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Abstract: We construct a large class of non-supersymmetric AdS-like throat geometries in

string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The

scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken

supersymmetry. The large hierarchy of energy scales in these geometries is stable. We

establish this by showing that the dual gauge theories do not have any relevant operators

which are singlets under the global symmetries. When the geometries are embedded in

a compact internal space, a large enough discrete subgroup of the global symmetries can

still survive to prevent any singlet relevant operators from arising. We illustrate this by

embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These

examples can serve as a starting point for obtaining Randall-Sundrum models in string

theory, and more generally for constructing composite Higgs or technicolor-like models

where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards

the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by

introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can

lead to an emergent weakly coupled gauge theory in the IR with matter fields including

scalars.
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1 Introduction

The Randall-Sundrum model [1, 2] provides a solution to the hierarchy problem different

from supersymmetry. The essential idea is to have a five dimensional AdS5-like warped

spacetime which can give rise to a large hierarchy of scales. By suitably locating the

standard model fields in such a spacetime and tying the hierarchy of scales in the warped

background to the breaking of electroweak symmetry, one can try to construct a workable

model of electroweak symmetry breaking.

In this paper we will take some steps towards constructing such a model in string theory.

String compactifications which realize some of the basic physics of the Randall-Sundrum

model have already been described in [3, 4] and many subsequent papers. However, these

constructions are based on compactification of SUSY-preserving AdS throat geometries.

Therefore, the first question we must address is: can a geometry with a long throat, and

thus a large hierarchy of scales, be stable in the absence of SUSY?

– 1 –



J
H
E
P
0
5
(
2
0
1
0
)
0
6
7

The worry is that once SUSY is broken, relevant operators can be generated in the dual

field theory (say at the cutoff, where one glues the throat into a compact geometry). These

would destroy the throat geometry. These operators, in the gravity picture, correspond

to modes that grow rapidly in the interior of the throat (as one goes towards the infra-

red), and cause the throat to pinch-off at a high scale. In this paper, we argue that one

can construct non-supersymmetric throat geometries (and compactifications incorporating

them) that avoid this particular problem.

The basic idea is to find theories with sufficiently rich global symmetries to forbid all

relevant operators. In theories with scalars, one operator which cannot be forbidden by

linearly realized symmetries is a singlet scalar mass of the form φ†φ; but as observed in [5],

such operators obtain large anomalous dimensions in the limit of strong ’t Hooft coupling,

and are dual to string states. Combining these ingredients, we obtain non-supersymmetric

theories with only marginal or irrelevant global singlet perturbations. Any global singlet

marginal perturbations, if they become marginally relevant, can end the throat geometry,

but only after a long period of RG flow, leaving a macroscopic throat. Our goal will be to

realize this picture in concrete examples, much in the spirit of [5].1

One might wonder whether such constructions, if they exist, would be very contrived

or non-generic. We will actually find, on the contrary, that the simplest gauge/gravity

dual pairs give rise rather easily to large classes of examples. We start with the famous

duality between N = 4 super Yang-Mills and type IIB string theory on AdS5 ×S5 [6]. We

find that an infinite class of non-supersymmetric orbifolds of this dual pair [7, 8] preserve

SU(3)×U(1) global symmetries, and have all the properties required to realize our scenario.

In this class, we do not yet have a concrete handle on how the throat may round off in the

deep IR (when marginally relevant operators in the UV have grown strong).

To obtain a model where we have a slightly more complete picture of the IR physics,

we then turn to the theory of D3-branes and D5-branes in the conifold geometry [9, 10].

We show that simple orbifolds of this theory again break SUSY while maintaining the

absence of global singlet relevant operators. In this case, we can use the Klebanov-Strassler

solution [10] to give a picture of the IR physics which should govern some examples. We

further exhibit a concrete compactification of such a SUSY-breaking throat, preserving

sufficient global symmetries to stabilize the hierarchy.

Given a concrete model with the IR geometry of the throat under control, we can

discuss in more detail how one might obtain gauge and matter fields at low energies. We

show that two promising avenues are to realize bulk gauge fields via D7-branes stretching

down the throat, or to have an emergent gauge sector arise in the IR on anti-D3 branes

localized at the tip. The latter system also gives rise to light composite Higgs-like scalars,

which break the gauge symmetry at low energies.

The full organization of our paper is as follows. In §2, we present an infinite class of

non-supersymmetric orbifolds of AdS5 × S5 which have no global singlet relevant opera-

1 For clarity, we should describe what has been learned on top of the basic picture advocated in [5]. We

believe the present work demonstrates that the existence of examples is much more generic than one might

have believed, that one can suitably “round off” such examples in the IR in a way that allows generation of

composite scalars, and that one can compactify these throats while preserving sufficient discrete symmetries

to protect the hierarchy.
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tors. We then turn, in §3, to brief overview of the Klebanov-Witten (KW) and Klebanov-

Strassler (KS) theories of D-branes at the conifold. §4 details the construction of non-

supersymmetric orbifolds of these theories which have the required properties. In §5, we

turn to the construction of compactifications which incorporate such throats, and show

that the full compact geometry can maintain a large enough subgroup of the global sym-

metry group to still forbid all relevant operators. Having established the existence of such

stable throat geometries, we turn in §6 to adding (very crude) toy models that give rise

to interesting IR physics (i.e., some weakly interacting sector with light gauge bosons,

fermions, and scalars). In appendix A, we provide a detailed discussion of how a discrete

group we use in §5 acts on operators of the KS field theory, while in appendix B, we discuss

some issues related to the Horowitz-Orgera-Polchinski instability of non-supersymmetric

orbifolds [11].

2 Orbifolds of N = 4 theory

We begin by considering a large class of non-supersymmetric orbifolds of the N = 4

theory. These have a dual description as non-supersymmetric orbifolds of IIB string theory

on AdS5 × S5 [7, 8]. The N = 4 theory has a global SO(6) R symmetry group, which

corresponds in the gravity description to the isometries of the S5. In the examples we

consider, after orbifolding, this global symmetry is broken to an SU(3) × U(1) subgroup.

We show that at large ’t Hooft coupling, where the supergravity description is valid, there

are no relevant operators in the gauge theory which are singlets under the surviving global

symmetries. This shows that the throat geometry is stable in all these examples even

though supersymmetry is broken.2

Before proceeding, we should describe the current state of knowledge about non-

supersymmetric orbifolds of AdS/CFT [12–14]. The non-supersymmetric orbifolds with

fixed points of the orbifold action on S5 have twisted sector closed-string tachyons in the

gravity regime. The instability represented by these tachyons seems to correlate with

weak-coupling Coleman-Weinberg instabilities in the dual field theories (at small ’t Hooft

coupling) [12].

On the other hand, freely-acting orbifolds (which are the only kind we consider) do not

generate any apparent tachyonic instabilities in the gravity regime — the twisted sector

strings have large positive mass proportional to the size of the space. Therefore, at strong

’t Hooft coupling, the AdS/CFT correspondence suggests that there is a large-N fixed line,

destabilized by 1/N corrections.

In the small radius regime of freely-acting orbifolds, the story is different. The field

theory at weak ’t Hooft coupling and large-N is not at a fixed point (even at the planar

level), due to the generation of double-trace couplings [13, 14].

A more subtle issue in these examples is possible non-perturbative instabilities at

strong ’t Hooft coupling. Horowitz, Orgera and Polchinski [11] analyzed non-perturbative

2Note that the supersymmetry breaking is not soft, and occurs in the ultraviolet. At large N , some

properties of the daughter theory are however inherited from the parent SUSY theory.
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decay channels of precisely the orbifolds we consider. We summarize their analysis, and its

implications for our constructions, in appendix B.

2.1 Constructing the field theories

The metric of AdS5 × S5 spacetime is,

ds2 =
r2

L2
Ads

(−dt2 + dx2
i ) +

L2
AdS

r2
dr2 + L2

AdS dΩ
2
5. (2.1)

Here dΩ2
5 is the volume element of a unit S5, and LAdS is the common radius of the AdS5

and the S5. This geometry is obtained as the near-horizon geometry of D3-branes which

extend along, t, xi, i = 1, . . . 3, and are transverse to the six coordinates y1, . . . y6 [6].

The orbifold we consider is obtained by identifying configurations in IIB string theory

related by the action of the Zk generator:

α = R( 2π
k

)(−1)F . (2.2)

Here,

R( 2π
k

) = exp

[

2πi

k
(J12 + J34 + J56)

]

, (2.3)

is a simultaneous rotation by the angle 2π
k in the y1 − y2, y3 − y4, and y5 − y6, planes.

