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1 Introduction

The study of two-charge black holes has attracted much attention since the first investigations
of black holes in string theory. This is mainly due to the fact that they are supposed
to describe perhaps the simplest configuration in string theory which has a non-vanishing
degeneracy of BPS states. This microscopic system consists of a fundamental heterotic string
with winding Qw and momentum Qp charges along a compact direction S1

y. The degeneracy
of BPS states of this system was computed by Dabholkar and Harvey [1, 2], and it is given by

Smicro(Qp, Qw) = log d (Qp, Qw) = 4π
√

QpQw . (1.1)

Being a BPS degeneracy, general arguments indicate that it is protected when extrapolating
it to the finite string-coupling regime where an effective black hole description is expected to
exist (a priori).1 In other words, it should be possible to match this BPS degeneracy with
the Bekenstein-Hawking entropy of the corresponding black hole. However, when trying to
do so one finds a puzzle: even though there is a supergravity solution with the same charges
and preserving the same supersymmetries as the Dabholkar-Harvey states [6–9], it describes

1Strictly speaking, what is protected is a quantity (the fourth helicity trace index) closely related to the
degeneracy, see e.g. [3–5].
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a singular black hole with vanishing horizon area. Hence, the naive macroscopic entropy
that can be associated to the two-charge system vanishes.

In order to explain this mismatch, Sen proposed [10] that two-charge black holes have a
small horizon of string size, and therefore it cannot be resolved by supergravity unless the
latter is supplemented with higher-derivative terms capturing stringy α′ corrections.2 Almost
ten years after this proposal, it was claimed in [11, 12] that four-derivative corrections in
the context of type IIA on K3 × T2 (which is dual to heterotic on T6) stretch the horizon of
two-charge black holes (hiding the singularity behind) and, what is even more remarkable, also
give the precise contribution to the black hole entropy so that it reproduces the microstate
counting of the two-charge system.

These results, however, have been recently questioned in a series of papers [13–15] in
which, working directly within the heterotic theory, it has been shown that α′ corrections do
not remove the singularity of BPS two-charge black holes. Furthermore, it has been argued
that the configuration studied in [11, 12] should correspond to a regular four-dimensional
black hole whose entropy accidentally matches the microscopic degeneracy of the two-charge
system, but which carries different charges and preserves less supersymmetry. The fact that
it preserves less supersymmetry is indeed a smoking gun of the presence of additional sources
(NS5 branes and Kaluza-Klein monopoles), which would be the ultimate reason explaining
why this four-dimensional black hole has a regular horizon.

The fact that the two-charge system does not seem to admit a black hole description
in the BPS limit is something which would appear rather natural from the point of view of
the correspondence between black holes and fundamental strings [16–19] (see also [20–25] for
recent discussions). According to this proposal, black holes should turn into highly-excited
strings when their sizes are of the order of the string scale. This has been recently discussed
by Chen, Maldacena and Witten [21] precisely in the context of the two-charge system. Let us
consider a two-charge black hole at finite temperature. This can be described in supergravity
in terms of a solution with a large (macroscopic) horizon. However, if the black hole starts
losing its mass it will reach the string size before reaching extremality, which would imply
that the right description of the system near extremality should be a sort of self-gravitating
string solution [18, 19] rather than a solution with a horizon [21].3

In this paper we will mainly focus on two-charge black holes at finite temperature. More
concretely, we consider two-charge black holes in heterotic string theory and we study how
the first-order α′ corrections modify the solutions and their thermodynamic properties. The
corrections to the thermodynamics have been recently studied in [21], exploiting the fact
that the two-charge solutions can be obtained by perfoming suitable O(2, 2) transformations
to the Schwarzschild-Tangherlini solution, whose α′ corrections had been already studied
in [27]. In principle this method can be used not only to obtain the corrections to the
thermodynamics but also the corrected solutions themselves, which were not provided in [21].
This is just technically more involved, as one would have to take into account that the O(2, 2)
transformations receive α′ corrections [28–32].4 This was precisely the strategy followed

2For this reason, these black holes are often referred to as small black holes.
3See also [26] for a complementary point of view on this.
4As explained in [21], one can ignore the explicit corrections to the O(2, 2) transformations if the goal is
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in [33]. However, as pointed out in [21], the corrected thermodynamics obtained in these
two references do not agree between each other. Our main motivation here is to perform an
independent “first principle” computation of the corrected solutions and their thermodynamics;
we are going to find the corrected solutions explicitly by solving the α′-corrected equations of
motion and then compute the thermodynamic quantities with standard methods.

Anticipating our results, we are going to show that the α′ corrections to the thermody-
namics that we compute fully agree with those of [21]. This is a strong consistency check of
both approaches, as well as of the methods employed and of the results obtained in previous
related works by two of the authors and collaborators, see e.g. [13–15, 34–43] and references
therein. In particular, we want to emphasize that the (singular) solutions found in [13–15]
are properly recovered from the non-extremal ones we have found in this paper after suitably
taking the extremal limit. This is discussed in subsection 2.4 and further confirms the
conclusions of [13–15], yet from a different perspective.

The organization of the rest of the paper is the following. In section 2 we review the
two-derivative solutions describing heterotic two-charge black holes in arbitrary dimension
(4 ≤ d ≤ 9) and then provide the details about the α′-corrected solutions, focusing on the four-
and five-dimensional cases. In section 3 we compute the thermodynamic quantities of the
solutions and express them using two-different parametrizations: fixing the value of the mass
and charges (micro-canonical ensemble) and fixing the inverse temperature and the chemical
potentials (grand-canonical ensemble). We show that the results we get are consistent with
the first law of black hole mechanics. Then in section 4 we corroborate the results of section 3
by employing an alternative method to compute the corrected thermodynamics, namely from
the Euclidean on-shell action. Finally, in section 5 we compare our results with those of [21]
finding that they are in perfect agreement. The appendices contain additional information
on the effective action and equations of motion in appendix A, on the procedure followed
to find the corrected solutions in appendix B, and on the dimensional reduction of the
configurations on S1

y in appendix C.

Note on conventions. We adopt the conventions of [44]. In particular, we use the mostly
minus signature for the metric (+ − · · ·−) and the conventions for the Riemann tensor
are such that

[∇µ,∇ν ]ξσ = Rµνρ
σξρ . (1.2)

The conventions for the remaining fields are specified in appendix A. Hats ·̂ shall be used
to denote both ten- and (d + 1)-dimensional fields, as they are identified with one another.
Instead, the d-dimensional fields obtained upon compactification on S1

y will not carry hats.

