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1 Introduction

In recent years much progress has been achieved in the classification and construction

of supersymmetric flux compactifications [1–3]. This is largely due to the fact that, at

least for type II supergravities, supersymmetry allows to look at first order differential

equations, which together with the Bianchi identities for the fluxes, imply the solutions of
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the ten-dimensional equations of motion [4–6]. A natural frame to analyse backgrounds

with N = 1 supersymmetry is provided by generalized complex geometry (GCG) [7, 8],

which was developed concurrently with the progress on the physics side of the problem. In

this formalism, the natural variables are a certain combination of globally defined even or

odd differential forms, Φ±, called pure spinors, and the supersymmetry conditions amount

to a set of differential equations for such spinors. For N = 1 compactifications to four-

dimensional Minkowski space these are

dH(e2A−φΦ1) = 0 ,

dH(eA−φ ReΦ2) = 0 ,

dH(e3A−φ ImΦ2) =
|a|2
8

e3A ∗ λ(F ) . (1.1)

Φ1 = Φ± and Φ2 = Φ∓ for IIA/IIB , where + and − denote even and odd forms, respec-

tively. φ is the dilaton and |a|2 = ||Φ±|| is the norm of the pure spinors,1 which is fixed to

|a|2 = eA. F denotes the sum of the RR fluxes on the internal manifold

IIA : F = F0 + F2 + F4 + F6 , (1.4)

IIB : F = F1 + F3 + F5 , (1.5)

and is related to the total ten-dimensional RR field-strength F (10) by

F (10) = F + vol(4) ∧ λ(∗F ) , (1.6)

where vol(4) is the warped four-dimensional volume form with warp factor e2A. The NS

flux H enters the equations through the differential dH = d − H∧.

The first equation in (1.1) requires the existence on the manifold of a closed pure spinor,

and the integrability of the associated generalized complex structure [9, 10]. Spaces admit-

ting a closed pure spinor are generalized Calabi-Yau (GCY). This is, therefore, a necessary

condition for preserving supersymmetry. In addition, we should require the existence of a

second compatible pure spinor2 whose real part is closed, and whose imaginary part is the

RR field. The metric in the internal space is determined by the two pure spinors.

One can see easily that the RR equations of motion automatically follow from the

supersymmetry conditions, provided that no NS source is present (dH = 0). Differentiating

1To define the norm of the pure spinors we introduce the Mukai pairing of two polyforms as the top

form:

〈X1, X2〉 = (X1 ∧ λ(X2))|top , (1.2)

where λ acts on any p-form Ap as the complete reversal of its indices: λ(Ap) = (−1)
p(p−1)

2 Ap. Then we can

define the norm of Φ± as 8〈Φ±, Φ±〉 = −i||Φ±||2vol. We take the following convention for the Hodge star:

∗ (dxµ1 ∧ . . . ∧ dxµp) =

p

|g|
(d − p)!

(−1)(d−p)p ǫµ1..µp µp+1..µd gµp+1νp+1 ..gµdνd
dxνp+1 ∧ . . . ∧ dxνd , (1.3)

with d the dimension of the space, |g| the determinant of the metric. For ǫ we choose the convention

ǫ1...d = 1.
2The existence of a pure spinor reduces the structure group on TM ⊕ T ∗M to SU(3,3). If the manifold

admits a second compatible pure spinor the structure group is further reduced to SU(3)×SU(3).
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the last equation in (1.1), one indeed recovers the RR flux equations of motion

(d + H∧)(e4A ∗ F ) = 0 . (1.7)

In a sense, up to this point, finding a supersymmetric string background is a perfectly

algorithmic procedure. Indeed, starting from a generalized CY structure, i.e. a twisted

closed pure spinor, one has to find a second compatible pure spinor, and calculate the RR

flux by acting on the latter with (d− H∧). In order to promote a configuration satisfying

the supersymmetry conditions to a full solution, one has to check the Bianchi Identities

(BI) for all fluxes

d(F ) = δ(source) ,

dH = 0 . (1.8)

Because of tadpole cancellation, the sources charged with respect to RR fields need to have

an overall negative tension, and hence the dominant charge is that of an O-plane. This

is the final step in the search for N = 1 vacua on Minkowski. For AdS4 supersymmetric

solution, a similar procedure can be defined.

For non-supersymmetric backgrounds, the situation is much more complicated, since,

a priori, first order equations such as (1.1) are not anymore valid. Recently a procedure has

been proposed in [11] that generalizes to non-supersymmetric backgrounds the first order

pure spinor equations (1.1). The idea of [11] is to decompose the supersymmetry breaking

terms in (1.1) in the Spin(6,6) basis constructed from the pure spinors. For instance, for

Minkowski compactifications, the modified first order equations are

dH(e2A−φΦ1) = Υ ,

dH(eA−φ ReΦ2) = ReΞ ,

dH(e3A−φ Im Φ2) −
|a|2
8

e3A ∗ λ(F ) = ImΞ , (1.9)

where schematically

Υ = a0Φ2 + ã0Φ2 + a1
mγmΦ1 + a2

mΦ1γ
m + ã1

mγmΦ1 + ã2
mΦ1γ

m

+amnγmΦ2γ
n + ãmnγnΦ2γ

m , (1.10)

Ξ = b0 Φ1 + b̃0 Φ1 + b1
mγmΦ2 + b2

mΦ2γ
m + bmnγmΦ1γ

n + b̃mnγnΦ1γ
m . (1.11)

In the particular case of an SU(3) structure, this decomposition is equivalent to the

expansion of (1.1) in the SU(3) torsion classes.

Equations (1.9) rely on the assumption that the four-dimensional space-time admits

Killing spinors and that the supersymmetry breaking is due to the internal spinors only.

This applies of course to Minkowski and Anti de Sitter backgrounds, but not for de Sitter

solutions or cases when supersymmetry is broken in four-dimensions.

The purpose of the paper is twofold. On one side, we would like to make some first

steps towards determining a set of first order equations also for configurations where four-

dimensional supersymmetry is broken. In particular, we shall propose a first order equation
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similar to the last equation in (1.1), so that the flux equations of motion (1.7) follow auto-

matically. On the other side, we would like to reexamine the problem of finding de Sitter

vacua directly in ten-dimensions and focus only on simple conservative compactifications

(i.e. “geometric” set-up).

We will consider de Sitter vacua in IIA supergravity. In this context, several no-go

theorems and ways of circumventing them have been proposed [12–20]. In particular, in

presence of O6/D6 sources, a minimal requirement to evade the no-go theorem [14] is

to have a negatively curved internal manifold and a non-zero F0 (Romans mass param-

eter) [12, 16, 18]. Therefore, we will focus on type IIA configurations with non-zero NS

three-form and RR zero and two-forms. Moreover, we assume that all the sources (there

may be intersecting ones) are space-time filling and are of the same dimension p = 6.

Tracing the four-dimensional part of Einstein equation and using the dilaton equation

of motion, one can show that the four-dimensional curvature and the “source term” can

be written as

R4 =
2

3

[
−R6 −

g2
s

2
|F2|2 +

1

2
(|H|2 − g2

s |F0|2)
]

, (1.12)

gs
T0

p + 1
=

1

3

[
−2R6 + |H|2 + 2g2

s (|F0|2 + |F2|2)
]

, (1.13)

where, for simplicity, we have taken constant dilaton, eφ = gs, and no-warping.3

Further simplifications are possible when one assumes that the sources preserve the

supersymmetry of the bulk; this condition is usually expressed in terms of an equation in-

volving the bulk supersymmetry parameters and the world-volume chiral operator entering

the κ-symmetry transformations. Up to terms quadratic in the κ-symmetry condition, one

can always rewrite the brane world-volume action as the pullback of the non-integrable

pure spinor

(
i∗[Im Φ2] ∧ eF

)
=

|a|2
8

√
|i∗[g] + F|dΣx , (1.16)

where i denotes the embedding of the world-volume into the internal manifold M , g is the

internal metric and F is the gauge invariant combination of the field strength of the world-

volume gauge field and the pullback of B. For sources preserving the supersymmetry of the

bulk, one can then replace the DBI action by the left-hand side of (1.16). The equations

of motion derived from both actions are the same, since the corrections would be linear in

3In general, with non-trivial dilaton and a ten-dimensional metric of the form

ds2 = e2A(y)gµν(x)dxµdxν + gmn(y)dymdyn , (1.14)

equation (1.12) becomes

e−2AR4 =
2

3

h

− R6 − e2φ

2
|F2|2 +

1

2
(|H |2 − e2φ|F0|2)

i

−8∇2A + 20|∂mA|2 − 8

3
∇2φ +

8

3
|∂mφ|2 − 32

3
gmn∂mA∂nφ . (1.15)

All derivatives are taken with respect to the coordinates on M . We shall return to the discussion of the

warp factor and the dilaton.
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the κ-symmetry condition, and then vanishing in the supersymmetric case. In particular,

one can show that the world-volume equations of motion are then automatically implied by

the last equation of (1.1). So the condition (1.16) together with the last equation of (1.1)

give (generalized) calibrated sources, i.e. their energy density is minimized [6, 21–23].

For such supersymmetric configurations, the four- and six-dimensional traces of the

source energy-momentum tensor and the source term in the dilaton equation are all pro-

portional to each other, and one arrives at

R4 =
2

3
(g2

s |F0|2 − |H|2) , (1.17)

R6 +
1

2
g2
s |F2|2 +

3

2
(g2

s |F0|2 − |H|2) = 0 , (1.18)

together with eq. (1.13). The last equation is just a constraint on internal quantities, while

the two others fix R4 and the source term T0. From these two equations we recover the

minimal requirement of having F0 6= 0 and R6 < 0. In practice, however, this is not enough

to find a de Sitter vacuum. In particular, we can see that F0 alone can give a positive value

to the cosmological constant, and adding more fluxes, F4 and F6, does not help since they

give negative contributions. Indeed, up to date, all known examples of stable de Sitter

vacua require some additional ingredients such as KK monopoles and Wilson lines [15],

non-geometric fluxes [24, 25], or α′ corrections and probe D6 branes [26]. In this paper,

we will work in ten dimensions and mainly focus on classical geometric compactifications.

Since we are interested in non-supersymmetric backgrounds, there is a priori no rea-

son to impose that the sources preserve the bulk supersymmetry. The condition (1.16)

could therefore be violated. To do so, we make in this paper the following proposal: we

replace (1.16), in analogy with (1.9) where the violation of the bulk supersymmetry con-

ditions is encoded in the general polyforms Υ and Ξ, by

(
i∗[Im X−] ∧ eF

)
=
√
|i∗[g] + F|dΣx , (1.19)

where X− is an odd polyform given by a general expansion similar to Υ. For supersym-

metric configurations, X− reduces to 8Φ−, but in general, it is no longer a pure spinor. As

discussed, such a replacement for sources preserving bulk supersymmetry is correct up to

quadratic terms in the κ-symmetry condition, and corrections to the equations of motion

derived from it will vanish linearly if the condition holds. In our case the structure of the

corrections is not explicit, and we cannot conclude that the equations of motion derived

from left-hand side of (1.19) are the same as those derived from DBI. We will thus pro-

ceed as follows: we first find solutions using the equations derived from the left-hand side

of (1.19) and then we will check whether these are solutions to the equations derived from

the standard DBI action.

An advantage of replacing DBI by the pullback of a form from the bulk is that it

is actually easier to take the variation with respect to the various fields, in particular

the bulk ones. Moreover the variation of the left-hand side of (1.19) with respect to the

metric will lead to interesting consequences for de Sitter solutions: new terms are generated

in the energy momentum tensor which help to lift the cosmological constant to positive
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values (see further in (1.24)). This is the main motivation for using this proposal, but a

full understanding of it should be provided in future work. One possible interpretation is

that such sources could be thought as standard D-branes or O-planes but their embedding

into space-time (here into M) is modified. While for supersymmetric configurations the

geometry of the subspace wrapped by the source is encoded in Im Φ2, here it would be

encoded in the more general expansion ImX−, of which Im Φ2 is only one possible term.

Therefore, the breaking of bulk supersymmetry seems to come from allowing more general

geometries for the wrapped subspaces, and the new terms in the energy momentum tensor

could come from the non standard embedding, in particular a dependence of the embedding

functions on the metric moduli.

Since the bulk supersymmetry is broken, we could as well modify (1.1) and, in view

of (1.19), we propose here the following generalization of the first order conditions:

dH(e2A−φ ReX−) = 0 , (1.20)

dH(e4A−φ Im X−) = c0e
4A ∗ λ(F ) , (1.21)

where c0 is a positive constant fixed by the parameters of the solution. Hence the intro-

duction of X− allows, as for the supersymmetric case, to trade the RR equations of motion

for first order equations (clearly (1.7) follows by differentiating (1.21)), while, in addition,

it helps via (1.19) to solve the internal Einstein equation. This is a first step towards

developing a more systematic procedure to find non-supersymmetric backgrounds.

For the NSNS fields, we will check explicitly that our solution is a solution to the

equations of motion derived from DBI, making use of a dependence of the embedding

functions on the metric moduli. What remains are the world-volume fields (note the F
will be trivial for us). Let us comment on their equations. As mentioned previously, for

sources preserving bulk supersymmetry, a world-volume equation of motion, obtained by

varying (1.16) augmented by the WZ terms, turns out to follow simply from a partial

pullback of the bulk pure spinor equation (1.1). Then the minimization of the world-

volume energy is automatic [21, 22]. The equations of motion derived from the left-hand

side of (1.19) should also be compared with the partial pullback of (1.21). We shall

denote the transverse differentiation by ∂α and a flux with all but one index pulled back

to the world-volume by i∗[F ]α. Neglecting the world-volume gauge fields, we can write the

resulting equation as

∂α

(
i∗[e4A−φ Im(e−BX−)]

)
− i∗[e4Ae−B ∗ λ(F )]α = 0 . (1.22)

Comparison with the components of (1.21) gives

(c0 − 1) i∗[e−B ∗ λ(F )]α = 0 . (1.23)

In the supersymmetric case, where we replace X− by Φ−, c0 = 1 and the equation is

automatically satisfied. Here we will consider solutions with a vanishing partial pullback

i∗[e−B ∗ λ(F )]α, so the world-volume equations derived from the left-hand side of (1.19)

will be satisfied, making the energy of our sources extremized. We will also check that

our solution satisfies the equations of motion obtained by the variation of the standard

DBI+WZ action.

– 6 –
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The strategy to find a non-supersymmetric solution to our proposed action is the

following. We start with one particular solution to (1.1), which is a supersymmetric com-

pactification of IIA on a solvmanifold labeled s 2.5. The solvable algebra is given by

(q135, q245,−q215,−q125, 0, 0). The solution involves intersecting O6 planes (and possi-

bly D6 branes - depending on the choice of parameters). Due to the general problems in

constructing localized intersecting branes, the sources are smeared, and hence the model

would suffer from general criticism [27]. It does have some convenient features though,

and it serves as a good illustration to the method we would like to propose. We shall

return to the question of localization and to the possibility of incorporating warp factor

and non-constant dilaton in the paper. For now, without further apologies, we shall use

the s 2.5 model as a point of departure for our non-supersymmetric construction.

s 2.5 is a special case of a more general solvable algebra (q1(p25 + 35), q2(p15 +

45), q2(p45 − 15), q1(p35 − 25), 0, 0). It is then natural to see whether the correspond-

ing solvmanifold also admits solutions. A natural ansatz would be generalizations of the

supersymmetric solutions on s 2.5. To do so, we shall extend to solvmanifolds the twist

transformation worked out in [28] for nilmanifolds. It turns out that the first two equations

of (1.1) can be satisfied for p 6= 0 provided a certain combination of moduli, which we call

λ, takes value 1. In other words, for generic p and λ = 1 we find supersymmetric solutions

(corresponding to a vanishing four-dimensional curvature). For generic λ, the pure spinor

equations are not satisfied and supersymmetry is broken. It is certainly of great practical

importance to have a convenient limit in which our construction can be tested.

The proposed source action (1.19) allows to rewrite (1.17) for the four dimensional

Ricci tensor as

R4 =
2

3

(gs

2
(T0 − T ) + g2

s |F0|2 − |H|2
)

, (1.24)

where the source term T0 is different from the trace of the energy momentum tensor T . As

can be seen from (1.13), T0 gives a positive contribution to R4 and in our case, it turns out

that T0 − T is also positive. Thus, with our proposal (1.19) we are indeed able to find a

ten-dimensional de Sitter solution. Checking that it also satisfies the equations of motion

derived from the standard source action (with a dependence of the embedding functions

on the metric moduli) will make it a solution of type IIA supergravity.

The details of the solution, as well as the treatment of our proposal for supersymme-

try breaking branes, are presented in section 3. This discussion is complemented by the

analysis of the four-dimensional effective potential. In particular, we will discuss how the

supersymmetry breaking proposal for the sources provides new terms in the potential. Also

we will perform an analysis of stability of the solution in the volume and dilaton moduli.

While our discussion for de Sitter solution is based on a specific example, the con-

struction is more general, and we present much of the technical machinery in section 2.

This contains a discussion of supersymmetric solutions, and the twist construction of solv-

manifolds which serve as internal spaces. The construction has been used previously for

nilmanifolds (which are an iteration of torus bundles over a base manifold being a torus

itself) [28]. It is extended here to the case of solvable algebras. Our basic example is based

on a solvable group that admits a lattice and hence yields a compact six-dimensional solv-

– 7 –
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manifold. As we shall see the construction can be applied also to algebras that admit no

such lattice, and it may lead to non-geometric backgrounds. A more formal presentation of

the solvable algebras and the geometry of (compact) solvmanifolds is given in appendix A.

In appendix B we discuss some global aspects of T-duality on solvmanifolds.

2 Supersymmetric backgrounds, solvmanifolds and twist transforma-

tions

In this paper we are interested in string backgrounds where the internal compactification

manifold is a solvmanifold. Nil- and solvmanifolds have been extensively used in type II

compactifications, both to four-dimensional Minkowski or Anti de Sitter, and appear to

be good candidates for possible de Sitter vacua as well. Indeed their geometry is pretty

well understood (for instance all nilmanifolds are generalized Calabi-Yaus [29]) and, in

particular, they can have negative curvature and therefore support internal fluxes (as well

as D-branes and O-plane sources).

Nil- and solvmanifolds are homogeneous spaces constructed from nilpotent or solvable

groups G, nilpotent being actually a particular case of solvable. When the group G is

not compact, the manifold can be made compact by quotienting G by a lattice Γ, i.e. a

discrete co-compact subgroup of G. The dimension of the resulting manifold4 is the same

as that of the group G. In this paper we will focus on manifolds of dimension six. It can be

proven [30] that a lattice Γ can always be found for nilmanifolds, while for solvmanifolds

its existence is harder to establish. We refer to appendix A for a detailed discussion of the

algebraic aspects and the compactness properties of nil and solvmanifolds. Here, we focus

on their geometry.