This rotation acts on the S5 and leaves the AdS5 invariant. The second factor in eq. (2.2),

(−1)F , weights spacetime fermions and bosons with opposite signs. We only consider the

case where k is an odd integer. In this case, due to the presence of the (−1)F factor, αk is

unity on both spacetime fermions and bosons.3

The orbifold has no fixed points. If Z1 = y1 + iy2, Z2 = y3 + iy4, Z4 = y5 + iy6 are the

three complex coordinates transverse to the D3 branes, then under the action of α,

(Z1, Z2, Z3) →

(

exp

[

2πi

k

]

Z1, exp

[

2πi

k

]

Z2, exp

[

2πi

k

]

Z3

)

. (2.4)

The only fixed point would be at Z1 = Z2 = Z3 = 0 but this point is not present

in the near horizon geometry, where the flux blows up the S5 to non-zero radius. This

makes it relatively easy to determine the spectrum of light states. In the supergravity

approximation, these states are simply those KK modes of the AdS5 × S5 background

which are invariant under the orbifold symmetry. The masses of these modes (and the

dimensions of the dual operators) are the same as in the N = 4 theory.

To understand what subgroup of the SO(6) R-symmetry group is preserved by the

orbifold, let us note that the S5 can be described as a U(1) fibration over CP 2. The

orbifold is obtained by identifying points along the fiber circle related by a shift of 2π
k . This

preserves the SU(3) symmetry of the base CP 2 and also the U(1) symmetry corresponding

to continuous shifts along the fiber. Thus the SO(6) global symmetry of the N = 4 theory

is broken to an SU(3) × U(1) subgroup after the orbifold identification.

3If k is even the orbifold would project out all spacetime fermions and correspond to an orbifold of Type

0 string theory, as described in e.g., [11]. We do not consider this case here.
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To preserve supersymmetry the orbifold must have SU(3) holonomy. SO(6) ∼ SU(4)

has a 4 dimensional spinor representation (ψ1, ψ2, ψ3, ψ4), where the first three components

transform as a triplet of SU(3) and the last is a singlet. Under the orbifold symmetry, α,

(ψ1, ψ2, ψ3, ψ4) →
(

− e
−iπ

k ψ1,−e
−iπ

k ψ2,−e
−iπ

k ψ3,−e
3iπ
k ψ4

)

(2.5)

(these charge assignments will become clear when we consider the gauge theory below).

For k = 3 we see that this leaves ψ4 invariant, so that the resulting holonomy lies in SU(3)

and the orbifold preserves N = 1 susy. For all the other cases, when k > 3, no component

is left invariant, and supersymmetry is broken.

We now turn to the gauge theory description. As is well known, the N = 4 theory can

be described in N = 1 language as follows: it has three chiral multiplets and one vector

multiplet. A U(1) subgroup of the full SO(6) R-symmetry is manifest in this description.

Under it the scalar components of the three chiral multiplets, which correspond to the three

coordinates, Z1, Z2, Z3, have R-charge 2/3, their fermionic partners have R-charge −1/3

and the gaugino has charge +1. Besides the U(1)R symmetry this description also makes

an additional SU(3) subgroup of the SO(6) R-symmetry group manifest. The three chiral

superfields transform as a triplet of the SU(3). The theory has a superpotential which is

trilinear in the chiral superfields and which is also manifestly SU(3)×U(1)R invariant. The

SU(3) symmetry we have identified in this way in fact corresponds to the SU(3) isometries

of the base CP 2 in the gravity description while the U(1)R corresponds to continuous shifts

along the fiber.

It then follows that the rotation R( 2π
k

) in eq. (2.3) acts with a phase e
3πi
2k

Q on the fields of

the N = 4 theory, where Q is the R-charge of the field. Thus the full action of the generator

α of eq. (2.2) is by a phase e
3πi
2k

Q(−1)F . As an aside, note that the three fermionic partners

of the scalars and the gaugino lie in a 4 dimensional spinor representation of SO(6). The

transformation, eq. (2.5) follows from this. Now to determine the resulting gauge theory,

after the orbifold projection, we also need to embed the Zk discrete symmetry in the SU(N)

gauge symmetry of the N = 4 theory. Here we take N = nk. And on the N dimensional

fundamental representation of SU(N) we take the generator of the Zk symmetry to act in

a block diagonal fashion as:
(

[1]n×n, [e
2πi
k ]n×n, [e

4πi
k ]n×n · · · , [e

2(k−1)πi

k ]n×n

)

, (2.6)

so that it multiplies each n × n subspace by a kth root of unity. The action on any other

representation follows from this. This is just the simplest example of the general procedure

described in [15] for computing the spectrum of D-branes at orbifold singularities.

Fields which survive in the orbifold theory are invariant under the simultaneous action

by e
3πi
2k

Q(−1)F and the action on the gauge indices. It is easy to see that the orbifold

projection breaks the SU(N) gauge symmetry to SU(n)k resulting in a k node quiver.4

The scalars and fermions give rise to bi-fundamental matter. In particular, for k > 3,

there are no fermions which transform in the adjoint representation of SU(n)k, and thus

no gauginos. This shows that supersymmetry is broken.

4There are also extra U(1) factors which we are not being careful about.

– 5 –



J
H
E
P
0
5
(
2
0
1
0
)
0
6
7

Figure 1. Quiver diagram of the k = 5 case. White arrows denote fermions, and black arrows

denote scalars. We thank the authors of [13] for permission to reproduce this figure.

Let us give the resulting spectrum in full detail for the case k = 5. The 3 complex

scalars give rise to:

SU(n)1 SU(n)2 SU(n)3 SU(n)4 SU(n)5

Qi
1 1 1 1

Qi
2 1 1 1

Qi
3 1 1 1

Qi
4 1 1 1

Qi
5 1 1

Here the superscript i takes three values, i = 1, 2, 3,. The fields Qi
m,m = 1, . . . 5, arise from

the complex scalar Zi in the N = 4 theory. The fermions give rise to:

SU(n)1 SU(n)2 SU(n)3 SU(n)4 SU(n)5

ψi
1 1 1 1

ψi
2 1 1 1

ψi
3 1 1 1

ψi
4 1 1 1

ψi
5 1 1 1

λ1 1 1 1

λ2 1 1 1

λ3 1 1 1

λ4 1 1 1

λ5 1 1 1

The ψi
m, i = 1, 2, 3, fermions arise from the fermions in the chiral multiplets (in N = 1

language), while the λm fermions arise from the gaugino.

For those who find quiver diagrams more useful, the quiver summarizing this field

content is given below.
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2.2 Operator analysis

Having understood the matter content of the field theory dual to the orbifold we can now

investigate whether there are relevant operators which would destabilise the throat. In

the gravity picture these correspond to modes which would grow exponentially fast in the

radial direction. In particular we are interested in relevant operators which are singlets

under the SU(3) × U(1)R global symmetry.

For this purpose it is useful to examine first how the relevant operators in the N = 4

theory transform under the SU(3)×U(1)R symmetry. Let us start with single trace gauge

invariant operators.

The N = 4 theory has three kinds of operators which are bilinears in the scalar:

(1) Tr(ZiZj) : These have dimension 2. They transform like a 6 of SU(3) and carry

charge 4/3 under U(1)R. Thus they are not singlets under SU(3)×U(1)R. The oper-

ators, Tr(Z̄iZ̄j), which are complex conjugates transform in the complex conjugate

representation under the global symmetries and are also not singlets.

(2) Tr(ZiZ̄j) −
1
3δ

i
jTr(Z

iZ̄i): These also have dimension 2. They are singlets under the

U(1)R but transform like an 8 of SU(3) and are therefore not singlets under the global

symmetry.

(3) Tr(ZiZ̄i): This operator is a singlet. However it has an anomalous dimension which

goes like ∆ ∼ (gsN)1/4 and thus is much bigger than unity in the large ’t Hooft

coupling limit. It is therefore not relevant.

In the orbifold theory there are also scalar bilinears which arise from the Qi
m fields and

their complex conjugates. However these operators inherit their SU(3) × U(1) quantum

numbers and also their anomalous dimensions (to leading order in N) from the N = 4

theory.5 Thus we conclude that there are no scalar bilinears in the orbifold theory which

are global singlet relevant operators (GSROs).

The discussion above brings out one of the central points of the paper, so it is worth

emphasising in more general terms. At strong coupling (large ’t Hooft coupling) in the

supersymmetric parent theory, only protected operators have anomalous dimensions of

order unity; these operators are charged under the global symmetries of the parent theory

and thus are not GSROs. If we can arrange for a sufficiently big subgroup of the global

symmetry group to be preserved by the daughter orbifold theory, it too will not contain

any GSROs. In particular it was vital in the example above that the operator Tr(ZiZ̄i)

obtains an anomalous dimension bigger than 4 at strong coupling in the N = 4 theory. This

ensures that the daughter theory does not suffer from a hierarchy problem even though

it has elementary scalars and no supersymmetry! In contrast, at weak ’t Hooft coupling,

the operator Tr(ZiZ̄i) has (approximately) dimension 2 and is thus relevant. It would be

generated at the cut-off and destabilise the orbifold field theory. The importance of this

large anomalous dimension at strong coupling was emphasised in [5].

