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1 Introduction

How to determine whether a quantum system is chaotic is a question that has long been
discussed in physics. One traditional characterization of quantum chaos is given by the
level spacing statistics of the energy spectrum calculated from the Hamiltonian of quantum
systems. In chaotic systems, the energy level spacing is expected to obey a Wigner-Dyson
distribution, which is a characteristic behavior in random matrix theories [1–4].

Intuitively, chaos means that a small initial change can make a large difference later.
Based on how an operator changes under time evolution, one can discuss the quantum chaos
of operators, which depends on the choice of operator. There is also ambiguity in the choice
of physical quantities to measure how much the operator changes.

An important quantity for quantum chaos dependent on operators is the out-of-time-
ordered correlator (OTOC) [5]. An exponential behavior of the OTOC, quantified by the
nonzero Lyapunov exponent, has been proposed as a measure of quantum chaos [6, 7]. As
long as correlation functions can be defined and calculated, the OTOC can be used as the
measure even in quantum field theories whose energy spectrum is continuous.

Another important quantity that has been well studied recently for quantum chaos is the
Krylov complexity [8], which is a measure of how fast an operator O spreads in a subspace,
called Krylov subspace, of the Hilbert space. This is a quantity that indicates scrambling in
the Krylov subspace and generally exhibits either merely oscillatory, linearly increasing, or
exponentially increasing behavior. It is conjectured that, in the thermodynamic limit, the
Krylov complexity grows exponentially in non-integrable systems.

Since the definitions of Krylov complexity and OTOC are different, the exponential
growth of these two measures evaluates different aspects of quantum chaos. The Krylov
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complexity is a measure of the operator growth1 of an operator O in the Krylov subspace
under the time evolution, while the OTOC is a measure of how an operator O1 affects
another operator O2 via a commutator [O1(t),O2(0)]. Nevertheless, it is conjectured that
the following bound λ ≤ α exists, where α is the exponent in the exponential growth of the
Krylov complexity, and λ is the Lyapunov coefficient of the OTOC.

There is one fault in the exponential growth of Krylov complexity as a measure of quantum
chaos. In a simple non-interacting free scalar quantum field theory on non-compact space, it
is shown that the Krylov complexity grows exponentially [13]. This exponential growth in a
free field theory is due to continuous momentum in non-compact spatial directions. Even
though there is a mass gap in the IR region, the spectrum of a scalar operator is continuous
due to continuous momentum, and thus the Krylov complexity grows exponentially as
shown in free massive scalar theories on non-compact space [14, 15]. The continuity of
momentum in quantum field theories arises by taking a continuous limit of zero lattice
spacing in lattice systems.

A simple solution to this fault is to compactify the space on which a quantum field theory
lives. Such an analysis of the Krylov complexity in quantum field theories on compact space
was explicitly demonstrated by [14, 16]. In particular, from the viewpoint of AdS/CFT [17],
the behavior of Krylov complexity under a thermal phase transition dual to the Hawking-Page
transition [18] was studied.

In holography, the Hawking-Page transition in the bulk can be interpreted as a confine-
ment/deconfinement phase transition in the large N quantum field theory side [19]. Even
though the degrees of freedom of systems are infinite, the spectrum in quantum field theories
can be discrete or continuous. A specific example is a discrete spectrum of the confinement
phase and a continuous spectrum of the deconfinement phase in a large N QCD-like theory.
The computations of Krylov complexity in [14, 16] suggest that the behavior of Krylov
complexity is sensitive to the confinement and deconfinement phases.

In this paper, we propose that the Krylov complexity can be an order parameter of such
a confinement/deconfinement phase transition in large N field theories and specifically study
how the Krylov complexity acts as the order parameter. For a concrete proposal, we consider
the following free theory that models the spectrum of a two-point function in holographic
QCD where particles of various masses exist,

S =
∫
S1×S1

d2x
∞∑

n=0

(1
2∂

µϕn∂µϕn + 1
2m

2
nϕ

2
n

)
, mn = m+ nδm. (1.1)

The model consists of an infinite number of scalar fields {ϕn}∞n=0, where the smallest mass is
m, and δm represents the gap between masses. This theory is on the thermal circle S1 with
inverse temperature β and the spatial circle S1 due to the compactification of space x = x+L.
We compactify the space to avoid the continuity of momentum in spatial direction. By
compactifying the space sufficiently to ignore nonzero discrete momentum, the discreteness
of the spectrum is determined by βδm only. When βδm ≳ 1, the spectrum is discrete due

1One can also define the Krylov complexity for the time evolution of states, which is called spread
complexity [9]. The spread complexity of chaotic systems whose energy spectrum are described by random
matrix theories has been well studied recently [10–12].

