we can integrate to find

Υ[g] =
Ld ld−2

p

d− 2

∫ r
r0

dr′ (r′/L)d−2ρ(r′)

rd−1
≡ Ld

(d− 2)Vd−2
ld−2
p

M(r)

rd−1
. (3.11)

Here we have defined M(r) as a measure of the energy contained in the spacetime from

some r0 up to r. For instance, if a black hole horizon is present then r0 would be its

location, and one would have3

M(r) = (d− 2)
Vd−2

ld−2
p

rd−1
0

Ld
Υ[g(r0)] + . . .

where the dots represent additional matter contributions.

We could now solve algebraically for g in 3.11 and use the rr equation to determine

f . This would completely determine the spacetime geometry if ρ and pr were known.

However, it is instructive to go back to the tt equation. Using 3.11 we obtain

(

−Υ′[g]
) dg

dr
=

2Ld

d− 2

dΨ

dr
. (3.12)

3In this case the density ρ has a δ function contribution at the horizon. This is because we are working in

coordinates appropriate to Schwarzschild observers which have no access to information beyond the horizon

at r0.
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where we have defined the “gravitational potential”:

Ψ ≡ −
ld−2
p

2Vd−2

M(r)

rd−1
.

The expression 3.12 has a simple interpretation. The function g here plays a role analogous

to the red-shift: we shall call it the rad-shift, for radial-coordinate. Since −Υ′[g] is always

positive,4 the above tells us that the rad-shift increases towards the AdS boundary if the

“gravitational field” in the radial direction, −Ψ′(r) is pointing towards the IR. In other

words, the gravitational field tells us about the direction in which the rad-shift g decreases.

A particular case of the equations developed above is given by f(r) = f∞, κ = 0.

Performing the change of variables given in 3.4 we go back to the RG flow background 3.1.

However, generically now one expects the gravitational field to be pointing towards the

UV, not the IR. This is because, for A(β) =
√
f∞β/L, the RG flow metric becomes that of

an AdS geometry with radius L/
√
f∞. Under an RG flow we expect that the radius of the

AdS space shrinks from the UV to the IR, which correlates with a shrinking of the central

charge of the dual field theory. This requires A′′(β) ≤ 0, and therefore g′(r) ≤ 0. This is

exactly opposite to our expectations for the rad-shift in a black hole background, where g

should decrease toward the interior of the geometry.

The answer to this apparent puzzle is that since the gravitational field is now pointing

towards the UV, it must be that the matter density ρ is negative, contrary to what happens

in the presence of a “normal” matter source. To see exactly how this happens, consider

the radial equation 3.8 which now becomes simply

pr = −M(r)/Vd−2

rd−1
. (3.13)

In RG flow backgrounds we typically demand that the null energy condition is satisfied,

which in this case amounts to ρ + pr ≥ 0. From the above it is clear however that such a

condition requires that the matter energy density ρ is generically negative. This is because

in the asymptotic UV AdS space one has ρ = 0 but non-zero M(r). Therefore the null-

energy condition necessarily gives M(r) ≤ 0 which requires ρ ≤ 0 in a large region of

the geometry.

3.2 The N (r) flow equation

The equation 3.12 plays a role analogous to equation 3.3 in the Einstein case. As such

we need to find an expression whose radial derivative is proportional to the lefthand side

of 3.12. This expression, which we shall call the N -function is given by:

N (r) =
1

g
d−2

2

(

K
∑

k=1

(d− 2)k

d− 2k
ck(−g)k−1

)

. (3.14)

4To see why −Υ′[g] must be positive, one simply notes that, if M(r) is positive and non-decreasing, then

the solution to the algebraic equation 3.11 develops a singularity at some r unless the polynomial Υ[g] is

monotonously decreasing up to its first root.
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Taking its derivative and using 3.12 we find

dN
dr

=

(

L√
g

)d(

−dΨ

dr

)

(3.15)

This is one of our main results. It tells us how the function N (r) varies depending on

the local “gravitational field”, −Ψ′. This is not a trivial result, i.e. a repackaging of the

equations into some complicated function N . This is because as we shall shortly see, this

function defines a c-function on RG flow backgrounds, and it is also related to black hole

entropy. It is thus naturally interpreted as counting degrees of freedom. From the above it

is clear that N (r) doesn’t have a well defined monotonicity, since as we’ve seen the sign of

the gravitational field depends on whether there is positive or negative mass. As such, while

N (r) is separately monotonous in vacuum black hole solutions or in RG flow backgrounds

containing matter satisfying the null energy condition, it is not monotonous say when one

starts off on an AdS geometry in the UV and flow down to an IR AdS geometry containing

a black hole.

Applying this equation to the case where κ = 0, f(r) = f∞ and we get back to the

RG flow background described by metric 3.1. In this case we have

N =
1

(LA′)d−2

(

K
∑

k=1

(−1)k−1 (d− 2)k

d− 2k
ck(LA

′)2(k−1)

)

. (3.16)

When the mass density is constant, such as when there is only a cosmological constant or a

fixed scalar at the bottom of a potential, the gravitational field is zero and there is no flow

of N . More generally, as we’ve shown in the previous section, the null energy condition

implies that the mass M(r) is negative, and therefore N (r) is monotonously increasing

from the IR to the UV. At the fixed points we obtain

N =
1

f
(d−2)/2
∞

(

K
∑

k=1

(d− 2)k

d− 2k
ck(−f∞)k−1

)

≡
(

lp
L

)d−2

A. (3.17)

As we show in appendix B, the coefficient A defined in the above turns out to be precisely

given by the Euler anomaly for Lovelock theory. Of course, this definition only makes sense

for odd-dimensional gravity theories. In general, A is expected to be related to a universal

coefficient appearing in entanglement entropy calculations of the dual field theory [11, 26].