5This is consistent with the fact that in the sugra approximation the mass of invariant KK modes is left

unchanged by the orbifolding procedure.
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Continuing with our discussion of possible GSROs, one class of dimension three oper-

ators in the N = 4 theory arise from Lorentz invariant, fermion bilinears. Denoting the

three matter fermions by ψi, i = 1, . . . 3 and the gaugino by λ, there are three operators of

this type:

(1) Tr(ψiψj): R-charge −2
3 .

(2) Tr(λλ): R charge 2.

(3) Tr(ψiλ): R charge 2/3.

Thus none of these are global singlets. As a result no fermion bilinear global singlets arise

in the daughter theory. Actually there is an even quicker argument which one can use

in this case: the daughter theory has fermions in only bi-fundamental representations (no

adjoints). It is easy to see that no Lorentz invariant, gauge invariant fermion bilinears can

be made from these.

Additional dimension 3 operators in the N = 4 theory arise from scalar trilinears.

Each scalar in the trilinear can be one of the Zi or the Z̄i fields. However since the Zis

have R-charge 2/3 it is easy to see that no such trilinear combination can be R-charge

neutral. Thus, no GSROs can arise from these operators either.

Having discussed all possible single trace GSROs, let us now turn to double trace

operators. The smallest dimension of a single trace gauge invariant in the N = 4 theory

is 2. Since to leading order in N the anomalous dimensions of double trace operators are

simply the sum of their single trace constituents, it follows that any double trace operator

must have at least dimension 4 and can therefore at most be marginal. This completes

our discussion of possible GSROs in the orbifold theory. We see that there are no such

operators and thus the throat in the dual gravity description is stable.

Note that we have not discussed possible global singlet marginal operators (GSMOs).

These are operators whose dimension is 4, up to small corrections. Such operators are

in fact present in the parent theory and thus also arise in the daughter theory. One

example is a double trace operator made out of single trace scalar bi-linears. No symmetry

prevents these operators and they will be generated by radiative effects even if one sets

them to zero in the ultraviolet. However since these operators are marginal their presence

will not destabilise the hierarchy, which is our main concern here. In fact such operators

can play an important role in ensuring the vacuum stability of the orbifold theory. To

leading order in N the orbifold theory has flat directions - these are inherited from the

N = 4 theory and correspond to Zk symmetric displacements of the D3-branes along

the Coulomb branch. These flat directions will be lifted by quantum effects and could

potentially lead to Coleman-Weinberg type run-away instabilities. Since the GSMOs will

be radiatively generated anyways, one might as well add them to the tree level Lagrangian

with appropriately small coefficients. These coefficients (with sign) can be chosen to lift at

least some of the flat directions. We will not pursue a complete analysis of the resulting

stability of these orbifold theories here, see [5] for some discussion. In the subsequent

section an example is constructed in detail based on an orbifold of the Klebanov Strassler

theory. In this example we will see that there is no vacuum instability.

– 8 –



J
H
E
P
0
5
(
2
0
1
0
)
0
6
7

Let us end with one final comment. We have used the continuous symmetry SU(3) ×

U(1)R to prevent relevant operators. However it is well known that realistic compacifi-

cations of string theory, like Calabi-Yau compactifications, do not give rise to isometries.

So one might be worried that after compactification these isometries will be broken and

the relevant operators cannot be prevented. However, one can easily construct examples

of Calabi-Yau manifolds with unbroken discrete symmetries. A moderately big discrete

symmetry can often suffice to prevent operators of dimension < 4. This will be illustrated

in detail in the example based on the Klebanov-Strassler theory below.

3 An overview of KW and KS

While the discussion of N = 4 orbifolds already provides a wide class of non-SUSY the-

ories without GSROs, it is useful to study a single example in more detail. One would

explicitly like to construct a compactification preserving enough symmetries to protect the

hierarchy, and also provide a more detailed picture of the emergent IR physics. For these

purposes, we find it useful to study an example based on D-branes at the conifold. Below

we construct such an example based on an orbifold of the Klebanov-Strassler theory. In

this section we review some essential features of the Klebanov-Witten and the Klebanov-

Strassler theories, [9, 10], and then turn to the non-supersymmetric orbifold in the section

which follows.

3.1 The Klebanov-Witten (KW) theory

The Klebanov-Witten theory is obtained by placing D3 branes at the tip of a conifold. The

resulting gauge group is SU(N) × SU(N), with chiral multiplet matter fields Ai, B
j , i =

1, 2; j = 1, 2 transforming as ( , ) and ( , ) respectively under the gauge symmetries.

The non-anomalous global symmetries include a Baryonic symmetry, U(1)B , under which

Ai have charge +1 and Bj have charge −1, and a U(1)R R-symmetry, under which the fields

Ai, B
j have charge 1/2. The theory also has an SU(2) × SU(2) flavor global symmetry.

The fields Ai, i = 1, 2 transform as a doublet of the first SU(2) and the Bj , j = 1, 2 as

a doublet of the second SU(2). There is in addition a discrete Z2 symmetry which we

will refer to as Z2exchange below. This involves the exchange Ai ↔ Bj accompanied by

complex conjugation.

The dual gravity description of this field theory involves type IIB string theory on

AdS5 × T 1,1. The U(1)R symmetry corresponds to an isometry of the T 1,1 manifold. T 1,1

has an O(4) symmetry group. The SU(2) × SU(2) flavor symmetry is a subgroup of O(4).

The Z2exchange mentioned above corresponds to acting by a reflection element of O(4) (with

determinant −1), accompanied by Ω(−1)FL where Ω stands for orientation reversal on the

world sheet. Under Z2exchange, the two forms B2, C2, have odd intrinsic parity.

Of special importance to us, as was discussed in the previous section, are relevant

operators, in particular operators with dimension less than 4, which are Lorentz scalars

and singlets under the global symmetries. We turn to studying these next. The spectrum of

KK modes for the KW theory was calculated by Ceresole and collaborators [16]. It is easy

to read off the spectrum of all relevant operators from their work. We will skip some of the
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details here, and only discuss operators which are singlets under the SU(2)× SU(2) global

symmetry.6 Operators which are not SU(2) × SU(2) singlets, can be naturally forbidden

by preserving a large enough subgroup of SU(2)×SU(2) in the non-supersymmetric model

we construct in §4.

There is only one operator of dimension 2 which is a singlet under the SU(2) × SU(2)

global symmetry. It is Tr(|A|2−|B|2), which is the scalar component of the U(1)B current

multiplet. Here we are being a bit schematic — the trace is over the colour degrees of

freedom, and also the SU(2) × SU(2) flavour indices. Note that this operator is odd under

the Z2exchange symmetry, and is therefore not a singlet of the full global symmetry group.

This means it will be important for us to maintain the Z2exchange symmetry in our non-

supersymmetric construction.

At dimension 3, there are three operators which are singlets under the SU(2) × SU(2)

global symmetry. Two of these are the gaugino bilinears of the two gauge groups, Tr(λλ).

However these carry R-charge 2 under the U(1)R. The third operator is Tr(A1B1A2B2 −

A1B2A2B1). This is the same operator which appears in the superpotential, but here the

operator we are considering only contains the scalar components of the chiral superfields

A,B. Once again this operator has R-charge 2. Thus there are no single trace global

singlets of dimension < 4 in this theory.

Next we turn to double trace operators. It is easy to see that there is in fact one

double trace operator which is a global singlet in the theory with dimension 3. It is given

by, Tr(AB)Tr(AB). Here, the bar in the second term indicates the complex conjugate

of Tr(AB). The trace is over colour indices and the SU(2) × SU(2) flavour indices have

been contracted between the two single trace operators to result in a singlet under the

full flavour group. In the large N limit the dimension of a double trace operator is given

by the sum of the dimensions of the two single traces. Since Tr(AB) has dimension 3/2

it then follows that this double trace operator has dimension 3. We will describe how

this operator is eliminated in our non-supersymmetric construction in §4, once we have

provided the relevant quiver diagram. The other dimension 3 SU(2)2 singlet double-trace

operators, of the form Tr(AB)Tr(AB) (and their conjugates), have R-charge 2, and can

be forbidden by maintaining a large enough subgroup of U(1)R.

In conclusion, in the KW theory there is only one operator with dimension < 4 which

is a global singlet. It is the double trace operator Tr(AB)Tr(AB).