Given a d-dimensional Lie algebra g expressed in some vector basis {E1, . . . , Ed} as

[Eb, Ec] = fa
bcEa , (2.1)

where fa
bc are the structure constants, we can define the dual space of one-forms g∗ with

basis {e1, . . . , ed}. They satisfy the Maurer-Cartan equation

dea = −1

2
fa

bce
b ∧ ec = −

∑

b<c

fa
bc eb ∧ ec , (2.2)

with the exterior derivative d. Since g∗ ≈ TeG
∗, {e1, . . . , ed} provide, by left invariance,

a basis for the cotangent space TxG∗ at every point x ∈ G and, thus, are globally defined

one-forms on the manifold. When the manifold is obtained as a quotient with a lattice

Γ, the one-forms will have non trivial identification through the lattice action.5 Nil and

4This definition of solvmanifold it is not the most general: one could consider cases where the d-

dimensional solvmanifold is the quotient of a higher dimensional group with a continuous subgroup Γ.

This is the case for the Klein bottle, for instance.
5In general there is a natural inclusion (Λg∗, δ) → (Λ(G/Γ), d) between the Chevalley-Eilenberg complex

on G and the de Rham complex of differential forms on G/Γ. This inclusion induces an injection map

between cohomology groups H∗(g) → H∗
dR(G/Γ) which turns out to be an isomorphism for completely

solvable groups. We recall that a Lie group G with Lie algebra g is said to be completely solvable if the

– 8 –
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solvmanifolds, as we define them in this paper, are always parallelizable [32], even if they

are not necessarily Lie groups.

The Maurer-Cartan equations reflect the topological structure of the corresponding

manifolds. For example, nilmanifolds all consist of iterated fibrations of circles over tori,

where the iterated structure is related to the descending or ascending series of the algebra

(see [29, 33, 34]). This can be easily seen on a very simple example, the nilmanifold

obtained from the three-dimensional Heisenberg algebra

[E2, E3] = E1 ⇔ de1 = −e2 ∧ e3 . (2.3)

The Maurer-Cartan equation is solved by the one-forms

e1 = dx1 − x2dx3 , e2 = dx2, e3 = dx3 . (2.4)

From the connection form, −x2dx3 , one can read the topology of the nilmanifold in

question, which is a non-trivial fibration of the circle in direction 1 on the two-torus in

directions 2, 3:
S1
{1} →֒ H/Γ1

↓
T 2
{23}

(2.5)

Solvmanifolds are classified according to the dimension of the nilradical n (the largest

nilpotent ideal) of the corresponding algebra. In six dimensions, n can have dimension from

3 to 6. If dim n = 6, then n = g and the algebra is nilpotent. At the level of the group6

we have that, if dimN < 6, then G contains an abelian subgroup of dimension k [35, 36].

This means we have G/N = R
k. When the group admits a lattice Γ, one can show that

ΓN = Γ ∩ N is a lattice in N , ΓN = NΓ is a closed subgroup of G, and so G/(NΓ) = T k

is a torus. The solvmanifold is a non-trivial fibration of a nilmanifold over the torus T k

N/ΓN = (NΓ)/Γ →֒ G/Γ

↓
T k = G/(NΓ)

(2.6)

This bundle is called the Mostow bundle [37]. As we shall see, the corresponding fibration

can be more complicated than in the nilmanifold case. In general, Mostow bundles are

not principal.

In the following we will restrict to almost abelian solvable groups, for which the con-

struction of the Mostow bundle is particularly simple. Consider first almost nilpotent solv-

able groups. These are solvable groups that have nilradical of dimension dim N = dim G−1.

As discussed in appendix A.1, the group is then given by the semi-direct product

G = R ⋉µ N (2.7)

linear map adX : g → g only has real roots ∀X ∈ g. Note that all nilmanifolds are completely solvable and

thus the injection is an isomorphism (Nomizu’s theorem [31]), the extension to non-nilpotent completely

solvable groups being the so-called Hattori theorem [32]. For more details and for a list of Betti numbers

of solvmanifolds up to dimension six see [33].
6We denote by n the ideal in the algebra and with N the corresponding subgroup.
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of its nilradical with R, where µ is some action on N depending on the direction R

(t1, n1) · (t2, n2) = (t1 · t2, n1 · µt1(n2)) ∀(t, n) ∈ R × N . (2.8)

In general, we label by t the coordinate on R and by ∂t the corresponding vector of the

algebra. From a geometrical point of view, µ(t) encodes the fibration of the Mostow bundle.

An almost abelian solvable group is an almost nilpotent group whose nilradical is

abelian

N = R
dimG−1 . (2.9)

In this case, the action of R on N is given by

µ(t) = Ad∂t(n) = et ad∂t
(n). (2.10)

Another nice feature of almost abelian solvable groups is that a simple criterion exists to

determine whether the associated solvmanifold is compact: the group admits a lattice if

and only if there exists a t0 6= 0 for which µ(t0) can be conjugated to an integer matrix.

As an example, we can consider two three-dimensional almost abelian solvable algebras

ε2 : [E2, E3] = E1 ⇔ de1 = −e2 ∧ e3

[E1, E3] = −E2 ⇔ de2 = e1 ∧ e3 (2.11)

ε1,1 : [E1, E3] = E1 ⇔ de1 = −e1 ∧ e3

[E2, E3] = −E2 ⇔ de2 = e2 ∧ e3 . (2.12)

In the following, we will label the algebras according to their Maurer-Cartan equations.

For instance, ε2 is denoted by (−23, 13, 0), where each entry i gives the result of dei.

For the algebra ε2 : (−23, 13, 0), the nilradical is given by n = {E1, E2} and ∂t = E3.

In this basis, the restriction of the adjoint representation to the nilradical is

ad∂t(n) =

(
0 −1

1 0

)
, (2.13)

which gives a µ matrix of the form

µ(t) = et ad∂t
(n) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
. (2.14)

It is easy to see that, for t0 = nπ
2 , with n ∈ Z

∗, µ(t0) is an integer matrix and hence the

corresponding manifold is compact.

For the algebra ε1,1 : (−13, 23, 0) the analysis is less straightforward. The nilradical is

n = {E1, E2} and again ∂t = E3. Then, in the (E1, E2) basis,

ad∂t(n) =

(
−1 0

0 1

)
, µ(t) = et ad∂t

(n) =

(
e−t 0

0 et

)
, (2.15)
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t2µ( )

t
1( )µ

t

Figure 1. Mostow bundle for the solvmanifolds ǫ2 and ǫ1,1. The base is the circle in the t direction,

and due to the nilradical being abelian the fiber is T 2. The fibration is encoded in µ(t) which is

either a rotation or a “hyperbolic rotation” twisting the T 2 moving along the base.

and it is clearly not possible to find a t0 6= 0 such that µ(t0) is an integer. To see whether

the group admits a lattice, we then have to go to another basis. In other words, µ(t0) will

be conjugated to an integer matrix. As in [16], we can define a new basis

E1 →
√

q2

q1

E1 − E2√
2

, E2 → E1 + E2√
2

, E3 → √
q1q2 E3 , (2.16)

with q1, q2 strictly positive constants, such that the algebra reads

[E1, E3] = q2E2 [E2, E3] = q1E1 . (2.17)

In this new basis

ad∂t(n) =

(
0 −q1

−q2 0

)
, µ(t) =




cosh(
√

q1q2t) −
√

q1

q2
sinh(

√
q1q2t)

−
√

q2

q1
sinh(

√
q1q2t) cosh(

√
q1q2t)


 , (2.18)

so that µ(t) can be made integer with the choice of parameters

t0 6= 0 , cosh(
√

q1q2t0) = n1 ,
q1

q2
=

n2

n3
, n2n3 = n2

1 − 1 , n1,2,3 ∈ Z
∗ . (2.19)

Thus also the algebra ε1,1 can be used to construct compact solvmanifolds (see figure 1

for illustration). Notice that the values q1 = q2 = 1 are not allowed by the integer condi-

tion (2.19).

2.1 Twist construction of (almost abelian) solvmanifolds

In the previous section we showed how to obtain explicitly, at least for almost abelian

solvmanifolds, the operator µ(t) giving the structure of the Mostow bundle and what

condition it has to satisfy in order for the manifold to be compact.
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In this section we focus on six-dimensional almost abelian algebras and the correspond-

ing compact solvmanifolds, and we discuss how to use the adjoint action µ(t) to construct

the globally defined one-forms of the solvmanifolds from those on T 6. In appendix A.3 we

show how the construction works in general for almost nilpotent and nilpotent algebras.

For nilmanifolds the construction proposed in [28] is recovered.

Let us first discard global issues related to the compactness of the manifolds. Then,

given an almost abelian solvable group G, we want to relate one-forms on T ∗
R

6 to those

of T ∗G = g∗

A




dx1

...

dx6


 =




e1

...

e6


 . (2.20)

Here A is a local matrix that should contain the bundle structure of G. From the Mostow

bundle, (2.6), it is natural to identify x6 with the coordinate t parametrising the R subal-

gebra and to take the corresponding one-form as dx6 = dt. Then the matrix A takes the

form

A =

(
AM 0

0 1

)
, (2.21)

where AM is a five-dimensional matrix given by

AM = µ(−t) = µ(t)−1 = e−t ad∂t
(n) . (2.22)

It is straightforward to show that the forms constructed this way verify the Maurer-Cartan

equation (see (A.25)):

dei = d(e−t ad∂t )i k ∧ dxk = · · · = −f i
tj dt ∧ ej . (2.23)

Note that taking, for instance, µ(t) as in (2.14), the corresponding A is not a diffeomorphism

and therefore can change topology.

We now come back to the consistency of this construction and the question of com-

pactness. To this end we need to investigate the monodromy properties of the matrix AM

and the related one-forms under a complete turn around the base circle.

Let us consider the following identification: t ∼ t + t0 where t0 is the periodicity of

the base circle. To obtain a consistent construction (having globally defined one-forms) we

must preserve the structure of the torus we are fibering over the t direction. This amounts

to asking that an arbitrary point of the torus is sent to an equivalent one after we come

back to the point t from which we started. The monodromies of the fiber are fixed, thus

the only allowed shifts are given by their integer multiples. The way points in the torus

are transformed when we go around the base circle is encoded in a matrix MF which has

to be integer valued. The identification along the t direction is given by

T6 :

{
t → t + t0
xi → (MF )i jx

j i, j = 1, . . . , 5 , (2.24)
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while those along the remaining directions are trivial

Ti :





xi → xi + 1

xj → xj

t → t

i, j = 1, . . . , 5 ; i 6= j . (2.25)

Let us now consider the one-forms (2.20) we have constructed via the twist AM . It

is straightforward to see that (2.20) are invariant under the trivial identifications, while

under the non-trivial T6, we have for i, j = 1, . . . , 5

ẽi = AM (t + t0)
i
jdx̃j = [AM (t)AM (t0)MF ]i jdxj . (2.26)

The one-forms are globally defined if they are invariant under this identification:

ẽi = ei = AM (t)i jdxj . (2.27)

Therefore, in the construction, we have to satisfy the following condition:

AM (t0)MF = I5 ⇔ MF = A−1
M (t0) = AM (−t0) . (2.28)

Consistency requires the matrix AM to be such that AM (−t0) is integer valued for at least

one t0 6= 0. This will impose a quantization condition on the period of the base circle,

which can take only a discrete set of values (in general it will be a numerable set, as we

will see in the examples). Once we fix t0, the integer entries of AM (−t0) will provide the

set of identifications.

It is worth stressing that being able to give the correct identifications of the one-forms

of the manifold is the same as having a lattice: the identifications (2.28) express the lattice

action, and give globally defined one-forms only if AM (−t0) = µ(t0) is integer valued for

some t0. As already discussed, this is the condition to have a lattice (as stated in [33], see

also appendix A.2). Let us emphasize that the one-forms (2.20), constructed via the twist,

are globally defined only if we start from a basis of the Lie algebra where AM (t) is integer

valued for some value of t. We give a list of algebras in such a basis in appendix A.4.

Note that obtaining a set of globally defined one-forms is an expected result, since

we are transforming a six-torus into a solvmanifold, which we know to be parallelizable.

Moreover, we also know that, with a consistent twist, we are not leaving the geometrical

framework.

As an example, we write the explicit form of the twist matrix for the two almost

abelian six-dimensional algebras we need in this paper.7 In the basis where the one-forms

are globally defined the two algebras are

g
1,−1,−1
5.7 ⊕ R : (q125, q215, q245, q135, 0, 0) , (2.29)

g
p,−p,±1
5.17 ⊕ R : (q1(p25 + 35), q2(p15 + 45), q2(p45 − 15), q1(p35 − 25), 0, 0) . (2.30)

7We use the same notation as in the standard classification of solvable algebras [33, 38, 39]: the number

5 indicates the dimension of the (indecomposable) algebra, while the second simply gives its position in the

list of indecomposable algebras of dimension 5.
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In both cases the parameters q1 and q2 are strictly positive. This is not the most general

form of these algebras, which in general8 contain some free parameters p, q and r. Here we

wrote the values of the parameters for which we were able to find a lattice: p = −q = −r = 1

for the first algebra and r = ±1 for the second.

In the rest of the paper, by abuse of notation, we will denote the algebra and the

corresponding solvmanifold with the same name.

For (2.29), a type IIA solution with O6 planes was found in [40]. The algebra being

a direct product of a trivial direction and a five-dimensional indecomposable algebra, the

adjoint matrix ad∂x5 (n) is block-diagonal, with the non-trivial blocks given by −ad∂t(n)

in (2.18) and its transpose. Then the twist matrix is

A =

(
AM

I2

)
AM =




α −β

−γ α

α −γ

−β α


 , (2.31)

where, not to clutter notation, we defined

α = cosh(
√

q1q2x
5) ,

β =

√
q1

q2
sinh(

√
q1q2x

5) ,

γ =

√
q2

q1
sinh(

√
q1q2x

5) . (2.32)

The forms obtained by the twist (2.31) are globally defined [16]. Indeed they are

invariant under constant shifts of each xi for i = 1, 2, 3, 4 and 6, with the other variables

fixed, and the following non-trivial identification under shifts for x5

(x1, . . . , x6) = (αx1 + βx2, γx1 + αx2, αx3 + γx4, βx3 + αx4, x5 + l, x6) , (2.33)

where in α, β, γ we took x5 = l. For the above identifications to be discrete [16] α, β,

and γ must be all integers. This is equivalent to having the matrix µ(x5 = l) integer

and, hence, it is the same as the compactness criterion. The existence of a lattice for the

solution in [40] was also discussed in [41]. In that case the parameters α, β and γ were set

to α = 2, β = 3, γ = 1.

For the second algebra, g
p,−p,r
5.17 ⊕ R, we will consider separately the cases p = 0 and

p 6= 0. For p = 0 it reduces to (q135, q245,−q215,−q125, 0, 0) with r2 = 1. This algebra

8The general form for g
p,q,r
5.7 is

1

2

“

−β(1+r)15+q1(1−r)25,−β(1+r)25+q2(1−r)15,−β(q+p)35+q2(p−q)45,−β(q+p)45+q1(p−q)35, 0
”

,

where we set β =
√

q1q2. Similarly, for g
p,−p,r
5.17 we have

„

q1p25+
1

2
[q1(r

2+1)35+β(r2−1)45], q2p15+
1

2
[q2(r

2+1)45+β(r2−1)35], q2(−15+p45), q1(−25+p35), 0

«

.
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and the associated manifold have been already considered in [41], where it was called s 2.5.

For p 6= 0 the algebra can be seen as the direct sum

g
p,−p,r
5.17 ⊕ R ≈ s 2.5 + p (g1,−1,−1

5.7 ⊕ R) . (2.34)

The twist matrix is given by

A =

(
A1A2

I2

)
. (2.35)

The two matrices A1 and A2 commute and give the two parts of the algebra

A1 =




ch −η sh

− 1
η sh ch

ch − 1
η sh

−η sh ch


 A2 =




c −ηs

c − 1
η s

1
η s c

ηs c


 , (2.36)

where now we define η =
√

q1

q2
and

ch = cosh(p
√

q1q2x
5) c = cos(

√
q1q2x

5)

sh = sinh(p
√

q1q2x
5) s = sin(

√
q1q2x

5) .

In this case, imposing that the forms given by the twist (2.35) are globally defined

under discrete identifications fixes the parameters in the twist to (with x5 = l)

ch c = n1 , η sh c = n2 ,
1

η
sh c = n3

sh s = n4 , η ch s = n5 ,
1

η
ch s = n6 , ni ∈ Z . (2.37)

The equations above have no solutions if the integers ni are all non-zero. The only

possibilities are either n1 = n2 = n3 = 0 or n4 = n5 = n6 = 0 (plus the case where all are

zero, which is of no interest here). If one also imposes that the constraints must be solved

both for p = 0 and p 6= 0, the first option, n1 = n2 = n3 = 0, has to be discarded and the

only solution is

n4 = n5 = n6 = 0 , s = 0 , l =
k π√
q1q2

, c = (−1)k , ñ1 = (−1)kn1 > 0 , k ∈ Z

ch = ñ1 , sh2 = n2n3 , n3η
2 = n2 , n2n3 = ñ2

1 − 1 , p =
cosh−1(ñ1)

k π
. (2.38)

p is quantized by two integers, but one can show that it can be as close as we want to any

real value (the ensemble is dense in R).

2.2 Twist transformations in generalized geometry

The twist defined in the previous section has a natural embedding in generalized geometry.

The basic idea of generalized geometry is to combine the tangent and cotangent bundle

of a given manifold M (here the internal manifold of our compactification) into a single
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object, the generalized tangent bundle E. This is an extension of TM by T ∗M . Locally a

section of E is a sum of a vector and a one-form

X = v + ξ ∈ TM ⊕ T ∗M , (2.39)

which is glued on the overlap of two local patches, Uα and Uβ, by
(

v

ξ

)

(α)

=

(
a 0

ωa a−T

)

(αβ)

(
v

ξ

)

(β)

. (2.40)

a is an element of GL(d, R), and gives the usual gluing of vectors and one-forms (a−T =

(a−1)T ), while ω is a two-form such that ω(αβ) = −dΛ(αβ). ω is related to the non-trivial

fibration of T ∗M over TM : this is encoded in a local two-form (the “connective structure”

of a gerbe) that is interpreted as the B-field, and ω corresponds to its gauge transformation.

For the backgrounds we will consider in this paper, B = 0, meaning that the generalized

tangent bundle is trivial and can be identified with TM ⊕ T ∗M .

E is endowed with two metrics

I =

(
0 I

I 0

)
H =

(
g − Bg−1g Bg−1

−g−1B g−1

)
, (2.41)

where I is the natural metric on E (which is used to derive the Clifford algebra) while

the generalized metric H encodes the information about the metric and the B-field of the

background.

The metric I is invariant under O(d, d) transformations, which can be parametrised

by Gl(d) transformations

X = v + ξ 7→ X ′ = Av + A−T ξ , (2.42)

plus shifts by a two-form b and a two-vector β

X = v + ξ 7→ X ′ = v + (ξ − ivb) , (2.43)

X = v + ξ 7→ X ′ = (v + β · ξ) + ξ . (2.44)

These are the so-called B- and β-transforms.