– 2 –



J
H
E
P
0
4
(
2
0
2
4
)
1
1
9

to the gap δm, and the Krylov complexity oscillates and does not grow. When βδm ≪ 1,
the spectrum is continuous, and the Krylov complexity grows exponentially. This model
is treated as example 3 in section 2.

From the above example, we propose the following prescription. Since we are interested
in the confinement/deconfinement phase transition, let us take the temperatures around
which the phase transition occurs such as β ∼ Λ−1

QCD. Next, compactify the space sufficiently
as β/L ≳ 1 to avoid continuous momentum. Then, the discreteness of the spectrum depends
only on the mass spectrum, not on the momentum. In the confinement phase, βδm ≳ 1 yields
the oscillational behavior of Krylov complexity. In the deconfinement phase, βδm≪ 1 yields
the exponential growth of Krylov complexity. This allows the Krylov complexity to act as an
order parameter of the confinement/deconfinement phase transition in large N field theories.

Finally, we also examine the case of holographic QCD. The essence is the same as in the
above model. Specifically, we calculate the spectrum via bulk geometries with and without
AdS black holes, where black holes exhibit extremely strong chaos [20–24]. Then, we evaluate
the Krylov complexity from the obtained spectrum.

The basic structure of this paper is as follows: in section 2, we present several examples
that support our proposal. Specifically, we review a free scalar field on a sphere with radius
R and the IP matrix model as examples where the discreteness of the spectrum changes.
The model of (1.1) is particularly important, which reflects the structure of the holographic
QCD spectrum that includes particles of various masses. We then propose a prescription for
the Krylov complexity to be an order parameter of the confinement/deconfinement phase
transition in large N field theories. In section 3, we study pure SU(N) Yang-Mills theories,
which are of most interest to us as systems that specifically cause (de)confinement. We
consider the pure N = 4 Super Yang-Mills theory and N = 0 pure Yang-Mills theory in the
large N limit, and how the Krylov complexity behaves by reading their spectrum through
the holographic/D-brane picture. Then we show specifically that the behavior of Krylov
complexity changes, indicating a phase transition between deconfinement and confinement
in the large N quantum field theories.

2 Several examples of Krylov complexity and our proposal

In this section, we specifically review the Krylov complexity with some examples. Then, to
clarify the discreteness of the spectrum due to mass and momentum, we presents and analyze
a model of infinitely many free scalars with various masses in compact space. Motivated
by these examples, we propose that the Krylov complexity can be an order parameter of a
confinement/deconfinement phase transition in large N quantum field theories.

Before the examples, let us define the Krylov complexity [8]. Consider a local operator
O and its time evolution O(t) = eiHtOe−iHt. We expand O(t) as

O(t) =
∑
n=0

inφn(t)On, O0 := O , (2.1)

where On is the Krylov basis constructed by the Lanczos algorithm [25]. The Krylov basis
On is an orthonormal basis such that

(Om|On) = δmn, (2.2)
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where (Om|On) is a suitable inner product between Om and On. The coefficient φn(t) in
the expansion (2.1) obeys the following time evolution

dφn(t)
dt

= ianφn(t)− bn+1φn+1(t) + bnφn−1(t) , (2.3)

where an and bn are called Lanczos coefficients in the Lanczos algorithm. By using φn(t),
the Krylov complexity K(t) is defined by

K(t) :=
∞∑

n=1
n|φn(t)|2 . (2.4)

By using the inner product, let us define a two-point function G(t) as

G(t) := (O(t)|O) = φ∗
0(t), (2.5)

where an example is (A.2) in appendix A. There exists a numerical algorithm to compute
the Lanczos coefficients from G(t) [26]. Thus, if the two-point function G(t) or its spectrum
G(ω) :=

∫
dteiωtG(t) is given, we can determine the Lanczos coefficients an and bn. Then,

by solving φn(t) from (2.3), we can compute the Krylov complexity (2.4). From now, we
will explain some examples of G(t) and their Krylov complexity. Please refer to appendix B
for more details.