Before proceeding further it is worth emphasizing a few important points:

• First, the field theory above has scalars in it. At weak coupling this means that

there is always a global singlet of dimension 2; in the KW theory it is of the form

Tr(|A|2 + |B|2). However, we see that at strong ’t Hooft coupling this operator

acquires a large anomalous dimension, and in fact does not correspond to a SUGRA

mode, but rather to a string mode. This is akin to what we saw in the N = 4 theory

above, where the scalar bilinear which is an SO(6) singlet acquires a big anomalous

6 We thank A. Dymarsky and O. Aharony for discussions in this regards, and A. Dymarsky for informing

us of some minor corrections to the results in [16].
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dimension at strong coupling. In the KW case too this feature plays an important

role in ensuring the absence of GSRO’s.

• Second, one may worry that U(1) symmetries which are not R symmetries are always

problematic with regards to a stable hierarchy. From the representation theory of

N = 1 superconformal symmetry it is known that the multiplet containing a U(1)

current must also contain a scalar of dimension 2. This scalar must be a singlet

under all the continuous global symmetries and thus is in general problematic.7 We

see from the discussion above that this conclusion can be sometimes avoided. The

KW theory has a U(1)B current as was mentioned above, and in fact the dimension 2

scalar we found above, Tr(|A|2 −|B|2), is the partner of the U(1)B current. However

we see that the theory posses in addition a Z2exchange discrete symmetry which does

not commute with Baryon number. This symmetry prevents the scalar partner of the

Baryonic current from destroying the hierarchy. A similar argument could work more

generally for a Baryon current in a theory which has charge conjugation symmetry.

• Finally, we have been considering a non-compact situation above, where the AdS

throat extends to infinity in the UV and there is no dynamical 4 dimensional gravity.

For added realism we should consider embedding the KW throat in a compact Calabi-

Yau manifold. Now it is well known that there are no continuous isometries in

compact Calabi-Yau manifolds with sufficiently generic holonomy. Thus one would

expect that once the KW throat is glued into the compact Calabi-Yau space, relevant

operators which are not singlets under the global symmetries will also be induced in

the theory in the ultra-violet. Such operators will then destroy the hierarchy. To

avoid this conclusion, we can consider situations where a sufficiently large discrete

subgroup of the SU(2) × SU(2) × U(1)R × Z2exchange symmetry8 is preserved by the

Calabi Yau manifold. This could then suffice to prevent relevant operators (with

dimension < 4) from being induced, even after coupling the (approximate) CFT

to quantum gravity. We provide an explicit example in §4 showing that this can

indeed happen.

3.2 The Klebanov-Strassler (KS) theory

The KS theory is a deformation of the KW theory obtained by taking the two gauge groups

to have unequal rank (see the figure below). The resulting gauge theory has gauge group

SU(N+M)×SU(N) with matter fields Ai, B
j . The U(1)B Baryonic symmetry mentioned in

the discussion of the KW theory continues to be non-anomalous in this theory. The U(1)R
symmetry is now anomalous but a Z2M subgroup survives as a non-anomalous discrete

symmetry of the Lagrangian. The theory has an SU(2) × SU(2) global symmetry which

acts on the Ai, B
j fields as in the KW case. Also the Z2exchange discrete symmetry continues

to be a symmetry in the KS case. The theory undergoes a duality cascade under RG flow.

7We thank K. Agashe and R. Sundrum for stressing this concern.
8This notation is a bit loose. The Z2exchange does not commute with the two SU(2)’s. In fact it exchanges

them, and also reverses the U(1)B charges. So the full symmetry group is a semi-direct product, rather

than a product.
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NN+M

A1,2

B1,2

Figure 2. Quiver diagram for the KS theory.

At each step in the cascade, the rank N changes by N → N −M . In the deep infrared

the Z2M R symmetry is broken spontaneously to a Z2 subgroup. In the far ultraviolet the

rank N → ∞, and the theory approaches the KW case.

In the gravity description, the parameter M corresponds to Ramond-Ramond three-

form flux F3 which is turned on along a non-trivial 3-cycle. The 3-form flux results in the

U(1)R symmetry being broken to Z2M [17]. Since this flux is invariant under the Z2exchange

discrete symmetry which acts as a reflection combined with Ω(−1)FL , the symmetry re-

mains unbroken. The back-reaction due to the additional three-form fluxes (SUSY requires

that NS-NS flux H3 is also turned on) grows in strength in the infrared and results in a

deformation of the conifold. This deformation of the conifold breaks the Z2M symmetry

to a Z2 subgroup in the infrared. In the far ultra-violet the effects of the three-form flux

are negligible compared to that of the 5-form and the geometry approaches that of the

AdS5 × T 1,1 case, with logarithmically small corrections.

Next, we turn to a discussion of operators with dimension < 4 in the KS theory. Since,

as was mentioned above, this theory approaches the KW theory in the ultra-violet up to

logarithmic corrections, the dimension of operators in the UV in the KS case can be ob-

tained directly from our earlier discussion of the KW case, up to small corrections. There

is one important difference: while the SU(2)× SU(2) and the Z2exchange symmetry are pre-

served in the KS case, the U(1)R symmetry is broken to a Z2M subgroup in the KS theory.9

Thus the global symmetry group available to us in the KS case is smaller. Operators which

are of dimension < 4 and which are not singlets under this smaller global symmetry group

can destabilise the hirarchy. Note that the breaking of U(1)R symmetry to Z2M occurs due

to an anomaly, and is supressed in M/N . However, in realistic compactifications, one does

not expect (due to tadpole cancellation conditions etc.) that exponentially large values of

N are allowed (even if they were aesthetically tenable); thus this supression by itself is not

enough to ensure the stability of an exponentially large hierarchy.

Looking through the list of operators of dimension < 4 discussed above in the KW

theory again, we see that among the single trace operators the U(1)R symmetry was im-

portant in protecting the hierarchy from the three dimension 3 operators, all of which have

R-charge 2. While the U(1)R symmetry is broken to a Z2M subgroup in the KS case,

9It is further broken spontaneously from Z2M to Z2 in the deep infrared. The spontaneous breaking of

Z2M → Z2 is not a worry in the context of perturbations that can destroy the throat. Operators protected

by the Z2M symmetry might be induced in the IR once the symmetry breaks to Z2, but this will not

destabilize the hierarchy.
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for M > 1 this is still a big enough residual symmetry to prevent these operators from

being induced. Among the double trace operators the U(1)R symmetry was important for

operators of the form, Tr(AB)Tr(AB). These have R charge 2 also and therefore they

will also be forbidden by the surviving Z2M symmetry. This only leaves the double trace

non-holomorphic operator of the form, Tr(AB)Tr(AB), which is a singlet under all the

global symmetries. It is a GSRO in the KS theory as well. Thus, we see that in the KS

case, as in the KW theory, the only global singlet operator with dimension < 4 is the

double trace operator Tr(AB)Tr(AB).

4 The non-SUSY orbifold

We are now ready to consider the breaking of SUSY. This will be accomplished by con-

structing an orbifold. Our real interest is in the KS theory, but as in the discussion above

it will also be useful to discuss the KW theory as we proceed.

The orbifold group must involve the unbroken symmetries of the KS solution. Since we

want the resulting orbifold to break SUSY, it must involve the R symmetry group. We have

seen above that the KS theory only preserves an unbroken Z2 subgroup of the underlying

non-anomalous Z2M R-symmetry group.10 The simplest possibility, then, which leaves the

SU(2)2 symmetry untouched, is to consider the orbifold group to be this Z2 subgroup,

possibly combined with discrete subgroups of the U(1)B symmetry.

We will choose to accompany the Z2 R-transformation above with an action of U(1)B
which rotates the A fields by i and the B fields by −i. The result is that we quotient by a

Z2 R-symmetry under which the scalar components of the chiral fields transform as:

A→ −A,B → B . (4.1)

This means the fermionic partners transform by:

ψA → ψA, ψB → −ψB . (4.2)

The gauginos of the two gauge groups transform, as usual under a Z2 R symmetry, as

λ→ −λ . (4.3)

Before proceeding it is important to clarify one point. A different Z2 symmetry can

be defined by combining the Z2 action discussed above with (−1)F , where F is spacetime

fermion number. This new Z2 symmetry has the same action in spacetime but it acts

oppositely on spacetime fermions. As a result it turns out to preserve supersymmetry.

Under it, (A,ψA) → −(A,ψA), (B,ψB) → (B,ψB), while the gauginos are invariant, λ→ λ.

Orbifolding by this Z2 gives rise to a SUSY-preserving quiver theory, which has been

discussed in [18, 19]. This quiver is different from the one which we will obtain after

orbifolding by the SUSY-breaking Z2 symmetry described in the previous paragraph. This

10Note that on the Ai, Bj fields, which carry R-charge 1/2, the generator of this subgroup acts with a

phase of i. This is consistent with the symmetries of the deformed conifold, since the zi variables appearing

in (4.4) are bilinears in A, B, and taking zi → −zi is a symmetry even after deforming the conifold.
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will become clear when we discuss the matter content of the SUSY-breaking case in some

detail below.