On E one can define generalized vielbeine E , such that

I = ET

(
0 I

I 0

)
E H = ET

(
I 0

0 I

)
E . (2.45)

Explicitly, the generalized vielbeine can be put in the form

EA
M =

(
ea

m 0

−(êB)am ê m
a

)
, (2.46)

where ea
m are the vielbeine on M , ê = (eT )−1, and B is the B-field. Comparing the O(d, d)

action on E
E 7→ E ′ = EO =

(
ea

m 0

−(êB)am ê m
a

)(
Am

n Bmn

Cmn D n
m

)
, (2.47)
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with (2.20), it is natural to embed the twist transformation as

Otw =

(
A 0

0 (AT )−1

)
. (2.48)

The polyforms Φ± appearing in the supersymmetry conditions (1.1), correspond to

ground states of the Clifford algebra Cliff(d, d), on TM ⊕ T ∗M . More precisely they are

Majorana-Weyl Spin(d, d) spinors, the positive (negative) chirality corresponding to the

even (odd) polyform. We will follow the conventions of [28]. We focus on manifolds of

dimension six and construct O(6, 6) bispinors in the Killing spinors on M , η1,2,

Φ± = η1
+ ⊗ η2 †

± . (2.49)

Here we will consider the SU(3) structure manifolds, which admit a single globally defined

spinor η+ of unitary norm. Hence

η1
+ = |a| eiαη+ , η2

+ = |b| eiβη+ ,

where |a| and |b| are clearly the norms of η1,2. The corresponding pure spinors Ψ± on E

are

Ψ+ = e−φe−B 8

||Φ+||
Φ+ ,

Ψ− = e−φe−B 8

||Φ−||
Φ− ,

with ||Φ±|| = |a|2 = |b|2. The phases of the two pure spinor are θ+ = α−β and θ− = α+β.

J is the Kähler form and Ω the holomorphic three-form on M .

Note that, while the bispinors are globally defined, the pure spinors Ψ± glue non-

trivially on the double overlaps:

Ψα = edΛ(αβ)Ψβ . (2.50)

As already mentioned, in the backgrounds we will consider in this paper the generalized

tangent bundle is trivial and the dilaton is constant. In these cases, we can identify

Ψ± and Φ±.

The O(d, d) action on pure spinors is given by its spinorial representation

O · Ψ = e−
1
4
ΘMN [ΓM ,ΓN ] · Ψ , (2.51)

where ΓM are the Cliff(d, d) gamma matrices (Γm = dxm and Γm = ιm) and ΘMN are the

O(d, d) parameters

ΘMN =

(
am

n βmn

bmn −a n
m

)
. (2.52)

Here am
n, bmn and βmn parametrise the GL(d) transformations, B-transforms and β-

transform, respectively. Then the twist action (2.22) on the spinor reads [28]

Otw · Ψ =
1√

detA
e−t [ad∂t

(n)]mnen∧ ιm · Ψ , (2.53)

where em is a given basis of one-forms on M , and ιm the associated contraction.
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2.3 Type IIA supersymmetric solutions from twist transformations

Type IIA supersymmetric compactifications to four-dimensional Minkowski where the in-

ternal manifold is the solvmanifold g
0,0,±1
5.17 × S1 were found in [40–42]. As shown in sec-

tion 2.1, this manifold is related by twist to the more general manifold g
p,−p,±1
5.17 × S1. It is

then natural to ask what is the effect of twisting the solutions in [41, 42].

We will take as starting point Model 3 of [41]. This is an SU(3) structure solution with

smeared D6-branes and O6 planes in the directions (146) and (236). For SU(3) structure,

the two pure spinors are

Φ+ =
eiθ+

8
e−iJ Φ− = − i

8
Ω . (2.54)

The phase in Φ+ is, in general, determined by the orientifold projection. For O6 planes θ+

is actually free and we set it to zero. We take

Ω =
√

t1t2t3 χ1 ∧ χ2 ∧ χ3 J =
i

2

∑

k

tkχ
k ∧ χk , (2.55)

with complex structure9

χ1 = e1 + i λ
τ3

τ4
e2 ,

χ2 = τ3 e3 + iτ4 e4 ,

χ3 = e5 − iτ6 e6 . (2.57)

For simplicity, we introduce λ =
t2τ2

4
t1

. ei are globally defined one-forms, obtained as

in (2.20)

em = (A2)
m
ndxn , (2.58)

with A2 given by (2.36). With this choice the metric is diagonal

g = diag
(
t1, λ t2 τ2

3 , t2 τ2
3 , λt1, t3, t3τ

2
6

)
. (2.59)

Positivity of the volume imposes the following constraints on the complex structure and

Kähler moduli

τ6 > 0 , t1, t2, t3 > 0 . (2.60)

Due to the presence of intersecting sources, the warp factor is set to one and the dilaton

to a constant. By splitting the pure spinor equations (1.1) into forms of fixed degree, it is

easy to verify that supersymmetry implies

d(ImΩ) = 0 , (2.61)

dJ = 0 , (2.62)

d(ReΩ) = gs ∗ F2 , (2.63)

F6 = F4 = F0 = H = 0 . (2.64)

9Ω and J are normalised as

4

3
J3 = iΩ ∧ Ω = −8 vol(6) = −8

p

|g| e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 (2.56)

where vol(6) is the internal volume form.
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The only non-zero RR flux reads

gsF2 =

√
λ (q1t1 − q2t2τ

2
3 )√

t3
(e3 ∧ e4 − e1 ∧ e2) , (2.65)

and it is straightforward to check that its Bianchi identity is satisfied. Let us also re-

call [6, 41] the transformation the forms should satisfy under the O6-plane involution σ:

σ(J) = −J , σ(Ω) = Ω , σ(H) = −H , σ(F ) = λ(F ) . (2.66)

Given the directions of the sources here, these orientifold projection conditions are clearly

verified by the solution.

Given the solution above, we want to use the twist action to produce solutions, still

with O6-planes and D6-branes, on g
p,−p,±1
5.17 ×S1. The manifolds g

p,−p,±1
5.17 ×S1 and g

0,0,±1
5.17 ×S1

are related by the twist matrix A1 in (2.36), whose adjoint matrix is

ad∂5(n)|p =

(
a12

a34

)
a12 = aT

34 =

(
0 pq1

pq2 0

)
. (2.67)

The sixth direction being a trivial circle, we identify t = x5. Then the twist action on

pure spinors,

Φ± 7→ Φ′
± = OtwΦ± , (2.68)

can be rewritten as

Otw = e−px5(q2e1∧ι2+q1e2∧ι1) e−px5(q1e3∧ι4+q2e4∧ι3)

= O12O34 , (2.69)

with

O12 = I + [cosh(p
√

q1q2x
5) − 1](e1 ∧ ι1 + e2 ∧ ι2 + 2e1 ∧ e2 ∧ ι1 ∧ ι2)

− 1√
q1q2

sinh(p
√

q1q2x
5)(q2e

1 ∧ ι2 + q1e
2 ∧ ι1) , (2.70)

O34 = I + [cosh(p
√

q1q2x
5) − 1](e3 ∧ ι3 + e4 ∧ ι4 + 2e3 ∧ e4 ∧ ι3 ∧ ι4)

− 1√
q1q2

sinh(p
√

q1q2x
5)(q1e

3 ∧ ι4 + q2e
4 ∧ ι3) . (2.71)

Note that unimodularity of the algebra implies det(A) = 1. In comparison to the procedure

described in [28], here we do not introduce a phase in the twist operator, since we do not

modify the nature of the fluxes and sources.

It is straightforward to check that the transformed pure spinors have formally the same

expression as in (2.54)–(2.57) but with the one-forms ei now given by

em = (A1A2)
m
ndxn . (2.72)

Also the metric, which is completely specified by the pure spinors, has the same form as

for the initial solution, but in the new ei basis

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
. (2.73)
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In order for the twist transformation to produce new solutions, the transformed pure

spinors should again satisfy the supersymmetry equations

dH′(Φ′
+) = 0 ,

dH′(ReΦ′
−) = 0 ,

dH′(ImΦ′
−) = gs R′ , (2.74)

where R′ is the new RR field R = 1
8 ∗ λ(F ) . The conditions

H ′ = 0 dJ ′ = 0 (2.75)

are automatically satisfied, so that the first two equations in (2.74) reduce to10

0 = d(ImΩ′) = −p(λ − 1) τ3τ6

√
t1t2t3 (q2 e1 ∧ e4 ∧ e5 + q1 e2 ∧ e3 ∧ e5) ∧ e6 . (2.77)

From this we see that, in addition to p = 0 case, supersymmetric solutions exist for p 6= 0

provided λ = 1.

The last equation in (2.74) defines the transformed RR field

gsR
′ = gsOtw · R + dH′(Otw) · Im Φ− . (2.78)

Since the twist operator does not change the degree of forms, it follows from (2.78) that

no new RR fluxes have been generated

F0 = F4 = F6 = 0 , (2.79)

and (we have already set λ = 1)

gsF2 =
q1t1 − q2t2τ

2
3√

t3
(e3 ∧ e4 − e1 ∧ e2) +

p(q1t1 + q2t2τ
2
3 )√

t3
(e2 ∧ e4 + e1 ∧ e3) . (2.80)

The Bianchi identity for F2 is satisfied

gsdF2 = c1v
1 + c2v

2 , (2.81)

with v1 = t1
√

t3 e1 ∧ e4 ∧ e5 and v2 = t2τ
2
3

√
t3 e2 ∧ e3 ∧ e5 being the covolumes of the

sources in (236) and (146). Let us note that the orientifold projection conditions (2.66) are

again satisfied with such sources. The sign of the charges

c1 =
2q2

t3t1

[
t1q1(1 − p2) − (1 + p2)t2q2τ

2
3

]

c2 =
2q1

t3t2τ2
3

[
τ2
3 t2q2(1 − p2) − (1 + p2)t1q1

]
(2.82)

10Note that a slightly more general solution given by χ1 = e1 + i
“

τ3
τ4

λ e2 − τ2
τ4

e3
”

, χ2 = τ2 e2 + τ3 e3 +

iτ4 e4 and the same χ3 leads to the same d(ImΩ′) and to

d(J ′) = −p(λ − 1) τ2

r

t1t2
λ

(q2 e1 ∧ e4 ∧ e5 + q1 e2 ∧ e3 ∧ e5) . (2.76)

A supersymmetric solution, requiring d(ImΩ) = dJ = 0, needs λ = 1. For τ2 = 0 we can have non-

supersymmetric configurations with a closed J ′.
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depends on the parameters, but the sum of the two charges is clearly negative. This

guarantees that the transformed background with p 6= 0 and λ = 1 is indeed a solution of

the full set of ten-dimensional equations of motion. In the next section we will use the non-

supersymmetric version, with λ 6= 1, as starting point for our search for de Sitter solution.

In the literature, de Sitter backgrounds are often given in terms of SU(3) structure

torsions,

dJ =
3

2
Im(W̄1Ω) + W4 ∧ J + W3

dΩ = W1J
2 + W2 ∧ J + W̄5 ∧ Ω , (2.83)

where W1 is a complex scalar, W2 is a complex primitive (1, 1) form, W3 is a real primitive

(2, 1)+(1, 2) form, W4 is a real vector and W5 is a complex (1, 0) form. For the more general

SU(3) structure solution (p 6= 0, λ 6= 1, τ2 6= 0) mentioned in footnote 10, we obtain

W1 =
p τ2 (A + B)(1 − λ)

6(τ2
2 + λτ2

3 )
√

t1t2t3

W2 =
1

6(τ2
2 + λτ2

3 )
√

t1t2t3

[
− it1

(
pτ2 (A + B)(λ + 2) + 3λτ3(A − B)

)
χ1 ∧ χ̄1 +

+3
√

λt1t2

(
τ2(B−A)+pτ3(λA+B)

)
χ1∧χ̄2−3

√
λt1t2

(
τ2(B−A)+pτ3(A+λB)

)
χ2∧χ̄1+

+it2

(
pτ2(A + B)(1 + 2λ) + 3λτ3(A − B)

)
χ2 ∧ χ̄2 − ipτ2t3(A + B)(λ − 1)χ3 ∧ χ̄3

]

W3 =
ipτ2(λ − 1)

8(τ2
2 + λτ2

3 )

[
(A + B)χ1 ∧ χ2 ∧ χ̄3 − (A + B)χ3 ∧ χ̄1 ∧ χ̄2 +

−(A − B)(χ1 ∧ χ3 ∧ χ̄2 − χ1 ∧ χ̄2 ∧ χ̄3 + χ2 ∧ χ3 ∧ χ̄1 − χ2 ∧ χ̄1 ∧ χ̄3)

]

W4 = 0

W5 =
ip
√

λτ3(A + B)(λ − 1)

4(τ2
2 + λτ2

3 )
√

t1t2
χ3 , (2.84)

with A = q1t1, B = q2t2
(
τ2
3 +

τ2
2
λ

)
.

2.3.1 Localizing the sources and warping

The supersymmetric solution discussed in the previous section is global, the warp factor and

the dilaton being constant. It is an interesting question to see whether localised solutions

also exist (see e.g. [27] for a recent discussion about the importance of warping). The

strategy for finding localized solutions used in [41] was first to look for a smeared solution

at large volume and then localize it by scaling the vielbeine, longitudinal and transverse

with respect to the source, with eA and e−A, respectively. This procedure works in a

number of cases, provided only parallel sources are present. Unfortunately this is not the

case for the supersymmetric solution we took as a departure point for our construction -

the intersecting O6/D6 solution on s 2.5.

It is however possible to find a completely localised solution on s 2.5 with O6 planes.

The solution has a simpler form in a basis where the algebra is (25,−15, r45,−r35, 0, 0),

r2 = 1. In this basis the O6-plane is along the directions (345).
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The SU(3) structure is constructed as in (2.55) with

χ1 = e−Ae1 + ieA(τ3e
3 + τ4e

4) ,

χ2 = e−Ae2 + ieAr(−τ4e
3 + τ3e

4) ,

χ3 = eAe5 + ie−Arτ6e
6 ,

τ6 > 0 , t1 = t2, t3 > 0 , (2.85)

where the non-trivial warp factor, A, depends on x1, x2, x6. The metric is diagonal

g = diag
(
t1e

−2A, t1e
−2A, t1(τ

2
3 + τ2

4 )e2A, t1(τ
2
3 + τ2

4 )e2A, t3e
2A, t3τ

2
6 e−2A

)
, (2.86)

and the only non-zero flux is the RR two-form

gsF2 = −r

[
τ6

√
t3∂1(e

−4A) dx2∧e6−τ6

√
t3∂2(e

−4A) dx1∧e6 +
1

τ6

√
t21
t3

∂6(e
−4A) dx1∧dx2

]
.

(2.87)

Setting the parameters t1 = t2 in the Kähler form (2.55) allows to have a single source

term in the F2 Bianchi identity

gsdF2 ∼ e−A∆(e−4A)e1 ∧ e2 ∧ e6 , (2.88)

where ∆ is the laplacian with unwarped metric.

As A → 0 this solution becomes fluxless (s 2.5 can indeed support such solutions),

hence it cannot be found following the strategy of localizing the large volume smeared

solutions. Unfortunately this solution does not satisfy the twist to p 6= 0, (2.30), since for

p 6= 0 the action of the involution of an O6-plane with a component along direction 5 is

not compatible with the algebra.

2.4 A digression: twist and non-geometric backgrounds

We would like to come back to the question of the consistency of the twist transformation.

As explained already, the transformation is obstructed unless the matrix A is conjugated

to an integer-valued matrix. In many cases, the twist can result in a topology change

similar to what is achieved by T-duality. The latter also can be obstructed, and yet these

obstructions do not stop us from performing the duality transformation. So what about

the obstructed twist?

To keep things simple, let us consider again an almost abelian algebra and the gluing

under t → t + t0. We should have in general

T6 :

{
t → t + t0
xi → ÃM (−t0)

i
jx

j i, j = 1, . . . , 5 , (2.89)

where ÃM (−t0) is necessarily an integer-valued matrix for t0 6= 0. In the case of compact

solvmanifolds this matrix is given by (2.22). For the algebras that do not admit an action of

a lattice, ÃM (−t0) has nothing to do with the algebra. Then the one forms ei = A(t)i jdxj

(dx6 = dt) are defined only locally and have discontinuities under t → t + t0. These kinds
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of discontinuity are actually familiar from the situations when an obstructed T-duality is

performed, and are commonly referred to as non-geometric backgrounds. One way to see

this is to work on the generalized tangent bundle and use local O(6)×O(6) transformations

(for six-dimensional internal manifolds) to bring the generalized vielbeine to the canonical

lower diagonal form (2.46). In geometric backgrounds, this is a good transformation, while

in the non-geometric case it involves non-single valued functions [43].

As an example, let us consider the manifold g
−p
4.2 × T 2, where the algebra g

−p
4.2 is given

in appendix A.2. The corresponding group does not admit a lattice. For generic p this is

very easy to see since the group is not unimodular. For p = 2, the group is unimodular but

there still is no lattice. As explained in the appendix A.2, in this case, the characteristic

polynomial cannot have integer coefficients, and therefore there is an obstruction to the

existence of a lattice.

If we now consider the algebra together with its dual, i.e. examine the existence of

a lattice on the generalized tangent bundle, we should study the 6 × 6 matrix M(t) =

diag(µ(t), µ(−t)T ) instead of the matrix µ(t). One has

M(t) =




ept 0 0 0 0 0

0 e−t 0 0 0 0

0 −te−t e−t 0 0 0

0 0 0 e−pt 0 0

0 0 0 0 et tet

0 0 0 0 0 et




. (2.90)

For t0 = ln(3+
√

5
2 ) and p ∈ N

∗, M(t = t0) is conjugated to an integer matrix, P−1M(t0)P =

N , where N is an integer matrix (Theorem 8.3.2 in [33]):

P =




1 0 0 18+8
√

5
7+3

√
5

0 0

0 1 0 0 0 2(2+
√

5)

3+
√

5

0 0 ln
(

2
3+

√
5

)
0

2(2+
√

5) ln
(

3+
√

5
2

)

3+
√

5
0

1 0 0 2
3+

√
5

0 0

0 0 ln
(

2
3+

√
5

)
0 − (1+

√
5) ln

(
3+

√
5

2

)

3+
√

5
0

0 −1 0 0 0 1+
√

5
3+

√
5




, (2.91)

N =




a11 0 0 a14 0 0

0 2 0 0 0 −1

0 2 2 0 1 −1

a41 0 0 a44 0 0

0 1 1 0 1 −1

0 −1 0 0 0 1




. (2.92)

The piece

N4 =

(
a11 a14

a41 a44

)
=

(
0 −1

1 3

)p

(2.93)
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comes from the entries ept and the result can be obtained11 from (A.14). We see that on

the generalized tangent bundle the basic obstruction to the existence of a lattice is easily

removed. Moreover it is not hard to see that, due to putting together the algebra and its

dual, even the requirement of unimodularity can be dropped.

On the generalized tangent bundle we can therefore obtain a lattice. For non-geometry,

one may ask for more: the integer matrix N being in O(3, 3). This question can be

decomposed into N4 ∈ O(1, 1) and the 4× 4 integer matrix in O(2, 2). Actually, the latter

is true.12 But N4 /∈ O(1, 1). Moreover, one can prove that diag(ept, e−pt) can only be

conjugated to an integer O(1, 1) matrix for t = 0. Indeed, the eigenvalues of an integer

O(1, 1) matrices are ±1, and those are not changed by conjugation.