We see then that Lovelock theories support a c-function A(β), defined by

A(β) =

(

L

lp

)d−2

N (β)

This supports the idea that N characterizes the number of degrees of freedom along

RG flows.

3.2.1 The black hole case

Let us consider the case where we have a black hole present, and no matter. In this case

the gravitational potential becomes

Ψ = −ld−2
p

(r0
r

)d−1
Υ[g(r0)], (3.18)

– 10 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
3

with g(r0) = −κL2/r20. The flow equation 3.15 immediately tells us that N (r) is monotonously

increasing as the flow proceeds from the boundary towards the horizon. This contradicts

our usual intuition that the number of degrees of freedom should decrease along RG flows.

However this intuition is grounded on the c-theorem [1], whose assumptions are violated

here — e.g. Poincare’ symmetry is broken. More importantly, the AdS geometry is not

describing a vacuum to vacuum flow, but rather a non-trivial state of the dual CFT. As

such, in principle the number of degrees of freedom could increase as one probes lower

energy scales.

In terms of N , the black hole entropy may be written as

S =

(

L

lp

)d−2

Vd−2 (−κ) d−2

2 N (r0) (3.19)

This was obtained by using that at the horizon g(r0) = −κ/r20 . There are now three

distinct possibilities, according to the value of κ.

• κ = −1

In this case g(r) is always positive. Then it is easy to see that N (r) monotonously

increases from the boundary (where it is related to the A coefficient by equation 3.17)

to the horizon, where it turns out to be related to the black hole entropy, as given

in 2.8:

SBH = 4πVd−2

(

L

lp

)d−2

N (r0) (3.20)

In this way, for such geometries the N function nicely interpolates between the A

anomaly in the UV and the black hole entropy in the IR.

• κ = 0

In this case g(r) has a zero at r = r0, the horizon. The function N (r) is still

monotonously increasing from the boundary to the horizon, but it diverges there.

To regulate this divergence we evaluate N (r) not at the horizon but at some finite

distance. In analogy with the κ 6= 0 cases, where we take g =
l2p
r2
0

. This corresponds

to taking κ = −l2p/L2. Notice that this corresponds roughly to evaluating N at a

proper distance of lp away from the horizon. With this regularization, the relation

between N at the horizon and the entropy becomes

SBH = 4πVd−2N (r0) (3.21)

The divergence has been transformed into a dramatic increase from an order one

to order (L/lp)
d−2 in the number of effective field theory degrees of freedom as one

approaches the black hole horizon.

• κ = 1

This case is the most intriguing. The function N diverges at g = 0, but this does not

correspond to the position of the black hole horizon, which occurs at g = −L2/r20 , a

negative value for g. In fact, our expressions 3.14, 3.15 can even become imaginary
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or negative there, depending on d. Nevertheless, we can find that the entropy of the

black hole is now given by

SBH = 4πVd−2

(

L

lp

)d−2

|N (r0)|. (3.22)

In particular N is perfectly finite at the horizon. Why the N function should present a

divergence at g = 0 is left to be understood, although we will present some possibilities

in the discussion.

4 The effective phase space

The results of the previous section indicate that N (r) describes some kind of effective

number of degrees of freedom as a function of scale. At black hole horizons, it is directly

proportional to the entropy, with a well known proportionality factor. Since the entropy

in higher derivative theories is given by the Wald formula 2.7, this hints that we might be

able to write N (r) in terms of it. This is further suggested by the fact that N is related

to the Euler anomaly on AdS spaces, and this is also given by the Wald formula, as shown

in appendix B.

Consider a radial foliation of the background 2.6. More concretely, choosing two vectors

na, ma with non-zero components

nr =
√
grr, mt =

√−gtt, (4.1)

we take

hab = gab − nanb +mamb, (4.2)

and ǫab = 2n[amb]. Notice that hab only has non-zero components when a, b run through

the (d − 2) transverse directions, denoted by indices i, j, k, . . .. It defines the metric of

the constant radial surfaces that constitute the foliation. In appendix A we show that the

Wald formula applied on these surfaces gives

S = −2πVd−2

√
h

∂L
∂Rabcd

ǫabǫcd = 4π Vd−2

(

L

lp

)d−2 K
∑

k=1

(d− 2)k

d− 2k
ck(−g)k−1, (4.3)

and therefore we can write:

N (r) =
S

4πΩeff

, (4.4)

This expression constitutes one of our main results. It describes the N -function as the

ratio of an entropy to an interesting quantity,

Ωeff =

(

L

lp

)d−2
( r

L2
g(r)

)d−2
Vd−2. (4.5)

We shall argue that this represents a kind of effective phase space volume. Let us now

examine in more detail the two ingredients going into 4.4.
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4.1 Entropy and information content

The holographic principle states that gravitational dynamics in a closed region can be

equivalently described by the dynamics on its bounding surface. Let us imagine that there

is a holographic screen enclosing such a region. If nothing is known about what is going on

behind the screen, we can associate to it an entropy characterizing our ignorance, In other

words, a given region has an associated information content, which is the logarithm of the

total number of states which can be described in such a region. In a normal field theory

this entropy should be proportional to the volume, but in gravitational theories this is not

so because of the possibility of black hole formation [36]. When a black hole completely

fills a certain region of spacetime, we have maximal ignorance about that region, and so

the information content of a region should be related to the entropy of a hypothetical black

hole which would completely fill that region. Since the Bekenstein-Hawking entropy of a

black hole is simply the ratio of its area to Newton’s constant, this directly leads to the

proposal that the information content of a region scales like the area, and hence the notion

of holography.

