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1 Introduction and motivations

Conformal field theories (CFTs) play in many senses a preeminent role among quantum

and statistical field theories. Such a privileged position is first granted by the flow of the

renormalization group, whose fixed points are scale invariant theories, which usually show

full conformal invariance [1, 2]. More generally, approximate scale invariance is a feature

of systems in which a wide separation of scales makes the flow very slow in intermediate

regions. Through the renormalization group, nature realizes the theories possessing the

maximum amount of bosonic symmetry, both in condensed matter and in particle physics,

in appropriate UV and IR regimes. Reversing the argument, one can understand a generic

quantum field theory as a CFT deformed by a set of relevant operators. All perturbative

analyses are in fact justified by the small size of relevant couplings in the UV limit. One

can even pursue non-perturbative explorations of RG flows using the ultraviolet data as the

only input [3] (see also [4, 5] and references therein). As a consequence, the importance of

conformal invariance exceeds the experimental interest: conformal field theories are among

the main actors in formal investigations of the space of quantum field theories, which has

seen a huge development in recent times. Furthermore, they are an invaluable tool for

studying quantum gravity, through the AdS/CFT correspondence [6].

The most striking feature of a generic CFT is that, however strongly coupled, it is

completely described by two sets of numbers: the spectrum of scale dimensions of operators
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of every spin, and the Operator Product Expansion coefficients. This simplification occurs

because the predictive power of the OPE is boosted by the conformal symmetry. On one

hand, irreducible representations of the conformal group gather infinitely many operators,

and the contribution to the OPE of every conformal family is labeled by the dimension

and spin of the highest weight and is fixed up to a single coefficient. On the other hand,

the OPE converges inside correlation functions [7], and can be repeatedly used to reduce

all of them to a sum over functions of the kinematic variables, the so called conformal

blocks, one for each conformal family. This pairwise reduction can be carried out fusing

operators in various different orders, so that sums over different blocks need to be equal.

The crossing equations obtained this way provide constraints on the possible CFT data [8],

and after the seminal paper [9], a wealth of new results on the space of conformal field

theories in dimensions greater than two were found by exploiting these constraints [10–

28]. The method proposed in [12, 16] which we refer to as the linear functional method,

relies on unitarity to find forbidden regions in the space of the CFT data, by considering

particular channels in the conformal block decomposition of a four-point function. At the

boundary of these regions a spectrum which is crossing symmetric up to some maximum

scale dimension can be extracted numerically [16]. It is not difficult to show that the

four-point functions of local operators on the vacuum encode all of the constraints coming

from crossing symmetry: however, one needs in principle all of them, and therefore the

trial spectrum extracted from a specific correlator is not guaranteed to correspond to a

unitary CFT. Sometimes it does, though [13], or maybe a set of minimal hypotheses on

the spectrum can be put in place to lower the bound disregarding uninteresting solutions

which stand in the way [18]. Another possibility is to consider more than one four-point

function, so that further requirements on the spectrum can be made: for instance, internal

symmetries differentiate the set of primaries appearing in different OPEs. This strategy

was applied to the 3d Ising model in [24], providing strong evidence that the presence of

Z2 symmetry and two relevant primaries defines only one theory.

The reader is referred to the aforementioned papers for a detailed explanation of the

linear functional method. Here we shall employ a different technique, introduced in [17],

which we review in section 2. The method of determinants is based on the choice of a

truncation of the spectrum, and directly provides an approximate solution to the crossing

equation. It is independent from unitarity and can be applied to any correlator. On the

other hand, it is not yet completely automated, and this makes it difficult in practice to

deal with truncations involving many primaries. As a consequence, estimating the size of

the systematic error is a delicate matter. We shall comment on this issue along the way.

The aim of this paper is to apply the conformal bootstrap program to some examples of

defect conformal field theories. These are theories in which the conformal group is broken

down to the stabilizer of some hypersurface. We shall be concerned only with the case of a

codimension one hyperplane, alias a flat interface, but the considerations in section 2 apply

to generic flat conformal defects. Motivations for studying conformal defects are again both

phenomenological and abstract. For instance, conformal defects describe modifications of a

d dimensional QFT localized near a p dimensional plane, with p < d, in the infrared limit,

provided these modifications are not swept away by coarse graining, and scale invariance
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is enhanced to invariance under the conformal group SO(p + 1, 1). The simplest example

is of course a conformal boundary - that is, an interface between a non-trivial and the

trivial CFT. Lower dimensional defects may correspond to magnetic-like impurities in a

spin system, see for instance [29], or to dispersionless fermions, acting as a source for the

order parameter of some bosonic system [30], or to vortices in holographic superfluids and

superconductors [31], etc. On the more abstract side, extended defects are probes of a

system, and may be used to constrain properties of the bulk CFT. We shall in fact see this

happening in the present study. Moreover, interfaces are a natural way to “compare” two

theories, and may provide information on the geometric structure of the space of CFTs [32].

The conformal bootstrap was first applied to the boundary setup in [14], while the

twist line defect defined in [29] was tackled in [18]. Both papers are concerned with the 3d

Ising model, and both used the linear functional method. In the latter, four-point functions

of defect operator s were considered, while the former focused on two-point functions of

bulk operators. Correlators of defect operators are blind to bulk-to-defect couplings, but

correlators of bulk primaries do not satisfy in general the positivity constraints required

by the linear functional method, and ad hoc assumptions were made in [14], motivated by

computations in 2d and in ε-expansion. Here we concentrate on the two-point function of

bulk scalar primaries, using the method of determinants, which can be safely applied to

this case. Since our main interest is again the 3d Ising model, we compare our results for

the special and the extraordinary transitions with those of [14]. We also find approximate

solutions to the crossing equations corresponding to the ordinary transition, which cannot

be studied with the linear functional. In the latter case we extended the analysis to the

O(N) models with N = 0, 2, 3, where a comparison can be made with two-loop calculations.

The main results are summarized in the tables 1 and 2.

In the end, we initiate the study of an example of RG domain wall, an interface

between two CFTs connected by the renormalization group, which is obtained by turning

on a relevant deformation on half of the space and flowing to the IR. Specifically, we study

the flow triggered by the (φ2)2 coupling in a bosonic theory. We give a first order description

in ε-expansion which applies to models with O(N) symmetry and can be easily generalized

to other perturbation interfaces. We then focus on the Ising model when looking for a

numerical solution to the crossing equations in 3d.

The structure of the paper is as follows. In section 2 we review the general features of

conformal field theories in the presence of defects, and we explain the method of determi-

nants. Section 3 is devoted to the study of the boundary CFTs associated to the 3d Ising

and other spin systems. We define and study the domain wall in section 4. Finally, we

draw our conclusions in section 5. Appendix A contains some details of the ε-expansion

computations.

2 Defect CFTs and the method of determinants

The constraints imposed by conformal symmetry on correlation functions near a boundary

were analyzed in [33] (see also [34]), and the boundary bootstrap was set up in [14], from

which we borrow the notation. Here we review the necessary material, and then introduce
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the method of determinants. A general p-dimensional defect differs from the codimension

one case for the residual SO(d − p) symmetry generated by rotations around the defect.

This is just a flavor symmetry for the defect operators, but induces some differences when it

comes to bulk-to-defect couplings. Although most of what we shall say applies to a generic

flat defect, in this paper we shall be concerned with the codimension one case. Therefore,

further reference to the general case are limited to some side comments.

Correlation functions of excitations living at the defect are the same as in an ordi-

nary (d− 1)-dimensional CFT, and are completely characterized by the spectrum of scale

dimensions (∆̂l) and the coefficients of three-point functions ( λ̂lmn). We shall later need

one more piece of information. While no conserved stress-tensor is expected to exist on

the defect, a protected scalar operator of dimension d − or p + 1 in the general case − is

always present: the displacement operator, which we call D(xa), measures the breaking of

translational invariance, and is defined by the Ward identity for the stress-tensor:

∂µT
µd(x) = −D(xa) δ(xd). (2.1)

Here we denoted by latin indices the directions along the defect, which is placed at xd = 0,

while Greek letters run from 1 to d. Similarly, for every bulk current whose conservation

is violated by the defect, a protected defect operator exists.

In the bulk, there is of course the usual OPE. For scalar primaries,

O1(x)O2(y) =
δ12

(x− y)2∆1
+
∑
k

λ12kC[x− y, ∂y]Ok(y) , (2.2)

where C[x−y, ∂y] are determined by conformal invariance, and we isolated the contribution

of the identity. One can also fuse a local operator with the defect. The bulk operator is

thus turned into a sum over defect primaries. The bulk-to-defect OPE for a scalar primary

can be written

O1(x) =
a1

|2xd|∆1
+
∑
l

µ1lD[xd, ∂a]Ôl(x
b) , (2.3)

where we denoted defect operators with a hat. Again, the differential operators D[xd, ∂a]

are fixed by conformal invariance. Similar OPEs can be written for bulk tensors. The

λ12k’s in eq. (2.2) are the coefficients of three-point functions without the defect, while µl
is the coefficient of the correlator 〈O(x)Ôl(y

a)〉, otherwise fixed by conformal symmetry.

Even if, for the sake of simplicity, some abuse of notation is present,1 in this paper all OPE

coefficients refer to canonically normalized operators, with one exception: the normalization

of the displacement operator is fixed by eq. (2.1). Taking the expectation value of both

sides in eq. (2.3) one sees that a scalar acquires a one-point function proportional to aO,

the coefficient of the identity in the bulk-to-defect OPE. It is not difficult to prove that

tensors do not acquire an expectation value in the presence of a codimension one defect.

They do, instead, if they are even spin representations and the defect is lower dimensional.

Let us now derive the easiest crossing equation involving the OPEs (2.2) and (2.3).

Consider the two-point function 〈O1(x)O2(x′)〉. One can decompose it into the bulk channel

1For instance, the coefficient µφ2D in free theory appears in the two point function 〈 φ2
√

2N
D〉.
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by plugging in eq. (2.2): a sum over one-point functions is obtained, that is, a sum over

the coefficients λ12kak multiplying some known functions of the kinematic variables. Or,

one can substitute both operators with their Defect OPE, and in this case the sum involves

the quantities µ1lµ2l. In order to write explicitly the equality of the two conformal block

decompositions, let us introduce the conformal invariant combination

ξ =
(x− x′)2

4xdx′d
. (2.4)

This cross-ratio is conveniently positive when both points are chosen in the half-plane

xd > 0. This is not the case when considering bulk operators on opposite sides of an

interface. Moreover, in this setup the bulk OPE is not defined. The issue is solved by

folding the system and treating it as a boundary CFT: the folding trick provides us with a

trivial OPE, fixed by the absence of local interactions between the two primaries. We shall

have more to say on this point in section 4. For now, we just point out that the natural

cross-ratio is the one constructed from a point and the mirror image of the second one,

and it is again positive. We assume ξ ≥ 0 in the rest of this section.