2 α′ corrections to heterotic two-charge black holes

2.1 Two-charge black holes at leading order in α′

Let us begin reviewing the two-derivative solution describing non-extremal two-charge black
holes in d dimensions [17]. Given that in subsection 2.2 we will solve the corrected ten-
dimensional equations of motion, here we directly present the solution in its ten-dimensional
just to obtain the corrected thermodynamics.
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form. However, since the solutions have a T(9−d) torus playing a trivial role, we feel free
to ignore these torus directions from now on.5 Doing so, the resulting (d + 1)-dimensional
solution is given by

dŝ2 = f

fpfw
dt2 − f−1dρ2 − ρ2dΩ2

(d−2) − k2
∞

fp

fw

(
dy + βpk−1

∞

(
f−1

p − 1
)

dt
)2

, (2.1)

B̂ = βwk∞
(
f−1

w − 1
)

dt ∧ dy , (2.2)

e2ϕ̂ = e2ϕ̂∞f−1
w , (2.3)

where dŝ represents the line element in the string frame and

fp = 1 + qp

ρd−3 , fw = 1 + qw

ρd−3 , f = 1 − ρd−3
s

ρd−3 . (2.4)

The parameters qp, qw and ρs are related to the charges and mass of the solutions. Together
with the moduli ϕ̂∞ and k∞ (representing the asymptotic values of the dilaton and the
Kaluza-Klein scalar), they constitute the set of independent parameters of the solutions since
βp and βw are subject to the following constraints,

ρ(d−3)
s = qp

(
β2

p − 1
)

= qw

(
β2

w − 1
)

, (2.5)

implying that

βi = ϵi

√
1 + ρd−3

s

qi
, i = {p, w} . (2.6)

where ϵ2
i = 1. These correspond to the signs of the winding and momentum charges,

respectively. In the BPS limit (ρs → 0), the solution with ϵw = ϵp is supersymmetric, while
the one with ϵw = −ϵp does not preserve any supersymmetry. The analysis of the Killing
spinor equations for these configurations can be found for instance in [14, 15, 40].

2.2 α′-corrected solutions

Our aim now is to compute the first-order α′ corrections to these two-charge black holes. As
usual, we treat the α′ corrections in a perturbative fashion and ignore O(α′2) terms. The
first-order α′ corrections in the effective action of the heterotic superstring were studied
in [45–47]. While different approaches were used, it was later shown in [48] that the resulting
effective actions are equivalent up to field redefinitions. Here we choose to work in the
Bergshoeff-de Roo scheme, [47]. In order to establish our conventions, we review the effective
action and equations of motion in appendix A.

Before entering into the details of the corrected solutions, let us briefly explain the general
strategy we have followed in order to find the corrected solutions. The interested reader is
referred to appendix B or to [42] for more details. It turns out that an educated ansatz to
solve the corrected equations of motion is the following,

dŝ2 = f

fpf̃w

dt2 − g
(
f−1dρ2 + ρ2dΩ2

(d−2)

)
− k2

∞
fp

f̃w

[
dy + βpk−1

∞

(
f−1

p − 1
)

dt
]2

, (2.7)

B̂ = βwk∞
(
f−1

w − 1
)

dt ∧ dy , (2.8)
5Taking them into account just amounts to add the flat metric on the torus −dz⃗2

(9−d) to the (d + 1)-
dimensional metric (2.1).
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where the functions f, fp, fw, f̃w, g and the dilaton ϕ̂ are assumed to depend only on the radial
coordinate ρ. For consistency with the perturbative approach, they must be of the form

fp = 1 + qp

ρd−3 + α′δfp , f̃w = 1 + qw

ρd−3 + α′δf̃w , g = 1 + α′δg ,

f = 1 − ρd−3
s

ρd−3 + α′δf , fw = 1 + qw

ρd−3 + α′δfw .

(2.9)

After linearization in α′, the equations of motion boil down to a linear system of inhomogeneous
second-order ODEs for the unknown functions δfp, δf̃w, δg, δf, δfw and ϕ̂. The strategy we are
going to follow to solve them is the same as in [42], which consists of performing an asymptotic
expansion (large ρ) of the unknown functions and solve the equations of motion order by
order. Following this procedure, we can determine all the coefficients of the asymptotic
expansion except for a few of them which remain free, the integration constants. Once the
form of the asymptotic solution has been found, we resum the asymptotic series with the help
of Mathematica. The final step is to fix the integration constants by imposing regularity at
the horizon and suitable boundary conditions. Our choice here will be such that we keep the
asymptotic charges and the mass fixed: i.e., we are going to give the form of the corrected
solution in the micro-canonical ensemble.

In what follows we give the corrected (d + 1)-dimensional solutions for d = 5 and d = 4,
as well as the dimensional reduction of the latter on S1

y. Finally, we study their BPS limits
and check that they agree with the corrected solutions found in [13–15].

2.2.1 Five-dimensional black holes

Let us first consider the d = 5 case. The expression of the dilaton is found by solving the
equation of motion of the Kalb-Ramond 2-form B̂. It is given by

ϕ̂ = aϕ + 1
2 log −ρ3gf̃wf ′

w

2qwf2
w

, (2.10)

where aϕ is an integration constant to be fixed by imposing the asymptotic value of the
string coupling is not renormalized, namely

lim
ρ→∞

ϕ̂ = ϕ̂∞ . (2.11)
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After fixing the integration constants in the way we have explained, we find the following
solution:

δfp = −
qpρ2

s

(
1 + βw

βp

)
log

(
1 + qw

ρ2

)
2q2

wρ2

+ 1
32qw (ρ2 + qw) ρ6

{
16qpρ2

sρ4 − qwqpρ2
(
9ρ2

s + 32qw

)
+ 7q2

wqpρ2
s

+βw

βp

[
16qpρ2

sρ4 + 8qwρ2
(
qpρ2

s − 2qw

(
ρ2

s + 2qp

))
+ 8q2

wqpρ2
s

]}
, (2.12)

δf̃w = −
ρ2

s

(
1 + βw

βp

)
log

(
1 + qw

ρ2

)
2qwρ2 + βwρ2

s

(
qw + 2ρ2)

4βpρ6 + 7qwρ2
s

32ρ6 + ρ2
s

2ρ4

+ 9ρ2
s(qp − qw)

4ρ2 (4ρ2
s(qw + qp) + 4qwqp + 3ρ4

s) , (2.13)

δg =
ρ2

s

(
1 + βw

βp

)
log

(
1 + qw

ρ2

)
2q2

w

+ βwρ2
s

(
qw − 2ρ2)

4βpqwρ4 − 7ρ2
s

32ρ4

+ 1
8ρ2

(
−4ρ2

s

qw
+ 18qp

(
ρ2

s + 2qw
)

4 (qw + qp) ρ2
s + 3ρ4

s + 4qwqp
− 9

)
, (2.14)

δf =
ρ4

s

(
1 + βw

βp

)
log

(
1 + qw

ρ2

)
2q2

wρ2 − βwρ2
s

(
2ρ2

sρ4 + qwρ2
sρ2 + q2

w

(
3ρ2

s − 4ρ2))
4qwβpρ6 (ρ2 + qw)

+ ρ2
sqw

(ρ2 + qw) ρ4 − 3
(
ρ2 + qp

)
4ρ4 + ρ4

s

(
−16ρ4 + 9qwρ2 − 7q2

w

)
32qwρ6 (ρ2 + qw)

+
(
ρ2 + qp

) (
2qwqp − (qw − 2qp) ρ2

s

)
2ρ4 (4 (qw + qp) ρ2

s + 3ρ4
s + 4qwqp) , (2.15)

δfw = −
ρ2

s

(
1 + βw

βp

)
log

(
1 + qw

ρ2

)
2qwρ2 − βwρ2

s

(
qw − 2ρ2)

4βpρ6 − qwρ2
s

32ρ6

+
ρ2

s

(
4 + 18qw(qw−qp)

4(qw+qp)ρ2
s+3ρ4

s+4qwqp

)
8ρ4 , (2.16)

and aϕ = ϕ̂∞.