Now let us continue with our discussion of the SUSY-breaking Z2 orbifold in more

detail. Note that the Z2 action has no fixed points in the dual IIB gravity description. The

unwarped conifold is described by the locus

z1z2 − z3z4 = 0 (4.4)

where each of the zi coordinates can be expressed as a bilinear product of one of the A and

one of the B fields. From the transformations of the A and B fields given above, it follows

that under the Z2 -symmetry

zi → −zi . (4.5)

This appears to have a fixed point at the (singular) tip of the conifold zi = 0. However,

as in §3 of [7], this is not the case in the near-horizon limit of N D3-branes probing this

geometry. We can think of (4.4) as a cone with S3 × S2 base over a radial direction r,

where the S3 × S2 shrinks at r = 0. The near-horizon limit chooses a slice of definite size

for the S3 ×S2, yielding the geometry AdS5 ×T 1,1. The T 1,1 is a slice of the cone at some

definite r > 0 in the above description, and the fixed point at zi = 0 does not survive the

near-horizon limit.

Because the Z2 acts freely on AdS5 × T 1,1, it is easy to determine the states in the

theory after orbifolding. At the SUGRA level these correspond to KK modes which are

invariant under the orbifold symmetry. In particular, there are no additional twisted sector

states we need to worry about. (There are of course twisted sector string states, but these

correspond to operators of sufficiently high dimension that they are of no concern to us).

On the gauge theory side, in determining the quiver gauge theory which arises after

orbifolding, it is again useful to first consider the KW case. To determine the quiver theory

we must also embed the action of the Z2 in the SU(N) × SU(N) gauge group. Here we

consider the standard embedding (for a discussion of such orbifolds of D-brane theories

in general terms, see [15]). Take N = 2n. In the fundamental representation of SU(N)

– in terms of N × N matrices with unit determinant — the Z2 symmetry is given by

(In×n,−In×n). This is the Z2 action in both of the SU(N) subgroups. It is then easy to

see that the resulting quiver has 4 nodes, each corresponding to a SU(n) gauge group. The

scalar fields transform as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4
Q1 1 1

Q2 1 1

Q3 1 1

Q4 1 1

Here Q1, Q3 arise from the field A1 and Q2, Q4 from the field B1. Similarly there are scalars

which arise from A2, B2 as well, giving rise to two copies of this scalar spectrum.
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The fermionic fields transform as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4

ψ1 1 1

ψ2 1 1

ψ3 1 1

ψ4 1 1

Here ψ1, ψ3 descend from the fermionic partner of B1, and ψ2, ψ4 descend from the fermionic

partner of A1 in the parent theory. Similarly there are fermions that descend from the

fermionic partners of B2, A2. So again, we get two copies of this fermionic spectrum.

Additional matter also arises from the gauginos in the parent theory. They give rise

to bi-fundamental fermionic matter which transforms as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4
λ1 1 1

λ2 1 1

λ3 1 1

λ4 1 1

It is clear from the matter content above that the resulting quiver theory breaks super-

symmetry. For example there are no fermions in the adjoint representation of the quiver

gauge group, and thus no possible gauginos in this theory.

The discussion in the KS case is essentially similar. We start with the gauge group

SU(2n + 2m) × SU(2n) and consider the standard embedding of the Z2 action in the two

gauge groups. This results in a four node quiver with gauge group SU(n +m) × SU(n) ×

SU(n+m) × SU(n) and matter content consisting of bifundamentals which form a quiver

diagram identical to the KW case.

Let us now turn to the global symmetries. The SU(2) × SU(2) global symmetry is

still preserved in the non-supersymmetric quiver theory: the descendants of the A fields

transform as a doublet under the first SU(2) and those of the B fields as a doublet of

the second SU(2). The U(1)B is also preserved, with the descendants of the A,B fields

having charge ±1 respectively. A Z2 symmetry analogous to the Z2exchange symmetry in

the KW/KS theories can be defined in the quiver theory. It can be described as follows.

Exchange the descendants of the A,B fields, along with exchanging the two SU(n + m)

groups with each other followed by charge conjugation. It is easy to see that this keeps

the quiver diagram invariant and thus is a symmetry of the theory. Since it involves the

exchange of the A,B fields, this Z2 symmetry also anti-commutes with Baryon number.

We will refer to this symmetry are Z2exchange below. The KS theory has a Z2M R symmetry

which is then spontaneously broken to a Z2 subgroup (so it is a symmetry in the UV of

the solution, but is broken at the tip). The orbifold is obtained by identifying points in the

KS geometry related to each other by this Z2 action. In the orbifold space a ZM subgroup

of the Z2M R-symmetry still acts non-trivially and is a global symmetry in the UV. Thus,

the global symmetries of the orbifold theory are SU(2)× SU(2)×U(1)B ×ZM ×Z2exchange.
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Now, we are ready to discuss the relevant operators in the orbifold theory. At the single

trace level these operators will arise from the relevant operators of the parent theory. The

dimension 2 operators which arise from Tr(|A|2 − |B|2) in the parent theory are all odd

under the Z2 symmetry defined above, which exchanges the descendants of the A,B fields,

and therefore are not singlets under the global symmetry group. The dimension three

operators which arise all carry charge under the ZM symmetry group (which survives as a

symmetry from the underlying Z2M R symmetry group) and, again, are not global singlets.

This only leaves the possibility of double trace operators. However, it is easy to see that

there are no global singlet double trace operators with dimension < 4 that survive in the

quiver theory, either.

The point is that in the parent theory the single trace operator Tr(AB), out of which

the problematic double trace operator is composed, is not invariant under the Z2 orbifold

symmetry (since that symmetry takes A → −A,B → B). As a result there is no gauge

invariant operator which arises in the daughter theory which is bilinear with one descendant

from the A and B fields respectively. Without such a single trace operator no double trace

operator can then arise. To get a gauge invariant single trace operator made out of the

scalars in the daughter theory one needs two descendants from the A and two from the

B fields respectively. Such an operator can be thought of as arising from an operator

of the type Tr(ABAB) in the parent theory. It has dimension 3, thus a double trace

operator made out of two such single trace operators would have dimension 6, and would

be irrelevant.

The conclusion is that the orbifold theory has no operators, either single trace or double

trace, which are singlets under the global symmetries and which have dimension < 4.

This ensures that our first aim is met: we have constructed non-compact non-

supersymmetric warped backgrounds with a stable throat geometry (or equivalently, a

stable hierarchy of scales).

One might worry that coupling this field theory to quantum gravity would be problem-

atic. After all, quantum gravity famously abhors at least continuous global symmetries.

We display, in the next section, a compact embedding of this throat geometry, where the

compactification preserves a sufficiently large subgroup of the global symmetry group to

protect the hierarchy.

Let us end with a comment about vacuum stability. In the KS theory, before orbifold-

ing, if we take N = kM , the duality cascade ends in the IR with a N = 1 SU(M) gauge

theory, with no additional matter. This theory confines and has a mass gap. The vacuum

of this theory is stable. In particular there are no massless scalars, which could be rendered

unstable due to quantum effects. In the orbifold theory, with M = 2m the end point is a

two node quiver with gauge group SU(m) × SU(m), and a pair of bifundamental fermion

fields which transform like ( , ) and ( , ) respectively. This theory inherits a mass gap

from the parent theory,and thus does not suffer from a vacuum instability. In fact this

agrees with what one would expect from the gauge theory analysis. Any one of the two

SU(m) gauge theories has m flavours in the fundamental representation. It should confine

and in fact exhibit chiral symmetry breaking, resulting in a stable vacuum and a mass gap.
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5 Coupling to 4D gravity

Any model of the real world must incorporate 4d gravity, and this implies at least one

interesting constraint on the previous discussion, which is the absence of continuous global

symmetries (see e.g. [20, 21] for general discussions). Therefore, we will relax the assump-

tions of the previous sections and assume that, in proving the absence of global singlet

relevant operators, we only have discrete symmetries at our disposal. We will carry out the

analysis for the theory of §4, but presumably one could easily find analogous constructions

coupling the orbifolds of N = 4 to 4d gravity while preserving discrete symmetry groups

that forbid all relevant perturbations.