Conformal symmetry justifies the following parametrization:

〈O1(x)O2(x′)〉 =
1

(2xd)∆1(2x′d)∆2
ξ−(∆1+∆2)/2G12(ξ). (2.5)

Then the crossing equation can be written as a double decomposition of the function G12(ξ):

G12(ξ) = δ12+
∑
k

λ12k ak fbulk(∆12,∆k; ξ) = ξ(∆1+∆2)/2

(
a1a2+

∑
l

µ1l µ2l fbdy(∆̂l; ξ)

)
,

(2.6)

where [33]

fbulk(∆12,∆, ξ) = ξ∆/2
2F1

(
1

2
(∆1 −∆2 + ∆),

1

2
(∆2 −∆1 + ∆); ∆ + 1− d

2
,−ξ

)
, (2.7a)

fbdy(∆, ξ) = ξ−∆
2F1

(
∆,∆ + 1− d

2
; 2∆ + 2− d;−1

ξ

)
. (2.7b)

It is worth noticing that the conformal blocks of the boundary channel in d = 3 can

be expressed as elementary algebraic functions, namely,

fbdy(∆, ξ)|d=3 =
1

2
√
ξ

(
4

1 + ξ

)∆− 1
2

[
1 +

√
ξ

1 + ξ

]−2(∆−1)

. (2.8)

This is of course of great help in numerical calculations.

Before describing how to extract information from eq. (2.6), we make some side re-

marks. The set {∆̂l, λ̂lmn,∆i, λijk, ai, µl} is in fact redundant: by repeatedly applying the

bulk-to-defect OPE one can reduce all correlators to correlators of defect operators, there-

fore the λijk are in principle unnecessary to solve the theory. However, it is easy to realize

that all crossing equations constraining the bulk-to-defect couplings µl also involve the bulk

three-point function coefficients. One is naturally led to the following question: what is

the minimal set of correlators encoding all the crossing symmetry constraints of a Defect

CFT? All the four-point functions of defect operators are surely in the number, the proof
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being the usual one (see for instance [35]). A similar argument shows that all the other

crossing equations of a generic correlator of bulk and defect primaries are automatically

satisfied once the three-point functions 〈O1O2 Ô〉 are crossing symmetric. In the rest of

this paper we explore the case Ô = 1, leaving for future work the general case.

Let us now turn our attention back to eq. (2.6) that we rewrite in the following form

−
∑
k

λ12k ak fbulk(∆12,∆k; ξ) + ξ(∆1+∆2)/2

(
a1a2 +

∑
l

µ1l µ2l fbdy(∆̂l; ξ)

)
= δ12 . (2.9)

In most situations, an infinite number of operators contributes to both channels, which

makes the crossing constraint difficult to exploit. The strategy described in [17] can be

summarized in the following way. First, we trade one functional equation for infinitely

many linear equations: one for each coefficient of the Taylor expansion around, say, ξ = 1.

Then we truncate both the Taylor expansions, keeping only the first M derivatives, and the

spectrum, keeping the first N operators in total from the two channels. The bulk identity is

excluded from the count. We denote this truncation with a triple (nbulk, nbdy, s), the three

numbers counting respectively bulk and boundary operators of non vanishing dimension,

and the presence (s = 1) or absence (s = 0) of the boundary identity. We obtain this way

a finite system, at the price of introducing a systematic error, coming from the disregarded

higher order derivatives and heavier operators:

−
nbulk∑
k

pk f
k
bulk

∣∣∣
ξ=1

+

nbdy∑
l

ql f
l
bdy

∣∣∣
ξ=1

+a1a2 = δ12, nbulk+nbdy+s = N

−
nbulk∑
k

pk ∂
n
ξ f

k
bulk

∣∣∣
ξ=1

+

nbdy∑
l

ql ∂
n
ξ f

l
bdy

∣∣∣
ξ=1

+a1a2 ∂
n
ξ ξ

(∆1+∆2)/2
∣∣∣
ξ=1

= 0, n = 1, . . . ,M,

(2.10)

where we used a shorthand notation for the OPE coefficients pk = λ12kak, ql = µ1lµ2l . Let

us focus for definiteness on the case of two identical external scalars, δ12 = 1. The pk’s,

ql’s and a2
1 are the unknowns of a linear system whose coefficients depend nonlinearly on

the bulk and defect spectra. Choosing M ≥ N , the homogeneous system, i.e. the second

line in (2.10), admits a non-trivial solution if and only if all the
(
M
N

)
minors of the system

vanish. This condition provides a set of non-linear equations in the N unknown scale

dimensions. When this set admits a (numerical) solution we say that the the two-point

function under study is truncable. In such a case, inserting the obtained (approximate)

spectrum in the complete linear system (2.10), we get the OPE coefficients.

Notice that every consistent CFT data is in particular a solution to this crossing

equation. Therefore, some input has to be provided: here we are implicitly assuming that

the external dimensions are known, and in fact this is going to be the strategy when we try

to isolate the 3d Ising model. One does not expect to find an exact solution for a generic

truncation: heavier defect and bulk operators become more and more important when

moving respectively towards the bulk (ξ → 0) or the defect (ξ →∞), therefore we expect a

good truncation to require N to grow with M . In practice, in this work we usually choose
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M = N+1, and we find that the space of solutions to the system of nonlinear equations has

in general non-zero dimension. By fixing the free parameters with the best known values

of the lowest lying bulk primaries, we give predictions for the low lying defect spectrum

and for heavier primaries.

As a general rule, a finite truncation of the crossing symmetry equations is a good

approximation of a given CFT if the missing operators can be consistently put at ∆ = ∞
or at zero coupling. When a trial spectrum has been found, one can check its stability

by adding one operator and one derivative. It turns out in most cases that the scaling

dimension of the new operator acts as a free parameter which can vary in a fixed range. We

use the solution for predictions only if it does not depend very strongly on this parameter.

This gives a way of controlling the systematic error, albeit not an algorithmic one. Let us

also observe that the general agreement with the results of the epsilon expansion suggests

that the error is rather small, at least for what concerns the boundary case. Another

important check comes from the Ward identity associated with the displacement operator,

which, as we shall see, yields non-trivial relations among the CFT data. These relations

are perfectly verified by the numerical solutions, as described in the next section.

Another parameter to be considered in order to check the quality of a given truncation

is the spread of the solutions. As soon as the number M of equations exceeds the number

of unknowns, the system is over-determined and can be split in consistent subsystems,

each of them giving in principle a different solution. The spread of these solution gives a

rough estimate of the error. In the cases where the exact solution is known the narrower

is the spread the closer is the solution to its exact value. This is the case for instance

of the four-point function of the free scalar massless theory in any dimension [17]. On

the contrary large spreads are associated to large systematic errors due to too rough ap-

proximations of the crossing equations. A clear illustration of this behavior can be found

in the ordinary transition of the 2d Ising model, where the exact two-point function is

known [36]. Assuming we already know the bulk spectrum, we can start considering the

truncation (2,1,0) to evaluate the scale dimensions of the first surface operator. We have

to look at the zeros of 3 × 3 determinants. Taking for instance 8 derivatives we have 56

equations whose solutions are plotted in the histogram of of figure 1. Their large spread

is associated with a rather rough approximation of the sum rule (2.9) as figure 2 shows.

The same figure points out also that the truncation (4,3,0) is much better. In this case the

unknowns are the dimensions of the three surface operators. The consistent subsystems

are made of sets of three 7× 7 determinants. With 8 derivatives we have again 56 possible

solutions. Their spread is drastically reduced and the mean value is closer to the exact

one, as figure 1 shows. We anticipate that all the solutions considered in the next section

have a microscopic spread (see e.g. figure 3 and figure 5).

3 The boundary bootstrap and the 3d Ising and O(N) models

In this section we shall consider the boundary conformal field theories (BCFTs) associated

with the Ising model and other magnetic systems. Specifically, the IR properties of the

surface transitions in these systems are controlled by RG fixed points, which of course
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Figure 1. Top panel: paired histograms of the solutions of two different truncations of the crossing

equations for the ordinary transition of the 2d Ising model. Left: histogram for the scale dimensions

of the first boundary operator in the (2,1,0) truncation. The exact result is at ∆̂ = 1
2 . Right: the

corresponding histogram for the (4,3,0) truncation. Bottom panel: a more detailed view of the

latter histogram.

are described by just as many Defect CFTs. We denote with σ(x) the scalar field (i.e. the

order parameter of the theory) and with σ̂ the corresponding surface operator. The surface

Hamiltonian associated with a flat d − 1 dimensional boundary of a semi-infinite system

can be written in terms of the three relevant surface operators (see for instance [37])

H =

∫
dd−1x

(
cσ̂2 + h1σ̂ + h2∂zσ̂

)
. (3.1)

Here z ≡ xd is the coordinate orthogonal to the boundary. This Hamiltonian has three

fixed points

O : h1 = h2 = 0, c = +∞ ; (3.2)

– 8 –
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Figure 2. The left-hand-side of the sum rule (2.9) for various truncations (nbulk, nbdy, 0) of the

two-point function of the 2d Ising model in the ordinary transition. Only in the nbulk → ∞,

nbdy →∞ limit the sum rule is saturated.

E : h1 = h2 = 0, c = −∞ ; (3.3)

S : h1 = h2 = c = 0 . (3.4)

Near the first fixed point the configurations with σ̂ 6= 0 are exponentially suppressed, then

σ̂ = 0 (i.e. Dirichlet boundary condition). This fixed point controls the ordinary transition.

The only relevant surface operator in this phase is ∂zσ̂. The fixed point with c = −∞
favors the configurations with σ̂ 6= 0: it is associated with the extraordinary transition,

where the Z2 symmetry is broken and no relevant surface operator can couple with it; the

lowest dimensional surface operator, besides the identity, is the displacement, whose scaling

dimension is d. The fixed point with c = 0 controls the special transition, a multicritical

phase with two relevant primaries. The even operator σ̂2 is responsible for the flow of c

to ∞ or −∞ according to the initial sign, while the odd one, σ̂, is the symmetry breaking

operator of this phase, characterized by the Neumann boundary condition ∂zσ̂ = 0. We

omitted a classically marginal coupling, ∂zσ̂
2, because it vanishes with both Neumann and

Dirichlet boundary conditions, and it cannot be turned on in the extraordinary transition,

where there is no local odd relevant excitation. We shall come back to this operator when

considering the RG domain wall.

One important question to address within a BCFT is how to find the scale dimensions

of the surface operators and their OPE coefficients in terms of the bulk data. This problem

has been completely solved in 2d [38] thanks to the modular invariance. In d > 2 useful

information can be extracted by the epsilon expansion and other perturbative methods.

Recently the conformal bootstrap approach has been shown to be very promising [14]. Here

we face this problem with the method of determinants.

We study the 2-point function 〈σ(x)σ(y)〉. The general criterion we use to classify

the surface transition associated with a specific truncation (nbulk, nbdy, s) of the crossing

– 9 –
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symmetry equations (2.10) is based on three steps. First, we verify that the solution

is compatible with a unitary theory by requiring the positivity of all the non-vanishing

couplings µ2
a (a = 1, 2, . . . , nbdy). Then we look at the sign of the couplings to the bulk

blocks akλσσk (k = 1, . . . , nbulk). As in [14], we will assume that the ordinary transition

is signaled by the presence of at least one negative coupling in the bulk channel. On the

other hand, positivity of the couplings indicates the extraordinary or the special transition,

depending on the presence or absence of the surface identity. We should point out that

these assumptions have not been proven. However, the results of this work seem to confirm

them, serving as a consistency check on the whole setup.