Example 1: a single free scalar. As a first example, let us calculate the Krylov complexity
for a massless minimally-coupled scalar theory in 3-dimensional space S3 with radius R (and
consider a more thermal theory, S3 × S1 as a (3+1)-dimensional theory). In Euclidean
signature, the action is

S =
∫
S1×S3

d4x
√
g

(1
2∂

µϕ∂µϕ+ ξ

2Rϕ
2
)

(2.6)

where ξ is the minimal coupling ξ = d−2
4(d−1) in general d dimension and R is scalar curvature

of background S3, and in d = 4, ξ = 1/6, R = 6/R2.
If R is not much larger than the inverse temperature β, then due to the Kaluza-Kelin

(KK) tower associated with the compactification in the spatial direction, this corresponds
to a typical extension of a mere harmonic oscillator system. However, if R is much larger
than β, then this corresponds to a typical field theory on non-compact space where the
behavior of the Krylov complexity changes significantly. This analysis was done in [13, 14]
and we review it here.

First, we want to obtain a correlation function separated in Euclidean time τ ,

C(τ,R) = ⟨ϕ(τ, x)ϕ(0, x)⟩β , (2.7)

and then the Lorentz version is computed by analytical continuation. By part integration,
the Euclidean action is

S =
∫
S1×S3

d4x
√
g
1
2ϕ
(
D̂ + ξR

)
ϕ , D̂ ≡ −∂2τ −∇2

S3 . (2.8)
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By using the heat kernel method, we can express

C(τ,R) = ⟨τ, x| 1
D̂ + ξR

|0, x⟩ =
∫ ∞

0
ds ⟨τ, x|e−s(D̂+ξR)|0, x⟩

=
∫ ∞

0
dsK(s, τ)e−s/R2

, (2.9)

where we use ξ = 1
6 ,R = 6

R2 and K(s, τ) is heat kernel in S1 × S3,

K(s, τ) = ⟨τ, x|e−sD̂|0, x⟩ . (2.10)

Then we can decompose

K(s, τ) = KS1(s, τ)×KS3(s, x, x), (2.11)

where

KS1(s, τ) = 1√
4πs

∞∑
n=−∞

e−
(τ+nβ)2

4s , (2.12)

KS3(s, x, x) = es/R2

(4πs)3/2

∞∑
ℓ=−∞

e−
π2R2ℓ2

s

(
1− 2π

2R2ℓ2

s

)
. (2.13)

See appendix C for more details. From these,

C(τ,R) =
∞∑

n,ℓ=−∞

∫
ds

1
(4πs)2 e

− (τ+nβ)2+(2πRℓ)2
4s

(
1− 2π

2R2ℓ2

s

)
, (2.14)

where n corresponds to the KK tower associated with the compactification in the Euclid
S1 direction and ℓ corresponds to that in the S3 direction.

Integrating this and rescaling τ → βτ and R→ β
2πR and performing translation τ → τ +

1/2 to make this Wightman inner product two-point function. Then we can obtain

C(τ + 1/2, R) ∝
∑

n,ℓ∈Z

(τ + 1/2 + n)2 − (Rℓ)2

((τ + 1/2 + n)2 + (Rℓ)2)2 (0 ≤ τ ≤ 1) (2.15)

= π2

R2

∑
n∈Z

1
sinh2((n+ 1/2 + τ)π/R)

. (2.16)

If R is much smaller than β = 1, then the correlator can be approximated as follows

C(τ + 1/2, R) ∼ π2

R2

(
1

sinh2((1/2 + τ)π/R)
+ 1

sinh2((−1/2 + τ)π/R)

)
. (2.17)

By using the Toda chain method, we can compute Lanczos coefficients where the Lanczos
coefficients are divided into odd and even branches.

b2n =
(2π
R

)2

(n+ 1)2/4 n = 1, 3, · · ·
4n(n+1)2

n+2 e−π/R n = 2, 4, · · ·
(2.18)
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This behavior is the behavior reproduced when the spectrum is a set of delta functions, and
the Krylov complexity exhibits oscillatory behavior.