2.2.2 Four-dimensional black holes

We proceed as in the five-dimensional case. Solving the ten-dimensional Kalb-Ramond
equation of motion yields the expression for the dilaton,

ϕ̂ = ϕ̂∞ + 1
2 log −ρ2g1/2f̃wf ′

w

qwf2
w

, (2.17)

– 6 –
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where we have already imposed that the asymptotic value of the string coupling is not
renormalized. Solving the remaining equations of motion as explained before we obtain:

δfp = βpβwqp
[
qp
(
4q3

w(ρs − 3ρ) + ρsq2
wρ − 3ρsqwρ2 − 6ρsρ3)− 6ρsq3

wρ
]

48q2
wρ4(qp + ρs)(qw + ρ)

−qp
[
q3

w(39ρ − 10ρs) + q2
wρ(17ρs + 3ρ) + 9ρsqwρ2 + 18ρsρ3]

144q2
wρ4(qw + ρ)

+ log
(

1 + qw

ρ

)(
βpβwq2

pρs

8q3
wρ(qp + ρs) + qpρs

8q3
wρ

)
, (2.18)

δf̃w = βpβwqpρs
(
4q2

w + 3qwρ − 6ρ2)
48qwρ4(qp + ρs) + q2

w(10ρs − 3ρ) + 9ρsqwρ − 18ρsρ2

144qwρ4

+ qp − qw

ρ (4qpqw + 3qpρs + 3ρsqw + 2ρ2
s)

+ log
(

1 + qw

ρ

)(
βpβwqpρs

8q2
wρ(qp + ρs) + ρs

8q2
wρ

)
, (2.19)

δg = βpβwqpρs
(
2q2

w − 3qwρ + 6ρ2)
24q2

wρ3(qp + ρs) − ρs + 3qw

8qwρ2 − 5ρs

36ρ3

−(ρs + 2qw)
(
−3qpρs + 2qpqw − 2ρ2

s + 6q2
w + ρsqw

)
4q2

wρ (3qpρs + 4qpqw + 2ρ2
s + 3ρsqw)

− log
(

1 + qw

ρ

)(
βpβwqpρs

4q3
w(qp + ρs) + ρs

4q3
w

)
, (2.20)

δf = βpβwqpρs
(
2q3

w(6ρ − 5ρs) − ρsq2
wρ + 3ρsqwρ2 + 6ρsρ3)

48q2
wρ4(qp + ρs)(qw + ρ)

−40qpρ2
sq4

w + 30ρ3
sq3

w(qp + qw) + 20ρ4
sq3

w + ρ4 (288q3
w + 144ρsq2

w

)
144q2

wρ4(qw + ρ) [3ρs(qp + qw) + 4qpqw + 2ρ2
s]

+ρ3 (−288q3
w(qp + qw) − 144ρsq2

w(qp + qw) + 54ρ3
s(qp + qw) + 72qpρ2

sqw + 36ρ4
s

)
144q2

wρ4(qw + ρ) [3ρs(qp + qw) + 4qpqw + 2ρ2
s]

+ρ2 [9ρ2
sq2

w(5qp + qw) + 3ρ3
sqw(9qp + 11qw) + 18ρ4

sqw − 288qpq4
w − 132qpρsq3

w

]
144q2

wρ4(qw + ρ) [3ρs(qp + qw) + 4qpqw + 2ρ2
s]

+ρ
[
156qpρsq4

w + ρ2
sq3

w(185qp + 117qw) + 3ρ3
sq2

w(17qp + 43qw) + 34ρ4
sq2

w

]
144q2

wρ4(qw + ρ) [3ρs(qp + qw) + 4qpqw + 2ρ2
s]

− log
(

1 + qw

ρ

)(
βpβwqpρ2

s

8q3
wρ(qp + ρs) + ρ2

s

8q3
wρ

)
, (2.21)

δfw = −βpβwqpρs
(
2q2

w − 3qwρ + 6ρ2)
48qwρ4(qp + ρs) + qw(qw − qp)

ρ2 (3ρsqp + 3ρsqw + 4qpqw + 2ρ2
s) + qw

48ρ3

−ρs
(
8q2

w − 9qwρ + 18ρ2)
144qwρ4 + log

(
1 + qw

ρ

)(
βpβwqpρs

8q2
wρ(qp + ρs) + ρs

8q2
wρ

)
. (2.22)

2.3 Dimensional reduction on S1
y

The dimensional reduction of the solutions studied in section 2.2 to d dimensions can be
carried out using the formulae obtained in [39], which are collected in appendix C. Applying

– 7 –
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them to the configuration at hands, we get

ds2 = f

fpf̃w

dt2 − g
(
f−1dρ2 + ρ2dΩ2

(d−2)

)
, (2.23)

B = 0 , (2.24)
A = βp k−1

∞

(
f−1

p − 1
)

dt , C = βw k∞
[
f−1

w

(
1 + α′β−1

w ∆C

)
− 1

]
dt , (2.25)

e2ϕ = e2ϕ̂ k−1
∞

(
f̃w

fp

)1/2

, k = k∞

(
fp

f̃w

)1/2
, (2.26)

where ds represents the line element in the string frame and

∆C =
2 (βp + βw) ff ′

pf ′
w − f ′

(
βwfpf ′

w + βpf ′
pfw

)
8fpfw

. (2.27)

2.4 Extremal limit

The extremal limit is implemented by setting ρs → 0 while keeping the charge parameters
qp and qw fixed. The α′ corrections in this limit have been already studied in the recent
literature [13–15]. The corrected solution in arbitrary dimension is given by [14, 15]:6

f = g = 1 , (2.28)

fp = 1 + qp

ρd−3 − (d − 3)2α′

2
qpqw

ρd−1 (ρd−3 + qw) , (2.29)

f̃w = fw = 1 + qw

ρd−3 . (2.30)

We have checked that this solution is precisely recovered from the non-extremal ones we
have presented in subsection 2.2 upon taking ρs → 0.7 This is an interesting consistency
check of our solutions.

3 Black hole thermodynamics

In this section we compute the thermodynamic quantities of the α′-corrected solutions found
in the previous section. Let us first explain how to compute them in general. Then we apply
the corresponding formulae to the five- and four-dimensional solutions.

Temperature and chemical potentials. The inverse temperature β is obtained by
demanding regularity in the Euclidean section [49]. A standard calculation shows that it
is given by

β = 4π

√
gfpf̃w

f ′

∣∣∣∣∣
ρ=ρh

, (3.1)

6Here we are focusing on the supersymmetric case ϵp = ϵw, which was the case analyzed in [13–15].
Surprisingly, in the non-supersymmetric case ϵp = −ϵw the corrections simply vanish as the first-order
correction in (2.29) is multiplied by 1 + ϵpϵw.