For more complicated gravitational theories, the entropy of a black hole is no longer

simply given by the area, but rather by the Wald formula 2.7 Following the same logic as

in [36], one is led to the idea that the information content of a given region of space time

is given by Wald’s formula, but now the integral should be taken over any closed surface,

not necessarily a horizon. It is in this information sense that the entropy S appears in the

formula 4.4 for the N -function, and not as a genuine entropy: at no point are we actually

coarse graining or integrating out the geometry behind the screen. In the following, by

abuse of language, we will refer to the (log of the) number of states as an entropy, even

though no such tracing over state has been necessarily made.

4.2 The effective phase space

Now consider the factor Ωeff. In a conformal relativistic field theory, the entropy of a

thermal state at a given temperature can be thought of as the product of the number of

available degrees of freedom, N , by the phase space volume Ω available to each one of

them. For instance, the entropy of a hot, large N , non-abelian plasma in D dimensions is

of the form

S = C ×N2VD−1T
D−1 ≃ N × Ω (4.6)

with N ≃ C and Ω ≃ N2VD−1T
D−1. Notice we have included the different gauge polariza-

tions in the definition of phase space. This means that N here counts the number of fields,

these fields consisting themselves of several components which tranform into each other

under global gauge transformations. The temperature acts a soft cut-off on the allowed

energy and momentum states, since for energies higher than ≃ T the probability of finding

such a state decays exponentially. We expect that the logarithm of the total number of

states, with IR and UV cut-offs, that can be constructed in a conformal field theory should

once again be of this form, but with T replaced by Λ, the momentum space cutoff.
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With these considerations, the number of degrees of freedom N available at some fixed

cut-off Λ is given by

N ≃ S

Ω

∣

∣

∣

∣

Λ

. (4.7)

Then it appears that Ωeff should be playing the role of an effective phase space at a given cut-

off, as defined by a fixed radial coordinate. In fact, inverting this logic, we should be able to

extract the cut-off from the expression for phase space. For the RG flow backgrounds 3.1,

we have

Ωeff =

(

L

lp

)d−2

× Vd−2 ×
(

eAA′
)d−2

(4.8)

This takes the form of a “gauge volume”, (L/lp)
d−2, times a real space volume Vd−2, which

alternatively acts an IR cut-off; from the remaining factor we can identity as the momentum

space cut-off:

Λeff = eAA′. (4.9)

It is interesting to notice that in [24] it was argued that in these backgrounds the field

theory cut-off should be roughly given by this expression. If our interpretation of Ωeff as a

phase space is correct, this would make this statement more precise.

For the general case, if we compute Kab = ∇anb we get

Kij = −hij

L

√

L2

r2
κ+ g(r). (4.10)

Then it follows that

Ωeff =

(

L

lp

)d−2 ∮

dd−2x
√
h

√

det

(

Kk
i K

j
k − κ δj

i

L2

r2

)

(4.11)

where the determinant should be taken over the (d−2) transverse directions where hij 6= 0.

Notice that the above has the structure ≃ Λ2 − m2, precisely as expected if we are to

interpret Ωeff as counting states. This strongly suggests that the dual field theory cut-off

scale is directly related with the extrinsic curvature Kab of a constant radial surface, as

defined by the vector na. In the particular set of geometries we are considering we can take:

Λd−2 =
√
hdet

(

Kj
i

)

. (4.12)

In this way, satisfyingly, the field theory momentum is directly associated with Kij , which

is the canonical momentum of the metric, associated with radial translations.

Notice there’s an alternative way of writing 4.11, using

Kk
i K

j
k − κ δj

i

L2

r2
= R jk

ik , (4.13)

where the implicit sum over k runs only over the transverse directions. In this way we

have connected the effective phase space volume with the Riemann curvature components

in the transverse space.
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4.3 Effective phase space and gravity as an entropic force

The flow equation 3.15 relates the variation of N with the gravitational field. At the same

time, from 4.4 we can relate N to the ratio of the entropy to a quantity we have interpreted

as a phase space. From these equations we can write

dS

Ωeff

=

(

L√
g

)d

dΨ + N d log(Ωeff) (4.14)

This is reminiscent of an equation found by Verlinde [25], relating the “depletion of energy

per bit” to the Newtonian potential (equation (3.16) in that reference). In this language

it would be more natural to work with Υ[g] instead of Ψ, using

Υ[g] = − 2

d− 2
LdΨ. (4.15)

The quantity Υ[g] is zero at the AdS boundary, and in the planar black hole case, equals

one at the black hole horizon, thus providing the coarse-graining variable mentioned in [25].

There are however two important differences with the above equation. The first is that we

interpret Ωeff as a phase space volume and not as a number of degrees of freedom. Secondly

there is an extra term in the above because the change in entropy is coming from moving

along the geometry, and not by adding extra matter to it as in [25]. One way of directly

deriving Verlinde’s formula is as follows. We consider varying the matter content in a given

region, keeping the phase space Ωeff fixed. This relates the variations in the rad-shift g and

r via d(r2g) = 0. This makes sense: if the holographic screen was precisely located at a

black hole horizon, adding a small mass would shift the position of the horizon swallowing

the screen, so we must shift its position at the same time. The condition above guarantees

that the screen would follow the horizon. The rad-shift g is fixed by the previous equation

that relates Υ[g] with the gravitational potential. By taking the variation of 4.15, and of the

entropy formulae A.13, A.19 subject to the constraint d(r2g) = 0, we indeed precisely find

dS

Ωeff

=

(

L√
g

)d

dΨ. (4.16)

Although expected, this does not trivially follow from 4.14 — in that equation the variation

is with respect to r keeping the mass fixed, whereas in the present case we vary the mass

and r keeping Ωeff fixed. As such, this is yet another indication that Ωeff plays an important

role in the holographic interpretation of the equations, and in particular in the possible

interpretation of gravity as an entropic force.