Inclusion of 4d gravity is achieved by cutting off the throat at some radius and gluing

it into a compactification, thus making the 4d graviton a dynamical mode. The statement

that there are no continuous global symmetries then corresponds to one of two possibil-

ities: i) the compactification preserves the isometries of the throat, in which case the

global symmetries are effectively gauged; ii) the compactification breaks the isometries of

the throat down to a (possibly trivial) discrete subgroup. When considering Calabi-Yau

compactifications, as we will do shortly, the second possibility is guaranteed: Calabi-Yau

manifolds (with sufficiently generic holonomy) have no continuous isometries. Our non-

supersymmetric theory will be coupled to 4d gravity by taking an appropriate Z2 orbifold

of a Calabi-Yau compactification with a conifold throat. Therefore, we are guaranteed that

our global group will be broken to at most discrete factors. We must prove that there exist

compact embeddings that preserve a sufficiently large discrete group, to forbid generation

of all of the dangerous relevant operators.

In §5.1 we find an explicit F-theory compactification which realizes a discrete subgroup

of G = SU(2) × SU(2) × Z2M × Z2exchange, and in §5.2 we show this global group is large

enough to accomplish our task.

One could of course worry about the further steps involved in coupling to 4d quantum

gravity: one must show that the Calabi-Yau compactification can be stabilized appropri-

ately, give rise to realistic cosmology, etc. These further steps are necessary in any attempt

to embed any idea about particle phenomenology in string theory, and are not special to

our goal here of exhibiting composite Higgs models. We will not pursue them in this note.

5.1 An F-theory compactification

Here we exhibit an F-theory compactification on an elliptically fibered four-fold which

preserves a healthily large discrete subgroup of G. Consider the Weierstrass form

y2 = x3 + f(zi) xz
4 + g(zi) z

6 (5.1)

where the zi are coordinates on the base B of the elliptic fibration, not to be confused with

the z appearing above. We take as our base B11 a complete intersection of two quadrics in

11We are inspired by seeking the simplest possible modification of the compact embedding of the conifold

discussed in §4 of [4]. That example doesn’t suffice for our purposes. It only preserves a Z2 ⊂ U(1)R, which

for instance isn’t restrictive enough to forbid the dimension 3 gaugino mass operator Tr λλ from destroying

the throat.
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P 5. If we label the defining equations of the base I1,2 = 0, then the locus in moduli space

we choose to work with is:

I1 =

4
∑

i=1

z2
i − t2z2

5 + ǫ2z2
6 , I2 = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 + z5z6 . (5.2)

This complete intersection is non-singular for generic values of t, ǫ, which we take to be real

numbers. As t2 → 0 or ǫ2 → 0, there is a point of non-transversality (located respectively

at z5 = 1 with the other homogeneous coordinates vanishing, or z6 = i with the other

homogeneous coordinates vanishing).

Expanding in local coordinates around these singular points, we see that the singu-

larities are conifolds. The collapsing S3s can be seen to lie on the fixed point loci of the

involutions z → z̄ in the first case, and z1,...,4 → z̄1,...,4 with z5,6 → −z̄5,6 in the second

case.12 In particular, for non-zero but small t2, then, there is a deformed conifold singu-

larity with a small S3. We shall use this conifold throat associated with the singularity at

t2 → 0 to build our approximately conformal field theory.

To make the manifold (5.1) Calabi-Yau, we should take y ∈ 3L, x ∈ 2L, f ∈ H0(4L)

and g ∈ H0(6L) where L is the line bundle given by L = −KB in terms of the canonical

bundle of B. In practice, for this model, we can think of f and g as being polynomials of

degree 8 and 12 in the coordinates of the P 5.

Sen has given a general prescription for going to an orientifold locus of any fourfold

compactification [23]. Following his prescription, we wish to choose polynomials of the

special form

f = Cη(zi) − 3h(zi)
2, g = h(zi)[Cη(zi) − 2h(zi)

2] . (5.3)

where η and h are of degree 8 and 4 respectively and C is a constant. For small (non-zero)

values of C, the average coupling in the IIB string theory is weak. The IIB theory lives on

the base, eq. (5.2).

A big discrete subgroup of G is preserved by various simple choices of the data η, h.

For instance, we can take

η(zi) =

4
∑

i=1

z8
i + az8

5 + z8
6 (5.4)

h(zi) =

4
∑

i=1

z4
i + bz4

5 + z4
6 (5.5)

for some tunable constants a, b. In the Sen limit, the model reduces to an orientifold of a

Calabi-Yau threefold; one introduces a new coordinate ξ, and the equations defining the

Calabi-Yau threefold are (5.2) together with the additional equation

ξ2 = h(zi) . (5.6)

12In the Calabi-Yau orientifold we construct based on this example, one can see that the spheres are

special Lagrangian; this is guaranteed for fixed-point loci of antiholomorphic involutions with suitable

properties [22].
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The orientifold action then reverses ξ while simultaneously acting with Ω (−1)FL (where

Ω here denotes worldsheet orientation reversal).

In the Sen construction, there are D7-branes and O7-planes wrapping divisors in the

Calabi-Yau threefold. The D7 branes are located on the loci η = 0, while the O7 planes

wrap h = 0.13

With our choices above, η and h are invariant under the group P of all permutations

of the four zi’s, i = 1 · · · 4. This is a discrete subgroup of O(4). There is also a symmetry

of the fourfold (5.1) under which za → e
2πi
4 za for a = 1, 2, 3, 4, z5 → z5, and z6 → −z6,

which is a Z4 ⊂ U(1)R.14

Finally, the action of Z2exchange in the IIB theory involves a permutation of the zi’s

combined with Ω(−1)FL . This too is a symmetry. We will see in §5.2 that this discrete

symmetry group is big enough to disallow any GSROs. More generally the same discrete

symmetries are preserved if η is a more general quartic polynomial invariant under the

permutation group, P, containing only monomials that preserve the Z4 ⊂ U(1)R men-

tioned above.

To complete the discussion, let us calculate the Euler number χ of our fourfold. It

is relevant in determining the length of our throat, and hence the size of the hierarchy

obtainable in our compact model. This is because tadpole conditions bound the allowed

three-form flux in the orientifold limit (or more generally, the four-form flux in the fourfold

compactification) to satisfy:

KM ≤
χ

24
(5.7)

where K is the number of KS cascade steps, and M is the number of fractional D5-branes.

The hierarchy of energy scales generated for a given choice of K and M is of the order

e
− 2πK

3gsM [4].

Using a result in [24] we have:

χ

24
= 12 + 15

∫

B
c1(B)3 = 492 , (5.8)

where c1(B) is the first Chern class of our 3-fold base B. In our example, c1(B) = 2J

where J is the restriction of the Kähler form from the ambient P 5, and
∫

B J
3 = 4. The

above result follows. This is a healthy Euler number for our purposes, easily accomodating

large enough fluxes to generate a sizeable hierarchy (and to additionally stabilize ǫ at a

very small scale).

We can now orbifold this theory by our Z2 operation of §4, z1,2,3,4 → −z1,2,3,4, with

(z5, z6, x, y, z) → (z5, z6, x, y, z). This symmetry acts freely on the geometry, and acts

as in §4 on the conifold throat. A Z2 ⊂ Z4 of the R-symmetry that was preserved acts

non-trivially on the orbifold. Hence the global discrete symmetries preserved after the

orbifolding consist of the permutation group P, Z2exchange and Z2.

13 Strictly speaking, at small but finite C, the O7 planes split into various (p, q) D7-branes, but this is

an exponentially small effect at weak coupling.
14The defining equation of the base B (5.2) is not invariant for non-zero ǫ. However, by choosing ap-

propriate fluxes, we can stabilize ǫ very close to zero [4]; this breaking of Z4 can then be made to occur

naturally at a tunably small scale, and will not concern us.
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5.2 Discrete symmetries and GSROs

In this subsection we show that the discrete symmetries which survive in the compact

example constructed above are enough to prevent any relevant operators from arising in

the warped throat region.

A detailed analysis has already been carried out in the non-susy quiver gauge theory

above using its SU(2) × SU(2) × ZM × Z2exchange global symmetry(there is an additional

U(1)B symmetry but it does not serve a useful purpose in preventing GSROs, and we

will not include it in the discussion below). We remind the reader that the ZM discrete

symmetry is a subgroup of the R-symmetry group in the parent susy theory and arises as

follows. The KW theory has a U(1)R symmetry, this is broken to Z2M in the KS case by

the three form flux. In the non-susy orbifold a ZM ∈ Z2M acts non-trivially and is a global

symmetry. We saw in the previous subsection that in the compact case a Z4 subgroup of

U(1)R is left unbroken. For M ≥ 2 this15 Z4 ∈ Z2M . And a Z2 subgroup of this Z4 then

acts non-trivially in the orbifold theory. We denote this Z2 symmetry as Z2R below. In

the compact case we see then that the global symmetries which survive are P,Z2exchange

and Z2R.