3.1 The ordinary transition

We start by considering what is perhaps the simplest successful truncation of eq. (2.10),

corresponding to the fusion rules

σ × σ ∼ 1 + ε+ ε′, bulk channel,

σ ∼ Ô, boundary channel. (3.5)

This truncation is denoted by the triple (2,1,0). The system (2.10) admits a solution

if and only if the 3 × 3 determinants made with the derivatives of the conformal blocks

associated with ε, ε′, Ô vanish. We assume that the scale dimensions of σ, ε and ε′ are

known (∆σ = 1
2 + η

2 ; ∆ε = 3−1/ν; ∆ε′ = 3+ω, see table 1) and in this particular case the

only unknown scale dimension is ∆
Ô

. Figure 3 shows the values of few determinants of this

kind. Clearly they all apparently vanish at the same point. In fact there is a microscopic

spread of the solutions and we find ∆
Ô

= 1.276(2). The solution of the complete linear

system yields a negative aελσσε, thus, according to the above criterion, we are faced with

the ordinary transition of the 3d Ising model. Hence, Ô has to be identified with ∂zσ̂. A

two-loop calculation in the 3d φ4 model yields [39] ∆∂z σ̂ ' 1.26 in good agreement with

our result.

This solution admits a straightforward generalization to any 3d O(N) model by simply

replacing the critical indices with the appropriate values. Table 1 shows our results for

N = 0 (the non-unitary self-avoiding walk model), N = 1 (Ising), N = 2 (XY model)

and N = 3 (Heisenberg model), where we can compare our results with the two-loop

calculation of [39].

3.2 The extraordinary transition

Such a transition is characterized by the non-vanishing contribution of the boundary iden-

tity to the two-point functions of Z2 odd operators. In this case the boundary surface is

in an ordered phase, therefore the degrees of freedom described by Z2 odd operators are

frozen. The first non-vanishing surface operator, besides the identity, is the displacement

D with ∆D = 3. As a consequence, the most relevant contribution to the boundary chan-

nel is known and the crossing equations can be exploited to obtain information on the

bulk channel.
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N η ν ω

0 0.0314(32) 0.5874(2) 0.812(16)

1 0.03627(10) 0.63002(10) 0.832(6)

2 0.0380(4) 0.67155(27) 0.789(11)

3 0.0364(6) 0.7112(5) 0.782(13)

∆∂z σ̂

N 2-loop Monte Carlo Bootstrap

0 1.33 - 1.332(6)

1 1.26 1.2751(6) 1.276(2)

2 1.211 1.219(2) 1.2342(9)

3 1.169 1.187(2) 1.198(1)

N aελσσε aε′λσσε′ µ2
∆̂

0 -0.8447(34) 0.0366(17) 0.692(1)

1 -0.789(3) 0.042(1) 0.755(13)

2 -0.747(1) 0.0488(4) 0.80022(5)

3 -0.710(1) 0.0509(6) 0.8395(6)

Table 1. The first table collects the input parameters. The second one is a comparison between

two-loop calculations [39], Monte Carlo simulations (reference [40] for N = 1 and reference [41]

for N > 1) and our bootstrap results for the scaling dimension of the surface operator ∂zσ̂ in

the ordinary transition of 3d O(N) models. The last three columns collect our results for the OPE

coefficients. The critical indices η and ν for N = 0, 1, 2, 3 are taken respectively from references [42],

[43], [44] and [45]. Those for ω from [46].

1.1 1.2 1.3 1.4
D

-0.15

-0.10

-0.05

0.05

0.10

0.15
Det

Figure 3. Plot of the 10 3 × 3 minors made with the first 5 derivatives of the conformal blocks

associated with ε, ε′ and Ô as functions of ∆Ô. They all vanish approximately at he same point,

selecting the allowed value of ∆Ô.
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Actually adding the boundary identity to the truncation requires adding more bulk

operators as well. We found a first stable solution of the type (4,1,1). This time the scaling

dimensions of the two needed bulk scalars ε′′ and ε′′′ cannot be used as input parameters

because, once fixed ∆σ, ∆ε and ∆ε′ ,
2 we get a solution only if

N = 1 , ∆ε′′ = 7.316(14) , ∆ε′′′ = 13.05(4).3 (3.6)

The other parameters of the solution are

aελσσε = 6.914(6), aε′λσσε′ = 2.261(2), aε′′λσσε′′ = 0.187(1),

aε′′′λσσε′′′ = 0.0046(1), a2
σ = 6.757(4) , µ2

σD/CD = 0.06282(3); (3.7)

where we denoted with CD the Zamolodchikov norm of the displacement operator.

We can easily generalize this solution to the O(N) spin models using as input the data

of table 1. For the XY model (N = 2) we obtain

N = 2 , ∆ε′′ = 6.002(33) , ∆ε′′′ = 10.96(4) , (3.8)

with

aελσσε = 5.585(11), aε′λσσε′ = 1.466(10), aε′′λσσε′′ = 0.307(9),

aε′′′λσσε′′′ = 0.0162(3), a2
σ = 5.495(9) , µ2

σD/CD = 0.06741(7). (3.9)

Similarly for the Heisenberg model (N = 3) we get

N = 3 , ∆ε′′ = 5.285(17) , ∆ε′′′ = 10.48(1). (3.10)

with

aελσσε = 5.019(8), aε′λσσε′ = 0.846(13), aε′′λσσε′′ = 0.505(10),

aε′′′λσσε′′′ = 0.0207(1), a2
σ = 4.874(8) , µ2

σD/CD = 0.06919(10). (3.11)

It is interesting to notice that the value of ∆ε′′ = 3 + ω2 as a function of N is close to

that first calculated in [47] with the functional renormalization group method.

In the case of the Ising model, where we used the more precise input data of [19],

we probed the stability of the solution by adding a new conformal block in the boundary

channel. It turns out that the truncation (4,2,1) defines a one-dimensional family of the

solutions, where the free parameter is the dimension of the added surface operator, which

can vary in the range 0 < ∆̂ ≤ ∞. In the limit ∆̂→∞ we recover, as expected in a stable

solution, the truncation (4,1,1). The dimensions of the two bulk operators ∆ε′′ and ∆ε′′′

vary as functions of ∆̂ in a narrow range: the net effect of the unknown parameter is to

reduce a bit the scaling dimensions of these bulk operators. Eliminating ∆̂ we obtain the

2Here and in the rest of this section we use as input parameters of the Ising model the values ∆σ =

0.518154(15), ∆ε = 1.41267(13) and ∆ε′ = 3.8303(18) taken from [19].
3In the entire paper the estimate of the statistical error due to the uncertainty on the input parameters

is obtained by means of a statistical bootstrapping procedure.
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Figure 4. Parametric plot of the scaling dimensions of ∆ε′′ and ∆ε′′′ generated by the unknown

parameter ∆̂. Here we see the effect of the statistical errors on the input data, namely ∆σ, ∆ε and

∆ε′ as well as the effect of the spread of the solutions. Some of these data are presented in table 3.

plot in figure 4. The uncertainty on the actual value of ∆̂ forces us to enlarge the errors in

the bulk dimensions. Figure 4 roughly suggests

∆ε′′ = 7.27[5] , ∆ε′′′ = 12.90[15], (3.12)

which supersede eq. (3.6). We used square brackets to indicate that this is not a statistical

error, but a sum of the uncertainties.

Unfortunately one can find in literature a wide range of proposed values for ∆ε′′ and

∆ε′′′ which strongly depend on the method employed (see for instance table 3 of [19]).

What is especially disturbing for us is that the method of determinants applied to the

four-point function gave very different values for these quantities [20], so we decided to

reanalyze the bootstrap equations for the four-point function on the bulk in order to see

whether there is also a solution compatible with the spectrum suggested by the boundary

bootstrap. Out of this study we can confirm the existence of a scalar of dimension ∼ 7.2

with a positive coupling. We were unable to find a proper solution for the scalar at ∼ 13, all

solutions being characterized by a coupling that is very small, negative and nearly always

compatible with zero. The quoted dimensions of these two scalars found with the linear

functional method [19] are respectively ∼ 7 and ∼ 10.5.

Another interesting two-point function to be studied in the extraordinary transition of

the Ising model is the spin-energy correlator 〈σ(x)ε(y)〉 which is different form zero only

in this phase, being the only surface transition where the Z2 symmetry of the model is

broken. The fusion rule of the bulk sector contains odd operators only:

σ × ε ∼ σ + σ′ + σ′′ + . . . , (3.13)
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Figure 5. Plot of the zeros of some 5 × 5 determinants associated with the fusion rules (3.13)

and (3.14).

while in the boundary sector the first primary operator contributing, besides the identity,

is the displacement operator:

σ ∼ 1 +D + . . . , ε ∼ 1 +D + . . . (3.14)

The first stable solution corresponds to the truncation (3,1,1) defined by the above fusion

rules. It is associated with the (apparently) common intersection of the zeros of the 5 × 5

determinants made with the derivatives of the 5 conformal blocks involved (see figure 5):

∆σ′ ' 5.66 ; ∆σ′′ ' 10.89 ; (3.15)

aσλσεσ ' 0.148κ ; aεaσ ' 0.927κ ; µσDµεD/CD ' 0.0196κ . (3.16)

The parameter κ arises because now the bootstrap equations are homogeneous, that is, they

do not contain the information about the normalization of the external operators. The nor-

malization of the order parameter is contained in the correlator 〈σσ〉, while the normaliza-

tion of the energy follows from assuming symmetry of the OPE coefficient λσσε = λσεσ.

Therefore, combining (3.16) with the analogous couplings in (3.7), we can compute the

unknowns aε, aσ, µσD/
√
CD, µεD/

√
CD, κ, λσεσ.

In order to probe the stability of the solution and to evaluate the errors we upgraded

the solution to (5,1,1), which corresponds to a one-parameter family of solutions. We used

as a free parameter the heaviest bulk scalar σ4. A solution exists for 18 ≤ ∆σ4 ≤ 28. As

expected for a stable solution, this parameter has no visible effect on the OPE coefficients

and only slightly affects the scale dimensions of the two scalar σ′′ and σ′′′. The results of

this analysis can be found in table 2
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∆ε′′ ∆ε′′′ ∆σ′ ∆σ′′ ∆σ′′′ λσσε

7.27[5] 12.90[15] 5.49(1) 10.6[3] 16[1] 1.046(1)

aε µεD/
√
CD aσ µσD/

√
CD

6.607(7) 1.742(6) 2.599(1) 0.25064(6)

Table 2. The main results of the combined analysis of 〈σσ〉 and 〈σε〉 in the extraordinary transition

are split in two parts. The top table refers to data of the bulk channel, while the bottom table

contains OPE coefficients specific to the boundary channel of the extraordinary transition. Errors

in square brackets refer to data whose uncertainties depend on an unknown parameter; the other

errors simply reflect the statistical errors of the input data, namely, ∆σ, ∆ε and ∆ε′ .

It turns out that ∆σ′ is nicely close to the bound ∆σ′ ≤ 5.41(1) found in [24]. No-

tice also that the resulting OPE coefficient λσσε is in perfect agreement with the esti-

mate of a recent Monte Carlo calculation [48] which gives λσσε = 1.07(3) and the value

(λσσε)
2 = 1.10636(9) found in [19] through the study of the four-point function with the

linear functional method.