5 More on holographic phase space

In this section we shall take a new tack on an old proposal [12], that the number of degrees

of freedom holographically associated to a given surface is simply proportional to the area

of that surface divided by an appropriate power of the Planck length. Here we shall also use

the area of a surface as a basic ingredient, but we will interpret the result differently — we

propose that the the proper length divided by Planck length should actually be interpreted
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as a phase space volume — a number of states, not of degrees of freedom. This should be

taken as an alternative proposal for a gravitational expression for the phase space volume,

different from the Ωeff we have defined previously. We shall see that the present definition

leads to some suggestive results. In section 5.3 we will have more to say on the connection

between these two notions of phase space.

Let us then define the phase space volume associated with a region M as the area of

its boundary,

Ω =

∮

∂M

dA

ld−2
p

, (5.1)

and as an example, focus on a specific geometry, namely the vacuum AdS solution described

by the case κ = 0, g = f∞ of the metrics 2.6. Applying the above definition, with ∂M a

constant r, t, surface gives:

Ω =

(

L

lp

)d−2

Vd−2

( r

L2

)d−2
. (5.2)

In this expression we have the product of a volume Vd−2, on which the dual field theory lives,

by something with units of momentum, r/L2. It follows that the interpretation of Ω with

a phase space is consistent if we take r/L2 as the dual field theory momentum cut-off. The

remaining factor of L/lp accounts for the fact that phase space also includes gauge-group

polarizations. For instance in N = 4 SU(N) super Yang-Mills theory, (L/lp)
3 ≃ N2.

Let us go back to the more general geometry, and define, in analogy with the previous

section, a number of degrees of freedom Ndof, by taking

Ndof ≡
S

4πΩ
= 2

∂L
∂R rt

rt

. (5.3)

This is precisely the expression for the “surface density of degrees of freedom” which has

appeared in [13]. This further supports our interpretation of Ω as a phase space. In the

backgrounds 2.6 this reduces to

Ndof =
∑

k

(d− 2)k

d− 2k
ckg

k. (5.4)

It is apparent that Ndof 6= N . The extra factors of g in the denominator appearing in the

definition of N are crucial in order to obtain the flow equation 3.15; no such equation is

satisfied by Ndof.

As it stands, it is not immediately clear that this interpretation of Ω as a phase space

holds water. After all, the expression 5.2 is always the same, regardless of whether one is

considering a background with or without a black hole and different transverse space. But,

we expect that the phase space structure to be quite different for these. For instance, in

the global AdS there is a mass gap, and accordingly the available phase space should no

longer scale as the momentum. To see the differences between these geometries we need

to change coordinates. Since r has no immediate geometrical meaning, it is better to work

with the proper radial distance,

β =

∫ r

r0

dr′
√
grr, (5.5)
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where r0 is some IR cut-off. It should be taken as the place where the geometry ends,

which indeed for a black hole metric would be at the horizon r = r0. By definition β = 0

at this point. Also it is easy to see for asymptotically large r we have

β ≃ L log r/r0. (5.6)

In empty AdS, β is the logarithm of the dual field theory energy scale, and is the natural

quantity that parameterizes the RG flow. In the following we shall examine the behaviour

of Ω with β for a few different geometries. We will start by considering first the planar

and then the spherical horizon AdS-Schwarzschild black hole solutions. We also stick to

five-dimensions and Einstein gravity in what follows, though the lessons we shall derive

should apply to more general cases.

5.1 AdS-Schwarzschild black hole

The AdS-Schwarzschild black hole solution of Einstein gravity with a negative cosmological

constant is

ds2 =
L2 dr2

r2g(r)
+
r2

L2

(

−g(r)dt2 + dx2
)

(5.7)

with g(r) = 1 − (r0/r)
4. There is a horizon located at r = r0, and the temperature is

T = r0/πL
2. In terms of the proper distance β we have

r = r0
√

cosh(2β/L). (5.8)

According to our definition, the phase space volume corresponding to a given direction,

say x is given by

Ωx =
L

lp
×R× πT ×

√

cosh(2β) (5.9)

This is an intriguing result. If it weren’t for the square root, this would be (up to a constant

prefactor) the canonical partition function of a fermionic oscillator, or a two state system at

inverse temperature β. The square root indicates that we have here only half of a fermion.

Actually, we can rewrite:
√

cosh(2β) =
√

2 cosh(β)2 − 1 (5.10)

and in this form this precisely matches the partition function of an anyon harmonic oscil-

lator [37]. This is suggestive of an equivalence between a classical microcanonical partition

function, or phase space volume at a given cut-off, and a canonical partition function at

an inverse temperature β related to this cut-off.

Thinking of the two state system, or spin, we see that as we approach the black hole

horizon the β parameter goes to zero, i.e. the “temperature” goes to infinity and the

spin becomes completely randomized. Pushing this analogy further, let us compute the

“mean energy”:

〈E〉 = −d log Ω

dβ
= −√

grr
d log(

√
h)

dr
= habKab (5.11)
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with Kab the extrinsic curvature associated to the r foliation defined by the vector n =

(0,
√
grr, 0, 0, 0). Remarkably the mean energy is given by a natural geometric observable.