This is reminiscent of the twist construction of the IIB background n 3.14 discussed

in [28]. The internal manifold is a circle fibration over a five manifold M5, which itself

is a bundle with a two-torus fiber, but the only obvious duality seen there is the O(2, 2)

associated with the two-torus. The solution on M5 × S1 is obtained from IIB solution on

T
6 with a self-dual three-form flux, but not n 3.14 itself [41].

By taking p = 0 in (2.90), we obtain a different topology. In M(t) the corresponding

direction becomes trivial, and we can forget about it. Up to an O(1, 1) action, the non-

trivial part of M(t) can still be thought of as corresponding to the algebra on T (ε1,1) ⊕
T ∗(ε1,1). Indeed, ε1,1 has two local isometries, and T-duality (the O(1, 1) in question) with

respect to any of them will yield a non-geometric background. This can be inferred by

simply noticing that the result of the duality in (any direction) is not unimodular; more

detailed discussion of T-duality on ε1,1 can be found in appendix B.

A better understanding of the orientifold planes in generalized complex geometry is

needed in order to apply the twist transformation to constructing non-geometric back-

grounds. However, the possibility of using solvable algebras in order to describe (some of)

these is interesting.

3 Supersymmetry breaking and de Sitter vacua

In the literature on de Sitter backgrounds, O6/D6 models seem to have good chances at

yielding a solution which can be embedded in string theory, at least in the conservative

approach of “geometric” compactifications. We shall concentrate on the resolution of the

ten-dimensional equations of motion in this conservative set-up, making use of the technol-

ogy described in the last section and adapting it to the description of non-supersymmetric

configurations.

We consider type IIA supergravity and mostly follow the conventions of [44, 45]; we

differ in the definition of the Hodge star where we have an extra sign depending on the

11Another possible conjugation is given in (2.18). The other part of N , the 4× 4 integer matrix, can also

be different, see the change of basis in Proposition 7.2.9 in [33].
12Note it is not true for the one given in Proposition 7.2.9 of [33].
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parity of the forms.13 In particular,

Fp ∧ ∗̂Fp = d10x
√

|g10|(−1)(10−p)p Fµ1...µpF
µ1...µp

p!
= d10x

√
|g10|(−1)(10−p)p |Fp|2 . (3.2)

We explicitly denote the ten-dimensional Hodge star by ∗̂, reserving the symbol ∗ for its

six-dimensional counterpart.

In order to derive the ten-dimensional equations of motion, we shall need source terms,

and to this end let us consider the DBI action of only one Dp-brane in string frame

Ss = −Tp

∫
dp+1x e−φ

√
|i∗[g10] + F| , T 2

p =
π

κ2
(4π2α′)3−p .

Here Tp is the tension of the brane; for an O-plane, one has to replace Tp by −2p−5Tp.

The open string excitations will not be important for our solution, and we shall discard

the F contribution from now on (note as well that the B-field will pull back to zero

along the sources).

To derive the equations of motion, a priori, we should take a full variation of the

DBI action with respect to the bulk metric. For supersymmetry preserving (calibrated)

sources, there exists a convenient way of dealing with this. In this case, one can think of an

expansion of the DBI action around the supersymmetric configuration and, to leading order,

replace the DBI action by a pullback of the calibration form. As discussed around (1.16),

it is given in terms of the non-closed pure spinor discussed in the previous section: Φ−
in type IIA. As shown in [6], this allows to prove that, for Minkowski compactifications,

the equations of motion follow from the first order pure spinor equations, and the flux

Bianchi identities. A similar treatment of space-time filling sources is also possible for non-

supersymmetric Minkowski and AdS4 configurations [11]. It is worth stressing that, even

in these cases, the sources continue being (generalized) calibrated and are not responsible

for the supersymmetry breaking. However convenient, as we shall see, these kinds of source

are not going to be helpful in our search for a dS vacuum.

At this point we shall consider an important assumption: inspired by the supersymmet-

ric case just described, we make a proposal for sources breaking the bulk supersymmetry.

The latter can be applied in the case of an internal space with SU(3) structure, and the

triviality of the canonical bundle is going to be important. We shall assume that, in anal-

ogy with the supersymmetric case, the DBI action can be replaced to leading order by

the pullback of a (poly)form X in the bulk, as discussed around (1.19). The bulk does

13In IIA, the sign is always positive on RR fields, but not on the odd forms, H and dφ, hence the sign

difference with respect to [45] for the corresponding terms in the action. The sign difference is related

to the fact we use the Mukai pairing to give the norm (see footnote 1): for a real form αi, we have

〈∗λ(αi), αi〉 = |αi|2 × vol. Note that these conventions are consistent with the SUSY conditions written

before. There is a factor of 2 difference in the normalization of the RR kinetic terms with respect to [15],

which will result in a difference in the RR quantization conditions. For a k-flux α through a k-cycle Σ (with

embedding i into the bulk manifold M), we have

1

(2π
√

α′)k−1

1

volM

Z

Σ

i∗α =
1

(2π
√

α′)k−1

1

volM

Z

M

〈δ(Σ →֒ M), α〉 = n , (3.1)

where n is an integer.
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have invariant forms and hence pure spinors can be constructed, but X cannot be pure,

otherwise the source would preserve bulk supersymmetry. The form X is expandable in

the Hodge diamond defined by the pure spinors. This amounts to consider forms that are

equivalent not to simply the invariant spinor η+ (defining the SU(3) structure) but to a

full spinorial basis, η+, η−, γ īη+ and γiη−, where i, ī = 1, . . . 3 are the internal holomorphic

and antiholomorphic indices.14 To be concrete we shall consider a generic odd form

X =
√

|g4| d4x ∧ X− =
√

|g4| d4x ∧ (Re X− + i Im X−) ,

X− = Re X− + i Im X− =
8

||Φ−||
(
α0Φ− + α̃0Φ− + αmnγmΦ−γn + α̃mnγmΦ−γn

+αL
mγmΦ+ + α̃L

mγmΦ+ + αR
n Φ+γn + α̃R

n Φ+γn
)

, (3.3)

where Φ± are given in (2.54) and the γ’s act on even and odd forms via contractions and

wedges

γmΦ± = (gmnın + dxm)Φ± , and Φ±γm = ∓(gmnın − dxm)Φ± . (3.4)

The action for a single source term becomes

Ss = −Tp

∫

Σ
dp+1x e−φ

√
|i∗[g10]|

= −Tp

∫

Σ
e−φi∗[Im X]

= −Tp

∫

M10

e−φ〈jp, Im X〉

= Tp

∫

M10

d10x
√

|g10| e−φ∗̂〈jp, Im X〉 , (3.5)

where i : Σ →֒ M10 is the embedding of the subspace Σ wrapped by the source in the bulk

and jp = δ(Σ →֒ M10) is the dimensionless Poincaré dual of Σ. The change of sign between

the last two lines is due to the Lorentzian signature which gives a minus when taking the

Hodge star. For the sum of all sources we then take the action

Ss = Tp

∫

M10

d10x
√

|g10| e−φ∗̂〈j, Im X〉 , j =
∑

Dp

jp −
∑

Op

2p−5jp . (3.6)

As discussed after (1.19), this replacement of the source action is for now only a proposal

and we hope to provide a justification for it in future work. Our interpretation is that

sources remain standard D-branes or O-planes, but their embedding into M , in particular

the form which describes the subspace wrapped by them, is modified from ImΦ− to the

14The covariant derivative on the invariant spinor contains the same information as the intrinsic torsions.

For the explicit dictionary for SU(3) structure see [46]. In the supersymmetric backgrounds the (H-twisted)

derivative on the spinor cancels against the RR contribution [9], and the entire content of that cancellation

is captured by first order equation on the pure spinors (1.1). For the non-supersymmetric backgrounds, the

unbalance between the NS and RR contributions results in the presence of terms that need to be expanded

in the full basis (see e.g. [11]).
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more general Im X−. As mentioned in the Introduction, a difference with the supersym-

metric case is that we are not sure anymore that the equations of motion derived from

both actions are the same. Our procedure will consist in finding solutions to the equations

derived from the proposed source action, which are much easier to deal with. We will then

argue that these solutions are also solutions of the equations derived from the standard

source action. Until this is done in section 3.3, we mean by solution a solution to the

equations of motion derived with our proposed source action.

In the following, we will consider solutions where the only non-trivial fluxes are H, F0

and F2 on the internal manifold, and the RR magnetic sources are D6’s and O6’s. The

sources will be smeared, so we take δ → 1 and the warp factor e2A = 1. The relevant part

of the action,15 in string frame, is then

S =
1

2κ2

∫
d10x

√
|g10| [e−2φ

(
R10+4|∇φ|2−1

2
|H|2

)
−1

2
(|F0|2+|F2|2)+2κ2Tp e−φ∗̂〈j, Im X〉] ,

(3.7)

where 2κ2 = (2π)7(α′)4.

With the flux ansatz (1.6), the flux equations of motion and Bianchi identities reduce

to the six-dimensional equations

dH = 0 ,

dF0 = 0 ,

dF2 − H ∧ F0 = 2κ2Tp j ,

H ∧ F2 = 0 ,

d(e−2φ ∗ H) = −F0 ∧ ∗F2 − e−φ 4κ2Tp j ∧ Im X1 ,

d(∗F2) = 0 ,

where Im X1 is the one-form part of ImX− in (3.3).16

The ten-dimensional Einstein and dilaton equations in string frame now become

RMN − gMN

2
R10 = 2gMN (∇2φ − 2|∇φ|2)−2∇M∇Nφ +

1

4
HMPQH PQ

N +
e2φ

2
F2 MP F P

2 N

−gMN

2

(
−4|∇φ|2 +

1

2
|H|2 +

e2φ

2
(|F0|2 + |F2|2)

)
+ eφ 1

2
TMN , (3.8)

8(∇2φ − |∇φ|2) + 2R10 − |H|2 = −eφ T0

p + 1
. (3.9)

15By relevant we mean the parts of the bulk and source actions that give non-trivial contributions to the

Einstein and dilaton equations of motion and to the derivation of the four-dimensional effective potential

of section 3.4. We do not write down the Chern-Simons terms of the bulk action and the Wess-Zumino

part of the source action. Indeed they do not have any metric nor dilaton dependence and, since we do

not allow for non-zero values of RR gauge potentials in the background, they will not contribute to the

vacuum value of the four-dimensional potential either. However, both terms contribute the flux e.o.m. and

Bianchi identities (in particular, see [45, 47, 48] for a discussion of the Chern-Simons terms in the presence

of non-trivial background fluxes).
16We refer to [6] for a discussion of the last term in the H equation of motion.
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Here TMN and T0 are the source energy momentum tensor and its partial trace, respec-

tively17

TMN = 2κ2Tp ∗̂〈j, gP (M dxP ⊗ ιN) Im X − δm
(MgN)nC n

m 〉 , (3.11)

T0 = 2κ2Tp ∗̂〈j, dxN ⊗ ιN ImX〉 = (p + 1) 2κ2Tp∗̂〈j, Im X〉 , (3.12)

T = gMNTMN = T0 − 2κ2Tp ∗̂〈j, C m
m 〉 . (3.13)

m,n are real internal indices, C n
m =

√
|g4| d4x ∧ c n

m and

c n
m =

8

||Φ−||
Im
(
αL

mγnΦ+ + α̃L
mγnΦ+ + αR

mΦ+γn + α̃R
mΦ+γn

+αpmγpΦ−γn + αmpγ
nΦ−γp + α̃pmγpΦ−γn + α̃mpγ

nΦ−γp
)

. (3.14)

For supersymmetric configurations, ImX− = 8 ImΦ−, c n
m = 0, T0 reduces to the full trace

of the source energy-momentum tensor, T = T0 and one recovers the formulae in [6].

We can now split (3.8) into its four and six-dimensional components. Since for max-

imally symmetric spaces, Rµν = Λgµν = (R4/4)gµν , for constant dilaton, eφ = gs, the

four-dimensional Einstein equation has only one component and reduces to

R4 = −2R6 + |H|2 + g2
s(|F0|2 + |F2|2) − 2gsT̃0 = 4Λ . (3.15)

Not to clutter equations, in the rest of the papers we set T̃0 = T0/(p + 1).

This equation defines the cosmological constant, Λ. Using the dilaton equation (3.9),

the source contribution can be eliminated and we obtain

R4 =
2

3

[
− R6 −

g2
s

2
|F2|2 +

1

2
(|H|2 − g2

s |F0|2)
]

, (3.16)

R10 =
1

3
[R6 + |H|2 − g2

s(|F0|2 + |F2|2)] . (3.17)

We are left with the internal Einstein equation,

Rmn − 1

4
HmpqH

pq
n − g2

s

2
F2 mpF

p
2 n − gmn

6

[
R6 −

1

2
|H|2 − 5

2
g2
s(|F0|2 + |F2|2)

]
=

gs

2
Tmn ,

(3.18)

and the dilaton equation

gsT̃0 =
1

3
[−2R6 + |H|2 + 2g2

s (|F0|2 + |F2|2)] . (3.19)

17In our conventions

1
p

|g10|
δSs

δφ
= −e−φ

2κ2

T0

p + 1
,

1
p

|g10|
δSs

δgMN
= −e−φ

4κ2
TMN . (3.10)

To derive (3.11), we considered the fact that each γm matrix in the bispinors Φ± carries one vielbein. To

derive C n
m the metric dependence of the full Hodge decomposition (3.3) must be taken into account. For

supersymmetric cases, the operator gP (MdxP ⊗ ιN) in TMN is the projector on the cycle wrapped by the

source [49].
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Provided the flux equations of motion and Bianchi identities are satisfied, solving the

Einstein and dilaton equations becomes equivalent to finding the correct energy-momentum

tensor for the sources. We shall now consider an explicit example and see how the non-

supersymmetric modifications to the energy momentum tensor help in looking for de Sitter

solutions. In the process we shall establish some properties of the form ImX−.

3.1 Solvable de Sitter

Our starting point is the solution described in section 2.3, based on the algebra

(q1(p25 + 35), q2(p15 + 45), q2(p45 − 15), q1(p35 − 25), 0, 0) . (3.20)

Among the different O6 projections compatible with the algebra for p = 0, only those

along 146 or 236 are still compatible with the full algebra with p 6= 0. In section 2.3

we showed that, acting with a twist transformation on the supersymmetric solution with

p = 0 and the right O6 planes, one finds a family of backgrounds characterised by the

SU(3) structure

Ω =
√

t1t2t3(e
1 + iλ

τ3

τ4
e2) ∧ (τ3 e3 + iτ4 e4) ∧ (e5 − iτ6 e6) , (3.21)

J = t1λ
τ3

τ4
e1 ∧ e2 + t2τ3τ4e

3 ∧ e4 − t3τ6e
5 ∧ e6 , (3.22)

which satisfy the supersymmetry equations (1.1) only when the parameter λ =
t2τ2

4
t1

is equal

to one. One motivation to consider what happens when supersymmetry is violated comes

from the form of the Ricci scalar for this class of backgrounds18

R6 = − 1

t1t2t3τ2
3

[
(A − B)2 + p2

(
(λ − 1)2

2λ
(A2 + B2) + (A + B)2

)]
, (3.26)

where we introduced the following quantities

A = q1t1 B = q2t2τ
2
3 . (3.27)

18The Ricci tensor of a group manifold is easily computed in frame indices (where the metric is the unit

one) in terms of the group structure constants

Rad =
1

2

„

1

2
f bc

a fdbc − fc
dbf

b
ca − fb

acf
c

db

«

. (3.23)

In our case, with the appropriate rescaling of the one-forms ea in (2.72) and of the structure constants, we

find that the only non-zero components of the Ricci tensor are

R11 = −R22 =
1

2t1t2t3τ 2
3

»

A2 − B2 +
p2

λ
(A2 − λ2B2)

–

,

R33 = −R44 =
1

2t1t2t3τ 2
3

»

B2 − A2 +
p2

λ
(B2 − λ2A2)

–

,

R55 = − 1

t1t2t3τ 2
3

»

(A − B)2 + p2

„

1 + λ2

2λ
(A2 + B2) + 2AB

«–

, (3.24)

R14 = R23 =
1

2t1t2t3τ 2
3

p√
λ

(λ − 1)(A2 − B2) . (3.25)

Notice that the curvature only receives contributions from R55.
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Indeed, R6 gets more negative when the SUSY breaking parameters p and |λ − 1| leave

their SUSY value 0. Therefore, the value R4 as given in (3.16) is lifted by SUSY breaking

and this is a priori promising for a de Sitter vacuum.

The rest of this section is devoted to the search of de Sitter solutions on the class

of backgrounds discussed above. We will take the same SU(3) structure as in (3.21) and

metric

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
(3.28)

in the basis of em given in (2.72). Dilaton and warp factor are still constant: eφ = gs and

e2A = 1. For the fluxes, beside the RR two-form, we will allow for non-trivial RR zero-form

and NS three-form

H = h (t1
√

t3λ e1 ∧ e4 ∧ e5 + t2τ
2
3

√
t3λ e2 ∧ e3 ∧ e5) , (3.29)

gsF2 = γ

√
λ

t3

[
(A − B)(e3 ∧ e4 − e1 ∧ e2) +

p

λ
(A + B)(λ2 e2 ∧ e4 + e1 ∧ e3)

]
, (3.30)

gsF0 =
h

γ
. (3.31)

We have introduced here another parameter γ > 0 which is given by the ratio of NS and

RR zero-form fluxes. We consider again D6 or O6 sources along (236) and (146), and

one can check that the SU(3) structure forms and the fluxes chosen satisfy the orientifold

projection conditions (2.66). Note that the NS flux has component along the covolumes19

of the sources, v1 = t1
√

t3λ e1 ∧ e4 ∧ e5 and v2 = t2τ
2
3

√
t3λ e2 ∧ e3 ∧ e5.

The SUSY solutions of section 2.3 are obtained setting

λ = 1 or p = 0, γ = 1 , F0 = h = 0 . (3.32)

3.1.1 The solution

We will first consider the four-dimensional Einstein equation (3.16). Using the ansatz for

the fluxes we obtain

g2
s |F2|2 =

2γ2

t1t2t3τ
2
3

[
(A − B)2 + p2(A + B)2

(
(λ − 1)2

2λ
+ 1

)]
,

|H|2 = 2h2 . (3.33)

Notice that

g2
s |F2|2 = 2γ2

[
−R6 + p2 (λ − 1)2

λ

q1q2

t3

]
. (3.34)

This allows to write the four dimensional Ricci scalar as

R4 =
2

3

[
(1 − 2γ2)

(
− R6 −

1

2
g2
s |F0|2

)
+ γ2

(
−R6 −

q1q2

t3
p2 (λ − 1)2

λ

)]
. (3.35)

19In order not to clutter the notations we did not divide vi by
√

2 (and recalibrate the cycles accordingly)

with an unfortunate consequence that H in the normalization discussed in footnote 13 comes out as even-

quantized, and γ is rational up to multiplication by
√

2.
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Since the second bracket is positive (see (3.26)), we see that de Sitter solutions are pos-

sible, for instance, for γ2 ≤ 1
2 and small F0. Note also that R4 clearly vanishes in the

supersymmetric solution where λ = 1, γ = 1 and F0 = 0.