In an opposite case, if R is much larger than β = 1, only ℓ = 0 is dominant, and
asymptotic behaviors of the correlator and spectrum density are

C(τ + 1/2, R) ∼
∑
n∈Z

1
(τ + 1/2 + n)2 = π2

cos2(πτ) = π2

cosh2
(

π
β t
) , (2.19)

f(ω) ∼
√
π

2β
2ω csch

(
βω

2

)
∼ e−

βω
2 . (2.20)

The relationship between the asymptotic form of the spectrum density and the Lanczos
coefficient can be identified as follows.

lim
n→∞

bn = π

β
n (2.21)

Now the asymptotic behavior of bn is linear, we can find this Krylov complexity shows
exponential growth. The asymptotic behavior is

K(t) ∝ e2πt/β . (2.22)

In particular, the exponent is α = 2π
β and is certainly bound to the actual quantum Lyapunov

exponent λ = 0 of the free theory. Note, however, that this is a “bad” bound since we want
the exponent of the Krylov complexity to be zero if the theory is free and thus non-chaotic.

Of particular note is that this is very closely related to the compactness of space. If
the space is compact, the momentum in spatial directions is generally discretely quantized.
Then through E2 = m2 + k⃗2, the energy spectrum E is no longer continuous for the case
of gapped mass spectrum m. On the other hand, if the space is noncompact, momentum
k⃗ is always continuous, and thus energy spectrum E is also continuous even in the case of
gapped mass spectrum m. In this way, there is a noticeable difference in the energy spectrum
dependent on the compactness of the space. Since we consider a finite temperature system,
the compactness of space is measured by a ratio between β and R.

The conclusion is that if the radius of the sphere obeys R ≲ β, K(t) shows just oscillation
behavior. However, if we consider the case of R ≫ β, i.e., the limit to flat space, we
reproduce the exponential growth of K(t) even though the theory (2.6) is free. Especially
in figure 3 of [14], where specific numerical calculations are made, and it is found that the
Krylov complexity indeed exhibits oscillatory behavior when R ∼ β. On the contrary, when
R/β → ∞, the Krylov complexity shows exponential growth.

Another important work was done in [16] as follows. Let us consider a two-dimensional
holographic CFT, which is dual to AdS3 gravity, on a cylinder R1×S1, where S1 is a compact
space. They showed that by varying the scaling dimension of a primary state to define an
inner product, the Krylov complexity exhibits a transition of its behavior between oscillation
and exponential growth. Since the heavy primary state corresponds to a black hole geometry
in AdS/CFT, this transition of the Krylov complexity means that the Krylov complexity can
capture the Hawking-Page transition in the bulk. This is also a reflection of the change in the
spectrum from discrete to continuous in terms of the bulk fields, due to the going-boundary
conditions on the black hole geometry. They also showed that the Krylov complexity in
two-dimensional free and Ising CFTs does not exhibit such a transition.
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Example 2: IP model. Next, we consider a quantum mechanical large N matrix model
called the IP model [27]. Specifically, the Hamiltonian of the IP model is given by

H = 1
2 Tr

(
Π2
)
+ m2

2 Tr
(
X2
)
+ π†(1 + gX/M)π +M2ϕ†(1 + gX/M)ϕ. (2.23)

Here, Xij (U(N) adjoint representation) and ϕi (U(N) fundamental representation) are
harmonic oscillator variables, and Πij and πi are those conjugate momentum. We consider
the following two-point function G(t)

eiMt⟨Tai(t)a†j(0)⟩β ≡ δijG(t), (2.24)

where a†i and ai are creation/annihilation operator for the fundamental field ϕi. In the
large N and M limit, one can solve the spectrum of G(t) by using the Schwinger-Dyson
equation. Then, the Lanczos coefficients and the Krylov complexity can be evaluated from
the spectral density F (ω) := ReG(ω)/π. Varying temperature T and adjoint mass m, the
Krylov complexity K(t) exhibits various behaviors. A brief summary is as follows [28, 29].

Massless case m = 0. In this case, the spectrum density is given by a single Wigner
semicircle, which is a bounded continuous spectrum. The Krylov complexity shows a linear
increase with respect to time t.

Nonzero mass case m ̸= 0. At zero temperature T = 0 with nonzero mass, the spectral
density can be solved analytically and given by a collection of the delta function, which
is a discrete spectrum. At infinite temperature T → ∞ with nonzero mass, the spectral
density is a continuous spectrum whose asymptotic behavior can be solved analytically. From
these spectra, the Krylov complexity can be calculated. In the zero temperature case, the
Krylov complexity just oscillates and does not grow due to the discrete spectrum. In the
high-temperature limit, the Krylov complexity grows exponentially with respect to

√
t.