Similarly, the mean energy squared is

〈E2〉 =
1

Ω

d2Ω

dβ2
= −Rabcdn

anchbd. (5.12)

So at least some of the curvature components have a “thermodynamical” interpretation, if

we identify β as an inverse temperature. Finally, notice that we can write 〈E〉 as the sum

of three separate contributions

〈E〉 = −
d−2
∑

i=1

d log Ωi

dβ
≡ −

d−2
∑

i=1

Ei (5.13)

which can be understood as a sum of the average energies corresponding to each of the

(d − 2), in this case three, transverse directions. The quantity Ei, defined by d log Ωi/dβ

has an interesting meaning. It is telling us by how much the logarithm phase space volume

is changing when we change the RG parameter β. For the current geometry this gives

Ei =

√
g

L
. (5.14)

In the asymptotic AdS region, this simply a constant. This means that β and log Ω are

essentially the same. In this region, the RG flow coincides with the flow in scale. However,

as we approach the black hole horizon, this is modified dramatically. There, although the

β parameter is going to zero, the phase space volume Ω is becoming a constant. This

is intriguing, because at the horizon scale there is another quantity which is vanishing:

because of the deconfined nature of the dual field theory plasma, quantum correlations

vanish for scalar larger than 1/T . This suggests that β might have more to do with

correlations than with scale. We will offer some speculations on this in section 5.3.

5.2 Global AdS black hole

Now let us consider global AdS-black holes in Einstein gravity. These are described by

the metric

ds2 =
dr2

1 + r2

L2 g(r)
− r2

L2

(

1 +
r2

L2
g(r)

)

dt2 +
r2

L2
dS2

3 (5.15)

with dS3 is the volume element on the three sphere, dS3 = sin2(θ) sin(ψ)dθ dψ dφ. When

g(r) = 1 we have AdS in global coordinates. In this case the phase space expression is

given by

Ω =

(

L

lp

)3 ∫

dS3 =

(

L

lp

)3

VS3

( r

L

)3
. (5.16)

One might think that the interpretation of the r/L factor is the angular momentum scale,

in analogy with the previous case. This however cannot be true, since we know there is

a mass gap in the dual theory. Accordingly the number of states must go to zero at the
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mass gap scale. This is exactly borne out by our expression. To see this first notice that

in terms of β we now have

r

L
= sinh

(

β

L

)

=

√

cosh
(

2β
L

)

− 1

√
2

(5.17)

Interestingly we now get something which resembles the partition function of a fermionic

harmonic oscillator. For large β the above reduces to β ≃ L log(r/L). However, for

small β the extra term under the square root becomes important. The above should be

interpreted as

r

L
=
L

2

√

Λ2 −m2 (5.18)

where Λ is the energy scale L−1

√

2 cosh
(

2β
L

)

, and m =
√

2/L is the mass gap. Our

expression for the phase space, r/L, counts the number of states, as it should. Also, the

relation between the energy scale and the β parameter is non-trivial. Indeed it is the same

as in the Poincaré patch black hole replacing r0 with L. This is because, analogously

to before, the correlations go to zero as one approaches the scale of the mass gap. The

expression for the energy scale can also be written in terms of r as

(LΛ)2 = 1 + 2
r2

L2
(5.19)

When there’s a black hole present, we have g(r) = 1− r4
0

r4

(

1 + L2

r2
0

)

, and it is easy to check

that there is a horizon at r = r0. The temperature is given by

T =
1

xπL

(

1

2
+ x2

)

(5.20)

with x ≡ r0/L. Notice that Tc =
√

2/πL is the critical temperature, below which no black

hole solution exists.

We now have

r

L
=

√

(

1

2
+ x2

)

cosh

(

2β

L

)

− 1

2
(5.21)

Curiously, in this case the geometry ends at the energy scale

Λ2 =
2

L2
(1 + 2x2) =

1

2
(2πT )2(1 +

√

1 − Tc/T ), (5.22)

which is lower than the scale set by T . Following the reasoning at the end of the previous

subsection, we expect correlations to die off not at scale 1/T , but at a somewhat larger scale.

This is confirmed by the fact that in this geometry quasinormal modes have frequencies

whose imaginary part scales as r0 < T .
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5.3 Thermodynamics of entanglement?

In the AdS/CFT correspondence, a given geometry corresponds to some state in the dual

field theory. In this state there is a high degree of entanglement, as evidenced by the

extremely large value of two point functions of stress tensor correlators. More generically,

this amount of entanglement depends on the scale at which one is probing the system. For

instance, a gapped state presents no correlations beyond a distance of order of the inverse

mass. Similarly, a deconfined finite temperature system will also present no correlations

for distances larger than 1/T . So clearly the amount of entanglement depends on the

scale that we’re considering. We need then to describe the state at different scales. A

proposal for how to do this on the lattice has been made in references [38, 39], and has

been named the Multi-Scale Entanglement Renormalzation Ansatz (MERA). In this setup

one must not only coarse grain but disentangle nearby degrees of freedom as one performs

the renormalization group flow. As we do this, the density matrix describing the system

stops being pure and gradually becomes more and more mixed. If the number of degrees of

freedom being coarse grained are sufficiently entangled with the remainder of the system,

this acts as if we were coupling the system to a finite temperature bath. It is tempting to

identify such a temperature with 1/β.

With this interpretation, it is interesting to consider how the phase space changes as

a function β. This piece of information is captured by:

E =
1

d− 2

d log Ω

dβ
. (5.23)

This is the same E as in 5.14, where we have dropped the index i by assuming isotropy.

The “energy” E seems telling us something about how many degrees of freedom are active

at a given scale, since it characterizes the relationship between β and scale, the latter being

given essentially by Ω. For instance, in pure AdS we find

Ω ≃ e(d−2)β ⇒ E = 1/L (5.24)

This means that in this case, performing a scaling transformation on Ω corresponds simply

to adding a constant to β, which then counts the number of e-folds , or RG transformations.

The situation becomes more complicated, but also much more interesting in the AdS-

Schwarzschild geometry, where we get

E =
1

L
tanh(2β/L) (5.25)

Keeping with our interpretation, we see that at the black hole horizon something peculiar

happens, since varying the scale by an infinitesimal leads to a finite variation in β. This

means there must be a very large concentration of degrees of freedom at the horizon. This

interpretation is therefore in agreement with our finding of a divergence in N (r) at the

black hole horizon.