To solve the dilaton and internal Einstein equations it is more convenient to go to

frame indices and take a unit metric. As already discussed in footnote 18, this choice

makes the computation of the Ricci tensor very simple. To simplify notations we introduce

the constant

C = −1

6

(
R6 −

1

2
|H|2 − 5

2
g2
s(|F0|2 + |F2|2)

)
. (3.36)

Then the dilaton equation becomes

gsT̃0 = 4C − h2

γ2
− 2γ2

t1t2t3τ2
3

[
(A − B)2 + p2(A + B)2

(
(λ − 1)2

2λ
+ 1

)]
. (3.37)

For the internal Einstein equations, only some components are non-trivial

gsT14 =
1

t1t2t3τ2
3

p√
λ

(A2 − B2)(λ − 1)(1 − γ2) ,

gsT23 =
1

t1t2t3τ
2
3

p√
λ

(A2 − B2)(λ − 1)(1 − γ2) ,

gsT11 =
1

t1t2t3τ2
3

[
A2 − B2 +

p2

λ
(A2 − B2λ2) − γ2((A − B)2 +

p2

λ
(A + B)2)

]
− h2 + 2C ,

gsT22 =
1

t1t2t3τ2
3

[
B2 − A2 +

p2

λ
(B2λ2 − A2) − γ2((A − B)2 + p2λ(A + B)2)

]
− h2 + 2C ,

gsT33 =
1

t1t2t3τ
2
3

[
B2 − A2 +

p2

λ
(B2 − A2λ2) − γ2((A − B)2 +

p2

λ
(A + B)2)

]
− h2 + 2C ,

gsT44 =
1

t1t2t3τ2
3

[
A2 − B2 +

p2

λ
(A2λ2 − B2) − γ2

(
(A − B)2 + p2λ(A + B)2

)]
− h2 + 2C ,

gsT55 =− 2

t1t2t3τ2
3

[
(A − B)2 + p2

(
(λ2 + 1)

2λ
(A2 + B2) + 2AB

)]
− 2h2 + 2C ,

gsT66 = 2C . (3.38)

The remaining components set to zero the corresponding source term Tab = 0.

To solve these equations we need the explicit expressions for the source energy mo-

mentum tensor, (3.11). In six-dimensional frame indices we have

Tab = 2κ2Tp∗̂〈j, δc(ae
c ⊗ ιb) Im X − δc

(aδb)dC
d
c 〉

= 2κ2Tp∗̂
(√

|g4| d4x ∧ 〈j, δc(ae
c ⊗ ιb) Im X− − δc

(aδb)dc
d
c〉
)

= 2κ2Tp
1√
|g6|

[
j ∧
(
δc(ae

c ⊗ ιb) Im X3 − δc
(aδb)dc

d
c |3
)]

1...6

=
1√
|g6|

[
(dF2 − HF0) ∧

(
δc(ae

c ⊗ ιb) Im X3 − δc
(aδb)dc

d
c |3
)]

1...6
. (3.39)

Since, in our case, the source j is a three-form,

2κ2Tp j = dF2 − HF0 , (3.40)

only the three-form parts ImX3 and cd
c |3 of Im X− and cd

c contribute to the equations.
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In the same way, we obtain

gsT̃0 = gs 2κ2Tp ∗̂〈j, Im X〉 =
1√
|g6|

[gs (dF2 − HF0) ∧ Im X3]1...6 . (3.41)

Combining (3.3) and the explicit expression for SU(3) pure spinors, it is easy to see

that Im X− decomposes into a one-form, a three-form and a five-form piece

Im X− = Im X1 + Im X3 + ImX5 , (3.42)

where20

Im X1 = (ai L
k + ai R

k )dxk − (ar L
k − ar R

k )gkjιjJ + (gkmgjlιmιl)[−ar
kj ReΩ + ai

kj Im Ω] ,

Im X3 = −(ar L
k + ar R

k )dxk ∧ J − (ai L
k − aiR

k ) gkjιjJ ∧ J

−[ar
0 − ar

kj (gkj − (gkldxj + gjldxk)ιl)] Re Ω

+[ai
0 − ai

kj(g
kj − (gkldxj + gjldxk)ιl)] Im Ω ,

Im X5 = −1

2
[(ai L

k + ai R
k ))dxk − (ar L

k − ar R
k ))gkjιjJ ] ∧ J2

−dxk ∧ dxj ∧ [−ar
kj Re Ω + ai

kj ImΩ] . (3.43)

The superscripts r and i indicate real and imaginary parts:

ar
0 = Re(α0 − α̃0) , ar

jk = Re(αjk − α̃jk) ,

ai
0 = Im(α0 + α̃0) , ai

jk = Im(αjk + α̃jk) . (3.44)

and

ar L
k = Re(αL

k − α̃L
k ) , ar R

k = Re(αR
k − α̃R

k ) ,

ai L
k = Im(αL

k + α̃L
k ) , aiR

k = Im(αR
k + α̃R

k ) . (3.45)

As already discussed, only the three-form parts of ImX− and cd
c contribute to the

equations. Then, for simplicity, we choose to set to zero Im X1 and ImX5. This amounts

to setting

ar L
k = ai L

k = ar R
k = ai R

k = 0 , (3.46)

and choosing ar
jk and ai

jk symmetric. Then, in frame indices, ImX3 becomes

Im X3 = [ai
0 − Tr(ai

bc) + ai
bc(δ

bdec + δcdeb)ιd] Im Ω

−[ar
0 − Tr(ar

bc) + ar
bc(δ

bdec + δcdeb)ιd] Re Ω . (3.47)

Similarly, we find that the three-form part of cb
a is given by

cb
a|3 = 2ai

ac[−δbc + (δcdeb + δbdec)ιd] Im Ω

−2ar
ac[−δbc + (δcdeb + δbdec)ιd] Re Ω . (3.48)

20We have not imposed (3.5) yet, and shall return to it later.
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The coefficients in ImX3 are free parameters which should be fixed by solving the

dilaton and internal Einstein equations.

The equations Tmn = 0 are satisfied by choosing21

ai
0 = 0 a = 1, . . . , 6 ,

ai
bc = 0 b, c = 1, . . . , 6 ,

ar
bc = 0 (bc) /∈ {(bb), (14), (23)} . (3.49)

The Einstein and dilaton equations, (3.38) and (3.37) fix the other parameters

ar
0 = −gs

T̃0 + T55 + T66 − x0

2(c1 + c2)
,

ar
14 = gs

T14

2(c2 − c1)
,

ar
23 = gs

T23

2(c1 − c2)
,

ar
11 = gs

1

2(c2 − c1)

[
T11 −

c2T̃0

c1 + c2
+

x0c1c2

(c2
1 − c2

2)

]
,

ar
22 = gs

1

2(c1 − c2)

[
T22 −

c1T̃0

c1 + c2
+

x0c1c2

(c2
2 − c2

1)

]
,

ar
33 = gs

1

2(c1 − c2)

[
T33 −

c1T̃0

c1 + c2
+

x0c1c2

(c2
2 − c2

1)

]
,

ar
44 = gs

1

2(c2 − c1)

[
T44 −

c2T̃0

c1 + c2
+

x0c1c2

(c2
1 − c2

2)

]
,

ar
55 = −gs

T55

2(c1 + c2)
,

ar
66 = gs

T66 − T̃0

2(c1 + c2)
, (3.50)

where x0 = 2T̃0 − (T11 + T22 + T33 + T44) and Tab are given by (3.38). The coefficients c1

and c2 appear in the source term of the Bianchi identity for F2

gs(dF2 − HF0) = c1 v1 + c2 v2 , (3.51)

where v1 and v2 are covolumes of sources in the directions (146) and (236) and

c1 = −h2

γ
+

q1q2

At3
γ

[
2(A − B) − p2 λ2 + 1

λ
(A + B)

]
,

c2 = −h2

γ
+

q1q2

Bt3
γ

[
2(B − A) − p2 λ2 + 1

λ
(A + B)

]
. (3.52)

21The parameters ai
12, ai

13, ai
24, ai

34, ai
56 are not fixed by any equation. For simplicity, we decide to put

them to zero.
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In agreement with our quantization conventions (see footnote 13), we impose that (c1 + c2)

is an integer. We emphasize once more, that the overall tension of the intersecting sources

is always negative (and so is c1 + c2), but depending on the parameters of the solution the

individual sources may be either O6 planes or D6 branes.

So far, we have solved the external and internal Einstein equations, the dilaton equation

of motion, and checked that the Bianchi identity for F2 is satisfied. As far as the bulk fields

are concerned, we should also solve the equations of motion and the remaining Bianchi

identities for the fluxes. These are actually automatically satisfied by our ansatz for the

fluxes, provided j∧ ImX1 = 0. As a matter of fact, our choice of the parameters a in (3.49)

already sets Im X1 to zero, so we are done with the bulk fields.

As a last step in the construction of a de Sitter solution (we recall we mean here a

solution to the equations derived from our proposed action for the sources), we need to

check the source fields equations of motion. One should vary our source action with respect

to the world-volume coordinates and the gauge fields. The latter is trivially satisfied, since

we do not consider any gauge field here, and the pullback of the B-field giving (3.29)

vanishes. For the world-volume coordinates, from our action −Tp

∫
Σ e−φi∗[Im X] and WZ,

one can derive, as discussed in the Introduction, an equation of motion of the form

∂[i1(e
−φ Im X3)i2i3]α ∼ (∗F2)[i1i2i3]α , (3.53)

where ik label world-volume directions, and α is orthogonal. One can check that pulling

back any three indices of the four-form ∗F2 to the world-volume gives zero, as discussed

after (1.23). The left-hand side also vanishes (see (3.55)), and so we conclude that the

world-volume equations of motion are satisfied.

This concludes our resolution of all equations of motion derived from the action (3.7)

which contains our proposal for sources breaking bulk supersymmetry. Provided one

chooses the free parameters as discussed below (3.35), one can obtain a de Sitter solution.

In the next section, we come back to the question of generalizing first order differential

equations to the non-supersymmetric case. This will fix for us the free parameters to values

which indeed give a de Sitter solution. In section 3.3 we will argue that the solution we

found here is also a solution to the equations derived with the standard source action.

3.2 More on the polyform X

In this section, we will try to provide further justification for our choice of polyform X−.

In supersymmetric compactifications, the imaginary part of the non-closed pure spinor,

Φ− in type IIA, on one side, defines the calibration for the sources and, on the other,

gives the bulk RR fields in the supersymmetry equations (1.1). We will show that, for

our de Sitter solution, the polyform X− satisfies the same equations Φ− satisfies in the

supersymmetric case

(d − H)Re X− = 0 ,

(d − H) Im X− = c0 gs ∗ λ(F ) , (3.54)

where the constant c0 can a priori be different from 1.
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Keeping only the parameters a that are non-zero in the de Sitter solution (3.50), it is

easy to compute

d(Im X−) = [(ar
0 + ar

66 − ar
55)[p(q1 + q2)(e

1 ∧ e3 + e2 ∧ e4)

−(q1 − q2)(e
1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6

−(ar
11 + ar

44 − ar
22 − ar

33)[p(q1 − q2)(e
1 ∧ e3 + e2 ∧ e4)

−(q1 + q2)(e
1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6 , (3.55)

and

H ∧ Im X− = −2h (ar
0 + ar

66 − ar
55) e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 . (3.56)

In order to have d(ImX−) proportional to gs ∗ F2, one must impose the relation

ar
11 + ar

44 − ar
22 − ar

33 = 0 . (3.57)

Then, one has

d(ImX−) = −c0 gs ∗ F2 ,

H ∧ Im X− = −2γ2 c0 gs ∗ F0 , (3.58)

with

c0 =
ar

0 + ar
66 − ar

55

γ
= −gs

T̃0

γ(c1 + c2)
. (3.59)

To obtain the second equality, we used the explicit expression (3.50), (3.38) for the param-

eters a, while c1 and c2 are defined in (3.52). Also, using (3.50), it is easy to show that the

constraint (3.57) reduces to

x0 = 2T̃0 − (T11 + T22 + T33 + T44) = 0 ⇔ (2γ2 − 1) h2 = 0 . (3.60)

Therefore, for22

γ2 =
1

2
(3.61)

we can write a differential equation for ImX−

(d − H) Im X− = c0 gs ∗ λ(F ) , (3.62)

which is the analogue of the supersymmetry equations23 for ImΦ−. In addition, fixing the

value γ2 = 1/2 gives a de Sitter solution, according to the condition (3.35).

22Clearly also h = 0 (no NS flux) is a solution to this constraint. It would be interesting to explore the

possibility of having de Sitter or non-supersymmetric Minkowski solution with h = 0. Notice that, in this

case, the condition of having F0 6= 0 [16], necessary to avoid de Sitter no-go theorems [14], is not required.
23Notice that from the equation for Im X− we recover the condition T0 > 0 (3.19). Indeed, as in [41],

starting from (3.41) we have

T0

p + 1

Z

M

vol(6) = −
Z

M

〈dHF, Im X−〉 = −
Z

M

〈F, dH ImX−〉 = c0 gs

Z

M

〈∗λ(F ), F 〉 > 0 .
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The value of the constant c0 is also fixed by the solution. Indeed, in order for X−
to reproduce the correct Born-Infeld action (3.5) on-shell, we get from our solution that

a combination of coefficients of X− has to be one: ar
0 + ar

66 − ar
55 = 1. Out of (3.59),

we deduce that we have to impose c0 γ = 1. This relation is automatically satisfied for

supersymmetric backgrounds, where c0 = γ = 1 and the pullback of Re Ω agrees with the

DBI action on the solution. In our non-supersymmetric solution, the condition c0 γ = 1

fixes the value of the constant, c0 =
√

2.

More generally, requiring the two actions being equal on-shell can be formulated as

−gsT̃0 = c1 + c2, where the right-hand side is given by the sum of the source charges.

Indeed, as we can see in (3.41), if ImX gives the sum of the source volume forms on-shell,

and j or dHF gives the sum of the charges times the covolumes (Bianchi identity), then T̃0

should be given by the sum of the charges; this sum is negative, hence the minus sign. We

can verify that this condition is equivalent for our solution to the condition c0 γ = 1, given

the second equality in (3.59). Finally, let us note that such a relation would fix one of the

three parameters h, γ, λ in terms of the others and the moduli. In particular, for λ = 1,

one gets

h2 =
(A − B)2 + p2(A + B)2

t1t2t3τ2
3

(γ − 1)(1 − 2γ)γ2

γ2 − 3γ + 1
. (3.63)

Note one clearly recovers the supersymmetric case with γ = 1. For our de Sitter solution,

one should impose instead γ = 1√
2
, and then h 6= 0.

We can now show that dH - closure can be imposed on ReX−. Indeed, the three-form

part of Re X− can be written as

Re X3 = −[br
0 − Tr(br

kj) + br
kj(g

kldxj + gjldxk)ιl] Re Ω

+[bi
0 − Tr(bi

kj) + bi
kj(g

kldxj + gjldxk)ιl] Im Ω

+[(bi R
k − bi L

k ) dxk + gkl(brR
k − brL

k ) ιlJ ] ∧ J , (3.64)

where, as for Im X3, we have defined

br
0 = Im(α̃0 − α0) br

kj = Im(α̃kj − αkj) ,

bi
0 = Re(α̃0 + α0) bi

kj = Re(α̃kj + αkj) ,

br L
k = Re(α̃L

k + αL
k ) br R

k = Re(αR
k + α̃R

k ) ,

bi L
k = Im(α̃L

k − αL
k ) bi R

k = Im(αR
k − α̃R

k ) . (3.65)

Consistently with (3.49), we can choose

br
0 = 0 ,

br L
k = br L

k = bi L
k = bi R

k = 0 ∀ k = 1, . . . 6

br
jk = 0 ∀ j, k = 1, . . . 6

bi
jk = 0 for (kj) /∈ {(kk), (14), (23), (41), (32)} . (3.66)

Furthermore, choosing

bi
14

t1
= − bi

23

t2τ2
3

,
bi
11

t1
+

bi
33

t2τ2
3

− bi
22

t2τ2
3 λ

− bi
44

t1λ
= 0 , (3.67)
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we obtain

dH(Re X3) =
√

t1t2t3 τ3τ6 p(1−λ)

(
bi
0 +

bi
66

t3τ2
6

− bi
55

t3

)
(q2 e1∧e4+q1 e2∧e3)∧e5∧e6 , (3.68)

which is zero either in the SUSY solution, or by further setting

bi
0 = − bi

66

t3τ
2
6

+
bi
55

t3
. (3.69)

While these equations are derived in the vanishing warp factor and constant dilaton

limit, their extension to the general case is natural24

dH(e2A−φ ReX−) = 0 ,

dH(e4A−φ Im X−) = c0e
4A ∗ λ(F ) . (3.70)

In general the odd form X− should receive contribution from both pure spinors, but in

our solution we have chosen to “decouple” the even pure spinor completely. Note that

any two objects in the trio of the even and odd compatible pure spinors and the metric

determine the third. Here we have worked with the almost complex structure and the

metric. In the supersymmetric backgrounds it is clearly more convenient to solve the

first order equations for the pure spinors rather than the Einstein equation for the metric.

Hence it is natural to ask if and when it might be possible to find an even-form counterpart

to (3.70), X+, so that X− and X+ (together with flux Bianchi identities) imply the solution

to the Einstein equations. However it is not yet clear to us what the correct generalization

of the notion of compatibility is, and what algebraic properties X+ should satisfy. Hoping

for a symmetry with the supersymmetric solutions (and the possibility of having a solution

to some variational problem) one may construct X+ satisfying

dH(e3A−φX+) = 0 . (3.71)

Assuming X+ has an expansion similar to that of X−, which does not receive contributions

from Ω, this amounts to finding a closed two-form on g
p,−p,±1
5.17 ×S1. It is indeed not hard to

construct such a form for our solution, since the symplectic form itself is closed, provided

τ2 = 0 (even if λ 6= 1, see (2.75)). Even if we do not take τ2 = 0, finding a conformally

closed X+ of this form is always possible, since the manifold is symplectic. A better

understanding of such first order equations applicable to non-supersymmetric backgrounds

is a work in progress and we hope to return to it in a future publication.

24Just like Φ−, X− is globally defined, and both B-field and the dilaton are needed in order to define

an isomorphism between such forms and the positive and negative helicity spin bundles S±(E) [43]. The

dilaton assures the correct transformation under GL(6), making the (non-pure) spinor e−φe−B X− the

natural variable for the first order equations (3.70).
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3.3 A solution for the standard source action?

In this paper we made a proposal of an action for sources breaking bulk supersymmetry.

As discussed in the Introduction and at the beginning of section 3, we cannot conclude

(as one would do in the supersymmetric case) whether the equations of motion derived

from the action (3.7) are the same as those derived from the standard source action DBI

+ WZ. Our proposal is to be considered as an assumption with interesting consequences,

we are not able to prove such an equivalence, but hope to provide a better justification of

it in future work. What can be done is to verify that the solution found in our example

is indeed a solution to the equations of motion derived from the standard source action.