7While the limit is smooth in the five-dimensional case, in the four-dimensional one the limit must be taken
before fixing the integration constants, as the expressions for the latter (which we have not provided explicitly)
diverge when ρs → 0.
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where ρh is the position of the outer horizon. The latter corresponds to the (largest) root
of the metric function f ,

f(ρh) = 0 . (3.2)

As a consequence of our choice of boundary conditions the position of the horizon ρh is
shifted by the α′ corrections.

The chemical potentials associated to the Kaluza-Klein and winding vectors are obtained
as usual,

Φp = ξµAµ|∞ − ξµAµ|ρ=ρh
, Φw = ξµCµ|∞ − ξµCµ|ρ=ρh

, (3.3)

where ξ = ∂t is the Killing vector that generates the horizon. As it turns out, the explicit
correction obtained in [39] for the expression of the lower-dimensional winding vector Cµ

(reported here in (2.27)) plays a crucial role in order to obtain a result consistent with the
first law of black hole mechanics.

Electric charges and mass. The four-derivative corrections modify the two-derivative
Maxwell equations of the vector fields, giving rise to several notions of charge [50, 51].
However, we expect on general grounds that all of them should coincide when computed
asymptotically, provided the field strengths (and other quantities involved) decay fast enough.
Given this, we compute the so-called Maxwell charges [51]:8

Qp = −1
16πGN

∫
S(d−2)
∞

e−2(ϕ−ϕ∞)k2
(1) ⋆ F , Qw = −1

16πGN

∫
S(d−2)
∞

e−2(ϕ−ϕ∞)k−2 ⋆ G , (3.4)

where F = dA, G = dC, k(1) is the scalar combination given in (C.5) and GN is the
d-dimensional Newton constant,

GN = ĜN

2πRy
= ĜN

2πk∞ℓs
, (3.5)

being ĜN the (d + 1)-dimensional one.
The expression for the mass E can be obtained by applying the ADM formula. In

practice, we can just identify E by looking at the asymptotic behavior of the tt component
of the metric in the modified Einstein frame [52],

gEtt = e−
4

d−2 (ϕ−ϕ∞)gtt ≈ 1 − 16πGN E

(d − 2)ω(d−2)ρd−3 + . . . , (3.6)

where ω(d−2) is the volume of the unit S(d−2) sphere.

Black hole entropy. In higher-derivative theories the entropy follows from Wald’s for-
mula [53, 54]. However, one of the key assumptions in its derivation does not hold in presence

8Our conventions for the Hodge star operator are such that ⋆ (dxµ1 ∧ · · · ∧ dxµn ) =
1

(d−n)! ϵν1...νd−n
µ1...µn dxν1 ∧ · · · ∧ dxνd−n and ϵ01...d−1 = +

√
|g|.
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of gravitational Chern-Simons terms, such as the ones present in the heterotic theory.9 As a
consequence, different strategies have been proposed in the literature in order to circumvent
this issue (see e.g. [31, 39, 56–59] for a limited list of references), which mainly involve a
convenient rewriting of the action. Nevertheless, it is also possible to extend Wald’s formalism
to properly account for gravitational Chern-Simons terms. Doing so, general expressions for
the black hole entropy were obtained in [60] and more recently in [38]. It is more convenient
for us to make use of the entropy formula given in [38], as it has been derived precisely in the
context of the heterotic effective action. We report it here for completeness,

S = (−1)d+1ĝ2
s

8ĜN

∫
BH

e−2ϕ̂
{[

⋆̂(êâ ∧ êb̂) + α′

2 ⋆ R̂(−)
âb̂
]

n̂âb̂ + (−1)d α′

2 Πn ∧ ⋆̂Ĥ

}
, (3.7)

where BH stands for the bifurcation surface of the event horizon and R̂(−)
âb̂ is the curvature

two-form defined in eq. (A.2). Πn is the vertical Lorentz momentum map associated to the
binormal to the Killing horizon, n̂âb̂, and it is defined by the property

dΠn
BH= R̂(−)

âb̂n̂âb̂ . (3.8)

The formula for the entropy is gauge-invariant and frame independent. Performing a local
Lorentz transformation we can always put the Vielbein components êµ̂

â in an upper triangular
form. In such a frame and with our ansatz Πn has the explicit expression

Πn
BH= Ω̂(−)

âb̂n̂âb̂ , (3.9)

and (3.7) can be easily evaluated.
Having explained how to compute the different thermodynamic quantities, we now apply

the above formuale to find the corrected thermodynamics of two-charge black holes. In order to
facilitate the comparison with the previous literature [21, 33] (which is something that we will
do later in section 5), we introduce the notation which is used in the aforementioned references:

qi = ρd−3
s sinh2 γi , i = {p, w} . (3.10)

In addition, we will write down the different expressions both in the micro- and grand-
canonical ensembles. By definition, the first is the one in which the expressions for the mass E

and charges, Qp and Qw, take the same form as in the two-derivative solution (the solution in
section 2.2 is given using this parametrization). In turn, what is fixed in the latter ensemble
are the inverse temperature β and the chemical potentials, Φp and Φw.

9Namely, that the transformation of the d-form Lagrangian L under diffemorphisms is δξL = LξL, being
Lξ the Lie derivative with respect to ξ. This property is however satisfied by mixed Chern-Simons terms of
the form A(p) ∧ tr (R ∧ R), where A(p) is some p-form potential. In this case one can show [55] that Wald’s
formula is still applicable if suitable regularity conditions are imposed on A(p).

– 10 –



J
H
E
P
0
4
(
2
0
2
4
)
1
5
0

3.1 Thermodynamic quantities in the micro-canonical ensemble

Five-dimensional black holes. By definition, the expressions for the charges are the
same as in the two-derivative solution, namely

Qp = ϵpk∞π

8GN
ρ2

s sinh (2γp) , (3.11)

Qw = ϵwπ

8GN k∞
ρ2

s sinh (2γw) , (3.12)

E = πρ2
s

8GN
[1 + cosh (2γp) + cosh (2γw)] . (3.13)

Contrarily to the charges, the inverse temperature (3.1) and the chemical potentials (3.3)
receive α′ corrections. Parametrizing them as follows,

β = 2π cosh γp cosh γwρs

(
1 + α′∆β

ρ2
s

)
, (3.14)

Φp = ϵp tanh γp

k∞

(
1 + α′∆Φp

ρ2
s

)
, (3.15)

Φw = ϵwk∞ tanh γw

(
1 + α′∆Φw

ρ2
s

)
, (3.16)

we get

∆β = −ϵpϵw

2 tanh γp tanh γw −
9
(
4 sinh2 γp sinh2 γw − 1

)
8
(
4 cosh2 γp cosh2 γw − 1

) , (3.17)

∆Φp = −ϵpϵw tanh γw

sinh (2γp) − 9 cosh (2γw)
4
(
4 cosh2 γp cosh2 γw − 1

) , (3.18)

∆Φw = −ϵpϵw tanh γp

sinh (2γw) − 9 cosh (2γp)
4
(
4 cosh2 γp cosh2 γw − 1

) . (3.19)

Finally, the result that we obtain for the black hole entropy is

S = π2ρ3
s cosh γp cosh γw

2GN

[
1 + α′

8ρ2
s

(9 + 4ϵpϵw tanh γp tanh γw)
]

. (3.20)