The quantity E can be used to relate the two definitions Ω and Ωeff. These two are

quite different. For instance, in the planar black hole, from Ωeff we read off that the scale

corresponding to the horizon is proportional to g(r0), and therefore it vanishes; whereas
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from Ω we get a finite scale corresponding to the temperature. Using E however we can

relate the two notions of cut-off:

Ωeff

Ω
=

(

Λeff

Λ

)d−2

, Λeff = Λ ×√
g = Λ(LE). (5.26)

Using this we can write

N =
Ndof

(LE)d−2
, (5.27)

which establishes the relation between the N function and the proposal of [13].

6 Discussion

In this paper we have constructed a new object, the N -function which seems to generalize

the concept of a holographic c-function to geometries not usually associated with renor-

malization group flows, namely black holes. We have found that the N -function can be

written as

N =
S

4πΩeff

(6.1)

the ratio of an entropy to an effective phase space volume, the latter being indirectly related

to the area of a surface in Planck units, and the former being given by Wald’s entropy

formula. On domain-wall solutions interpolating between two different AdS spaces with

different radius but same dimensionality, holographically interpreted as renormalization

group flows, the N - function provides a holographic c-function for Lovelock theories of

gravity. On black hole geometries, N interpolates between the Euler anomaly at the AdS

boundary and a quantity directly proportional to the black hole entropy at the horizon.

These results suggest that the N -function is related to the number of effective degrees of

freedom holographically describing a given region of spacetime.

In the context of Lovelock theories of gravity we have found that the equation of

motion for the background can be recast as a flow equation for the function N , 3.15 which

determines its variation depending on the local gravitational field. The existence of such

a simple equation is by all means non-trivial, and this has been our guide in defining N .

Although we have not shown it here, we have checked that in quasi-topological gravity,

both cubic [40–43] and quartic [44] , this equation is also satisfied, so this does not seem

to be an accident relevant only to Lovelock theories of gravity.

Another interesting class of theories to consider, are new massive gravity and its

cousins [8, 10, 45, 46], which exist only in three dimensions. In the following we shall

consider as an example the new massive gravity case, although our results are generic. For

new massive gravity we have the action

S =
1

lp

∫

d3x
√−g

(

R+ 2 + 4λ

(

R2
ab −

4

3
R2

))

(6.2)

It is known that such theories support a holographic c-function. Also, exact black hole

solutions can be found with metric

ds2 = −r
2g(r)

L2f∞
dt2 +

L2dr2

r2g(r)
+
r2

L2
dx2, (6.3)
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and g(r) = f∞(1− r20/r
2), with f∞ satisfying a simple polynomial equation, similar to 2.2.

We define the N -function as

N =
S

4πΩeff

=
1 + 2λf∞√

g
= c× lp

L

√

f∞
g
. (6.4)

Although for these theories, a simple equation for the flow of N is hard to find, it is clear

that with the black hole solution we have provided the above is monotonously increasing

towards the IR, where it diverges, analogous to our results for the planar black hole in

Lovelock gravity. Interestingly, the numerator in the above matches the central charge c

of the theory up to a factor of L/lp. The flow of N in this case is trivial, since only the

denominator is changing. In a sense this is telling us why black hole entropy for three-

dimensional theories of gravity is directly determined by the dual CFT central charge —

it is because the N -function is trivial. For higher dimensional gravity theories, such as

Lovelock theories, the flow of N is non-trivial, and in general there is no direct connection

between the value of the Euler anomaly and black hole entropy.

In section 5 we have argued that the natural parameter parameterizing the renormal-

ization group flow from the gravitational point of view, is the proper radial distance β,

and we have shown that gravitational quantities such as curvature seem to have a thermo-

dynamic interpretation when β is taken to be an inverse temperature. We have suggested

that β is possibly related to the fact that if there is sufficient entanglement between low

and high scales, the latter act as a finite temperature bath from the point of view of the

latter. As far as we know, entanglement entropy calculations haven’t been performed in

momentum space. While such a calculation yields zero for free field theories, it is non-zero

when interactions are turned on. The challenge of course is whether one can say anything

useful about it for strongly coupled field theories, and for this AdS/CFT should provide

clues. It has been suggested that real space entanglement entropy can be evaluated in this

context by computing the area of minimal surfaces [47, 48] (see [49] for a recent review).

Since we know that the radial coordinate in AdS is related to scale, the natural guess for

what this momentum space entanglement entropy is, is simply what we have defined as S,

the Wald entropy formula evaluated on a constant radial surface. It would be interesting

to develop this further.

The main unresolved issue in this paper is a proper understanding of the divergence

of the N -function. While for planar black holes, this divergence can be more or less hand-

waved away, in global AdS this poses a much tougher problem, which any interpretation of

N must provide. It is important to notice however, that regardless of any interpretation,

the fact that N satisfies the simple equation 3.11 suggests that it is a quantity worthy

of study, even for the global AdS geometries. In other words, this divergence is not an

artifact of some artificial definition of N : rather this definition was arrived at by directly

considering the equations of motion, which compels us to take it seriously.

With this in mind, we should ask ourselves what is so special about the point where

g = 0? At this point the N function matches that of an equivalent planar black hole.

This is because the curvature in the (d − 2) spatial directions is given by −g(r)/L2, and

is therefore vanishing at that point, beyond which it flips sign, becoming positive. In
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the spherical black hole, the divergence at finite radius becomes closer and closer to the

black hole horizon when we increase the temperature, or cranking up r0. The curvature

in the (d − 2) spatial directions is given by −g(r)/L2, and at the horizon this is −1/r20 .