Let us discuss now in practice what should be checked, starting with the world-volume

equations of motion.

There are two equations to consider, coming from the variation of DBI + WZ action

with respect to the world-volume coordinates and the gauge fields (for a general form of

these equations see [50]). The latter is easier, and we shall consider it first. In our solution

the dilaton is constant and the world-volume gauge fields vanish. Moreover we recall that

the pullback of the B-field computed from (3.29) also vanishes. Then the equation reads

∂i

(
e−φ
√

|i∗[g]| (i∗[g])[ij]
)
∼ ǫjkl (i∗[∗F4])kl , (3.72)

where i, j, k, l are indices along the brane world-volume. Since our solution has no RR four-

form flux, both sides vanish trivially. The variation of the world-volume action with respect

to the world-volume coordinates (again, in presence of constant dilaton and vanishing

pullback of B) connects the trace of the second fundamental form Sα
ij to the RR fluxes (α

spans normal directions). It reads

e−φ(i∗[g])ijSα
ij ∼ ǫjkl(∗F2)

α
jkl . (3.73)

One can check that pulling back any three indices of the four-form ∗F2 to the world-

volume gives zero.25 For our intersecting configuration, we need to worry only about

α = 5, and may use the relation of the second fundamental form with the (components

of) the spin connection ωα
i = Sα

ije
j . We can check that while the second fundamental form

does not vanish (the embedding is not geodesic), it has no diagonal element. However the

metric (3.28) in the basis (2.72) is diagonal, and (i∗[g])ijSα
ij vanishes. Thus the world-

volume equations of motion are satisfied.

Let us now consider the bulk field equations of motion. As mentioned at the end of

section 3.1.1, the ansatz chosen for the fluxes guarantees that their equations of motion

and Bianchi identities are satisfied. Let us also emphasize the following details: first we do

not have any B-field along the sources and therefore a correction term due to the source

in its equation of motion could be discarded; second the proposed generalization of the

first order equations (3.70), satisfied by our solution, guarantees that the RR equations of

motion are satisfied. Therefore, for the bulk fields, only the internal Einstein equation and

the dilaton equation of motion remain to be checked.

25This check is analoguous to that of the corresponding equation of motion derived from our proposed

source action, as discussed at the end of section 3.1.1.
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The dependence of the dilaton equation on the source action is simply through T̃0

(see for instance (3.19)), which is proportional to the source action on-shell. Therefore,

as long as the standard source action and our proposed action match on-shell, the dilaton

equations of motion are the same. As discussed in the previous section, this equality

amounts in general to the condition −gsT̃0 = c1 + c2, which for our solution is equivalent

to c0γ = 1. This fixes one of the three parameters h, γ, λ in terms of the others and the

moduli (see for instance (3.63)). Provided this condition is enforced, the dilaton equation

of motion derived from DBI is therefore satisfied by our solution.

We are now left with the internal Einstein equation. An explicit check can be done for

the family given by:

λ = 1 F0 6= 0 , h 6= 0 , given by (3.63) , (3.74)

with particular interest in the non-supersymmetric value γ = 1√
2

giving our de Sitter solu-

tion. Solving the Einstein equation amounts to match the values of the energy-momentum

tensor Tab given by (3.38). In the supersymmetric case, one can derive from the standard

source action that the non-zero components of Tab of one source are the diagonal ones

along the source directions, and are all equal. We recover this situation in the family we

consider by simply taking γ = 1. For our non-supersymmetric solution, the supersymme-

try breaking will manifest itself as T55 6= 0 and T66 6= T11 + T22. Then, in order to match

the results, one needs to consider a non-trivial dependence of the embedding functions on

the metric moduli. The computation is rather involved and not particularly enlightening,

thus we will not present it here. However, let us note that this non standard embedding

corresponds to our interpretation of the proposed action, as discussed in the Introduction.

We can also obtain a perturbative solution (the perturbation parameter is ǫ = λ−1) where

the deviation from the SUSY solution is more severe due to T14 and T23 not being zero as

opposed to their supersymmetric value.

Let us end this section by adding few words about the stability of our solution. Solving

all the equations of motion of course means extremizing the energy density of the bulk plus

brane system, but we cannot be sure that the solution is a minimum for arbitrary values

of the parameters. The problem is currently under study. For the time being we can try

to give some heuristic justification of the fact we believe our non-supersymmetric solution

is stable. For λ = 1 and γ = 1 the manifold admits the supersymmetric solution described

in section 2.3. By keeping λ = 1 and setting γ = 1/
√

2 we obtain a non-supersymmetric

solution with the same internal geometry as in the SUSY case, meaning the metric is not

changed and the directions wrapped are the same. The pullback of Im X− does coincide

with the pullback of the (generalized) calibrating form ReΩ. In a sense the brane is still

wrapping a minimal volume cycle (even if this is done with a different embedding), and

we can imagine the parameters, other than γ, can be chosen in such a way to have small

contributions to the potential from the supersymmetry breaking term, and the energy

density of combined bulk and brane system at the minimum.
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3.4 Four-dimensional analysis

In this section we do a partial study of the stability of our solution by analyzing the four

dimensional effective potential with respect to two moduli.

The search for de Sitter vacua, or for no-go theorems against their existence, has gen-

erally been performed from a four-dimensional point of view [13–19, 24, 25], analysing the

behaviour of the four dimensional effective potential with respect to its moduli dependence.

In this section, we want to make contact with this approach and show that our solution

has the good behaviour one expects to find for de Sitter vacua, as far as the volume and

the dilaton are concerned. We use in this section the ten-dimensional action (3.7) which

contains our proposal for sources breaking bulk supersymmetry. We will show that this

proposal gives rise to interesting new terms in the potential.

3.4.1 Moduli and 4d Einstein frame

Let us consider the ten-dimensional action (3.7). By Kaluza-Klein reduction on the internal

manifold, we obtain a four-dimensional effective action for the moduli. In particular, in

addition to the kinetic terms, the four-dimensional action will contain a potential for the

moduli fields. Their number and the way they enter the potential will depend on the

peculiar features of the single model.

A de Sitter solution of the four-dimensional effective action will correspond to a positive

valued minimum of the potential. Determining the minima of the potential is in general

rather difficult, since, a priori one should extremize along all the directions in the moduli

space. This complicated problem is generally solved only by numerical analysis, because of

the large number of variables. However, some information can be extracted by restricting

the analysis to a subset of the moduli fields.

For whatever choice of the manifold on which the compactification is performed, we are

always able to isolate two universal moduli: the internal volume and the four-dimensional

dilaton. Their appearance in the effective potential at tree-level is also universal. We will

then only focus on these two moduli. We define the internal volume as

∫

M
d6x
√

|g6| =
L6

2
=

L6
0

2
ρ3 , (3.75)

where the factor of 1
2 is due to the orientifold and the vacuum value is ρ = 1. Defining the

ten-dimensional dilaton fluctuation as e−φ̃ = gse
−φ, the four-dimensional dilaton is given

by

σ = ρ
3
2 e−φ̃ . (3.76)

Then reducing the action (3.7), we obtain the four-dimensional effective action for

gravity, 4d dilaton and volume modulus in the string frame

S =
1

2κ2

∫
d4x
√

|g4|
[
L6

2
e−2φ(R4 + 4|∇φ|2) − 2κ2U

]
, (3.77)

with U(ρ, σ) the four-dimensional potential. To derive the explicit form of the potential,

we need to determine how the internal Ricci scalar, fluxes and source terms scale with the
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volume. For R6 and the fluxes this is easily computed

R6 → ρ−1 R6 , |H|2 → ρ−3 |H|2 , |Fk|2 → ρ−k |Fk|2 . (3.78)

The source term requires some more attention. As shown in (3.41),

2κ2Tp ∗̂〈j, Im X〉 =
[(dF2 − HF0) ∧ Im X3]1...6√

|g6|
. (3.79)

The terms in Im X3 in (3.43) appearing with a0, ajk and a
(L,R)
k scale differently with the

volume. Let us denote them by X0, XΩ and XJ , respectively

Im X3 = X0 + XΩ + XJ . (3.80)

Their ρ dependence is determined by the scaling of the forms J and Ω

J → ρJ , Ω → ρ
3
2 Ω , (3.81)

and by the metric factors in the gamma matrices of (3.43)

X0 → ρ
3
2 X0 , XΩ → ρ

1
2 XΩ , XJ → ρXJ . (3.82)

Then, the source term scales as

[(dF2 − HF0) ∧ ImX3]1...6√
|g6|

→ ρ−
3
2

(
b0 + b1 ρ−1 + b2 ρ−

1
2

)
, (3.83)

where

b0 =
[(dF2 − HF0) ∧ X0]1...6√

|g6|
,

b1 =
[(dF2 − HF0) ∧ XΩ]1...6√

|g6|
,

b2 =
[(dF2 − HF0) ∧ XJ ]1...6√

|g6|
, (3.84)

are vacuum values. Then the four-dimensional potential for ρ and σ becomes

U =
1

2κ2

∫

M
d6x
√

|g6|[e−2φ

(
− R6 +

1

2
|H|2

)
+

1

2
(|F0|2 + |F2|2) − 2κ2Tp e−φ ∗̂〈j, Im X〉]

=
L6

0

4g2
sκ2

σ2

[(
− R6

ρ
+

|H|2
2ρ3

)
− gs

σ

(
b0 +

b1

ρ
+

b2√
ρ

)
+

g2
s ρ3

2σ2

(
|F0|2 +

|F2|2
ρ2

)]
. (3.85)

Note that the terms in b1 and b2 are purely non-supersymmetric contributions of the

source. They are due to the new metric dependence of the source action with respect to

the supersymmetric case.

In order to correctly identify the cosmological constant, but also to perform the study

of the moduli dependence, we need to go to the four-dimensional Einstein frame

gµν E = σ2 gµν . (3.86)
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The four-dimensional Einstein-Hilbert term transforms as26

1

2κ2

∫
d4x
√

|g4|
L6

2
e−2φR4 =

L6
0

2g2
s 2κ2

∫
d4x
√
|g4| σ2R4

= M2
4

∫
d4x
√

|g4E |R4E ,

where we denote Einstein frame quantities by E, and we introduced M2
4 =

L6
0

2g2
s 2κ2 , the

squared four-dimensional Planck mass. Similarly, the four-dimensional potential in the

Einstein frame becomes

UE = σ−4 U = 4κ4M4
4

e4φ

(L6

2 )2
U , (3.88)

and we can write the Einstein frame action as

S = M2
4

∫
d4x
√

|g4E |
(

R4E + kin − 1

M2
4

UE

)
. (3.89)

The cosmological constant, (3.15), is then related to the vacuum value of the potential

Λ =
1

2M2
4

UE |0 . (3.90)

3.4.2 Extremization and stability

In order to find a solution, one should determine the minima of the potential. For our

choice of moduli, ρ and σ, one has

∂UE

∂σ
=−M2

4

σ5

[
2g2

s (|F0|2ρ3 + |F2|2ρ) + 2σ2

(
−R6

ρ
+

|H|2
2ρ3

)
− 3σgs

(
b0 +

b1

ρ
+

b2√
ρ

)]
, (3.91)

∂UE

∂ρ
=

M2
4

σ2

[(
R6

ρ2
− 3|H|2

2ρ4

)
+

gs

σ

(
b1

ρ2
+

b2

2
√

ρ3

)
+

g2
s

2σ2
(3|F0|2ρ2 + |F2|2)

]
. (3.92)

In our conventions, the extremization conditions are

∂UE

∂σ
|σ=ρ=1 = 0 ,

∂UE

∂ρ
|σ=ρ=1 = 0 , (3.93)

where σ = ρ = 1 are the values of the moduli on the vacuum. Actually, the conditions (3.93)

are equivalent to the ten-dimensional dilaton e.o.m. and the trace of internal Einstein

equation. Combining the dilaton equation (3.19) and the trace of the internal Einstein

equation, (3.18), we can write the six-dimensional Ricci scalar as

R6 =
3

2
|H|2 − g2

s

2
(3|F0|2 + |F2|2) −

gs

2
(T0 − T ) , (3.94)

26Under a conformal rescaling of the four dimensional metric we have

gµν → e2λgµν ⇒
p

|g4| → e4λ
p

|g4| , R4 → e−2λR4 . (3.87)
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where

T0 − T = 2κ2Tp∗̂〈j, Cm
m 〉 =

[(dF2 − HF0) ∧ (XJ + 2XΩ)]1...6√
|g6|

= 2b1 + b2 . (3.95)

In the last line we used (3.84). With this expression for T0 − T , it is immediate to ver-

ify that (3.94) is indeed equal to the ∂ρUE in (3.93). Similarly, one can see that us-

ing (3.92), (3.83), (3.41) and (3.93), the dilaton equation (3.19) reduces to ∂σUE in (3.93).

From the equivalence of the ten-dimensional equations and (3.93) we see that the ten-

dimensional solution discussed in the previous sections does indeed satisfy the extremization

conditions (3.93). The next step is to see whether such extremum correspond to a minimum

of the potential and whether, furthermore, it is stable.

Let us consider (3.92) and discuss the ρ dependence of the potential. It is convenient

to define the function

P (ρ2) =
∂UE

∂ρ

σ2ρ4

M2
4

. (3.96)

It is easy to check that P (ρ2) is negative for ρ = 0 and positive for ρ → ∞. Hence there

must be a real positive root and this is a minimum of UE. A priori, P (ρ2) could have

other zeros. Let us focus only on the situation in which b2 = 0, which, in particular, is the

case for our ten-dimensional solution. In that case, P (ρ2) has two other roots which are

either complex conjugate,27 or real and negative, according to the value of the parameters.

Indeed, studying ∂ρ2P , one can show that P (ρ2) can be 0 only once. Therefore, at least

for b2 = 0, there is only one extremum of UE in ρ and it is a minimum. So satisfying the

extremization in ρ is enough for the stability.

Let us now analyze the σ dependence of (3.88). It is easy to see that the potential

admits an extremum for

σ± =
1

4a

(
3b ±

√
8b2

(
9

8
− 4ac

b2

))
4ac

b2
<

9

8
, (3.97)

where for simplicity we introduced

a = −R6ρ
−1 +

1

2
|H|2ρ−3 ,

b = gs(b0 + b1ρ
−1 + b2ρ

− 1
2 ) ,

c =
g2
s

2
ρ3(|F0|2 + |F2|2ρ−2) . (3.98)

In our case, asking for σ = 1 and using the extremization in σ in (3.93), which can be

written as 2a − 3b + 4c = 0, we find that the minimum in σ− corresponds to

a − 2c < 0 . (3.99)

27Since the polynomial is real, they come in conjugate pairs.
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This condition is satisfied by our solution choosing γ2 = 1
2 , as we can see from (3.34).

Therefore, our solution is at the minimum in σ, and it is then stable both in the volume

and the dilaton moduli.

It is easy to see that the four-dimensional potential takes a positive value at the

minimum, and, hence, the minimum corresponds to a de Sitter vacuum. In [15], it has

been shown that the potential has a strictly positive minimum in σ for

1 <
4ac

b2
<

9

8
, (3.100)

where the lower bound comes from asking the potential to be never vanishing (strictly

positive). This condition is satisfied by our solution.

In addition, we can actually compute the value of the potential at σ = ρ = 1. Starting

from (3.88) and using the two equations of (3.93), we obtain

UE

M2
4

=
1

3

(gs

2
(T0 − T ) + g2

s |F0|2 − |H|2
)

. (3.101)

Using (3.16) and (3.94), one can show that the four-dimensional Ricci scalar is proportional

to (3.101), R4 = 2UE/M2
4 . For γ2 = 1/2, R4 is positive (see the discussion below (3.35)),

and hence so is the value of the potential at the minimum.

Note also that, for γ2 = 1/2, the last two terms in (3.101) cancel each other and the

entire contribution to the cosmological constant comes from sources, (T0 − T ). For super-

symmetry breaking branes, this contribution is never vanishing but, for generic situations,

we do not know what its sign is. It would be nice to have a model independent argu-

ment to determine whether, for this mechanism of supersymmetry breaking, the resulting

four-dimensional space is always de Sitter.

As a further check of the existence of a de Sitter minimum for our solution, we can

plot in figure 2 the four-dimensional potential UE as a function of σ and ρ for some values

of the parameters

t1 = t2 = t3 = τ3 = τ6 = 1 ,

q1 = 1 , q2 = 3 , p =
cosh−1(2)

π
,

λ = 5 , γ =
1√
2

, h = 4 . (3.102)
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Figure 2. Dependence of the potential on dilaton and volume modulus.

A Solvable algebras and the geometry of solvmanifolds

A.1 Algebraic aspects

We consider a connected and simply-connected real Lie group G of identity element e. H,

N and Γ will be subgroups of G. We denote the associated Lie (sub)algebras of G, H, N

by g, h, n. Connected and simply-connected (sub)groups are in one-to-one correspondence

with the corresponding (sub)algebras. Many properties of the (sub)algebras will have their

counterpart in the (sub)groups and vice versa.

The ascending series (Gk)k∈N, the descending series (Gk)k∈N and the derived series

(DkG)k∈N of subgroups of G are defined as

G0 = {e} , G0 = D0G = G,

Gk = {g ∈ G|[g,G] ⊂ Gk−1} , Gk = [G,Gk−1] , DkG = [Dk−1G,Dk−1G] ,

where the commutator of two group elements g and h is [g, h] = ghg−1h−1. We define in

the same way the ascending, descending and derived series of g or its subalgebras, by using

the Lie bracket instead of the commutator, and 0 instead of e.

G is nilpotent respectively solvable if there exist k such that Gk = {e} respectively

DkG = {e}. We define the same notions for the algebra g replacing 0 with e. Lie

(sub)algebras corresponding to nilpotent/solvable groups are nilpotent and solvable, re-

spectively. The converse is also true. All nilpotent Lie algebras/groups are solvable (the

converse is not true).

An ideal i of g is a subspace of g stable under the Lie bracket: [g, i] ⊂ i. Obviously i

is also a subalgebra. The subalgebras given in the previously defined series are all ideals.

The nilradical n of the algebra g is the biggest nilpotent ideal of g. The nilradical is

unique [35, 51] as will be the corresponding subgroup N of G, also named nilradical.

To ideals of g will correspond normal subgroups of G. We recall that a subgroup

N is said normal if ∀g ∈ G, gNg−1 ⊂ N , i.e. it is invariant under conjugation (inner

automorphisms). This property is necessary in order to be able to define a group structure
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on the quotient G/N . Note that the nilradical N of a solvable Lie group G as well as the

subgroups DkG of the derived serie are normal subgroups.

A.1.1 The adjoint action

Let V be a vector space over a field K and let g be a Lie algebra over the same field. A

representation of g is a map π : g → End(V ) such that:

1. π is linear ;

2. π ([X,Y ]) = π(X)π(Y ) − π(Y )π(X) .

There is a natural representation of a Lie algebra over itself called the adjoint representa-

tion:

ad : g → End(|g|)
X 7→ ad(X) = adX ,

where |g| means the underlying vector space of the Lie algebra g, End(|g|) the space of all

linear maps on it,28 and

for X ∈ g , adX : g → g

Y 7→ adX(Y ) = [X,Y ] .