There is another very impressive check of these results. The Ward identity associated

with the displacement operator tells us that the quantity xO = ∆O
aO
µOD

√
CD does not

depend on the specific bulk operator O but only on the surface transition, as described in

section 4. The above results yield

xσ = 5.3727(27) ; xε = 5.358(15) , (3.17)

showing, within the errors, a reassuring fulfillment of the Ward identities.

3.3 The special transition

According to our discussion at the beginning of this section, solutions ascribed to the

special transition are associated with truncations of the form (m,n, 0) in which all the OPE

coefficients are non-negative. By consistency with the results of the previous subsection

we have to use the same bulk spectrum determined in the extraordinary transition. We

found solutions of the form (3,3,0) and (4,3,0) with similar properties. Here we only discuss

the latter.

Instead of an isolated solution, in this case we find a one-parameter family in the

three-dimensional space of the boundary scale dimensions (∆̂1 < ∆̂2 < ∆̂3). The lowest-

dimensional operator has to be identified with σ̂ and according with the two-loop cal-

culation of [39] we expect ∆̂σ̂ ∼ 0.42. In our case a unitary solution exists only for

0.34 ≤ ∆̂1 ≤ 0.45. Below 0.34 the solution disappears abruptly; above 0.45 it becomes

non-unitary.

Using ∆̂3 as a free parameter, we obtain the plot of figure 6, which is superimposed

to the unitarity upper bound found in [14]. As expected, the transition to the non-unitary

region coincides with the unitarity boundary found by the linear functional method. Con-

sistency requires that the spectrum of our solution at the intersection should agree with

the one extracted from the zeros of the linear functional [16] calculated at the same point.
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Figure 6. Plot of the one-parameter family of the truncation (4,3,0) in the plane (∆̂1, ∆̂2), superim-

posed to the upper unitarity bound found in [14]. The blue and green dots correspond respectively

to the minimal and the maximal choice of the pair (∆ε′′ ,∆ε′′′), as determined in figure 4. These dots

are replaced by ones respectively magenta and yellow when some OPE coefficient become negative.

For the black dots on the unitarity bound see explanation in the text.

2 4 6 8
DΕ²
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3 4 5 6 D
ï
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Figure 7. Linear functionals for the bulk and boundary channels in the special transition.

In fact, the first zero of the linear functional at the intersection point, in the bulk sector,

is (see figure 7) around ∼ 6.7, which is consistent with our result for ∆ε′′ . Similarly, the

zero of the extremal functional for the boundary sector (besides ∆̂1 and ∆̂2) is perfectly

consistent with the value ∆̂3 ∼ 4.44 at the crossing point.

Such a boundary required by unitarity could also be seen as the locus were one or

more OPE coefficients change sign. Our solution leads us to conjecture that the couplings

vanishing at the unitarity bound are λσσε′ and λσσε′′′ . In the construction of the upper

unitarity bound in [14] it is assumed that the first bulk primary is the Ising energy ε and

it follows that the subsequent primary has scale dimension larger than ∆ε′ , as suggested

by our conjecture.

The knowledge of the linear functional leading to the bound of figure 6 suggests another

interesting cross-check of the two methods: given a value of ∆̂1 we insert in the (4,3,0)

truncation the first four zeros of the linear functional on the bulk channel and evaluate

with the method of determinants the corresponding boundary values ∆̂2 and ∆̂3. It turns
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out that in the plane ∆̂1, ∆̂2 such a solution lies on the unitarity bound, as consistency

requires (see black dots in figure 6).

4 Renormalization group domain wall for the O(N) model

Before starting the exploration of a specific conformal interface, let us recall the relevant

CFT data that one needs to collect in order to completely describe the generic system.

Conformal interfaces are closely related to boundaries. In fact, as we mentioned in section 2,

an interface between a CFT1 and a CFT2 can be mapped to a boundary problem using the

folding trick. One turns the original setup into a boundary for the theory CFT1 × CFT2,

where the bar means that a reflection xd → −xd has been applied to one of the theories.

We see that the natural bulk CFT data is given by the value of the two point functions

of operators placed in mirroring points with respect to the interface: they are mapped to

expectation values of operators in the folded CFT. This also identifies the needed operators

as primaries of the folded theory, which in particular include all bulk primaries of the two

CFTs. The latter are not sufficient, though, because they do not play any role as building

blocks of correlators across the interface. Another way of understanding this circumstance

is provided by the north-south pole quantization, or equivalently by conformally mapping

the theory to a d-dimensional sphere. Local operators at the north or south pole create a

state belonging to the Hilbert space of either CFT. The interface is a linear map between

the Hilbert spaces, and the correlators of operators placed in mirroring points - that is, at

the north and south poles - are the matrix elements of this map. Analogous considerations

are valid for the bulk-to-defect couplings. Let us now turn to the specific interface we shall

study in this paper.

The Renormalization group domain walls are interfaces between two CFTs which lie

at the top and at the bottom of an RG flow. More precisely, there is an easy operational

definition: start with a CFT on the whole space, and modify the action by integrating a

relevant operator over half of the space. Far away in this region, the long distance physics

will be dominated by the CFT at the bottom of the flow triggered by the perturbation.

This definition can be employed literally when the coupling is only mildly relevant, and

perturbation theory makes sense. In order to single out a unique gluing condition, it is also

necessary to specify which defect deformations are turned on along with the bulk flow. In

the case of interest for us, we shall argue that no marginal deformations exist on the defect,

and so we just choose to fine tune perturbatively the relevant defect couplings. As usual,

near the interface the critical behaviour is modified with respect to both the UV and the

IR homogeneous fixed points, with new critical exponents arising. RG domain walls have

been mainly studied in two dimensions [49–53]. In a general non perturbative setting, the

determination of the defect spectrum and the computation of correlators is a very difficult

task. In some limiting cases, however, some of the answers might be found with little effort.

For instance, a relevant operator may force the bulk to flow towards a trivial theory. In

this case, the RG interface is reduced to a boundary condition for the ultraviolet CFT. As

an example, consider giving a mass to a free boson on half of the space, in any dimension

greater than two. Correlators on the perturbed side are exponentially damped, and at
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large distances the theory is empty. From an RG point of view, the coupling grows in the

IR, and the configurations of non-zero field on the perturbed side are suppressed in the

partition function. As a consequence, a Dirichlet boundary condition is imposed to the

massless free boson on the other side.

A more interesting case is the RG domain wall corresponding to the Wilson-Fisher

fixed point of the O(N) model with (φ2)2 interaction. This interface is captured by the

following bare action:

S =

∫
ddx

1

2Sd(d− 2)
∂µφ

i ∂µφ
i + θ(xd)

g

4!
(φiφi)

2
, (4.1)

where θ(xd) is the Heaviside function, Sd = 2πd/2/Γ(d/2) and we chose to normalize the

elementary field so that it has a canonical two-point function in free theory. As we pointed

out, a question that needs to be answered concerns the stability of this interface. One needs

to know how many relevant operators must be fine-tuned, and if marginal deformations

exist. The interface possesses a weakly coupled description in 4 − ε dimensions, and, at

the classical level, the only relevant defect primary in the singlet sector is φ̂2. Once we

tune it to zero, unlike the situation in the special transition, we do not impose Neumann

boundary conditions, but only continuity of ∂zφ̂
i on the interface. Hence, the classically

marginal operator ∂zφ̂
2 does not vanish, and should be taken into account. We shall show

that this operator becomes irrelevant at one loop. Therefore, the RG interface appears to

be isolated in perturbation theory.

In the following, we characterize the correlations of scalar primaries in the presence

of the domain wall at lowest order in ε-expansion. Along the way, we point out that

correlations across the interface encode at this order the mixing induced by the RG flow

among nearly degenerate operators [51]. This is true in the larger class of perturbation

interfaces constructed by means of a nearly marginal deformation. We then focus on the RG

domain wall between the three dimensional free theory and the Ising model, and study the

two-point function of the field σ using the method of determinants. We also provide some

non-perturbative information on generic conformal interfaces involving the free theory, by

noticing that some of the crossing constraints can be solved analytically.

4.1 The ε-expansion and the role of the displacement operator

Since the UV side of this RG interface is a free theory, the interface itself is not captured

by mean-field theory: the CFT data related to it is O(ε) in perturbation theory. One can

easily obtain general results at leading order by exploiting the Ward identity eq. (2.1), which

defines the displacement operator. The identity tells us that we can move the interface in

the orthogonal direction by integrating the displacement in the action. Its insertion in a

correlation function is therefore equivalent to a derivative with respect to the position of

the interface, that is,∫
dd−1y 〈D(ya)O1(x1) . . . On(xn)〉 = −

n∑
i=1

∂

∂xdi
〈O1(x1) . . . On(xn)〉 . (4.2)
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Since the violation of translational invariance happens at order g - see eq. (4.7) - the

relation (4.2) rephrases some information about an n-point function of order gL in terms of

the integral of a (n + 1)- point function of order gL−1. In general, knowledge of the variation

with respect to the position of the interface is obviously insufficient for reconstructing the

full correlator. However, all configurations of two points are conformally equivalent to the

one in which the points are aligned on a line perpendicular to the defect. Therefore a

two-point function can be traded for the integrated three-point function on the l.h.s. of

eq. (4.2). The advantage is that the integral does not generate additional divergences: one

only needs to renormalize the theory at order gL−1. On the other hand, it is still necessary

to determine a primitive of the l.h.s. of eq. (4.2) as a function of the position of the interface.

We shall see that this is possible at lowest order: the tree level 2-point correlator, which is

just the homogeneous one, can be used to compute the one loop correction in the presence

of the interface.

It is simple to derive from (4.2) a new scaling relation. As pointed out, when two

operators are placed in mirroring points, in which case ξ = −1, their correlator is equivalent,

through the folding trick, to a one-point function:

〈OL(x)OR(Rx)〉 =
aL R

|2xd|∆L+∆R
, Rx =

(
xa,−xd

)
. (4.3)

Here we think of OL and OR as scalars belonging respectively to the UV and IR spectrum.