What is important to note is that in the IP model with nonzero adjoint mass, the
behavior of spectral density changes from discrete to continuous by raising the temperature
from zero to nonzero, which corresponds to a phase transition in the large N limit from
a confinement phase to a deconfinement phase. Accordingly, the Krylov complexity also
changes from just oscillatory to exponentially increasing.

In the massless adjoint case, i.e., when the spectral density is given by a single Wigner
semicircle, the Krylov complexity grows linearly rather than exponentially. The spectral
density of the massless case is continuous, but there is an upper bound in the spectral density,
which causes the qualitative change of Krylov complexity. In other words, it can be inferred
that for the exponential growth of Krylov complexity, it is not only important that the
spectral density is continuous, but also that there is no upper bound in the spectral density.

Before going to the next example, we would like to speculate on the general situation
when the Krylov complexity increases exponentially.
From the above examples, the following can be deduced. In general, the discrete spectrum
shows an oscillatory behavior of the Krylov complexity. For example, the IP model with
non-zero adjoint mass at zero temperature, a single free scalar in compact space that exhibit
the oscillatory behavior of Krylov complexity due to the discrete spectra. On the other hand,
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in the case of continuous spectra (without upper bound), the Krylov complexity shows an
exponential increase. Such examples are field theories in non-compact space and the IP
model with non-zero mass at non-zero temperature.

However, the continuous spectrum is not sufficient to show the exponential growth of
Krylov complexity. In the IP model example, there is a case where the Krylov complexity
shows a linear increase, although it is a continuous spectrum. This is the massless adjoint
case, in which case the spectrum shows the Wigner-type behavior with a single Wigner
semicircle. On the other hand, when the spectrum can be approximated as an infinite series
of Wigner semicircles, the Krylov complexity shows an exponential increase. Therefore, even
in the continuous spectrum, the Krylov complexity does not show an exponential increase
if there is a clear upper or lower bound in the spectrum of a two-point function. In the IP
model example, with increasing temperature, a spectrum consisting of a series of Wigner
semicircles “melds” to form a smooth continuous spectrum. This does not happen with a
single Wigner semicircle for the massless case.

From the above, we consider the case where there is no upper or lower bound in the
continuous spectrum of a two-point function as a condition for the Krylov complexity to
increase exponentially, but as originally argued in [8], the structure of high-energy tail in
the spectrum also needs to be discussed further. In this regard, a clear claim can be made
since the high-energy tail of the spectrum determines an asymptotic behavior of the Lanczos
coefficients at large n, which in turn affects the late-time behavior of Krylov complexity. As
studied in [8, 30], for the asymptotic growth of Lanczos coefficients to be proportional to n
and for the Krylov complexity to increase exponentially, the tail of the spectrum must fall
exponentially, which is “slowly” compared to that of Gaussian types.

Based on these experiences, we propose the following conditions for the spectrum in the
case of an exponential increase in Krylov complexity.

A. The spectrum of O must be continuous rather than discrete.

B. There are no upper and lower bounds in the spectrum, and the high-energy tail of the
spectrum exponentially falls.

As explained in appendix A, the spectrum in these conditions is not an energy spectrum
of Hamiltonian but rather the spectrum of a two-point function of O.2

Practically, the exponential growth of Krylov complexity is measured over a finite time
range. One such time scale is the inverse temperature β = 1/T of quantum systems at finite
temperature T . If energy intervals in the discrete spectrum are close enough to each other,
the spectrum can be regarded as a continuous spectrum for the measurement of Krylov
complexity over the finite time range. For the exponential growth at much later times, the
spectrum must be even closer to a continuous spectrum. For example, the Krylov complexity
of a free massless scalar theory on a sphere for small R initially follows the exponential growth
of Krylov complexity in the flat space limit R≫ β, but its growth stops at a finite value [14].

2If we consider a retarded two-point function with a step function θ(t), its spectrum has a non-zero
imaginary part. In such a case, as demonstrated in [28], one can construct a spectrum of a two-point function
without the step function from a real part of the spectrum, spectral density, of the retarded two-point function.
The Krylov complexity can then be computed from the constructed spectrum.
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As R increases, the discrete spectrum at finite R becomes closer to the continuous spectrum
at R ≫ β, and the peak value of Krylov complexity increases.