Therefore by increasing the temperature, the g = 0 surface and the horizon coalesce, and

N (r0) approaches N (g = 0), and therefore diverges. So in a sense the divergence at the

horizon found in the planar black hole case, can be thought of as the infinite temperature

divergence of the spherical case, where the horizon is becoming larger and flatter.

A possible clue is that at the g = 0 point, the effective phase space volume Ωeff vanishes,

and beyond this point it becomes imaginary. Using equation 4.11, this is precisely the point

where the effective momentum scale equals the gap scale, so it makes sense that Ωeff vanishes

there. If we were in empty AdS, the geometry would stop precisely at this point. In the

black hole case this is not true, and therefore it is likely that the interpretation of Ωeff as an

effective phase space breaks down. Perhaps it doesn’t make sense to talk about N beyond

the g = 0 point; or more likely its divergence is signalling some fundamental change in

the nature of the holographic degrees of freedom responsible for describing the geometry

beyond that scale.

Finally, the work in this paper suggests that the study of renormalization group flows

in non-trivial (i.e. not vacuum) states of a conformal field theory is worthy of study, and

presents a small step in this direction. That this is an interesting problem is directly

suggested by AdS/CFT black hole background solutions. There is by now strong evidence

that there is an emergent conformal symmetry at black hole horizons (see e.g. [18]), which

is realized in full for extremal charged black holes possessing a near horizon AdS2 region.

This means that there should be interesting, non-vacuum RG flows between CFT fixed

points with different dimensionality. It is possible that the divergence of N might be

related to this dimensionality reduction, where spatial field modes are turned into a large

set of new fields. We leave this and many other questions for future consideration.
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A Lovelock theories and black hole solutions

A.1 Lovelock gravity

In this section we provide a brief review of Lovelock theories of gravity and some of their

solutions. We will mostly follow a notation consistent with [23]. These theories are the
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most general second order gravity theories which are also free of ghosts when expanding

about flat space [19, 20]. In terms of differential forms we can write the action5 as

Ig =
1

ld−2
p L2

K
∑

k=0

ck
(d− 2k)(d − 3)!

∫

R(k) . (A.1)

Here L is some length scale related to the cosmological constant, ck is an arbitrary set of

dimensionless couplings and a K is a positive integer restricted to K ≤
[

d−1
2

]

. R(k) is the

exterior product of k curvature 2-forms with the required number of vierbeins to construct

a d-form,

R(k) = ǫf1···fd
Rf1f2 ∧ · · · ∧Rf2k−1f2k ∧ ef2k+1···fd , (A.2)

where ef1···fk is a short notation for ef1 ∧ . . . ∧ efk . The zeroth and first term

in (A.1) correspond, respectively, to the cosmological constant and the Einstein-Hilbert

lagrangian, with c0 = c1 = 1. This choice implies the cosmological constant is given

by Λ = −(d− 1)(d− 2)/L2.

In the first order formalism, the action leads to two equations of motion, for the

connection 1-form and for the vierbein. The variation of the action with respect to the

connection gives an equation which is proportional to torsion, which we set to zero. By

varying with respect to the vierbein we obtain

ld−2
p L2(d− 3)!Ea = ǫaf1...fd−1

∑

k

ck R
f1f2 ∧ . . . ∧Rf2k−1f2k ∧ ef2k+1...fd−1 = 0. (A.3)

A.2 Black hole solutions

We take the following metric ansatz

ds2 = −(κ+ F (r))dt2 +
L2dr2

κ+G(r)
+
r2

L2
(dΣd−2

κ )2 (A.4)

with dΣ is the volume element for the space with unit radius and constant curvature

κ = −1, 0, 1. For the vierbein we choose

et̂ =
√

F (r)dt, er̂ =
1

√

G(r)
dr, eî =

r

L
ǫi (A.5)

where hatted indices indicate flat coordinates. The ǫi describe a vierbein for the constant

curvature space Σ. In these coordinates the spin connection and curvature two forms are

5We employ differential forms, namely the vierbein ea, and spin connection, ωa
b, 1-forms, out of which

we can construct the Riemann curvature, Ra
b, and torsion, T a, 2-forms. This is done via the equation

R
a
b = d ω

a
b + ω

a
c ∧ ω

c
b =

1

2
R

a
bµν dx

µ
∧ dx

ν
, T

a = d e
a + ω

a
b ∧ e

b
.
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easily computed. We obtain

Rt̂r̂ =

(

(κ+G)F ′2

4(κ + F )2
− F ′G′

4(κ + F )
− 1

2

(κ+G)F ′′

κ+ F

)

et̂ ∧ er̂

Rr̂î = −LG
′

2r
er̂ ∧ eî,

Rt̂̂i = −L(κ+G)F ′

2r(κ+ F )
et̂ ∧ eî,

Rîĵ = −L
2G

r2
eî ∧ eĵ (A.6)

Going back to the equation of motion A.3 and looking at the t component we obtain

L2ld−2
p (d− 3)!Et =

∑

k

ck(d− 2)!

[

2k Rr̂î
r̂î

(

Rîĵ

îĵ

)k−1
+ (d− 2k − 1)

(

Rîĵ

îĵ

)k
]

=
∑

k

(−1)k ck
(d− 2)!

2
r−(d−2) d

dr

[

rd−1

(

G(r)L2

r2

)k
]

(A.7)

Defining G(r) = r2

L2 g(r) and

Υ[g] ≡
∑

k

(−1)kckg
k (A.8)

we obtain

Et =
(d− 2)

2L2ld−2
p

[

(d− 1)Υ[g] + Υ′[g] rg′
]

=
(d− 2)

2L2ld−2
p

r−(d−2) d

dr

(

rd−1Υ[g]
)

. (A.9)

The r equation is similarly deduced. We get

L2ld−2
p (d− 3)!Er =

∑

k

ck(d− 2)!