Similarly, the three-point function 〈OLORD〉 is fixed up to a number:

〈OL(x)OR(Rx)D(ya)〉 =
µL RD

|2xd|∆L+∆R−d |x− y|2d
. (4.4)

Using the fact that in this geometry ξ is stationary with respect to orthogonal displacements

of the interface, it is easy to derive the following relation between these pieces of CFT data

(∆R −∆L)aL R

Sd
= µL RD. (4.5)

In the particular case where one of the bulk operators is the identity, one recovers a relation

which was first noticed in the case of a boundary by Cardy [54] (see also [33]):

± ∆kak
Sd

= µkD, (4.6)

where the plus/minus sign is valid for the interacting/free side respectively. We start

by using eq. (4.6) to determine the ak’s. The answer at order ε is quite simple: only

one operator acquires expectation value, on both sides of the interface. To see this, let us

identify the displacement. Looking at the action (4.1), we see that the interface is displaced

at leading order by integrating the bare operator g(φ2)2/4!, that is4

D =
g

4!
(φ2)2 +O(g2) =

1

8(N + 8)π2
ε (φ2)2 +O(ε2), (4.7)

4Notice that at higher orders the interacting stress-tensor needs to be improved to be kept finite and

traceless [55]. The improvement is proportional to (∂µ∂ν − δµν∂2)φ2, so that the displacement receives a

contribution from the operator ∂a∂
aφ2.
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where we plugged the fixed point value of the coupling at order ε:

g∗ =
3

(N + 8)π2
ε. (4.8)

Now, since (φ2)2 is a primary of the free theory, and no other primary mixes with it at order

one, its correlation function with any other primary is zero at leading order. This means

that all coefficients µOD = O(ε2), but for the case O = (φ2)2. Using the relation (4.6), we

conclude that the only non vanishing expectation value at this order is 〈(φ2)2〉. We can

then obtain the number aφ4 at order ε from a tree level computation. Indeed, the relevant

bulk-to-defect coupling is given at leading order by

µφ4D = |x|8 〈 (φ2)2(x)√
8N(N + 2)

D(0)〉 =

√
2N(N + 2)

4(N + 8)π2
ε. (4.9)

Therefore

aIR
φ4 = −aUV

φ4 =

√
2N(N + 2)

8(N + 8)
ε. (4.10)

Let us make a comment. It was obvious from the start that only a small class of opera-

tors could exhibit a one-point function at first order in the coupling: four powers of the

elementary field are needed to contract a single vertex, and of course the operator must

be in the singlet of O(N). However, infinitely many scalar primaries can be constructed in

free theory which fulfill these requirements, involving an increasing number of derivatives

of the fields.5 The simplest use of eq. (4.10) is the determination of the most general two-

point function of operators lying on the same side of the interface at order ε. Sticking for

simplicity to the case of external scalars, one simply writes

〈O1(x)O2(x′)〉

=
1

(2xd)∆1(2x′d)
∆2

ξ−(∆1+∆2)/2
(
δ12 + λ12φ4aφ4fd=4

bulk(∆12,∆ = 4, ξ)
)

+O(ε2). (4.11)

Notice that λ12φ4 is guaranteed to belong to the 4d free theory only when O1 and O2

are on the UV side. Indeed, primaries on the interacting side are in general a mixture

of classically degenerate renormalized operator, and when the mixing happens at leading

order λ12φ4 becomes a linear combination of UV OPE coefficients. For completeness, we

compare this derivation with some direct one loop computations in appendix A.

As pointed out in the introduction to this section, in order to capture correlations

across the interface we would need all the one-point functions of the folded theory. This

5That these primaries must exist can be seen independently from their expression in terms of elementary

fields, for instance from the asymptotics of the two point function of φ2 in a free theory with a boundary. The

presence of the identity in the boundary channel can only be balanced by an infinite number of conformal

blocks in the bulk channel. Only one primary can be built with two powers of the fields, so the rest are the

ones we are interested in. The explicit conformal block decomposition for this case can be found in [14]. It is

also amusing to notice that, analogously to the case at hand, this tower of operators does not contribute at

order ε to the two-point function of φ with Dirichlet or Neumann boundary conditions. As noticed in [14],

in that case the OPE coefficients λφφ ∂2kφ4 are the vanishing quantities at order ε.
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set encompasses the aLR defined in (4.3), and is much bigger. It is in fact more viable to

reach for the two-point functions of primaries directly through the integrated Ward identity

eq. (4.2), specified to the case of interest:∫
dd−1y 〈OL(x)OR(x′)D(y)〉 = −

(
∂

∂xd
+

∂

∂x′d

)
〈OL(x)OR(x′)〉 . (4.12)

We pick for the left hand side the three-point function of primaries in the translational

invariant theory, and we get the one-loop two-point function by integrating over the position

of the displacement. Notice that in doing so we disregard the mixing of primaries with

descendants. In the cases in which this happens at order one, on the left hand side of

eq. (4.12) additional terms needs to be taken into account, which have the form of a three-

point function involving derivatives of a primary operator. Consider first two operators

which are degenerate in the free theory. In other words,

∆LR ≡ ∆L −∆R = O(ε). (4.13)

In this case eq. (4.12) can only be used to determine the one loop correlator up to a constant.

Indeed, since both µL RD and ∆L −∆R are of order ε, one needs the one loop three-point

function to determine aL R from eq. (4.5). This is the familiar effect of degeneracies in

perturbative computations, and is related to the mixing of operators along the RG flow

(see section 4.2). Integration of (4.12) is straightforward, and one gets

〈OL(x)OR(x′)〉 =
aL R

|2xd|∆L(2x′d)∆R
(−ξ)−∆L

(
1 +

∆LR

2
log(−ξ)

)
, ∆LR = O(ε). (4.14)

Comparing with the form (2.5) we can write at this order

GL R(ξ) = aL R ∆LR = O(ε). (4.15)

A comment is in order. The presence of a logarithmic singularity compatible with exponen-

tiation is somewhat natural, since turning the coupling off one recovers the short distance

power low divergence proper of the homogeneous theory. However, there is no reason for

this to happen when considering the OPE limits in the Euclidean defect CFT. The expo-

nentiation agrees in the large ξ limit with the defect OPE, as it is easy to verify using the

formulae given in subsection 4.2. On the other hand, no small ξ limit exists for primaries

on opposite sides of the domain wall, and in fact the folded cross-ratio is ξfolded = −(1+ ξ),

which vanishes when the operators are placed in mirroring points. We decide to keep using

the form (2.5), and notice that it might be fruitful to look for a justification in Lorentzian

signature, where the small ξ limit corresponds to light-like separated operators.

In the case of operators with dimension differing in the UV limit, the two-point func-

tions at one loop can be fixed completely. Due to O(N) and rotational symmetry, ∆LR

is an even integer in d = 4, which provides a simplification. The computation is slightly

more involved than in a previous case, and we give some details in appendix A. The result

in the case |∆LR| = 2 is different from all the others:

GL R(ξ) =
π2

2
µL RD sign(∆LR) (ξ − 1), |∆LR| = 2, (4.16)
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while

GL R(ξ) = − π2Γ(2k + 3)

(k − 1)k2Γ(k + 2)2
µL RD sign(∆LR)

(−ξ)k+1

{(
(4k + 2)ξ2 + 3(k + 1)ξ + 1

)
2F1

(
−k − 1,−k,−2(k + 1);

1

ξ

)
−
(

(4k + 2)ξ2 + (k + 2)ξ
)

2F1

(
−k − 1,−k − 1,−2(k + 1);

1

ξ

)}
,

|∆LR| ≡ 2k > 2. (4.17)

As one might have expected, the hypergeometric functions in eq. (4.17) are in fact

polynomials.

These results complete the analysis of bulk correlations at order ε, if knowledge of the

λ123 is assumed: n-point functions of bulk operators are determined by taking successive

OPEs on the two sides until one is left with a one-point function or a two-point function

across the interface. We shall content ourselves of this leading order solution, but we

would like to comment on the possibility of generalizing the procedure. Unfortunately, the

number of non vanishing one-point functions is infinite already at next to leading order.6

Therefore, once the displacement has been correctly normalized, one has to compute the

relevant three-point functions at one loop and integrate them to find the two loop two-

point functions.

Let us now consider the defect spectrum at order ε. The dimensions of the operators can

be extracted through the defect OPE decomposition of eq. (4.11). When nearly degenerate

operators are present in the UV theory, also the defect operators mix, and the spectrum

is given by the eigenvalues of the matrix of anomalous dimensions. We shall deal with

this more general case in the next subsection. Here we comment on some features of the

spectrum focusing for simplicity on the non-mixing operators. The lightest defect scalar in

the OPE of a bulk operator O has dimension

∆̂O = ∆UV
O − 2λOOφ4 aUV

φ4 +O(ε2)

=
1

2
(∆UV

O + ∆IR
O ) +O(ε2). (4.18)

The second equality in eq. (4.18), which agrees with first order conformal perturbation

theory, says that the defect primary stands half way between the corresponding infrared and

ultraviolet operators in the bulk. Let us make some more specific comments. ∆̂φ4 = 4− ε
is the protected dimension of the displacement operator. This is expected, even if there are

degenerate operators in free theory. Two primaries exist with dimension near to four, but

both of them are protected, the second one being the displacement of the folded theory.

The second interesting scale dimension is obtained by going one step further in the defect

OPE of φ2. We encounter the operator ∂zφ̂
2, and since no other scalars exist which could

mix with it, we can safely read off his dimension from the boundary block decomposition:

6This statement again follows immediately from the fact that the operator φ2 acquires an expectation

value at order ε2.
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∆̂∂φ2 = 3− N+14
2(N+8)ε. We see that this scalar is irrelevant at the Wilson-Fisher fixed point, so

that the stability of the interface is not altered by its presence. A third remark concerns the

odd spectrum. Since the anomalous dimension of φi starts at two loops, or equivalently the

bulk OPE does not contain (φ2)2 on either side of the interface, the dimensions of φ̂i and

∂zφ̂
i remain classical. Moreover, at this order all fields of the kind ∂kz φ̂

i can be converted to

descendants of φ̂i and ∂zφ̂
i by means of the tree level equations of motion. Hence, the latters

are the only primaries appearing with an OPE coefficient of order one. The interesting fact

is that ∆̂φ and ∆̂∂φ do not receive loop corrections at all, as we review in subsection 4.3.

A last comment on the one-loop odd spectrum is in order. The two-point function of φ2φi

should obey eq. (4.11) only on the free side, where the operator is a primary. This two-

point function contains a tower of defect operators which we might identify with φ̂2φi and

its transverse derivatives. The dimension of φ̂2φi is consistently half-way between φ2φi and

its image under RG flow, that is, �φi, and turns out to be marginal at this order. Since

we could not devise a mechanism to protect this operator from quantum corrections, we

believe this feature will disappear from the spectrum at higher orders. The fact that φ̂2φi

is independent from the conformal families of φ̂i and ∂2
z φ̂

i is naturally justified by defining

the defect fields as the limit of the free bulk fields approaching the interface. Notice that

this happens automatically in a hard-core regularization, where all integrals are cut-off at

a small distance from the interface.

The considerations leading to eq. (4.11) apply in fact to the leading order in conformal

perturbation theory of any interface obtained by a nearly marginal bulk perturbation.

Indeed, the key point is that the Zamolodchikov norm of the displacement operator equals

the square of the coupling at leading order. We turn now to this more general setting in

order to discuss the leading order mixing of bulk and defect primaries. On the contrary,

notice that eqs. (4.16) and (4.17) do not generalize trivially, because we used the fact that

UV scale dimensions are (nearly) even-integer separated: formulae get a bit more messy in

the general case.