The exponential fall in condition B means that the spectrum decays exponentially at
large |ω| as

G(ω) ∼ e−κ|ω| (|ω| → ∞), (2.25)

where G(ω) is the spectrum of a two-point function of O, and κ is a constant. More precisely,
a log correction such as e−κ|ω| log |ω| can be included in a one-dimensional spin chain with a
finite range interaction. Note that the slowest decay of G(ω) for a lattice system of fermions
with a local Hamiltonian is bounded as [31]

G(ω) ≤ Ce−κ|ω|, (2.26)

where C is a constant. Here, for the bound of G(ω) (2.26), the operator O and local
interactions in the Hamiltonian should be k-local, and their norms should be finite.

As a further concrete example, the two-dimensional holographic CFT calculation explicitly
shows that the behavior of Krylov complexity changes significantly when the spectrum switches
from discrete to continuous, where this change of the spectrum in the two-dimensional
holographic CFTs indicates a confinement/deconfinement transition of large N theories. For
the above reasons, we propose that the Krylov complexity can be an order parameter for
rather confinement-like phenomena.

Example 3: an infinite number of free scalars with various masses in compact
space. Taking the above as a general story of Krylov complexity, in the following we will
discuss how the Krylov complexity works as an order parameter in the specific case, such as
holographic QCD treated in section 3, by considering a model with a very similar spectrum.
First, compactification must be applied in the spatial direction. This can be understood from
the dispersion relation E2 =M2

m + k⃗2. In the confinement phase, various mesons appear as
color singlets, where their mass spectrum of Mm is discrete. However, if k⃗ is a continuous
quantity, then E will be continuous regardless of the discreteness of Mm. Krylov complexity
is sensitive to the discreteness of E, but cannot distinguish between the discreteness of Mm

and k⃗. Therefore, if k⃗ is continuous, K(t) cannot capture the change in the discreteness
of Mm due to the phase transition. Therefore, the spatial directions must be compactified
so that a KK tower is sufficiently discrete.

In the following, we consider a model consisting of a set of many free scalar fields with
different masses in compact space. Specifically, we impose a periodic boundary condition
x = x + L from the earlier discussion. This is a simplified version of the spectrum that
appears in holographic QCD as treated in section 3, where various masses of the scalars
correspond to various masses of the mesons. First, consider a model consisting of a single
free scalar field in (1 + 1) dimensions. The Euclidean action is

S =
∫
S1×S1

d2x

(1
2∂

µϕ∂µϕ+ 1
2m

2ϕ2
)
. (2.27)

By treating the momentum in the spatial direction as a KK tower due to the boundary
condition, this theory becomes just a sum of harmonic oscillators that depend on m and the
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discrete momentum. The Wightman inner product correlator for inverse temperature β of
the harmonic oscillator H = p2

2m + 1
2mω

2
0x

2 is as given in appendix A,

G(t) = ℏ cos[ℏω0t]
2mω0 sinh[ℏω0β/2]

. (2.28)

To map the Hamiltonian of the harmonic oscillator to (2.27), simply replace m, ℏ → 1

and ω0 →
√
m2 +

(
2πℓ
L

)2
, (ℓ = 0,±1,±2, · · · ). Here, the contribution of the KK tower is

considered as a sum with respect to ℓ. As a result, we obtain

G(t) =
∞∑

ℓ=−∞

cos
[
t

√
m2 +

(
2πℓ
L

)2]

2
√
m2 +

(
2πℓ
L

)2
sinh

[
β
2

√
m2 +

(
2πℓ
L

)2] . (2.29)

Now, for simplicity let us take β/L≫ 1. As sinh with nonzero ℓ in the denominator increases
exponentially, nonzero ℓ terms can be ignored, so that it can be approximated that only ℓ = 0
contributes by taking large β/L. In this case, the Krylov complexity just oscillates

G(t) ∝ cos(mt) → K(t) = sin2(mt). (2.30)

Whatever the value of m, K(t) for large enough β/L oscillates and does not grow exponentially.
The situation does not change when this model is in (3+1)-dimension. Specifically, if a periodic
boundary condition is imposed on each of the three spatial directions, the contribution of
the KK tower corresponds to

ω0 →

√
m2 +

(2π
L

)2
(ℓ2x + ℓ2y + ℓ2z) . (2.31)

Under β/L≫ 1, only ℓx = ℓy = ℓz = 0 term contributes as in the (1+1)-dimensional case, so
G(t) shows just an oscillation and the Krylov complexity shows no exponential growth.