These expressions pass several consistency checks. First, one can verify that the first law
of black hole mechanics,

dE = β−1dS + Φp dQp + Φw dQw , (3.21)

is obeyed. Second, the corrections agree with those of [42], where three-charge black holes
were considered, in the limit in which the third charge, associated to the presence of NS5
branes, goes to zero. Finally, the expressions are consistent with T-duality, which exchanges
γp ↔ γw and sends k∞ → 1/k∞. One can see that the mass, entropy and temperature are
left invariant, whereas the chemical potentials and charges are interchanged, as expected.
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Four-dimensional black holes. The expressions for the charges and mass read,

Qp = ϵpk∞
8GN

ρs sinh (2γp) , (3.22)

Qw = ϵwk−1
∞

8GN
ρs sinh (2γw) , (3.23)

E = ρs

8GN
[2 + cosh (2γp) + cosh (2γw)] . (3.24)

In turn, the inverse temperature and the chemical potential receive the following α′ corrections,

β = 4π cosh γp cosh γwρs

(
1 + α′∆β

ρ2
s

)
, (3.25)

Φp = ϵpk−1
∞ tanh γp

(
1 + α′∆Φp

ρ2
s

)
, (3.26)

Φw = ϵwk∞ tanh γw

(
1 + α′∆Φw

ρ2
s

)
, (3.27)

where

∆β = cosh(2γp) [1 − 2 cosh(2γw)] + cosh(2γw)
2 cosh(2γp) [1 + 2 cosh(2γw)] + 2 cosh(2γw) − ϵpϵw tanh γp tanh γw

8 , (3.28)

∆Φp = − 2 cosh(2γw)
cosh(2γp) [1 + 2 cosh(2γw)] + cosh(2γw) − ϵpϵw tanh(γw)

4 sinh(2γp) , (3.29)

∆Φw = − 2 cosh(2γp)
cosh(2γp) [1 + 2 cosh(2γw)] + 2 cosh(2γw) − ϵpϵw tanh(γp)

4 sinh(2γw) . (3.30)

Finally, the expression for the entropy is

S = πρ2
s cosh γp cosh γw

GN

[
1 + α′

2ρ2
s

(
1 + ϵpϵw tanh γp tanh γw

4

)]
. (3.31)

These corrections agree with those of [43], where the corrections to a family of four-charge
black holes have been computed. As in the five-dimensional case, the thermodynamic
quantities we have obtained transform as expected under T-duality and obey the first law
of black hole mechanics (3.21).

3.2 Thermodynamic quantities in the grand-canonical ensemble

In order to obtain the thermodynamics in the grand-canonical ensemble, we must consider
a different choice of boundary conditions. This can be simply implemented by considering
a different parametrization of the solution,

ρs → ρs + α′δρs (ρs, γi) , γi → γi + α′δγi (ρs, γj)
ρs

, (3.32)

and fixing δρs and δγi by imposing the vanishing of the corrections to β and the chemical
potentials Φi. The resulting expressions for the thermodynamic quantities associated to the
five- and four-dimensional solutions are given below.
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Five-dimensional black holes.

β = 2πρs cosh γp cosh γw , Φp = ϵp tanh γp

k∞
, Φw = ϵwk∞ tanh γw , (3.33)

Qp = ϵpk∞π

8GN

[
ρ2

s sinh (2γp) + α′ϵpϵw tanh γw

]
, (3.34)

Qw = ϵwπ

8GN k∞

[
ρ2

s sinh (2γw) + α′ϵpϵw tanh γp

]
, (3.35)

E = πρ2
s

8GN

[
1 + cosh (2γp) + cosh (2γw) + α′

4ρ2
s

(−9 + 4ϵpϵw tanh γp tanh γw)
]

, (3.36)

S = π2ρ3
s cosh γp cosh γw

2GN
. (3.37)

Four-dimensional black holes.

β = 4πρs cosh γp cosh γw , Φp = ϵpk−1
∞ tanh γp , Φw = ϵwk∞ tanh γw , (3.38)

Qp = ϵpk∞ρs sinh (2γp)
8GN

[
1 + α′

2ρ2
s

(
1 + ϵpϵw tanh γw

4 tanh γp

)]
, (3.39)

Qw = ϵwk−1
∞ ρs sinh (2γw)

8GN

[
1 + α′

2ρ2
s

(
1 + ϵpϵw tanh γp

4 tanh γw

)]
, (3.40)

E = ρs (cosh (2γp) + cosh (2γw) + 2)
8GN

[
1 + α′

2ρ2
s

(
cosh(2γp) + cosh(2γw) − 2
cosh(2γp) + cosh(2γw) + 2

+ϵpϵw tanh γp tanh γw

4

)]
, (3.41)

S = πρ2
s cosh γp cosh γw

GN

[
1 + α′

2ρ2
s

(
1 + ϵpϵw tanh γp tanh γw

4

)]
. (3.42)

4 Thermodynamics from the Euclidean on-shell action

In the saddle-point approximation the Euclidean on-shell action of the black hole gives the
dominant contribution to the grand-canonical partition function [49]. This leads to the
so-called quantum statisical relation,

I∞ = β G = β (E − Φp Qp − Φw Qw) − S , (4.1)

where I∞ is the renormalized Euclidean on-shell action and G is the grand-canonical potential,
which is regarded as a function of the (inverse) temperature and the chemical potentials.
Knowing G = G (β, Φp, Φw) suffices to extract all the thermodynamic quantities since the mass,
charges and entropy can be obtained (assuming the first law of black hole mechanics) as follows:

Qp = − ∂G
∂Φp

, Qw = − ∂G
∂Φw

, S = − ∂G
∂β−1 , E = G + Φp Qp + Φw Qw + β−1S . (4.2)

As shown e.g. in [61–63], this method to obtain the thermodynamics is particularly useful
when dealing with higher-derivative corrections.

The purpose of this section is to evaluate the Euclidean on-shell action of the two-charge
black holes at first order in α′ and check that the thermodynamics that we get match the
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ones obtained in the previous section. For simplicity, we are going to evaluate the (d + 1)-
dimensional Euclidean effective action in the string frame, since its dimensional reduction
on S1

y gives rise to much more terms [31, 32, 39, 64, 65]. Instead, the (d + 1)-dimensional
action coincides with the ten-dimensional one (A.1) up to an overall factor which is absorbed
in the (d + 1)-dimensional Newton constant ĜN .