4.2 Leading order mixing of primary operators

Consider a conformal field theory in any number of dimensions d, whose spectrum includes

one7 mildly relevant operator ϕ, that is ε = d−∆ϕ is a small positive number. The interface

constructed by integrating gϕ on one half of the space has an infrared fixed point in which

g = g∗ ∼ O(ε). The two-point functions of operators on the same side of the interface obey

the obvious generalization of eq. (4.11):

〈O1(x)O2(x′)〉

=
1

(2xd)∆1(2x′d)
∆2

ξ−(∆1+∆2)/2
(
δ12 + λ12ϕaϕf

d
bulk(∆12,∆ = d, ξ)

)
+O(ε2). (4.19)

Here aϕ is of order ε and at this order

aIR = −aUV = g∗
Sd
d
, (4.20)

7We consider for simplicity the case of a one parameter RG flow. The general case proceeds along the

same lines.
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as dictated by eq. (4.6). We would like to study the effect of the mixing of bulk primaries on

the defect operators. Let us choose a set of UV scalar primaries OUV
i which are degenerate

up to terms of order ε. Their defect OPE, restricted to the lowest lying primaries, is

encoded in the fusion rule

OUV
i ∼ µij Ôj + . . . (4.21)

These defect operators are connected by the RG flow to the UV operators themselves,

that is there exists a family of renormalized operators Ôi(g) such that OUV
i = Ôi(0) and

Ôi = P̂i
j Ôj(g

∗). The matrix P̂ ij depends on the definition of the renormalized operators,

that is on the regularization scheme. However, in what follows we shall only need the fact

that P̂ ij is orthogonal at order one. Comparing with eq. (4.21) we see that

µi
j = P̂ j i +O(ε). (4.22)

The relevant part of the defect OPE decomposition of the correlator 〈OUV
i OUV

j 〉 is deter-

mined by the following asymptotic behavior for large ξ:

fdbulk(∆12 = 0,∆ = d, ξ) ∼ d

2

(
log ξ + γ − ψ(d/2)

)
+O(ξ−1). (4.23)

Comparing this with the large ξ and small ε limit of the boundary blocks, we get

∑
k

µi
kµjk

(
∆̂k −

∆UV
i + ∆UV

j

2

)
= −d

2
λUV
ijϕ a

UV
ϕ . (4.24)

Since the quantity in parenthesis is of order ε, we can make the substitution µ→ P̂ . The

latter matrix was defined to be the orthonormal change of basis which diagonalizes the

matrix of anomalous dimensions γ̂i
j of the boundary operators Ôj(g), so that we get

γ̂ij = ∆UV
i δij −

d

2
λUV
ijϕ a

UV
ϕ = ∆UV

i δij +
Sd
2
λUV
ijϕ g

∗. (4.25)

One may proceed order by order in the large ξ expansion. The resulting defect spectrum

includes in general nearly degenerate scalars with dimension close to ∆ + k, ∆ being the

scale dimension of a bulk primary. A primary of level k of course originates from linear

combinations of transverse and parallel derivatives of a UV primary. But when nearly

integer separated bulk primaries exist, further mixing is expected to take place.

To complete the analysis, we would like to show that by matching the defect spectrum

with the IR bulk primaries, we get back the known mixing matrix between UV and IR

operators of the homogeneous theory [56]. We restrict ourselves to the case in which the

mixing only involves primary operators. We consider the set of IR primaries OIR
i which

are related to the OUV
i through a matrix P ij whose definition is analogous to the one we

gave for P̂ . The leading part of the defect fusion rule is

OIR
i ∼ νijÔj + . . . (4.26)

where we required that the defect spectrum coincides with the one of the UV counterparts.

This time we have

νi
j = Pi

kP̂ jk +O(ε). (4.27)
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The same steps as before now lead to a relation identical to eq. (4.24), up to the sub-

stitutions µ → ν and UV → IR. The combination of eqs. (4.20), (4.25), (4.27) with the

statement

λIR
ijϕ = Pi

mPj
nλUV

mnϕ +O(ε), (4.28)

leads to

∆IR
i δij = Pi

mPj
n
(
∆UV
m δmn + Sd λ

UV
mnϕ g

∗) . (4.29)

Since the matrix P diagonalizes by hypothesis the matrix of bulk anomalous dimensions,

we recover the formula

γij = ∆UV
i δij + Sd λ

UV
ijϕ g

∗. (4.30)

Notice that the anomalous part of the defect mixing matrix is one half of the bulk one.

As a last comment, by means of eq. (4.5), we can verify that the pairing of UV and

IR primaries matches the matrix P at leading order [51]:

aji = Pij +O(ε). (4.31)

Indeed, eq. (4.31) is immediately obtained starting from the equality

(∆IR
i −∆UV

j )aji = Sd Pi
kλUV

jkϕ g
∗, (4.32)

which is valid at leading order, and using the definition (4.30) of the mixing matrix.

4.3 The interface bootstrap

In order to single out a solution to the crossing equation which corresponds to our interface,

we shall again concentrate on the 3d Ising model, and in particular on the two-point

functions involving the lowest lying odd primaries φ and σ, on the free and interacting

side respectively. The bootstrap constraints involving φ can be in fact completely solved in

any number of dimensions by requiring the correlation functions to be annihilated by the

Laplace operator. Therefore, we start by collecting some general facts about free bosonic

theories in the presence of codimension one conformal defects. Let us first of all consider

the two-point function 〈φφ〉. As it is well known, one can prove by applying the equations

of motion to the φ× φ OPE that it contains only twist two operators, and in particular:

φ× φ ∼ 1 + φ2 + (primaries with zero expectation value). (4.33)

The same method can be applied for establishing that only two primaries appear in the

defect OPE of the field (this was first noticed in [57]). Indeed, when the Laplace operator

is applied to the r.h.s. of the defect OPE, the parallel derivatives give descendants and we

can disregard them. The derivative orthogonal to the defect imposes a constraint on the

scale dimension of allowed primaries:

0 = �φ(x, xd) ∼
∑
Ô

(∆
Ô
−∆φ) (∆

Ô
−∆φ − 1)

Ô(x)

(xd)∆φ−∆
Ô

+2
+ descendants. (4.34)

Hence, there are only two primaries, the limiting value of the field φ̂ and of its derivative

∂̂φ. These primaries have protected dimensions ∆
φ̂

= d
2 − 1 and ∆

∂̂φ
= d

2 . We see that the
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most general defect CFT featuring the free theory on half of the space, bounded by any

codimension one defect, satisfies the following crossing equation:

1 + λφφφ2 aφ2fdbulk(∆φ2 , ξ) = ξ∆φ

(
µ2
φφ̂
fdbdy(∆

φ̂
, ξ) + µ2

φ∂̂φ
fdbdy(∆

∂̂φ
, ξ)
)
. (4.35)

All conformal blocks reduce to elementary function:

fdbdy

(
d− 2

2
, ξ

)
=

1

2
ξ−∆φ

(
1 +

(
ξ

ξ + 1

)∆φ
)

(4.36)

fdbdy

(
d

2
, ξ

)
=

2

d− 2
ξ−∆φ

(
1−

(
ξ

ξ + 1

)∆φ
)
, (4.37)

so the crossing equation is equivalent to the following:

1

2
µ2
φφ̂

+
2

d− 2
µ2
φ∂̂φ

= 1, (4.38a)

1

2
µ2
φφ̂
− 2

d− 2
µ2
φ∂̂φ

= λφφφ2 aφ2 . (4.38b)

The solution is parametrized by an angle:

µ
φφ̂

=
√

2 cosα, µ
φ∂̂φ

=

√
d− 2

2
sinα, λφφφ2 aφ2 = cos 2α. (4.39)

The solution of this particular crossing equation is only a necessary condition for the

existence of a full fledged defect CFT, therefore the question arises whether for any value

of α such a theory exists. Vice versa, a given value of α might be realized in more than one

defect CFT, which differ elsewhere. We can restrict α to take values in the interval [0, π/2],

since sending the defect fields φ̂ and ∂̂φ to minus themselves does not spoil their canonical

normalization. At the extrema of this interval one finds Neumann (α = 0) and Dirichlet

(α = π/2) boundary conditions, and at the center (α = π/4) the trivial interface between

the free theory and itself. The RG interface with the O(N) model with φ4 interaction lies

perturbatively near to the no-interface value, in ε-expansion, and fills an interval if N is

allowed to take value over the reals.

Since any two-point function involving the field φ has to contain only the same two

blocks in the defect channel, one can generalize the previous procedure to any correlator

of this kind. The general fusion rule with a primary O with dimension ∆ is

φ×O∆ ∼ O− +O+ + (spinning primaries),

∆− = ∆−∆φ, ∆+ = ∆ + ∆φ. (4.40)

Notice that degenerate primaries may exist with the right dimensions to enter the r.h.s.

of eq. (4.40), as it happens in the O(N) model for N > 1. Denoting λ+ = λφO∆O+ and

λ− = λφO∆O− , the solution to the bootstrap equation is

µ
φφ̂
µ
Oφ̂

= λ− a− + λ+ a+,
4

d− 2
µ
φ∂̂φ

µ
O∂̂φ

= λ− a− − λ+ a+. (4.41)
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This includes the system (4.38), in particular. The relations (4.41) also apply when the

operator O is a primary on the interacting side of the interface. In this case, the OPE

happens in the folded picture, and turns out to be a simple way to choose the solution of

the Laplace equation with the appropriate asymptotics. Specifically, no singularities should

arise when the operators are placed in mirroring points, and this prompts us to eliminate

O− from the r.h.s. of eq. (4.40). In other words,

φ×O ∼ :φO : , (4.42)

and the two-point function is simply

〈φ(x)O(x′)〉 =
aφO

(2|xd|)∆φ(2x′d)∆ 2F1 (∆φ,∆,∆,−ξfolded) =
aφO

(2x′d)∆−∆φ(x− x′)2∆φ
,

(4.43)

where ξfolded is just obtained by replacing xd with minus itself. The relation (4.41) re-

duces to

aφO = µ
φφ̂
µ
Oφ̂

= − 4

d− 2
µ
φ∂̂φ

µ
O∂̂φ

. (4.44)

This relation is potentially useful in bootstrapping the interacting side of the interface.

Indeed, the defect OPE of every operator which couples with φ contains φ̂ and ∂̂φ, and the

ratio µ
Oφ̂
/µ

O∂̂φ
= −2 tanα/

√
d− 2 does not depend on the operator, and may be used

to match solutions for different external primaries. From eq. (4.38), we see that this ratio

among coefficients of the interacting theory is determined by the expectation value of φ2

on the free side. In particular, as we pointed out, this one-point function deviates from

zero only at order ε2 in the case we are interested in. We compute the leading order value

in appendix A for generic N , and find

α =
π

4
− 3

1024π6

N + 2

(N + 8)2
ε2. (4.45)

In sum, the signature of the RG domain wall in the conformal block decomposition of 〈σσ〉
is the presence of two protected defect operators, with a ratio of OPE coefficients near to

the free theory value.

In fact, we found in 3d a numerical solution for a (4,4,0) truncation of 〈σσ〉 which has

the expected features. The defect channel is formed by the two operators σ̂ and ∂̂zσ of

protected dimensions 1
2 and 3

2 and two unprotected operators Ô3 and Ô4 of dimensions

∆̂3 ∼ 3.11 and ∆̂4 ∼ 6.17. The precise value of these quantities as well as the estimates of

the relative OPE coefficients depend on the choice of the bulk spectrum. For the sake of

consistency we put in the same bulk spectrum obtained in the (4,2,1) solution of the extraor-

dinary transition. The values of ∆ε′′ and ∆ε′′′ depend on the scale dimension ∆̂ of a surface

operator which acts as a free parameter. Therefore, our interface solution also depends on

it, though the dependence is very mild, as a stable solution requires (see the discussion

on the stability of the solutions on section 2). Table 3 shows the relevant data of such a

solution. Note that the ratio µσσ̂/µσ∂̂zσ follows the trend suggested by the ε expansion.