We now examine whether any GSROs are allowed by this discrete group. Let us first

consider operators which are singlets under SU(2)×SU(2), and ask whether they are ruled

out by the symmetries Z2exchange × Z2R. Since Tr(|A|2 − |B|2) is odd under Z2exchange

its descendants in the orbifold theory are not GSROs. At dimension 3 there are three

operators, the two gauginos bilinears and the scalar quartic, Tr(ABAB) in the KW/KS

theory. All of these have R-charge 2 under the U(1)R, this means they are odd under

Z2R and thus transform non-trivially under it.16 It then follows that the operators which

descend from these dimension 3 operators in the orbifold theory are also not global singlets.

Finally, as we discussed at some length in §4, there are no double trace operators which

are relevant (of dimension < 4) in the orbifold theory.

Next, consider operators which are not invariant under the continuous SU(2) × SU(2)

group, but which could be invariant under the surviving discrete symmetries. There are

essentially three candidates:

(1) First, the KW theory has the operator Tr(AB) which is a (1/2, 1/2) under SU(2) ×

SU(2). However, as was discussed in §4, this operator is not invariant under the

Z2 orbifold symmetry and as a result there are no gauge invariant operators in the

orbifold theory which descend from it and which are bilinear in the scalars.

(2) Next, there are dimension 2 operators in the KW theory which are the partners

(under the superconformal symmetries) of the two SU(2) currents. These transform

like (1, 0) and (0, 1) representations of SU(2) × SU(2). The permutation symmetry

P, includes three elements which are rotations by π along the three axes of the first

15In fact to obtain the orbifold we need M = 2m, with m > 1 so this is no restriction.
16The reader should not be confused by the notation. The Z2R generator acts on the A, B and gaugino

fields the same way that the Z4 generator did in the parent theory, so the gaugino bilinear is odd under the

Z2R. The symmetry is reduced to a Z2 because the square of the generator relates field configurations that

our orbifold action has already identified.
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SU(2) and also three elements which are rotations by π along the three axes for

the second SU(2). This is discussed in greater detail in appendix A. Any operator

which lies in the (1, 0) representation must transform under the rotations by π along

the three axes of the first SU(2) and cannot be invariant under the permutation

symmetry. Thus it cannot give rise to any GSROs in the orbifold theory. Similarly

no GSROs can arise from the operator which transforms in the (0, 1) representation.

(3) This leaves only one other possibility. There is a non-chiral operator in the KW

theory with dimension 3.29. It arises from vector multiplet I in the classification

used in [16], see also [25]. This operator transforms as a (1, 1) representation under

SU(2) × SU(2). It is schematically of the form, Tr(ABĀB̄) where the indices are

contracted in a gauge invariant manner, and thus is R-charge neutral and also neutral

under Z2exchange. However, once again, any element of the (1, 1) representation must

transform under the six rotations by π mentioned above and thus cannot be a singlet.

Therefore, no descendent of this operators in the orbifold theory can give rise to a

GSRO either.

It is difficult to think of any other operators in the KW theory from which GSRO

descendants might arise in the orbifold theory. However, to be certain, we have worked

through the list of operators in [16], applying the selection rules which govern the choice

of the R charge (specified by r), for given SU(2) × SU(2) quantum numbers (specified by

(j, l)). We find that indeed no other GSROs arise in the orbifold theory. The essential point

is that the anomalous dimension grows rapidly with increasing j, l, thus beyond modest

values of these quantum numbers no worrisome candidates can arise. We will spare the

reader further details.

6 Adding interesting physics in the IR

While our focus in this paper has been to exhibit a large class of field theories without

GSROs, at the next step in any program for realizing the basic picture of [1], one would

like to find ways to add interesting gauge and matter sectors in the IR (or, perhaps, spread

across the 5th dimension). Here, we discuss in a very preliminary way two natural methods

of adding interesting matter sectors to our example of §4, §5. While neither gives rise to

anything resembling the Standard Model in detail, both methods illustrate how one may

achieve the addition of matter and gauge fields to these backgrounds without destabilizing

the hierarchy.

6.1 Adding bulk gauge fields: D7s in the throat

One standard way of adding bulk matter fields in AdS/CFT is to add probe D7-branes

to the throat geometry. In fact, in the Sen limit of an F-theory compactification, one

automatically has an O7-plane stretched along the locus h = 0 and a pair of coincident

D7-branes along the locus η = 0 [23], where for our concrete model the polynomials h and

η are given in (5.5) and (5.4).
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It is clear from (5.2) that the deformed conifold singularity of interest to us in the

orientifold arises in the patch z5 = 1 with small values of the zi satisfying

4
∑

i=1

z2
i + O(ǫ2z4

i ) = t2 . (6.1)

Therefore, for suitable choices of parameters, we can arrange for the D7-branes in the

geometry to stretch into the throat region (while, for simplicity, leaving the O7-plane

far away).

Concretely, taking a small value of a in (5.4), we see that the zero locus of η will pass

arbitrarily close to the deformed tip of the conifold, while the O7-plane remains localized

far away for b of O(1). In this limit, we obtain a bulk U(2) gauge theory from the D7-branes

stretching down the conifold throat.

The Z2 orbifolding which breaks SUSY acts freely on the surface η = 0 wrapped

by the D7s, so it simply changes the topology of the divisor which the D7-branes wrap.

The moduli of the D7-branes are geometrized in F-theory as deformations of the fourfold

complex structure. Assuming the fourfold complex structure moduli are stabilized by fluxes

at a high scale, as in [26], the low-energy theory on the D7-branes will then be a pure U(2)

gauge theory.

In this way of adding bulk gauge fields to the throat, there is no danger of destabilizing

the hierarchy. The symmetries of the geometry already eliminated any GSROs, and the

D7 embedding arises here for specific choices of the symmetric geometry. On the other

hand, the small value of a we require to obtain D7s which live far down the throat is not

explained at this level; it is a tune that needs to be attributed to the details of moduli

stabilization. It is natural to ask if there are simple mechanisms that would guarantee the

stabilization of the D7s with exponentially small a (i.e. stretching far down the throat); we

expect such mechanisms can be found, but leave this for future work.

6.2 Higgsing a group in the deep IR: anti D3-branes in the throat

Another natural ingredient in the models of this class is D3-branes. However, in the

relevant tree-level solutions of IIB supergravity, D3-branes feel no force. Therefore, any

probe D3-branes may be driven out of the throat by sub-leading corrections; they may

suffer an instability to run away on their Coulomb branch. While this is presumably model

dependent, it would require further work to analyze under what circumstances probe D3s

would be stable in the IR region of the throat. This is the reason we focused on the case

N = kM in the discussion of §4; then the cascade ends with no left-over probes.

Instead, we can add probe anti-D3s. As in [27], they will be pulled to the tip of the

(now orbifolded) KS geometry by the background 5-form flux. If we add p such anti-D3s

(with p≪M,N to retain calculational control), then their fate is the following: the SU(p)

gauge theory on the anti-D3s is Higgsed at an exponentially low-scale (by the anti-D3

adjoint scalar fields) in a way that completely breaks the gauge symmetry. This is seen via

a Myers effect in the flux background at the tip of the geometry [27]. The interpretation

of these objects as states in the dual field theory has been discussed in [28].
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Unlike the D7s, the probe anti-D3s do break the global symmetry group in an important

way. For instance, their positions break the SU(2)2 isometries. However, this spontaneous

breaking of the global symmetries in the IR is not dangerous, for the same reason the

breaking of Z2M → Z2 in the KS theory is not dangerous — it happens in the deep IR, and

the possible subsequent generation of relevant perturbations to the field theory at such a

low scale does not destabilize the hierarchy.

Therefore, this example gives a concrete instance of a non-Abelian gauge theory un-

dergoing the Higgs mechanism at energy scales ≪ MPlanck in a theory with high-scale

SUSY breaking.

One rather interesting feature of this example is that the emergent SU(p) gauge theory

can be weakly coupled (although it emerged from the cascading strongly coupled large N

gauge theory). In addition, there are no SU(p) charged bulk gravity modes: only the

open-string states stretching between the anti-D3s carry SU(p) gauge quantum numbers.

The excited string states are parametrically heavier than the KK modes at the end of the

throat. This also implies that p ≪ M,N should be the relevant species factor controlling

radiative corrections to the anti-D3 gauge theory. This could be important in obtaining

reasonable values of precision electroweak observables such as the S and T parameters.

Furthermore, because of the nature of the cascading gauge theory, the effective ’t Hooft

coupling of the hidden approximate CFT is considerably smaller in the IR than the cou-

pling in the UV (gsM ≪ gsN). This means that one may be able to use supergravity to

control the hierarchy, while just approaching the border of (or even leaving) the super-

gravity regime in the IR region. This has been observed to improve, e.g., the nature of

the electroweak phase transition in RS models [29]. So we see that the presence of several

distinct expansions (as opposed to a single ’t Hooft expansion in gsN) in the more detailed

string constructions offers some qualitative hope of solving the phenomenological problems

of the simplest large-N toy models.