We can obtain a matrix form of the adjoint representation from the structure constants

in a certain basis of the Lie algebra. Let {Ea}a=1,...,d be a basis of a Lie algebra g, and the

structure constants in that basis given by

[Eb, Ec] = fa
bcEa . (A.1)

Then the matrices (a is the row index and c is the column index)

(Mb)
a
c = fa

bc (A.2)

provide a representation of the Lie algebra g.

A unimodular algebra g is such that ∀X ∈ g, tr(adX) = 0. In view of what has been

discussed, this is equivalent to
∑

a fa
ba = 0, ∀b .

Let G be a Lie group and let V be a (real) vector space. A representation of G in V

is a map π : G → Aut(V ) such that:

1. π(e) = Id ;

2. π(g1g2) = π(g1)π(g2) , ∀ g1, g2 ∈ G .

28These maps do not necessarily respect the Lie bracket, or in other words, are not necessarily algebra

morphisms. In particular, for X ∈ g, adX is not an algebra morphism.
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There is a natural representation of the group over its algebra called the adjoint represen-

tation:

Ad : G → Aut(g)

g 7→ Ad(g) = Adg ,

where Adg = expAut(|g|)(adXg ) for Xg ∈ g , expG(Xg) = g. Actually one can show the

following relations between the representations:

G
Ad

// Aut(g)

g

expG

OO

ad
// End(|g|)

expAut(|g|)

OO

The map ad then turns out to be the derivation29 of Ad. At the level of the single

elements, they act according to the following diagram:

g Ad
// Ad(g) = Adg

Xg

OO

ad
// ad(Xg) = adXg

OO

One can show as well that the derivation of the inner automorphism Ig for g ∈ G (the

conjugation) is actually the adjoint action Adg:

d(Ig) = Adg . (A.3)

Furthermore, for ϕ : G → G an automorphism, the following diagram is commutative:

G
ϕ

// G

g

expG

OO

dϕ
// g

expG

OO

A Lie group is said to be exponential (the case for us) if the exponential map is a

diffeomorphism. Denoting its inverse as logG, then we deduce

Ig = expG ◦ Adg ◦ logG . (A.4)

A.1.2 Semidirect products

Most of the solvable groups we are interested in are semidirect products, we recall here

some definitions.

Let us consider two groups H and N and a (smooth) action µ : H × N → N by (Lie)

automorphisms. The semidirect product of H and N is the group noted H ⋉µ N , whose

underlying set is H × N and the product is defined as

(hi=1,2, ni=1,2) ∈ H × N , (h1, n1) · (h2, n2) = (h1 · h2, n1 · µh1(n2)) . (A.5)

29It is the derivative with respect to the parameters of the group element g, taken at the identity.
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The semidirect product of Lie algebras can be defined in a similar way. Let d(h) be the

derivation algebra of an algebra h (for instance ad ∈ d(g)). Let σ : g → d(h) , X 7→ σX

be a representation of the Lie algebra g in |h|. Then we can define the semidirect product

g ⋉σ h of the two Lie algebras with respect to σ in the following way:

• the vector space is |g| × |h|

• the Lie bracket is [(X1, Y1), (X2, Y2)] = ([X1,X2]g, [Y1, Y2]h + σX1(Y2) − σX2(Y1)).

This provides a Lie algebra structure to the vector space |g| × |h|. Note that the fact σ is

a derivation is important to verify the Jacobi identity for the new bracket.

If we denote g′ = g × {0} and h′ = {0} × h then h′ is an ideal of the new algebra and

g′ is a subalgebra of it. Furthermore

g′ + h′ = g ⋉σ h , g′ ∩ h′ = 0 . (A.6)

There is a unique decomposition of an element of |g| × |h| as a sum of an element of |g|
and one of |h|, thus we can think of it as the couple in |g| × |h| or as an element of a direct

sum of vector spaces.

Let us consider a Lie group G and two subgroups H and N with N normal. If every

element of G can be uniquely written as a product of an element in H and one in N , then

one can show that G ≈ H ⋉µ N with µ being the conjugation.30 This point of view will

be important for us. As discussed previously, the conjugation can be given in terms of the

restriction of the adjoint action of H over n as in (A.4), so we are able to determine µ

in terms of AdH(N). For exponential groups, as we consider here, the corresponding Lie

algebra of G = H ⋉µ N is then clearly g = h ⋉adh(n) n (we just write ad in the following

for simplicity).

Let us now consider a group G with a normal subgroup N of codimension 1. The Lie

algebra g has two components, R and n. We want to show that g is isomorphic to R ⋉ad n,

and then, as discussed, we get that G ≈ R ⋉µ N with µ the conjugation. At level of the

algebra, in terms of vector spaces, the isomorphism is obviously true. What needs to be

verified is that the Lie brackets coincide. The Lie bracket of two elements of R or of n

clearly coincide with those of the corresponding two elements of R ⋉ad n. Let us now take

X ∈ R, Y ∈ n. We have for R ⋉ad n:

[(X, 0), (0, Y )] = (0, 0 + adX(Y ) − ad0(0)) = (0, [X,Y ]) , (A.7)

which clearly coincides with the bracket [X,Y ] for g. We can conclude that g is isomorphic

to R ⋉ad n and thus the group is isomorphic to R ⋉µ N .

A.1.3 Solvable groups

According to Levi’s decomposition, any real finite dimensional Lie algebra is the semidirect

sum of its largest solvable ideal called the radical, and a semi-simple subalgebra. So solvable

and nilpotent algebras do not enter the usual Cartan classification. Solvable algebras g are

30In particular it is the case for a group G = H ⋉ν N with ν being not the conjugation.
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classified with respect to the dimension of their nilradical n. One can show [33, 38] that

dim n ≥ 1
2dim g. Since we are interested in six dimensional manifolds we will consider

dim n = 3, . . . , 6. If dim n = 6, n = g and the algebra is nilpotent (they clearly are

a subset of the solvable ones). There are 34 (isomorphism) classes of six-dimensional

nilpotent algebras (see for instance [41, 52] for a list), among which 24 are indecomposable.

Among the 10 decomposable algebras, there is of course the abelian one, R
6. There are 100

indecomposable solvable algebras with dim n = 5 (99 were found in [53], and [39] added

1, see [36] for a complete and corrected list), and 40 indecomposable solvable algebras

with dim n = 4 [39]. Finally, those with dim n = 3 are decomposable into sums of

two solvable algebras. There are only 2 of them, see Corollary 1 of [54]. In total, there

are 164 indecomposable six-dimensional solvable algebras. For a list of six-dimensional

indecomposable unimodular31 solvable algebras, see [33].

Most of the solvable groups are semidirect products. For G a solvable group and N

its nilradical, we consider the following definitions:

• If G = R ⋉µ N , G is called almost nilpotent. All three and four-dimensional solvable

groups are of that kind [33].

• If furthermore, the nilradical is abelian (i.e. N = R
k), G is called almost abelian.

The result at the end of the previous section applies here: any solvable group for which

dim N = dim G − 1 is almost nilpotent. In fact N is a normal subgroup of G. Let us

label the R direction with a parameter t, which we can take as a coordinate, with the

corresponding algebra element being ∂t. According to (A.4), we then have

µ(t) = expN ◦ Adet∂t (n) ◦ logN , Adet∂t (n) = eadt∂t
(n) = et ad∂t

(n) . (A.8)

Furthermore, for the almost abelian case, we can identify N and n, so the exp and log

correspond to the identity. Then, we obtain the simpler formula

µ(t) = Adet∂t (n) = et ad∂t
(n) . (A.9)

We will mainly focus on solvable algebras with dim n = 5 (to which correspond almost

nilpotent solvable groups) because, as we will discuss further, the compactness question is

simpler to deal with.

A.2 Compactness

We recall here that according to the definition32 we adopt in this paper (section 2) a

solvmanifold is a compact homogeneous space G/Γ obtained by the quotient of a connected,

simply-connected solvable group and a discrete cocompact subgroup Γ, the lattice [32, 33].

The main result concerning the geometry of these manifolds is the Mostow bundle, and we

refer to section 2 for its discussion (see in particular diagram (2.6) and [37] for the original

reference). In this appendix, we come back to the problem of the existence of a lattice.

31See appendix A.1.1 for a definition.
32Let us emphasize the non-trivial result that, according to our (restrictive) definition solvmanifolds,

these are always parallelizable (see [32] for a proof).
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Whetheer a lattice exists or not, and so whether the manifold can be made compact is

not always an easy question for non-nilpotent solvable groups. There is a simple necessary

condition for a manifold to be compact, namely that the algebra has to be unimodular.

Sufficient conditions are on the contrary more difficult to establish.

A theorem by Malcev [30] states that a cornnected and simply-connected nilpotent

Lie group G admits a lattice if and only if there exists a basis for the Lie algebra g such

that the structure constants are rational numbers. This condition is always satisfied for all

the 34 classes of nilpotent six dimensional algebras. For the non-nilpotent cases, several

criteria have been proposed. The first is due to Auslander [35]. Despite its generality the

criterion is difficult to use in concrete situations and we will not refer to it in our search

for lattices. Details about it can be found in the original paper [35] and in [33]. Another

criterion, which is closer to the one we use in this paper, is due to Saitô [55]. It is less

general than Auslander’s because it applies to solvable groups that are algebraic subgroups

of GL(n, R) for some n. The criterion deals with the adjoint action of the group G over

the nilradical n of its algebra g. For an illustration, see [41].

The criterion we adopt in this paper follows [33] and it applies to almost abelian

solvable groups. As discussed above almost abelian solvable groups are characterized by

the map µ(t) (A.9). Then the criterion states the group G admits a lattice if and only if

it exists a t0 6= 0 for which µ(t0) can be conjugated to an integer matrix. This criterion is

very useful in practice since we have a simple formula (A.9) for µ(t).

In [33], some almost nilpotent (not almost abelian) cases were also proved to admit a

lattice, thanks to some further technique that we will not consider here.

In section 2 we applied the compactness criterion mentioned above to the two algebras

ε2 and ε1,1 (corresponding to g0
3.5 and g−1

3.4 given in the table 1, respectively). Here we will

review the argument for ε1,1, using a change of basis closer to [33]. The algebra ε1,1 is

defined by

[E1, E3] = E1 , [E2, E3] = −E2 . (A.10)

We have n = {E1, E2} and ∂t = E3. Then, in the (E1, E2) basis,

ad∂t(n) =

(
−1 0

0 1

)
, µ(t) = et ad∂t

(n) =

(
e−t 0

0 et

)
. (A.11)

It is not possible to have µ(t0) being an integer matrix for t0 6= 0. To check if the group

admits a lattice, we have to find another basis where the matrix µ(t0) can be integer. Let

us consider the particular change of basis given by

P =

(
1 c

1 1
c

)
, P−1 =

1

c − 1
c

(
−1

c c

1 −1

)
, (A.12)

where c = e−t1 and t1 6= 0. Then:

µ̂(t) = P−1

(
e−t 0

0 et

)
P =

(
sinh(t1−t)

s1
− sinh(t)

s1
sinh(t)

s1
cosh(t) + c1

sinh(t)
s1

)
, (A.13)
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Name Algebra

g−1
3.4 [X1,X3] = X1, [X2,X3] = −X2 alm. ab.

g0
3.5 [X1,X3] = −X2, [X2,X3] = X1 alm. ab.

g
p,−p−1
4.5 [X1,X4] = X1, [X2,X4] = pX2, [X3,X4] = −(p + 1)X3, −1

2 ≤ p < 0 alm. ab.

g
−2p,p
4.6 [X1,X4] = −2pX1, [X2,X4] = pX2 − X3, [X3,X4] = X2 + pX3, p > 0 alm. ab.

g−1
4.8 [X2,X3] = X1, [X2,X4] = X2, [X3,X4] = −X3 alm. nil.

g0
4.9 [X2,X3] = X1, [X2,X4] = −X3, [X3,X4] = X2 alm. nil.

Table 1. Indecomposable non-nilpotent solvable unimodular algebras up to dimension 4, that

admit a lattice.

with s1 = sinh(t1) and c1 = cosh(t1). For t = t1, we get

µ̂(t = t1) =

(
0 −1

1 2c1

)
. (A.14)

The conjugated matrix µ̂(t) can have integers entries for some non-zero t = t1 when

2 cosh(t1) is integer. In [33], 2 cosh(t1) = 3.

Let us now describe an example for which there is no lattice. We consider the algebra

g
−p
4.2

[E1, E4] = −pE1 , [E2, E4] = E2 , [E3, E4] = E2 + E3 , p 6= 0 . (A.15)

It is easy to check that the algebra is unimodular only for p = 2. This is a necessary

condition for compactness, we can exclude all other values of p.

We have n = {E1, E2, E3} and ∂t = E4 (the algebra is almost abelian). Then, in the

(E1, E2, E3) basis,

ad∂t(n) =




p 0 0

0 −1 0

0 −1 −1


 , µ(t) = et ad∂t

(n) =




ept 0 0

0 e−t 0

0 −te−t e−t


 . (A.16)

Following [33], we are going to prove that this matrix cannot be conjugated to an integer

matrix33 except for t = 0. A way to verify if the matrix µ(t) can be conjugated to an integer

one is to look at the coefficients of its characteristic polynomial P (λ). This is independent

of the basis in which it is computed, and hence, for the criterion to be satisfied it should

have integer coefficients. Here we have:

P (λ) = (λ − e2t)(λ − e−t)2 = λ3 − λ2(2e−t + e2t) + λ(e−2t + 2et) − 1 . (A.17)

The coefficients are given by sums and products of roots. We can use Lemma (2.2) in [56].

Let

P (λ) = λ3 − kλ2 + lλ − 1 ∈ Z[λ] . (A.18)

33A näıve reason one could think of would be that it is due to the off-diagonal piece, but as we are going

to show, this piece actually does not contribute.
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Name Algebra

g
p,q,r
5.7 [X1, X5] = X1, [X2, X5] = pX2, [X3, X5] = qX3, [X4, X5] = rX4,

−1 ≤ r ≤ q ≤ p ≤ 1 , pqr 6= 0 , p + q + r + 1 = 0

g−1

5.8 [X2, X5] = X1, [X3, X5] = X3, [X4, X5] = −X4

g
−1−2q,q,r
5.13 [X1, X5] = X1, [X2, X5] = −(1 + 2q)X2, [X3, X5] = qX3 − rX4, [X4, X5] = rX3 + qX4,

−1 ≤ q ≤ 0 , q 6= − 1

2
, r 6= 0

g0

5.14 [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3

g−1

5.15 [X1, X5] = X1, [X2, X5] = X1 + X2, [X3, X5] = −X3, [X4, X5] = X3 − X4

g
p,−p,r
5.17 [X1, X5]=pX1−X2, [X2, X5]=X1+pX2, [X3, X5]=−pX3−rX4, [X4, X5]=rX3−pX4,

r 6= 0

g0

5.18 [X1, X5] = −X2, [X2, X5] = X1, [X3, X5] = X1 − X4, [X4, X5] = X2 + X3

Table 2. Indecomposable solvable unimodular almost abelian algebras of dimension 5, that admit

a lattice.

Name Algebra

g
0,−1
6.3 [X2,X6] = X1, [X3,X6] = X2, [X4,X6] = X4, [X5,X6] = −X5

g
0,0
6.10 [X2,X6] = X1, [X3,X6] = X2, [X4,X6] = −X5, [X5,X6] = X4

Table 3. Indecomposable solvable unimodular almost abelian algebras of dimension 6, for which

we know a lattice exists.

Then P (λ) has a double root λ0 ∈ R if and only if λ0 = +1 or λ0 = −1 for which

P (λ) = λ3 − 3λ2 + 3λ − 1 or P (λ) = λ3 + λ2 − λ − 1 respectively.

In our case, we find the double root e−t. This means the only way to have this

polynomial with integer coefficients is to set t = 0. Then we can conclude there is no lattice.

A.2.1 Algebras admitting a lattice

We present in tables 1, 2, 3 a list of indecomposable solvable, non-nilpotent unimodular

algebras that admit a lattice (at least for certain values of the parameters p, q, r, for instance

those chosen in table 4). For dimension up to four the algebras are almost nilpotent or

almost abelian. For dimension 5 and 6, only almost abelian algebras have been considered.

For the other six-dimensional indecomposable algebras, we do not know if a lattice exists.

A.3 Algorithmic construction of the one-forms of a solvable group

Let us consider a connected and simply-connected six-dimensional solvable group G. As a

manifold, its tangent bundle at the identity is given by TeG ≈ g, and has a basis of vectors

Ea (a = 1 . . . 6) satisfying

[Eb, Ec] = fa
bcEa . (A.19)
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We will focus on the dual basis of one-forms ea on the cotangent bundle g∗ ≈ TeG
∗, which

verify the Maurer-Cartan equation

dea = −1

2
fa

bce
b ∧ ec = −

∑

b<c

fa
bc eb ∧ ec . (A.20)

We want to consider a transformation A relating the one-forms of R
6 to those of G:

A




dx1

...

dx6


 =




e1

...

e6


 . (A.21)

Clearly the one-forms in (A.21) must satisfy the corresponding34 Maurer-Cartan equation.

The matrix A should reproduce the different fibrations of the solvable group (the bundle

structure is manifest in the Maurer-Cartan equations). Given the general form of solvable

groups (a nilradical subgroup N and an abelian left over subgroup G/N = R
dim G−dim N ),

we will consider A to be a product of two pieces:

A =

(
AN 0

0 I6−dim N

)(
AM 0

0 I6−dim N

)
, (A.22)

where we take AM and AN to be dimN × dimN matrices, and we put the abelian

directions of R
dim G−dim N in the last entries. AM will provide the non-trivial fibration

of N over R
dim G−dim N , the Mostow bundle fibration of the solvmanifold for the compact

case, see section 2. In turn, AN will provide fibrations inside N , the fibrations within the

nilmanifold piece for the compact case. If the solvable group is nilpotent, then we take

AM to be the identity.

To explicitly construct the matrices AM and AN we will now restrict ourselves to

G = N (nilpotent) or G = R ⋉µ N (almost nilpotent).

A.3.1 Mostow bundle structure: AM

We focus on the case of an almost nilpotent group. We identify the R subalgebra with the

direction x6. Then we take ∂t = ∂6 the basis for the R subalgebra, and the corresponding

one-form dx6 = dt. Then we define

AM = Ade−t∂t (n) = e−t ad∂t
(n) , (A.23)

and

ei = (AM )ik dxk . (A.24)

Let us prove that this action will give forms which do verify the Maurer-Cartan equation.

Consider first the simpler case of an almost abelian group, i.e. with N = R
5, which has

34Whether the exterior derivative is defined on these new forms will not be treated (see footnote 5): we

will just define it as the exterior derivative of R
6 acting on the left-hand side of (A.21).
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AN = IN . Then

dei = d(e−t ad∂t )i k ∧ dxk

= −dt ∧ (ad∂te
−t ad∂t )i kdxk

= −dt ∧ (ad∂t)
i

j(e
−t ad∂t )j kdxk

= −dt ∧ (ad∂t)
i

je
j

dei = −f i
tj dt ∧ ej . (A.25)

The fact that we used the adjoint action allows to easily verify the Maurer-Cartan equa-

tions.