In the above, we saw that, for large β/L, the Krylov complexity does not increase
exponentially. Next, we consider a model that mimics the spectrum as treated in section 3.
The model is a (1+1)-dimensional system consisting of many free scalar fields {ϕn(t, x)}
whose masses are displaced by δm, and the smallest mass is m. We impose the simple periodic
boundary condition x = x + L. The Euclidean action is

S =
∫
S1×S1

d2x
∞∑

n=0

(1
2∂

µϕn∂µϕn + 1
2m

2
nϕ

2
n

)
, mn = m+ nδm. (2.32)

The system has four dimensionful parameters m, δm,L, β. Therefore, we can adopt βδm, β/L
and βm as dimensionless parameters. Note here that the model of (2.27) corresponds to
βδm ≫ 1, where nonzero n terms can be ignored. Also, by analogy with section 3, the
confinement phase corresponds to the case where βδm ≳ 1 and the deconfinement phase
corresponds to the case where βδm ≪ 1.

We consider the Wightman inner product correlator of a composite operator O =
∑∞

n=0 ϕn.
In QCD, we consider a color singlet operator such as O = Tr[FµνF

µν ], and thus ϕn corresponds
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to various glueballs with different masses, where n is an index for “radial” Regge trajectories.
Since the system is the free theory, the two-point function of O is a sum of the two-point
function of ϕn. In fact, in large N theory, the glueballs can be treated as free fields. Thus,
by keeping in mind the application to QCD, we study the composite operator O =

∑∞
n=0 ϕn

in our model (2.32). The Wightman inner product correlator of O of the model (2.32) is
obtained immediately, as in the previous example,

G(t) =
∞∑

n=0

∞∑
ℓ=−∞

cos
[
t

√
(m+ nδm)2 +

(
2πℓ
L

)2]

2
√
(m+ nδm)2 +

(
2πℓ
L

)2
sinh

[
β
2

√
(m+ nδm)2 +

(
2πℓ
L

)2] . (2.33)

In fact, the two-point functions in holographic QCD as treated in section 3 have a similar
sum structure with respect to n and ℓ. In particular, the sum for ℓ corresponds to the KK
tower for a compact space in which the QCD lives, and the sum for n corresponds to the
KK tower for emergent radial direction.

As before, consider the case of β/L≫ 1 so that only ℓ = 0 contributes. Also, focusing
on the region βm ≫ 1 to obtain an analytic expression, the summation with respect to
n can be performed

G(t) ∼
∞∑

n=0

cos[t(m+ nδm)]
(m+ nδm) exp

[
β
2 (m+ nδm)

]
= 1

2δm
(
e−imt−mβ

2 Φ
(
e−iδmt− δmβ

2 , 1,m/δm
)
+ eimt−mβ

2 Φ
(
eiδmt− δmβ

2 , 1,m/δm
))
,

(2.34)

where Φ(z, s, a) is Hurwitz-Lerch transcendental function defined by

Φ(z, s, a) :=
∞∑

n=0
zn(n+ a)−s. (2.35)

Using this two-point function, the Lanczos coefficient and the Krylov complexity can be
obtained numerically. In the following, we perform numerical computations for β = 1 and
m = 10. In such numerical computations, 1/L = 5 is large enough to approximate (2.33)
by (2.34).

Figure 1 shows the Lanczos coefficient bn and the Krylov complexity K(t) computed
numerically from G(t) (2.33) for β = 1, 1/L = 5, m = 10, δm = 5. We can see that bn

obeys the two-slopes behavior and K(t) oscillates and does not grow, which are characteristic
behaviors for the discrete spectrum [14] due to βδm = 5 ∼ O(1).

Figure 2 shows the Lanczos coefficient bn and the Krylov complexity K(t) computed
numerically from G(t) (2.33) for β = 1, 1/L = 5, m = 10, δm = 1/100. In figure 2(a), bn

does not show the two-slope behavior because the spectrum is close to continuous due to
small βδm = 1/100 ≪ O(1). Figure 2(b) shows K(t) computed from bn up to n = 400, where
K(t) initially grows rapidly compared to K(t) in figure 1(b), which implies the exponential
growth due to small βδm = 1/100. However, the increase stops around K(t) ∼ 80 since we
only use bn up to n = 400 to compute K(t). Due to the infinite sum in (2.33), bn is nonzero
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(a) Lanczos coefficient bn up to n = 400.
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K(t)

(b) Krylov complexity K(t) that is computed from bn up
to n = 400.