Then, the heterotic Euclidean on-shell action I for a manifold M with boundary ∂M

is given by

I = − ĝ2
s

16πĜN

∫
M

dd+1x
√
|ĝ| Leff + ĝ2

s

8πĜN

∫
∂M

ddx
√
|ĥ| e−2ϕ̂K̂ + . . . , (4.3)

where
Leff = e−2ϕ̂

[
R̂ − 4 ∂µ̂ϕ̂ ∂µ̂ϕ̂ + 1

2 · 3!Ĥ
2 + α′

8 R̂(−)µ̂ν̂âb̂R̂(−)
µ̂ν̂âb̂

]
(4.4)

is the effective Lagrangian of the heterotic superstring at first order in α′ (see appendix A).
The second term in (4.3) is the standard Gibbons-Hawking-York (GHY) term written in the
string frame: ĥµν represents the metric induced at ∂M and K̂ is the trace of the extrinsic
curvature. Finally, the dots indicate additional boundary terms associated to the higher-
derivative corrections, which on general grounds are expected to give a vanishing contribution
for asymptotically-flat solutions, [61] (hence, we shall ignore them from now on). As observed
in [21, 66], the bulk contribution reduces to a boundary term after using the equation of
motion of the dilaton (A.9), which implies

Leff = −2∇̂2e−2ϕ̂ . (4.5)

Therefore, we have that (4.3) reduces to:

I = ĝ2
s

8πĜN

∫
∂M

ddx
√
|ĥ| e−2ϕ̂

(
K̂ − 2 nµ̂ ∂µ̂ϕ̂

)
, (4.6)

where nµ̂ is the unit normal to the boundary.
Here we are interested in asymptotically-flat black holes whose boundary ∂M has the

topology of S1
β ×Sd−2 (×S1

y). As it is well known, the GHY term diverges in the limit in which
the radius of the Sd−2 goes to infinity, just as in flat spacetime. In order to obtain a finite
on-shell action, we follow the prescription of [49]. This amounts to first consider a regulated
spacetime MR, where R is a radial cutoff. The regulated spacetime then corresponds to
the region ρ ≤ R, and its boundary ∂MR is the hypersurface ρ = R. Second, we introduce
an auxiliary configuration with flat metric δ̂R and constant dilaton ϕ̂R chosen so that the
induced fields (metric and dilaton) at ρ = R coincide with the induced metric and dilaton of
the black hole solution, namely δ̂R|ρ=R = ĝ|ρ=R and ϕ̂R = ϕ̂|ρ=R. Once we have δ̂R and ϕ̂R,
we substract the regulated action associated with the flat spacetime IR[δ̂R, ϕ̂R] to the one
associated with the black hole IR[ĝ, ϕ̂] and only then take the R → ∞ limit. Summarizing,
the renormalized action I∞ is given by

I∞ = lim
R→∞

(
IR[ĝ, ϕ̂] − IR[δ̂R, ϕ̂R]

)
, (4.7)
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and, making use of (4.6), we get

I∞ = lim
R→∞

{
ĝ2

s

8πĜN

∫
ρ=R

ddx
√
|ĥ| e−2ϕ̂

[(
K̂ − K̂δ̂R

)
− 2 nµ̂ ∂µ̂ϕ̂

]}
, (4.8)

where K̂δ̂R
is the trace of the extrinsic curvature associated to the metric δ̂R. For the

two-charge black holes we are interested in, the auxiliary flat solution {δ̂R, ϕ̂R} is given by

−δ̂R = f(R)
fp(R)f̃w(R)

dτ2 + g(R)
(
dρ2 + ρ2dΩ2

(d−2)

)
+ k2

R

[
dy + βpk−1

∞

(
fp(R)−1 − 1

)
dt
]2

,

ϕ̂R = ϕ̂(R) , (4.9)

where k2
R = k2

∞
fp(R)
fw(R) . Now we have all the ingredients to evaluate (4.8) using the corrected

solutions found in the previous section. Let us do this for the five- and four-dimensional
solutions separately.

Five-dimensional black holes. Expressing the result in the grand-canonical ensemble, we
get that the Euclidean on-shell action of the five-dimensional two-charge black holes is given by

I∞ = π2ρ3
s cosh γp cosh γw

4GN

[
1 − 9α′

4ρ2
s

− α′ϵpϵw tanh γp tanh γw

ρ2
s

]
, (4.10)

and we recall that

β = 2πρs cosh γp cosh γw , Φp = ϵp tanh γp

k∞
, Φw = ϵwk∞ tanh γw . (4.11)

It is a straightforward calculation to show that the corrected charges that follow from the
on-shell action (using (4.2)) are in perfect agreement with the ones we computed in the
previous section, namely with eqs. (3.34), (3.35), (3.36) and (3.37).

Four-dimensional black holes. In the four-dimensional case the on-shell action in the
grand-canonical ensemble takes the form

I∞ = πρ2
s cosh γp cosh γw

GN

[
1 − α′

2ρ2
s

(
1 + ϵpϵw tanh γp tanh γw

4

)]
, (4.12)

with the inverse temperature and the chemical potentials given by

β = 4πρs cosh γp cosh γw , Φp = ϵp tanh γp

k∞
, Φw = ϵw k∞ tanh γw . (4.13)

As before, the charges (3.39), (3.40), (3.41) and (3.42) are properly recovered from (4.2).

5 Two-charge black holes from Schwarzschild-Tangherlini

As already mentioned, the corrections to the thermodynamics of two-charge black holes have
been previously studied in [21, 33]. The strategy of these references is to find the α′ corrections
by performing a set of O(2, 2) transformations (boost with parameter δw plus T-duality along
y, followed by another boost with parameter δp) to the Schwarzschild-Tangherlini black hole,
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whose α′ corrections had been already studied in [27]. The main difference between these
two references is that [21] just focuses on the thermodynamic properties while in [33] the
full corrected solutions are obtained by means of this technique. This is technically more
complicated than just obtaining the thermodynamics, as one has to take into account the
explicit α′ corrections to the O(2, 2) transformations. This might be the reason why the
α′-corrected thermodynamics obtained in these references do not agree with one another.

The goal of this section is to show that our results for the α′-corrected thermodynamics
of heterotic two-charge black holes are in agreement with those of [21]. To this aim, we find
convenient to review here their calculation. A key observation is that the Euclidean on-shell
action remains invariant after the O(2, 2) transformation. Therefore,

I∞(β, Φp, Φw; ϕ∞, k∞) = Ĩ∞(β̃; ϕ̃∞, k̃∞) , (5.1)

where, following the conventions of [21], we are using tildes for the quantities associated
to the Schwarzschild-Tangherlini solution.

The right-hand side of (5.1) is obtained from the α′ corrections to the Schwarzschild-
Tangherlini solution [27]. Focusing just on the thermodynamic quantities, we have

Ẽ = d − 2
d − 3

γd R̃d−3
β

8πG̃N

(
1 − ϵd α′

4R̃2
β

)
, S̃ =

γd R̃d−2
β

4G̃N

(
1 − σd α′

4R̃2
β

)
, (5.2)

where R̃β ≡ β̃/(2π) is the radius of the thermal circle S1
β and

γd = ωd−2

(
d − 3

2

)d−2
, ϵd = 2(d − 4)(d − 2)

d − 3 , σd = 2(d − 5)(d − 2)2

(d − 3)2 . (5.3)

Assuming the quantum statistical relation (4.1), we get that the Euclidean on-shell action
of the Schwarzschild-Tangherlini black hole is

Ĩ∞ = β̃Ẽ − S̃ =
γd R̃d−2

β

4G̃N (d − 3)

[
1 − (d − 2)2α′

2(d − 3)R̃2
β

]
. (5.4)

Because of (5.1), the right-hand side of (5.4) computes the Euclidean on-shell action of
the two-charge black holes as well. This is however meaningless at this stage, since we
have not specified yet the expressions for β and the chemical potentials Φp, Φw in terms of
R̃β and the parameters of the O(2, 2) transformations. Such expressions can be recovered
from [21]. Taking into account all the possibilities for the signs of the winding and momentum
charges, we find