Expression (A.23) for the matrix AM holds also for the more general case of almost

nilpotent algebras. In this case the Maurer-Cartan equations have component in direction

dt and also in the directions of the nilradical. The t dependence is always determined by

AM and hence it is not modified by the presence of a non-trivial nilradical. The form of

the nilradical matrix, AN , is given in the subsection below.

A.3.2 Nilmanifold fibration structure: AN

The matrix AN should reproduce the iterated fibration structure of N . The iterated

structure is related to the descending serie of n noted:

nk=0...p with n0 = n , np = {0} .

Every nk is an ideal of g, so ∀k ≥ 1 , nk = [n, nk−1] ⊂ [g, nk−1] ⊂ nk−1. Let us now define

another serie:

For 1 ≤ k ≤ p, sk = {E ∈ nk−1 with E /∈ nk} . (A.26)

Let us prove some property of this serie. Assume that ∃X ∈ sp
⋂

sq , p > q with X 6= 0.

Then X ∈ np−1 ⊂ np−2 ⊂ · · · ⊂ nq ⊂ nq−1. So X ∈ nq−1 and X ∈ nq, so X /∈ sq, which is

a contradiction. So sp
⋂

sq = {0} for p 6= q. Furthermore, we always have sp = np−1. So

sp−1
⋃

sp = sp−1
⋃

np−1 = np−2
⋃

np−1 = np−2. Assume that sk
⋃

sk+1
⋃ · · ·⋃ sp−1

⋃
sp =

nk−1. Then sk−1
⋃

sk
⋃ · · ·⋃ sp−1

⋃
sp = sk−1

⋃
nk−1 = nk−2

⋃
nk−1 = nk−2. So by recur-

rence, we get that
⋃

k=1...p sk = n. In other words, each element of n appears in one and

only one element of the serie s{k}.

Let us give an example: consider the five-dimensional solvable algebra

(0, 31,−21, 23, 24) (notations of section 2). We have

g = {1, 2, 3, 4, 5} , n = {2, 3, 4, 5} , n1 = {4, 5} , n2 = {5} , n3 = {0}
s1 = {2, 3} , s2 = {4} , s3 = {5} .

The descending serie of n is known to be related to the fibration structure of the nilpotent

group: each element gives a further fibration. Now we understand that the serie s{k}

gives us what directions are fibered at each step. The correspondence between basis, fibers

and series for a general iteration is given in the following diagram (of course it should be

– 54 –



J
H
E
P
0
5
(
2
0
1
1
)
0
2
8

understood in terms of group elements instead of algebra elements as given here, see [34]):

Fp−1 = sp →֒ Mp−1 = n

↓
Fp−2 = sp−1 →֒ Mp−2 = Bp−1

↓
...

↓
F2 = s3 →֒ M2 = B3

↓
F1 = s2 →֒ M1 = B2

↓
B1 = s1

We see the unique decomposition of n into the serie s{k}. We have Bi =
⋃

k=1...i s
k and

F i = si+1.

The matrix giving a single fibration was worked out in [28], we recover this result here.

In the general case of an iteration, we consider a product of several operators, each of them

giving one fibration of the iteration:

AN = Ap−1 . . . A1 , Ai = e−
1
2
fi (for p = 1, n = R

5 and AN = 1) ,

with fi ∈ End(n):

For i = 1 . . . p − 1 , fi : n → n

X 7→ Y = adBi(X) if X ∈ Bi and adBi(X) ∈ F i ,

Y = 0 otherwise . (A.27)

We choose to give a basis of n in the order given by s1, s2, . . . , sp, and in each sk we can

choose some order for the elements. Then in that basis, fi, as a matrix, is an off-diagonal

block with lines corresponding to F i = si+1 and columns to Bi =
⋃

k=1...i s
k. Then Ai is

the same plus the identity. Furthermore, the block depends on parameters aj of a generic

element ajEj of Bi, and we have adajEj∈Bi = ajadEj∈Bi . So for instance for the previous

algebra, we get:

A1 =




1 0 0 0

0 1 0 0
1
2a3 −1

2a2 1 0

0 0 0 1


 A2 =




1 0 0 0

0 1 0 0

0 0 1 0
1
2a4 0 −1

2a2 1


 . (A.28)

The parameters aj can be understood as a coordinate along Ej , so they are such that

daj = ej , dual of Ej.

Let us prove that the operator Ar gives the fibration of directions of Fr over a base

Br, and the correct corresponding Maurer-Cartan equation. As explained, an element of
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Ar is given by:

(Ar)
i

k = δi
k − 1

2

∑

j∈Br

aj(adEj
)i k Θ(i ∈ Fr)Θ(k ∈ Br) = δi

k − 1

2

∑

j,k∈Br

ajf i
jk Θ(i ∈ Fr) .

(A.29)

The forms on which we act with Ar at the step r of the iteration are labelled ek, and they

become after the operation ẽi:

ẽi = (Ar)
i

k ek . (A.30)

The directions we fiber with Ar are initially not fibered, so ek∈Fr
= dxk. All the other

directions are not modified by Ar, so in particular ẽi∈Br
= ei∈Br

. So the Maurer-Cartan

equations of the forms not in Fr are not modified at this step. Their equation is then only

modified at the step when they are fibered, so we don’t have to consider it here. For the

directions Fr, we get:

ẽi∈Fr

= ei∈Fr − 1

2

∑

j,k∈Br

ajf i
jk ek

= dxi − 1

2

∑

j,k

ajf i
jk ek ,

where we dropped the restriction j, k ∈ Br because due to the iterated structure, for i ∈ Fr,

f i
jk = 0 if k or j /∈ Br. This operation then gives the fibration structure, since we can

read the connection. We can verify that we have the correct Maurer-Cartan equation:

dẽi∈Fr

= −1

2
f i

jk daj ∧ ek

= −1

2
f i

jk ej ∧ ek

dẽi = −1

2
f i

jk ẽj ∧ ẽk .

A.4 Six-dimensional solvmanifolds in terms of globally defined one-forms

In table 4 we present the solvmanifolds that we considered in this paper. They have the

form G/Γ = H1/Γ1 × H2/Γ2, i.e. they are products of (at most) two solvmanifolds. Each

of these two solvmanifolds are constructed from the algebras given in the tables 1, 2, 3

(see appendix A.2.1) and the three-dimensional nilpotent algebra g3.1 : (−23, 0, 0). In

particular, these are indecomposable solvable algebras for which the group admits a lattice.

The difference with respect to section A.2.1 is that the algebras are given here in terms

of a basis of globally defined forms (see discussion in section 2.1). They are related by

isomorphisms to the algebras given in the tables 1, 2, 3. The fact the forms are globally

defined is important for studying the compatibility of orientifold planes with the manifold

and for finding solutions. For g
p,−p−1
4.5 ⊕ R

2 and g
−2p,p
4.6 ⊕ R

2, we were not able to find such

a basis, even if a priori we expect it to exist.

The column Name indicates the label of the algebra and the corresponding solvman-

ifold. The column Algebra gives the corresponding six-dimensional algebra in terms of

exterior derivative acting on the dual basis of globally defined one-forms (see section 2).
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The next two columns give the O5 and O6 planes that are compatible with the manifold.

The column Sp indicates by a X when the manifold is symplectic, according to [33, 36]. No-

tice that the same results can be obtained as conditions for the twisted pure spinors to solve

the supersymmetry equations. In particular, for the even SU(3) pure spinor Φ+ = 1
8e−iJ

the condition

d(Otw)Φ+ = 0 (A.31)

is equivalent to the requirement that the manifold is symplectic.

There is an additional subtlety for not completely solvable manifolds, when one looks

for solutions on them. This is due to the lack of isomorphism between the cohomology

groups H∗(g) and H∗
dR(G/Γ) for not completely solvable manifolds (see footnote 5). In

other words, the Betti numbers for the Lie algebra cohomology give only the lower bound

for the corresponding numbers for de Rham cohomology. When looking for e.g. symplectic

manifolds, we have considered only the forms in H2(g), and hence might have missed some

candidate two-forms in H2
dR(G/Γ).

B T-dualising solvmanifolds

T-duality has been extensively used in flux compactifications in order to obtain solutions on

nilmanifolds. Being iterations of torus bundles, these are obtainable from torus solutions

with an appropriate B-field (the contraction of H with the isometry vectors should be a

closed horizontal two-form that can be thought as a curvature of the dual torus bundle.).

Correspondingly, the structure constants fa
bc have also a T-duality friendly form. For

any upper index there is a well-defined isometry vector ∂a with respect to which one can

perform an (un-obstructed) T-duality.

In this section we would like to study some aspects of T-duality for solvmanifolds. In

this case, the situation is more complicated. For instance, it can happen that the structure

constants have the same index in the upper and lower position fa
ac and are not fully

antisymmetric. Put differently, most of our knowledge about the global aspects of T-

duality comes form the study of its action on (iterations of) principal U(1) bundles. Since

the Mostow bundles are not in general principal, the topology of the T-dual backgrounds

is largely unexplored. We shall not attempt to do this here, but rather illustrate some of

novel features by considering T-duality on the simplest cases of almost abelian manifolds.

Requiring that T-duality preserves supersymmetry imposes that the Lie derivatives

with respect to any isometry vector v vanish, LvΨ± = 0 [43]. For the simple case of

almost abelian solvmanifolds, it is not hard to check that all vectors vi = ∂i, where, in the

basis chosen in this paper, i = 1, . . . , 4, 6, satisfy this condition. However, these vectors

are defined only locally,35 since they transform non-trivially under t ∼ t + t0. Hence, in

general, the result of T-duality will be non-geometric. We shall see that there are subtleties

even for the case when the supersymmetry-preserving isometries ∂i are well defined.

35As discussed, on the compact solvmanifolds there exists a set of globally defined one forms {e} =

{AMdx} and the dual basis {E} = {(A−1
M )T ∂} is made of globally defined vectors. However, the Lie

derivative of the pure spinors with respect to these does not vanish.
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Name Algebra O5 O6 Sp

g−1
3.4 ⊕ R

3 (q123, q213, 0, 0, 0, 0) q1, q2 > 0 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, X

26, 34, 35, 36 246, 256, 345, 346, 356

g0
3.5 ⊕ R

3 (−23, 13, 0, 0, 0, 0) 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, X

26, 34, 35, 36 246, 256, 345, 346, 356

g3.1 ⊕ g−1
3.4 (−23, 0, 0, q156, q246, 0) q1, q2 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g3.1 ⊕ g0
3.5 (−23, 0, 0,−56, 46, 0) 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g−1
3.4 ⊕ g0

3.5 (q123, q213, 0,−56, 46, 0) q1, q2 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g−1
3.4 ⊕ g−1

3.4 (q123, q213, 0, q356, q446, 0) q1, q2, q3, q4 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g0
3.5 ⊕ g0

3.5 (−23, 13, 0,−56, 46, 0) 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g
p,−p−1
4.5 ⊕ R

2 ? -

g
−2p,p
4.6 ⊕ R

2 ? -

g−1
4.8 ⊕ R

2 (−23, q134, q224, 0, 0, 0) q1, q2 > 0 14, 25, 26, 35, 36 145, 146, 256, 356 -

g0
4.9 ⊕ R

2 (−23,−34, 24, 0, 0, 0) 14, 25, 26, 35, 36 145, 146, 256, 356 -

g
1,−1,−1
5.7 ⊕ R (q125, q215, q245, q135, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g−1
5.8 ⊕ R (25, 0, q145, q235, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g
−1,0,r
5.13 ⊕ R (q125, q215,−q2r45, q1r35, 0, 0) r 6= 0, q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g0
5.14 ⊕ R (−25, 0,−45, 35, 0, 0) 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g−1
5.15 ⊕ R (q1(25 − 35), q2(15 − 45), q245, q135, 0, 0) q1, q2 > 0 14, 23, 56 146, 236 X

g
p,−p,r
5.17 ⊕ R (q1(p25+35), q2(p15+45), q2(p45−15), q1(p35−25), 0, 0) 14, 23, 56 146, 236 X

r2 = 1, q1, q2 > 0 p = 0: 12, 34 p = 0: 126, 135, 245, 346

g0
5.18 ⊕ R (−25 − 35, 15 − 45,−45, 35, 0, 0) 14, 23, 56 146, 236 X

g
0,−1
6.3 (−26,−36, 0, q156, q246, 0) q1, q2 > 0 24, 25 134, 135, 456 X

g
0,0
6.10 (−26,−36, 0,−56, 46, 0) 24, 25 134, 135, 456 X

Table 4. Six-dimensional solvmanifolds considered in this paper, in terms of globally defined one-forms.
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We shall consider the action of T-duality on two solvmanifolds, g
0,0,±1
5.17 ×S1 (s 2.5) and

g
1,−1,−1
5.7 × S1. For s 2.5, following [41], we write the algebra as (25,−15, r45,−r35, 0, 0),

r2 = 1. The twist matrix A(t) is made of periodic functions of t = x5,

A =




Rr=1

Rr

I2


 , Rr =

(
cos x5 −r sin x5

r sin x5 cos x5

)
, (B.1)

and T-duality is un-obstructed. The various supersymmetric solutions found in [41, 42] are

all related by two T-dualities

IIB IIA

t:30 t :12 t :30 t :12

(13 + 24)

T12

oo // (14 + 23) oo //

T6

(136 + 246)

T12

oo // (146 + 236)

(14 + 23) oo // (13 + 24) oo // (146 + 236) oo // (136 + 246)

In the table we labelled each solution by the dominant O-plane charge. The sources

are labelled by their longitudinal directions, e.g. (13 + 24) stands for a solution with two

sources (one O5 and one D5) along directions e1∧e3 and e2∧e4. T-dualities (the subscripts

indicate the directions in which they are performed) exchange the columns in the table;

lines are exchanged by relabellings (symmetries of the algebra).

The T-dualities are type36 changing, meaning a pair of type 0 and 3 (t:30) pure spinors

is exchanged with a pair of type 1 and 2 (t:12) and vice versa.

It is natural to see what will it be the effect of a single T-duality. To be precise we

take as starting point Model 3 of [41]. We shall concentrate on the NS sector and discuss

the topology changes under T-duality. The NS flux is zero and the metric, in the dxi basis

is

ds2 =
t21
t2

(τ1
2 )2G(dx1 + Adx2)2 +

t1
G

(dx2)2 + t1(τ
1
2 )2G(dx3 + rAdx4)2

+
t2
G

(dx4)2 + t3(dx5)2 + t3(dx6)2 (B.3)

with

G = cos2(x5) +
t2

t1(τ
1
2 )2

sin2(x5) A =
t2 − t1(τ

1
2 )2

2Gt1(τ
1
2 )2

sin(2x5) . (B.4)

A single T-duality along x1 yields the manifold T 3 × ε2 (ε2 : (−23, 13, 0)) with O7-D5 (or

D7-O5) and an H-flux given by

H = −dA∧ dx1 ∧ dx2 . (B.5)

36A pure spinor Ψ can always be written as

Ψ = eB+ijΩk , (B.2)

where Ωk is a holomorphic k-form, B and j are real two-forms. The degree of Ωk is the type of the pure

spinor.
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Note that the H-flux (B.5) allows for topologically different choices of B-field. Being not

completely solvable (see footnote 5), s 2.5 can yield manifolds of different topology (different

Betti numbers). Correspondingly, the results of T-duality should vary as well, and the

application of the local Buscher rules might be ambiguous. The choice of B-field in (B.5),

B = −Adx1 ∧ dx2, corresponding to the application of the local rules to (B.3), is globally

defined due to A(x5 + l) = A(x5). There is a less trivial choice with B = −x1 ∂5A dx2∧dx5

which however does not arise from the application of local T-duality rules to (B.3) since

the metric does not have off-diagonal elements between x2 and x5.

A further T-duality along x2 gives back s 2.5 with O6-D6 sources, but the supersym-

metry now is captured by a different pair of pure spinors.

For the manifold g
1,−1,−1
5.7 ⊕ R, the twist matrix is

A(x5) =




R(x5)

R(−x5)

I2


 R(x5) =

(
ch −ηsh

− 1
η sh ch

)
, (B.6)

where we set

ch = cosh(
√

q1q2x
5) , sh = sinh(

√
q1q2x

5) , η =

√
q1

q2
. (B.7)

Then it is straightforward to check that the isometry vectors vi = ∂i are local. Any T-

duality along these is thus obstructed, and hence the O6-D6 solution of [40, 41] does not

have geometric T-duals. For this case we shall adopt the method applied to nilmanifolds

in [43], and work out the action of T-duality on the generalized vielbeine.

The generalized vielbeine on g
1,−1,−1
5.7 ⊕ R can be obtained using twist transformation

(see (2.48)) from the generalized vielbeine of the torus (on which we take for simplicity the

identity metric)

E =

(
I6 06

06 I6

)(
A 06

06 A−T

)
. (B.8)

To work out their T-duals, we act by

ET = OT × E × OT , (B.9)

where OT is the O(d, d) matrix for T-duality. The OT on the right is the regular action

of T-duality, while the OT on the left assures that the map has no kernel (see [43]). The

T-duality is done in the x1 direction, so the OT is

OT =




T1 T2

I2 02

I2 02

T2 T1

02 I2

02 I2




, T1 =

(
0

1

)
, T2 =

(
1

0

)
, (B.10)
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and then

ET =




C1 B1

R(−x5) 02

I2 02

B2 C2

02 R(x5)T

02 I2




, (B.11)

with

C1 = C2 = ch I2 , B1 = −1

η
sh ǫ , B2 = ηsh ǫ , ǫ =

(
0 −1

1 0

)
. (B.12)

The generalized vielbeine ET can be brought to the canonical lower diagonal form (2.46)

by a local O(d) × O(d) transformation. When such a transformation cannot be made

single-valued, we talk about non-geometric backgrounds (where the action of a non-trivial

β cannot be gauged away). The result of the O(d) × O(d) transformation is

E ′=




O1 O2

I2 02

I2 02

O2 O1

02 I2

02 I2




×ET =




O1C1 + O2B2 O1B1 + O2C2

R2 02

I2 02

O2C1 + O1B2 O2B1 + O1C2

02 R−T
2

02 I2




,(B.13)

where the non-trivial O(d) × O(d) components are

O1/2 =
1

2
(O+ ± O−) O± ∈ O(2) . (B.14)

By solving O1B1 + O2C2 = 0, we can obtain O2 and express O± in terms of O1:

O± = O1(I2 ± u ǫ) , u =
sh

ηch
,

OT
±O± = I2 ⇔ OT

1 O1 =
1

1 + u2
I2 . (B.15)

A simple solution is given by

O1 =
1√

1 + u2
I2 ⇒ O2 =

u√
1 + u2

ǫ . (B.16)

Thus we can indeed bring ET to a lower-diagonal form, but with an O(d) × O(d) transfor-

mation that is not globally defined. It is not hard to see that replacing the x1 direction by

others does not change much. Hence any T-dual to g
1,−1,−1
5.7 × S1 is non-geometric.

A similar analysis for s 2.5 shows that one can easily solve the constraint O1B1+O2C2 =

0 with O1 and O2 being globally defined (this is easy since the functions entering are all

periodic).
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