[

2k Rt̂̂i
t̂̂i

(

Rîĵ

îĵ

)k−1
+ (d− 2k − 1)

(

Rîĵ

îĵ

)k
]

. (A.10)

Using expressions A.6 and replacing F (r) = r2

L2 f(r) one easily finds

Er =
(d− 2)

2L2ld−2
p

[

(d− 1)Υ[g] + Υ′[g]

(

κL2 + r2 g

κL2 + r2 f
rf ′ + κ

f − g

κL2 + r2 f

)]

. (A.11)

Taking the difference of the two equations we find

Et − Er =
(d− 2)

2ld−2
p

Υ′[g]

κL2 + r2f

[

κL2

r

(

r2f − r2g
)

′

+ r3(gf ′ − fg′)

]

. (A.12)

This implies that in the absence of matter or for matter saturating the null energy condition,

we must have g(r) = f(r).
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A.3 Evaluation of the Wald formula

The Wald formula is given by

S = −2π

∫ √
h

∂L
∂Rabcd

ǫabǫcd (A.13)

On the background A.4 we choose constant r, t surfaces, so that the surface binormals ǫab

only have non-zero components ǫrt =
√−grrgtt. We then get

S =
8π

ld−2
p

Vd−2

( r

L

)d−2 ∂L
∂R rt

rt

(A.14)

Going back to the action A.1, we write it in tensor notation:

Ig =
1

L2ld−2
p

K
∑

k=0

∫

ddx
√−g

(

nk ck δ
a1...a2k

b1...b2k
Rb1b2

a1a2
. . . R

b2k−1 b2k
a2k−1a2k

)

, (A.15)

with nk = (d−2k−1)!
2k(d−3)!

. With this action we find

∂L
∂R rt

rt

=
1

L2ld−2
p

K
∑

k=1

k nk ck δ
i1...i2k−2

j1...j2k−2
Rj1j2

i1i2
. . . R

j2k−3 j2k−2

i2k−3i2k−2
(A.16)

Since in the spatial directions ik we have

Ri1i2
j1j2

= −g(r)
L2

(

δi1
j1
δi2
j2
− δi2

j1
δi1
j2

)

(A.17)

and using the identity (ik indices run over (d− 2) values):

δ
i1...ikik+1...in
i1...ikjk+1...jn

=
((d − 2) − n+ k)!

((d− 2) − n)!
δ
ik+1...in
jk+1...jn

(A.18)

we get

∂L
∂R rt

rt

=
1

2L2ld−2
p

K
∑

k=1

(d− 2)k

d− 2k
ck(−g)k−1 (A.19)

B A Wald formula for the Euler anomaly for generic theories of gravity

Consider a general gravity theory supporting an AdS vacua in d dimensions, with d odd.

The holographically dual field theory is conformal on a flat metric, but anomalies break

conformal invariance on a curved background. Generically such an anomaly is of the form

〈T a
a 〉 = (−1)D/2 AEd−1 +

∑

bkC
k + total derivatives. (B.1)

Here Ed−1 is the d− 1-dimensional Euler density and Ck are some contractions of k Weyl

tensors. The computation of these anomalies on the gravitational theory was first ac-

complished by [50, 51]. In [52] it was shown that the Euler anomaly as given by the A

coefficient, can be simply computed by evaluating the gravitational lagrangian on-shell on
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an AdS background and considering the coefficient of the leading divergent piece. Here we

shall show how this is related to the Wald formula.

We consider a general higher derivative gravity theory with action

S =

∫

ddx
√−g(Lg + Lm),

Lg =
∑

k

L(k). (B.2)

Here Lm is the matter lagrangian and we decompose the gravitational lagrangian Lg ac-

cording to the number of curvatures each term possesses, so that L1 has one curvature, L2

has two, etc. The above action leads to the equation of motion

− 2∇a∇bX
acbd +XaefcR d

aef +
1

2
gcdLg +

∂L
∂gcd

= T cd (B.3)

where T cd is the matter sector stress tensor and

Xabcd =
δS

δRabcd
. (B.4)

Now assume we have an AdS background with some radius,

ds2 =
L2dr2

f∞r2
+
r2

L2
(−dt2 + dx2) (B.5)

In these circumstances we must have T cd = −1
2g

cdLm, and all covariant derivatives vanish.

Taking the trace of the equation of motion we find

∑

k

(

kLk +
d

2
Lk − 2kLk)

)

+
d

2
Lm = 0 (B.6)

This implies

XabcdRabcd =
∑

kLk =
d

2
(Lg + Lm) (B.7)

This tells us that the on-shell lagrangian on AdS is related to Xabcd. We also have

Xabcd = (gacgbd − gbcgad)Xrt
rt, (B.8)

and therefore we conclude

Lg + Lm =
4

d
R

δS

δRrt
rt

(B.9)

This is very similar to Wald’s entropy formula. In fact, it is now straightforward to verify

that the A anomaly coefficient (with a suitable normalization) is given by

A =
1

2

∂Lg

∂Rabcd
ǫabǫcd (B.10)

where ǫrt =
√−grrgtt with all other components zero is a spacelike surface binormal.

In particular, for Lovelock theories of gravity, we can use equation A.19 to get

A =

(

L

lp

)d−2
∑

k
(d−2)k
d−2k ck(−f∞)k−1

f
(d−2)/2
∞

. (B.11)

This result is obtained by picking the Poincaré patch of AdS as the background: in A.4 we

take κ = 0, F = r2

L2 , G = r2

L2 f∞, corresponding to an AdS space of effective radius L/
√
f∞.
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