Let us make some final remarks. When the bulk OPE coefficients and the scale dimen-

sions are exactly known on one side of an interface, one may extract the one-point functions

from the crossing equations involving operators placed on this side. The same data enter

various correlators, and the interplay between different solutions to the crossing equations
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∆̂ ∆ε′′ ∆ε′′′ µ2
σσ̂ µ2

σ∂̂zσ

3.9 7.235(6)(3) 12.736(7)(4) 1.00612(11)(5) 0.27138(5)(2)

7.9 7.274(10)(2) 12.843(17)(4) 1.00644(15)(4) 0.27123(7)(1)

11.1 7.287(11)(4) 12.892(22)(8) 1.00657(17)(6) 0.27117(7)(2)

15.1 7.297(11)(2) 12.932(23)(4) 1.00668(16)(3) 0.27112(7)(2)

19.9 7.298(11)(1) 12.948(24)(2) 1.00667(16)(2) 0.271127(68)(5)

25.5 7.302(11)(2) 12.968(25)(5) 1.00672(16)(3) 0.27110(7)(2)

31.9 7.303(11)(3) 12.980(25)(7) 1.00674(16)(5) 0.27110(7)(1)

39.1 7.307(12)(4) 12.995(28)(8) 1.00679(17)(5) 0.27108(7)(2)

∆̂ ∆̂3 ∆̂4 µ2
σÔ3

µ2
σÔ4

3.9 3.1190(8)(4) 6.1816(9)(4) 0.002555(5)(2) 0.00002387(4)(2)

7.9 3.1151(12)(3) 6.1757(15)(4) 0.002572(7)(2) 0.00002408(6)(2)

11.1 3.1136(14)(5) 6.1734(17)(6) 0.002579(7)(3) 0.00002417(7)(3)

15.1 3.1123(14)(3) 6.1715(17)(3) 0.002584(7)(2) 0.00002424(7)(2)

19.9 3.1121(14)(1) 6.1710(17)(2) 0.0025850(74)(10) 0.00002426(7)(1)

25.5 3.1115(14)(3) 6.1701(18)(4) 0.002588(7)(1) 0.00002429(7)(1)

31.9 3.1113(14)(4) 6.1697(17)(5) 0.002589(7)(2) 0.00002431(7)(3)

39.1 3.1108(15)(5) 6.1689(19)(6) 0.002591(8)(2) 0.00002433(8)(2)

Table 3. Data of the (4,4,0) solution of the 3d Ising interface with the free UV theory. The first

column is the free parameter of the solution which is the scale dimension of a surface operator

contributing to the extraordinary transition discussed in section 3. The data are affected by two

kinds of errors. The first parenthesis reflects the statistical error of the input data (namely ∆σ and

∆ε), while the second parenthesis indicates the spread of the solutions.

may be used to detect systematics, or to reduce the unknowns. We leave this for future

work. For now, we notice that the even spectrum on the free side of our interface is made

by an increasing number of degenerate primaries of integer dimension, so it is foreseeable

that a reliable truncation would require the inclusion of many bulk primaries. Furthermore,

since the parameter N only enters the determinants through the unknown defect spectrum,

one expects to find a one-parameter family of solutions. Studying two-point functions of

free even primaries is important in particular if one is interested in the Zamolodchikov

norm of the displacement operator. Indeed, two defect primaries exist with dimension d,

one of which might be identified with the displacement of the folded theory. Given two

primaries OL and OR with non-vanishing one-point function, it is not difficult to see that,

in order to isolate the displacement, one needs to know 〈OLOL〉, 〈OROR〉 and 〈OLOR〉.
Unfortunately, we have not been able to identify a solution for 〈ε ε〉 which satisfactorily

reproduces the domain wall.
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5 Conclusions and outlook

In this paper we explored some consequences of crossing symmetry for defect CFTs. We

focused our study on the cases where the defect is a codimension one hyperplane, i.e. a flat

interface or a boundary. In the latter case our main results concern the surface transitions

of 3d Ising model.

The numerical solutions to the bootstrap equations with the method of determinants

turn out to be particularly effective in the ordinary transition, where it suffices to know

the scale dimensions of the first few bulk primaries to obtain the dimension of the relevant

surface operator of this transition as well as its OPE coefficient. This analysis has been

extended to the O(N) models with N = 0, 1, 2, 3 where a comparison can be made with

the results of a two-loop calculation [39], finding a perfect agreement (see table 1).

In the extraordinary transition the contribution of the boundary channel is dominated

by the first two low-lying operators, namely the identity and the displacement, thus we

used this fact to extract more information on the even and odd spectrum contributing to

the bulk channel. We obtained in this way also an accurate determination of the OPE

coefficient λσσε which compares well with other estimates based on a recent Monte Carlo

calculation [48] or on conformal bootstrap [19]. We also obtained some OPE coefficients

of one-point and two-point functions (see table 2) which allow to verify the impressive

fulfillment of the Ward identities associated with the displacement operator.

The solution corresponding to the special transition contains a free parameter, hence

we don’t get precise numerical results. This case is still very useful for an accurate cross-

check of the consistency of the method of determinants with the linear functional method.

Together with the just mentioned Ward identities, this check provides evidence for the

fact that the systematic error is rather small when a truncation is stable. In this paper

we investigated the stability of the truncations through the sensitivity to the addition

of heavier operators. It would be important to establish more rigorous bounds on the

systematic error, maybe along the lines of [15].

The next example of a codimension one defect studied in this paper is an interface

between the O(N) model and the free theory. We tackled the problem both in 4− ε and in

three dimensions. The weak coupling analysis of the two-point functions was carried out

in a way which is trivially adapted to general perturbation interfaces. A preeminent role is

played by the displacement operator, whose small Zamolodchikov norm signals the trans-

parency of the interface, in the sense that operators with nearly degenerate dimension are

allowed to couple at order one across the interface, while the opposite is true for primaries

well separated in the spectrum. This intuition can be made precise in 2d, where the norm

of the displacement coincides up to a normalization with the reflection coefficient defined

in [58].8 It is certainly interesting to look for a similar interpretation of the displacement

in higher dimensions, possibly in relation to the correlators of polarized stress-tensors.

However, it is worth emphasizing that while in 2d the reflection coefficient of a boundary

is unity, in dimensions greater than two the norm of the displacement depends on the

8In particular, it is not difficult to prove unitarity bounds for reflection and transmission in function of

the central charges, just by diagonalizing the defect spectrum.
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boundary conditions. The results of the perturbative analysis also confirm that this kind

of interfaces encode information about the RG flow that links the theories on the two sides:

specifically, the coupling of UV and IR primaries reproduces the leading order mixing of

operators, as does the one-dimensional domain wall constructed non-perturbatively in [51].

On the numerical side, we found a solution to the crossing equation consistent with the

features of the two-point function of σ in three dimensions. The analysis can be extended

in various directions. It would be interesting go to second order in perturbation theory [59],

or to study the setting at large N , and see whether the displacement operator still provides

important simplifications. We already pointed out that it is viable to bootstrap correlators

on the free side, and it would be important in particular to give a prediction for the norm of

the displacement in 3d, to compare it with the estimates for the boundary transitions. We

would also like to emphasize that the interface can be realized on the lattice, for instance

as a Gaussian model with the addition of a quartic potential on one-half of the lattice.

As we mentioned in the introduction, a complete description of the CFT data cannot

be reached, even in principle, only through the study of bulk two-point functions. Four-

point functions of defect operators should be studied, and in this case both the method of

determinants and the linear functional might be employed. Along the same lines, in both

the boundary and the interface setups one may study the crossing constraints coming from

correlators of the kind 〈O1O2Ô〉, or two-point functions of tensors. The necessary tools for

the latters were developed in [14]. It is of course viable to use the method of determinants

for the study of generic defects, and in particular it would be nice to complement the

bootstrap analysis carried out in [18] for the twist line in the Ising model.
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Figure 8. One loop contributions to 〈φ2(x)φ2(x′)〉 and to 〈φ2φi(x)φj(x′)〉 . The free side is the left

one, and y, y′, z > 0.

A RG domain wall: details on the ε-expansion

A.1 One loop computations

Two regularization procedures have been preferred in the literature, in dealing with the φ4

model in the presence of a defect of co-dimension one. Dimensional regularization has been

especially used for the systematic renormalization of the Lagrangian and for extracting the

critical exponents [60–62]. More recently, fully real space computations were carried out

in [33, 34], with a short distance cutoff. Both series of works were concerned with the φ4

theory in the presence of a plain boundary. We follow the latter technique.

We start by checking eq. (4.11) through the two-point function 〈φ2φ2〉 on the free side

of the domain wall. At one loop, the only diagram contributing is shown in figure 8. Since

the correlator depends only on one cross-ratio, it is sufficient [34] to compute the two-point

function in the collinear geometry of figure 8, for which

ξ → (y − y′)2

4yy′
. (A.1)

The corresponding integral is

〈φ2(x)φ2(x′)〉one-loop

= −1

3
N(N + 2)g∗

∫ ∞
0
dz

∫
dd−1x

1

{(x2 + (z + y)2) (x2 + (z + y′)2)}d−2
. (A.2)

Notice that we chose y, y′ > 0. The integral does not diverge in the UV. This is expected,

since the coupling constant renormalizes at O(ε2), and the lowest lying interface operator

that might be needed as a counterterm is φ4, which however - barring mixing which appears

at higher orders - equals the displacement operator and is therefore irrelevant. Since the

fixed point coupling constant g∗ is of order ε, we can plug d = 4 in the integral to obtain

the leading order correction, which is easily computed. The result is

〈φ2(x)φ2(x′)〉one-loop =
N(N + 2)

3
g∗

π2

(y − y′)4

(
ξ

ξ + 1
− log(1 + ξ)

)
+O(ε2). (A.3)
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Figure 9. Two loops contribution to 〈φi(x)φj(x′)〉 . Again, y, y′, z, z′ > 0.

Plugging into this expression the fixed point value for g∗ (4.8) and adding the tree level

contribution, one obtains the correlator at first order in ε-expansion:

〈φ2(x)φ2(x′)〉 =
2N

s2(d−2)

{
1 +

1

2

N + 2

N + 8
ε

(
ξ

ξ + 1
− log(1 + ξ)

)}
. (A.4)

Notice that the one point function of φ2 is O(ε2), therefore this is the full correlator - not

just the connected part - at order ε. Comparing the result with the form of the conformal

block of φ4, evaluated in d = 4 at this order:

fd=4
bulk(∆φ4 ; ξ) = −2

(
ξ

ξ + 1
− log(1 + ξ)

)
, (A.5)

and using that in free theory

λφ2φ2φ4 =

√
2(N + 2)

N
, (A.6)

we see agreement with the general result (4.11) and with the one-point function in eq. (4.10).

Let us compare also the general formula (4.16) with an explicit one-loop example. We

focus on the correlator between the field φi on the interacting side and the free primary

φ2φi. The one-loop contribution is encoded in the diagram on the right in figure 8, which

is UV finite. Including the combinatorics, the result is

〈 φ2φi(x)√
2(N + 2)

φj(x′)〉 =
δij

(−2y)3(2y′)
ξ−2

√
N + 2

2
√

2(N + 8)
ε (ξ − 1). (A.7)

It is easy to compute the tree level three-point function needed to fix µL RD, and see that

eq. (A.7) matches eq. (4.16).