Rβ = R̃β cosh δp cosh δw

(
1 − α′ϵpϵw tanh δp tanh δw

2R̃2
β

)
, (5.5)

Φp = ϵp tanh δp

k∞

(
1 − α′ϵpϵw tanh δw

R̃2
β sinh (2δp)

)
, (5.6)

Φw = ϵwk∞ tanh δw

(
1 − α′ϵpϵw tanh δp

R̃2
β sinh (2δw)

)
, (5.7)
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where δp,w represent the parameters of the O(2, 2) transformations. In addition to this, one
must also bear in mind the relation between the moduli of the solutions. In particular,
we need the relation between the asymptotic values of the d-dimensional dilaton eϕ∞ = gs,
which is the following [21]

g2
s = g̃2

s cosh δp cosh δw

(
1 − α′ϵpϵw tanh δp tanh δw

2R̃2
β

)
. (5.8)

Taking into account that GN ∝ g2
s , one gets that the Newton constants are related by

GN = G̃N cosh δp cosh δw

(
1 − α′ϵpϵw tanh δp tanh δw

2R̃2
β

)
. (5.9)

Using this in (5.4), we obtain

I∞ = β̃Ẽ − S̃ =
γd R̃d−2

β cosh δp cosh δw

4GN (d − 3)

[
1 − α′

2R̃2
β

(
(d − 2)2

(d − 3) + ϵpϵw tanh δp tanh δw

)]
.

(5.10)
This already specifies the thermodynamics. However, the parametrization we are using here
differs from the ones used in the previous sections. It is not difficult to find that the relation
between R̃β , δp, δw and the parameters ρs, γp, γw used in the previous sections to express the
thermodynamics in the grand-canonical ensemble is given by

R̃β = 2ρs

d − 3

(
1 − ϵpϵw(d − 3)2α′ tanh γp tanh γw

8ρ2
s

)
, (5.11)

δp = γp + ϵpϵw(d − 3)2α′ tanh γw

8ρ2
s

, (5.12)

δw = γw + ϵpϵw(d − 3)2α′ tanh γp

8ρ2
s

. (5.13)

Making use of these relations, we can write the on-shell action of the two-charge black holes
in the grand-canonical ensemble:

I∞ = ωd−2 ρd−2
s cosh γp cosh γw

4(d − 3)GN

{
1 − (d − 3)α′

8ρ2
s

[
(d − 2)2 + ϵpϵw(d − 3)2 tanh γp tanh γw

]}
.

(5.14)
This properly reduces to (4.10) and to (4.12) when setting d = 5 and d = 4, respectively.
Given the grand-canonical potential G = β−1I∞, we can obtain the charges, entropy and
mass through (4.2), as already discussed. Expressing them in the grand-canonical ensemble,
we obtain the following expressions

β = 4πρs

d − 3 cosh γp cosh γw , Φp = ϵp tanh γp

k∞
, Φw = ϵwk∞ tanh γw , (5.15)

Qp = Q(0)
p

[
1 − (d − 3)2α′

16ρ2
s

(
σd − 2ϵpϵw(4 − d + coth2γp) tanh γp tanh γw

)]
, (5.16)

Qw = Q(0)
w

[
1 − (d − 3)2α′

16ρ2
s

(
σd − 2ϵpϵw(4 − d + coth2γw) tanh γp tanh γw

)]
, (5.17)

S = S(0)
[
1 − (d − 3)2α′

16ρ2
s

(σd + 2(d − 5)ϵpϵw tanh γp tanh γw)
]

, (5.18)
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where

Q(0)
p = (d − 3)ϵpk∞ωd−2ρd−3

s sinh(2γp)
32πGN

, Q(0)
w = (d − 3)ϵwωd−2ρd−3

s sinh(2γw)
32πGN k∞

,

S(0) = γd−2ρd−2
s cosh γp cosh γw

32GN
.

(5.19)

Instead of the mass we provide the expression for the grand-canonical potential G, which
is simpler

G = ωd−2 ρd−3
s

16πGN

[
1 − (d − 3)α′

8ρ2
s

(
(d − 2)2 + (d − 3)2 ϵpϵw tanh γp tanh γw

)]
. (5.20)

The mass E follows then from the last of (4.2). It is now straightforward to compare these
expressions with the ones we obtained in sections 3 and 4 and see that they are in perfect
agreement. Furthermore, we have also checked that they agree with the corrected thermody-
namics given in the appendix of [21], after using the map between the two parametrizations,
provided in (5.5), (5.6) and (5.7).
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A Effective action and equations of motion

The effective action of the heterotic string at first order in α′ in the Bergshoeff-de Roo
formulation [47] is given by,

Seff =
∫

d10x
√
−ĝ e−2ϕ̂

[
R̂ − 4 ∂µ̂ϕ̂ ∂µ̂ϕ̂ + 1

2 · 3!Ĥ
2 + α′

8 R̂(−)µ̂ν̂âb̂R̂(−)
µ̂ν̂âb̂

]
, (A.1)

where R̂(−)
â

b̂ = 1
2R̂(−)µ̂ν̂

â
b̂ dxµ̂ ∧ dxν̂ is defined as the curvature two-form associated to the

torsionful spin connection,

R̂(−)
â

b̂ = dω̂(−)
â

b̂ − ω̂(−)
â

ĉ ∧ ω̂(−)
ĉ
b̂ , (A.2)

where
ω̂(−)

â
b̂ = ω̂â

b̂ −
1
2Ĥc

â
b̂ êĉ . (A.3)
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In the formula above, ω̂â
b̂ represents the standard Levi-Civita spin connection and the

torsion is determined by the three-form field strength Ĥ , which satisfies the modified Bianchi
identity [67],

dĤ − α′

4 R̂(−)
â

b̂ ∧ R̂(−)
b̂
â = 0 . (A.4)

This implies that, locally, Ĥ is given by

Ĥ = dB̂ + α′

4 Ω̂(−) , (A.5)

where Ω̂(−) is the Lorentz Chern-Simons three-form, defined as

Ω̂(−) = dω̂(−)
â

b̂ ∧ ω̂(−)
b̂
â − 2

3 ω̂(−)
â

b̂ ∧ ω̂(−)
b̂
ĉ ∧ ω̂(−)

ĉ
â . (A.6)

Let us note that the definition of the Kalb-Ramond two-form B̂ in (A.5) is a recursive
one, since Ω̂(−) depends on Ĥ through (A.3). Then, it should be implemented order by
order in α′, as follows:

Ĥ(0) = dB̂(0) , Ĥ(1) = dB̂(1) + α′

4 Ω̂(0)
(−) , . . . Ĥ(n) = dB̂(n) + α′

4 Ω̂(n−1)
(−) , (A.7)

where Ω̂(n−1)
(−) is computed using Ĥ(n−1). This implies that the term Ĥ2 in (A.1) actually

contains and infinite tower of α′ corrections. By consistency, we only keep the first-order ones.