It would be interesting to try and generalize the work of [30] to give more realistic

models in these completely non-supersymmetric throats.
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A The action of P on different SU(2) × SU(2) representations

The permutation group, P was introduced in our discussion of the discrete symmetries

preserved by the compact Calabi-Yau manifold, in §5.2. Here we discuss how this group is

embedded in the continuous group SU(2)× SU(2). This will allow us to determine how P

acts on any representation of SU(2) × SU(2).

The four coordinates, zi, in eq. (5.1), eq. (5.2), transform as a (2, 2) representation of

SU(2) × SU(2). This means on the matrix,

M =

(

z1 + iz2 z3 + iz4
−(z3 − iz4) z1 − iz2

)

, (A.1)

we can take the first SU(2) to act on the left, M → U ·M,U ∈ SU(2), and the second

SU(2) to act on the right similarly.

Six elements of P in particular played an important role in our discussion of the GSROs

above. These are the three rotations by angle π about the three axes of the first SU(2)s,

and similarly the second SU(2). Consider a rotation by π about the z-axis of the first

SU(2). It acts on M by the matrix

U =

(

e
iπ
2 0

0 e
−iπ
2

)

(A.2)

acting on the left. Under it, (z1, z2) → (−z2, z1) and (z3, z4) → (−z4, z3). It is easy to see

that this keeps the polynomials η and h, eq. (5.4), eq. (5.5), invariant and is therefore a

symmetry of the Calabi-Yau. Similarly for all the other rotations by angle π.

To be more thorough, the group P consists of 6 pair-wise exchanges and elements of

order 3 and 4 obtained by composing these pair-wise exchanges. Now an exchange of any

two coordinates, say z1 and z2, is carried out by the matrix
(

z1

z2

)

→

(

0 1

1 0

)(

z1

z2

)

(A.3)

which has determinant −1. This lies in O(4) but not in SU(2)×SU(2). A related symmetry

which does lie in SU(2) × SU(2), is obtained by composing the exchange above with an

inversion, in this case say, z1 → −z1, (with the other coordinates held fixed). The resulting

transformation is now carried out by the matrix

(

0 −1

1 0

)

, with determinant +1. Since the

inversion is also a symmetry of the Calabi Yau manifold, this final transformation is also

a symmetry.

In this way we can obtain pair-wise exchange elements (by appending additional signs)

which are all elements of SU(2) × SU(2). The order 3 and 4 elements obtained by further
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composing them are then automatically also elements of SU(2) × SU(2). We take P to be

the resulting group of permutations obtained in this manner. By construction it is a now

a subgroup of SU(2) × SU(2). And in particular the rotations by angle π about the axes

of the first and second SU(2)s are then all elements of P. More generally, it is easy to

determine how the pair-wise exchanges act on any representation of SU(2) × SU(2), and

from there find how all elements of P act on the representation.

B The Horowitz-Orgera-Polchinski instability

The Horowitz-Orgera-Polchinski (HOP) instability of AdS5×S
5/Zk compactifications [11],

with the Zk action given by (2.2) with k > 3 and odd, can be understood as follows.17 The

S5 can be viewed as a circle fibration over CP 2, with metric

ds2 = R2
(

ds2CP 2 + (dχ+A)2
)

(B.1)

where χ is the coordinate on the circle fiber and A is a gauge connection (of the KK gauge

field) on CP 2. If the periodicity of χ is taken to be 2π on the original S5, then on S5/Zk,

the periodicity becomes 2π/k. The orbifolded circle then has circumference 2πR/k.

The vacuum energy of a string stretching around this orbifolded circle is given by:

α′M2 =
R2

α′k2
+

2(3 − k)

k
(B.2)

which is always positive at large ’t Hooft coupling, but becomes tachyonic at weak ’t Hooft

coupling (small R).

The boundary conditions on fermions encircling the minimal circle in the quotient, due

to the factor of (−1)F in (2.2), are anti-periodic. While the tachyonic instability described

above for small R is a stringy effect, Witten demonstrated long ago that the Kaluza-Klein

vacuum R4×S1 on a circle with anti-periodic boundary conditions for fermions is unstable

even in the large radius limit; there is a tunneling instability induced by a “bubble of

nothing” [31]. In the Euclidean solution describing false vacuum decay, the S1 shrinks

smoothly to a point as one moves in from infinity in the radial direction of R4; the solution

is in fact the analytic continuation of the Schwarzschild solution.

The main insight of the HOP paper is that a similar bubble of nothing solution exists

for the AdS5 ×S
5/Zk orbifolds under consideration. The intuition is that the S1 fiber over

the CP 2 in S5 plays the role of the S1 in Witten’s analysis. A fascinating new ingredient

is that since in a conformal theory there is no scale, the decay rate must be either 0 or

infinite; the HOP analysis shows that the integral over the value of the radial coordinate

where the bubble nucleates gives an infinite rate. The non-compact AdS5 ×S
5/Zk orbifold

thus decays instantly.18

This sounds like it would have dramatic effects for our discussion, but in fact it does

not. If one were to take the N = 4 orbifolds of §2, and couple them to 4d gravity as in

17Other non-perturbative instabilities could be potentially present in the non-susy oribifolds studied in

this paper, but we do not know of any at this point.
18More precisely, a bubble nucleates somewhere instantly; a given observer will be struck in about an

AdS Hubble time.
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§5, the decay rate computed in [11] is regulated by the UV cutoff. Instead of integrating

the decay rate over the entire radial direction of AdS5, the integral is cut off at some finite

rUV. The rate then becomes negligibly small. It is estimated in equation (5.2) of [11]; the

result is that with a cutoff at energy scale Λ, one finds an integrated rate

Γ ∼ k9e−BΛ4 (B.3)

where the instanton action is

B ∼ N2/k8 . (B.4)

In the limit of large N with fixed k, this vanishes rapidly. Our conclusion is that cut-off

throats based on the orbifolds of §2 are viable despite the existence of the HOP instability;

their lifetimes can be made cosmologically realistic.

The case of the cascading theory of §4 is more involved. As described in [11], the

growth of the effective number of colors N with the radial coordinate in cascading theories

renders their integral of the decay rate over the radial direction finite, even in the non-

compact cascading solution. We conclude that for our construction involving quotients of

the Klebanov-Strassler throat, the HOP instability, while again an interesting feature, does

not provide a serious constraint.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension,

Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

[2] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

[3] H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264

[hep-th/9906182] [SPIRES].

[4] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

[5] M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies,

hep-th/0309122 [SPIRES].

[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[7] S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds,

Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [SPIRES].

[8] A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions,

Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [SPIRES].

[9] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

– 26 –

http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/9905221
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9905221
http://dx.doi.org/10.1088/1126-6708/2003/08/050
http://arxiv.org/abs/hep-ph/0308036
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0308036
http://dx.doi.org/10.1016/S0550-3213(00)00224-8
http://arxiv.org/abs/hep-th/9906182
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9906182
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://arxiv.org/abs/hep-th/0105097
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0105097
http://arxiv.org/abs/hep-th/0309122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309122
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1103/PhysRevLett.80.4855
http://arxiv.org/abs/hep-th/9802183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802183
http://dx.doi.org/10.1016/S0550-3213(98)00495-7
http://arxiv.org/abs/hep-th/9803015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9803015
http://dx.doi.org/10.1016/S0550-3213(98)00654-3
http://arxiv.org/abs/hep-th/9807080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9807080


J
H
E
P
0
5
(
2
0
1
0
)
0
6
7

[10] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

[11] G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative Instability of AdS5 × S5/Zk,

Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [SPIRES].

[12] A. Adams and E. Silverstein, Closed string tachyons, AdS/CFT and large-N QCD,

Phys. Rev. D 64 (2001) 086001 [hep-th/0103220] [SPIRES].

[13] A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative search for fixed lines in large-N

gauge theories, JHEP 08 (2005) 011 [hep-th/0505099] [SPIRES].

[14] A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative gauge theory and closed string

tachyons, JHEP 11 (2005) 038 [hep-th/0509132] [SPIRES].

[15] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[SPIRES].

[16] A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on

AdS5 × T11: predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001

[hep-th/9905226] [SPIRES].

[17] I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly,

Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [SPIRES].

[18] S. Franco, A. Hanany and A.M. Uranga, Multi-flux warped throats and cascading gauge

theories, JHEP 09 (2005) 028 [hep-th/0502113] [SPIRES].

[19] D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3

(1999) 1 [hep-th/9810201] [SPIRES].

[20] T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry,

Nucl. Phys. B 307 (1988) 93 [SPIRES].

[21] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries,

Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [SPIRES].

[22] M. Audin, A. Cannas da Silva and E. Lerman, Symplectic geometry of integrable

hamiltonian systems, Birkhäuser, Gaermany (2003).
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