Next, we compute the first non-trivial contribution to the two-point function of φi

on the free side, which departs from its free theory value at order ε2. The only diagram

contributing is the sunset (figure 9). As explained in subsection 4.3, we actually only need

to know aφ2 , which amounts to colliding the two external operators in the diagram. The

computation only slightly simplifies at this order, but the statement is valid at any loop

(and of course, for any interface involving the free theory). The bulk conformal block of

– 32 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
6

the operator φ2 of dimension ∆φ2 = d− 2 is

fbulk(∆φ2 ; ξ) =

(
ξ

1 + ξ

)d−2

. (A.8)

Therefore we find

〈φi(x)φj(x′)〉 =
δij

sd−2

(
1 + λφφφ2aφ2

(
ξ

ξ + 1

)d−2
)
. (A.9)

The integral to be evaluated is the following:

I =

∫ ∞
0
dz

∫ ∞
0
dz′

∫
d3x

∫
d3x′ 1(

x2 + (y + z)2
)(
x′2 + (y + z′)2

)
× 1(

(x− x′)2 + (z − z′)2
)3 . (A.10)

Along the computation, which is straightforward, we encounter two divergences. A bulk di-

vergence requires a mass counterterm, and a second divergence arises when the interaction

vertices hit the interface. This is compensated by integrating φ̂2 along the interface. Rele-

vant operators are required because our cut-off breaks scale invariance. Their renormalized

couplings, however, must be fine-tuned in order to reach the critical point. Hence, requiring

scale invariance of the one-point function is sufficient to fix the subtraction unambiguously.

After renormalization, one finds

I =
3π4

16

1

y2
. (A.11)

Taking the combinatorics into account, the expectation value at leading order is

〈φ
2(−y)√

2N
〉 ≡

aφ2

(2y)2
=

3

512π6

√
N

2

N + 2

(N + 8)2
ε2

1

(2y)2
. (A.12)

Substituting back in (A.9), and using

λφφφ2 =

√
2

N
, (A.13)

we find at this order

〈φi(x)φj(x′)〉 =
δij

sd−2

(
1 +

3

512π6

N + 2

(N + 8)2
ε2
(

ξ

ξ + 1

)2
)
. (A.14)

One can now extract some CFT data. By using the relations (4.38) one finds the defect

OPE coefficients

µ
φ φ̂

= 1 +
3

1024π6

N + 2

(N + 8)2
ε2, µ

φ ∂̂φ
=

√
d− 2

4

(
1− 3

1024π6

N + 2

(N + 8)2
ε2
)
. (A.15)

We also obtain a piece of information about the defect OPE of any primary on the inter-

acting side which couples with φi, through the equalities (4.44):

µ
O φ̂

µ
O ∂̂φ

= − 4

d− 2

µ
φ ∂̂φ

µ
φ φ̂

= − 2√
d− 2

(
1− 3

512π6

N + 2

(N + 8)2
ε2
)
. (A.16)

We use this result in subsection 4.3 as a check of the solutions to the approximate crossing

equation for 〈σσ〉.

– 33 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
6

A.2 Two-point functions across the interface

We give some details on the formulae (4.14), (4.16) and (4.17). Let us call xd = yi the

position of the interface. We choose again the collinear geometry for the two operators

and we place one on either side of the interface, at the points x = (x, yL < yi) and

x′ = (x, yR > yi). After plugging the free theory three-point function in eq. (4.12), we

shall find the two-point function by solving the following equation:

µL RD

(yR − yL)∆L+∆R−4

∫
d3z

(
z2 + (yL − yi)2

)− 4+∆LR
2
(
z2 + (yR − yi)2

)− 4−∆LR
2

=
d

dyi
〈OL(x)OR(x′)〉 . (A.17)

First of all, we briefly comment on (4.14), that is, on the case ∆L R = O(ε). Since µL R is

also at least of order ε, we can plug ∆L = ∆R in (A.17). The integrals are easily evaluated

and we get

〈OL(x)OR(x′)〉 = − π2µL RD

|yL − yR|2∆L
log

∣∣∣∣yR − yiyL − yi

∣∣∣∣+ c(yR, yL). (A.18)

The constant of integration c(yR, yL) does not depend on the position of the interface. One

way to fix it is to require that when the interface stands half-way between the points the

correlator takes the form (4.3):

c(yR, yL) =
aL R

|yL − yR|∆L+∆R
. (A.19)

By asking for conformal invariance of this result, one gets back at first order the scaling

relation (4.5). Eq. (4.14) is then obtained by reconstructing the correlator for generic choice

of the two points through conformal invariance.

Let us now tackle the case of external dimensions differing at order one. The integration

in the translational invariant directions is easily recast as the Euler representation of a

hypergeometric function:∫
d3z

(
z2 + (yL − yi)2

)− 4+∆LR
2
(
z2 + (yR − yi)2

)− 4−∆LR
2

=
π2

8
|yL − yi|−1−∆LR |yR − yi|−4+∆LR

2F1

(
3

2
, 2− ∆LR

2
; 4; 1−

(yL − yi
yR − yi

)2
)
. (A.20)

Internal and spacetime symmetries allow to restrict ourselves to the case ∆L R = 2k, for

integer k, at this order. Furthermore, there is a clear symmetry for the exchange L ↔
R, so we only consider the case k > 0. Since for k > 1 the hypergeometric function

is a polynomial, we treat separately the case k = 1. Eq. (4.16) is obtained integrating

the position of the interface and again fixing the integration constant in accordance with

conformal invariance. When k = 2, 3, . . . one can write eq, (A.17) as

〈OL(x)OR(x′)〉 =
µL RD

(yR−yL)∆L+∆R
×∫ y0

(yL+yR)/2
dyi

3π3/2Γ
(
k− 1

2

)
2Γ(k+2)

(yR−yL)4

(yi−yL)5
2

F1

(
5

2
, 2−k;

3

2
−k;

(yR−yi)2

(yL−yi)2

)
+

aL R

(yR−yL)∆L+∆R
. (A.21)

– 34 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
6

One can exploit the fact that the hypergeometric function is a polynomial and integrate

addend by addend the second line of (A.21). In particular, we can choose to put the

interface in y0 = 0. Some simplifications occur because of the following observation. As

already pointed out, the value of aL R is fixed by the requirement of conformal invariance.

On the other hand, any constant piece in the integration has the only effect of shifting

aL R. Therefore, we disregard such pieces, and fix the constant in the end. All together,

introducing the scale invariant variable r = yL/yR, we find

〈OL(x)OR(x′)〉 =
µL RD

(yR − yL)∆L+∆R

(−1)kπ5/2

(k − 1)k2Γ(k + 2)Γ(−k − 1/2)

(r − 1)2

4r
×{(

2k(r2 − r + 1) + (r + 1)2
)

2F1

(
1

2
,−k;−k − 1

2
;

1

r2

)
−
(
2k(r2 − r) + (1 + r)2

)
2F1

(
3

2
,−k;−k − 1

2
;

1

r2

)}
+

ã

(yR − yL)∆L+∆R
. (A.22)

We only need to enforce invariance under inversions, which amounts to sending yR → 1/yR
and yL → 1/yL. With the help of standard hypergeometric identities one can check that

the first three lines in (A.22) are invariant, therefore

ã = 0. (A.23)

Alternatively, one may simply verify that with this choice the relation (4.5) is fulfilled. The

result is not yet explicitly a function of the cross-ratio. The final form eq. (4.17) can be

obtained at the price of some more massage.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Polchinski, Scale and Conformal Invariance in Quantum Field Theory, Nucl. Phys. B 303

(1988) 226 [INSPIRE].

[2] A. Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, On Scale and Conformal

Invariance in Four Dimensions, arXiv:1309.2921 [INSPIRE].

[3] V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to scaling

Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].

[4] M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d

dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D 91 (2015) 025005

[arXiv:1409.1581] [INSPIRE].

[5] A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal

Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech. 1412 (2014) P12010

[arXiv:1409.1494] [INSPIRE].

– 35 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B303,226
http://arxiv.org/abs/1309.2921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2921
http://dx.doi.org/10.1142/S0217751X9000218X
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A5,3221
http://dx.doi.org/10.1103/PhysRevD.91.025005
http://arxiv.org/abs/1409.1581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1581
http://dx.doi.org/10.1088/1742-5468/2014/12/P12010
http://arxiv.org/abs/1409.1494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1494


J
H
E
P
0
5
(
2
0
1
5
)
0
3
6

[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[7] G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal

Invariant Quantum Field Theory, Commun. Math. Phys. 53 (1977) 155 [INSPIRE].

[8] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and

conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

[9] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[10] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions,

Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

[11] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field

Theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].

[12] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field

Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

[13] S. El-Showk et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D

86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

[14] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd,

JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[15] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal

Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

[16] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal

Functional Method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].

[17] F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602

[arXiv:1307.3111] [INSPIRE].

[18] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03

(2014) 100 [arXiv:1310.5078] [INSPIRE].

[19] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical

Exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[20] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from

Conformal Bootstrap, JHEP 1410 (2014) 42 [arXiv:1403.6003] [INSPIRE].

[21] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 Superconformal Bootstrap, Phys. Rev.

Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

[22] Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal

bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].

[23] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The N = 8 superconformal bootstrap in three

dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].

[24] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising

Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

[25] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) Vector Models in 4 < d < 6,

arXiv:1412.7746 [INSPIRE].

– 36 –

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1007/BF01609130
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,53,155
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://inspirehep.net/search?p=find+J+AnnalsPhys.,76,161
http://dx.doi.org/10.1088/1126-6708/2008/12/031
http://arxiv.org/abs/0807.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
http://dx.doi.org/10.1103/PhysRevD.80.045006
http://arxiv.org/abs/0905.2211
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2211
http://dx.doi.org/10.1103/PhysRevD.83.046011
http://arxiv.org/abs/1009.2725
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2725
http://dx.doi.org/10.1007/JHEP05(2011)017
http://arxiv.org/abs/1009.2087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2087
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://arxiv.org/abs/1203.6064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
http://dx.doi.org/10.1007/JHEP07(2013)113
http://arxiv.org/abs/1210.4258
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4258
http://dx.doi.org/10.1103/PhysRevD.86.105043
http://arxiv.org/abs/1208.6449
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
http://dx.doi.org/10.1103/PhysRevLett.111.241601
http://arxiv.org/abs/1211.2810
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2810
http://dx.doi.org/10.1103/PhysRevLett.111.161602
http://arxiv.org/abs/1307.3111
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.3111
http://dx.doi.org/10.1007/JHEP03(2014)100
http://dx.doi.org/10.1007/JHEP03(2014)100
http://arxiv.org/abs/1310.5078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5078
http://dx.doi.org/10.1007/s10955-014-1042-7
http://arxiv.org/abs/1403.4545
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
http://dx.doi.org/10.1007/JHEP10(2014)042
http://arxiv.org/abs/1403.6003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6003
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://arxiv.org/abs/1304.1803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1803
http://dx.doi.org/10.1016/j.physletb.2014.05.058
http://arxiv.org/abs/1404.5201
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5201
http://dx.doi.org/10.1007/JHEP09(2014)143
http://arxiv.org/abs/1406.4814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4814
http://dx.doi.org/10.1007/JHEP11(2014)109
http://arxiv.org/abs/1406.4858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4858
http://arxiv.org/abs/1412.7746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7746


J
H
E
P
0
5
(
2
0
1
5
)
0
3
6

[26] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The N = 2 superconformal

bootstrap, arXiv:1412.7541 [INSPIRE].

[27] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap,

arXiv:1502.02033 [INSPIRE].

[28] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the Three-Dimensional

Supersymmetric Ising Model, arXiv:1502.04124 [INSPIRE].
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