A.1 Equations of motion

The derivation of the equations of motion drastically simplifies when using a lemma proven
in [47]. It states that the variation of the action with respect to ω̂(−)

â
b̂ produces terms

which are subleading in α′. Hence, we only need to vary the terms where the fieds appear
explicitly, ignoring implicit ocurrences of the fields through ω̂(−)

â
b̂. This leads to the following

equations of motion,

R̂µ̂ν̂ − 2∇̂µ̂∂ν̂ ϕ̂ + 1
4Ĥµ̂ρ̂σ̂Ĥν̂

ρ̂σ̂ + α′

4 R̂(−)µ̂ρ̂âb̂R̂(−)ν̂
ρ̂âb̂ = O(α′2) , (A.8)

2∇̂2e−2ϕ̂ + e−2ϕ̂
[
R̂ − 4 ∂µ̂ϕ̂ ∂µ̂ϕ̂ + 1

2 · 3!Ĥ
2 + α′

8 R̂(−)µ̂ν̂âb̂R̂(−)
µ̂ν̂âb̂

]
= O

(
α′2
)

, (A.9)

d
(
e−2ϕ̂⋆̂Ĥ

)
= O

(
α′2
)

. (A.10)

As observed in [21, 66], the equation of motion of the dilaton tells us that

Leff = −2∇̂2e−2ϕ̂ , (A.11)

where Leff is the effective Lagrangian. This observation is really helpful to evaluate the
Euclidean on-shell action, as it allows us to reduce the problem to the evaluation of a
boundary term.
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B Additional details on the procedure to find the α′-corrected solutions

The purpose of this appendix is to explain in more detail the procedure we have followed
to solve the α′-corrected equations motion (A.8), (A.9) and (A.10).

The ansatz. Let us begin motivating the ansatz we have used for the metric ĝµν and
two-form B̂. This is given in (2.7) and (2.8), which we repeat here for convenience:

dŝ2 = f

fpf̃w

dt2 − g
(
f−1dρ2 + ρ2dΩ2

(d−2)

)
− k2

∞
fp

f̃w

[
dy + βpk−1

∞

(
f−1

p − 1
)

dt
]2

, (B.1)

B̂ = βwk∞
(
f−1

w − 1
)

dt ∧ dy . (B.2)

For the dilaton we only assume a dependence on just the radial coordinate ρ.
The “recipe” followed to fix the ansatz is essentially to keep the same field components ac-

tive as in the two-derivative solution. Spherical symmetry reduces the number of independent
components of the metric to four: ĝtt, ĝρρ, ĝyy and ĝty. These are in one-to-one correspondence
with the functions f, fp, f̃w and g. The reason to choose this particular parametrization
is that we expect the form of these functions will be simpler, just by experience with the
two-derivative ones. The last function to be considered is fw, which is associated to the only
non-vanishing component of the two-form B̂. Since we are going to treat the α′ corrections
in a perturbative fashion, the form of these functions must be:

fp = 1 + qp

ρd−3 + α′δfp , f̃w = 1 + qw

ρd−3 + α′δf̃w , g = 1 + α′δg ,

f = 1 − ρ2
s

ρd−3 + α′δf , fw = 1 + qw

ρd−3 + α′δfw ,
(B.3)

so that the two-derivative solution is properly recovered in the α′ → 0 limit.
When plugging the above ansatz in the corrected equations of motion, one gets a

coupled system of second-order differential equations for the unknown functions. In what
follows we describe the procedure that we have followed in order to solve it, focusing on
the five-dimensional case.

The equation of motion of B̂. The expression for the dilaton can be found by solving
the equation of motion of the two-form B̂, (A.10). There is just one independent component
which is not trivially satisfied, and it yields the following equation (for d = 5):

f ′′
w

f ′
w

− 2f ′
w

fw
+ g′

g
+ f̃ ′

w

f̃ ′
w

+ 3
ρ
− 2ϕ̂′ = 0 , (B.4)

where primes denote derivatives with respect to ρ. This equation can be integrated once to give[
ϕ̂ − 1

2 log −ρ3gf̃wf ′
w

f2
w

]′
= 0 , (B.5)

which is solved by

ϕ̂ = aϕ + 1
2 log −ρ3gf̃wf ′

w

2qwf2
w

, (B.6)
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where aϕ is an appropriate integration constant which we are going to fix imposing that the
asymptotic value of the dilaton (string coupling) is not renormalized. When expressing the
solution in the microcanonical ensemble, the term inside the logarithm goes to 1 at infinity,
which means that aϕ is identified with ϕ̂∞.

Einstein and dilaton equations. As explained in the main text, the strategy to solve
the corrected Einstein and dilaton equations is to expand the unknown functions Ψ =
{δf, δfp, δfw, δf̃w, δg} in a series in 1/ρ2,

Ψ = aΨ
ρ2 +

N∑
n>1

b
(n)
Ψ

ρ2n
, (B.7)

and then solve (A.8) and (A.9) order by order in 1/ρ2. This leads to a set of algebraic equations
that determine the values of the coefficients b

(n)
Ψ in terms of aΨ and of the parameters of

the two-derivative solution, ρs, qp, qw. Two out of the five integration constants aΨ can be
fixed right away. These are afp and afw , which are both set to zero by imposing that the
charges of the black hole Qp and Qw do not receive α′ corrections. The next step is to find
the generating functions that produce the asymptotic expansions (B.7). This is done with the
help of Mathematica.10 Finally, we must fix the three remaining integration constants ag, ag

and af̃p
. Since we want to express the solution in the microcanonical ensemble, we must fix

one of these constants (let us say, ag) by imposing the mass does not receive α′ corrections.
The resulting solution turns out to be singular at the horizon for arbitrary values of the two
remaining integration constants, af and af̃p

.11 Demanding regularity imposes two conditions
which fix both af and af̃p

, leaving us with the solution reported in section 2.2.

C Dimensional reduction on a circle

In this appendix we make use of the results of [39] in order to find the dimensional reduction
of the solutions to d dimensions. The d-dimensional fields are: the (string-frame) metric
gµν , the dilaton ϕ, the Kaluza-Klein scalar k and vector Aµ, the two-form Bµν and, finally,
the winding vector Cµ.12 These are given in terms of the higher-dimensional fields by the
following expressions [39]:

gµν = ĝµν − ĝµy ĝνy

ĝyy
, Aµ = ĝµy

ĝyy
, k2 = −ĝyy , (C.1)

Bµν = B̂µν + ĝy[µB̂ν]y + α′

4
ĝy[µΩ̂(−)ν]

â
b̂ Ω̂(−)y

b̂
â

ĝyy
, (C.2)

Cµ = B̂µy − α′

4

Ω̂(−)µ
â

b̂ Ω̂(−)y
b̂
â −

ĝµyΩ̂(−)y
â

b̂ Ω̂(−)y
b̂
â

ĝyy

 , (C.3)

ϕ = ϕ̂ − 1
2 log

√
−ĝyy . (C.4)

10For this purpose, one has to compute the solution up to sufficiently high order in 1/ρ2.
11In particular, the dilaton and the Kaluza-Klein scalar diverge when ρ → ρH .
12Note that in this section µ, ν = 0, . . . , d − 1, as opposed to the rest of the paper, where µ, ν = 0, . . . , d.
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Finally, we define as in [39] the scalar combination

k(1) = k + α′

4 k−1Ω̂(−)y
â

b̂Ω̂(−)y
b̂
â . (C.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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