Figure 1. Lanczos coefficient bn and Krylov complexity K(t) of G(t) (2.33) for β = 1, 1/L = 5,
m = 10, δm = 5.

even at n→ ∞. However, in numerical computations, we can only use a finite number of bn.
If we use bn with an even larger n to compute K(t), K(t) is expected to grow even more. To
confirm this expectation, we extrapolate bn in figure 2(a) up to n = 2000 and compute K(t)
from the extrapolated bn.3 As shown in figure 2(c), K(t) further grows up to K(t) ∼ 300.

To elaborate on the nmax-dependence of numerical results, where nmax is the number of
bn used in the numerical computations, we plot K(t) with various nmax in figure 3. We can
see that K(t) grows further as nmax increases. The red curve for nmax = 400 in figure 3 is
separated from the other curves from t ∼ 1. At times prior to this time scale tmax ∼ 1, the
numerical result with nmax = 400 is reliable. By plotting the numerical results with various
nmax as shown in figure 3, the relationship between nmax and tmax can be seen visually.

3Due to m = 10, bn is divided into two families for even n and for odd n [14, 15]. Thus, we extrapolate bn

separately for even n and odd n.
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(a) Lanczos coefficient bn up to n = 400.
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(b) Krylov complexity K(t) that is computed from bn up
to n = 400.
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(c) Krylov complexity K(t) that is computed from the extrap-
olated bn from n = 400 up to n = 2000.

Figure 2. Lanczos coefficient bn and Krylov complexity K(t) of G(t) (2.33) for β = 1, 1/L = 5,
m = 10, δm = 1/100. The Krylov complexity K(t) initially grows, but the increase stops since we
only use a finite number of bn to compute K(t) numerically.
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Figure 3. Krylov complexity K(t) of G(t) (2.33) for β = 1, 1/L = 5, m = 10, δm = 1/100. We
numerically plot K(t) with various values of nmax such as nmax = 400 (red), nmax = 800 (orange),
nmax = 1200 (green), nmax = 1600 (blue), and nmax = 2000 (black).

Proposal. In example 3, it is important to note that the interval δm of the mass spectrum,
not the smallest mass m, affects the continuity of the spectrum associated with changes in
the behavior of Krylov complexity. In this example, the spectrum can be approximated as
continuous if either βδm≪ 1 or β/L≪ 1 is achieved. The spectrum of two-point functions in
holographic QCD has a similar property, where there are two KK towers for extra dimensions
and for a compact space in which the QCD lives. Since we are interested in measuring
a confinement/deconfinement phase transition, we take the temperature near the phase
transition, such as the QCD scale ΛQCD. As mentioned at the beginning of example 3, to
examine (de)confinement due to the mass spectrum, the compactification has to be done
properly. If the KK tower associated with the compactification can be approximated as
continuous, as in example 1, it is not possible to properly examine (de)confinement. Therefore,
we should take β/L ≳ 1, such that the KK tower associated with the compactification can
be regarded as discontinuous. Then, the continuity of the spectrum is determined by βδm,
where βδm ≳ 1 is the confinement phase, and βδm ≪ 1 is the deconfinement phase.

From the above, we propose that the Krylov complexity can be used as an order parameter
of a confinement/deconfinement phase transition in large N field theories by the following
prescription.

I. Take temperature near the confinement/deconfinement phase transition such as the QCD
scale β ∼ Λ−1

QCD.

II. Next, compactify space sufficiently β/L ≳ 1 for discrete momentum.

III. Then, the continuity of the spectrum is determined by βδm in the mass spectrum, and
the Krylov complexity works as an order parameter.

In the next section, we will confirm this in holographic QCD.
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3 Krylov complexity for holographic Yang-Mills theories

In this section, we give further examples of the Krylov complexity as an order parameter
by studying SU(N) Yang-Mills theories in the large N limit via holography. We analyze
their spectrum by using the holographic method and evaluate their Krylov complexity
as an order parameter of the Hawking-Page transition in the bulk that corresponds to a
confinement/deconfinement transition in the large N field theory side. Of course, as we can
learn from the free scalar example, proper compactification is necessary.

3.1 Krylov complexity for N = 4 Super Yang-Mills theory

In this subsection, we first consider the N = 4 Super Yang-Mills theory in the large N limit
from holography [17], and then look at its behavior on the (de)confinement of the Krylov
complexity. Of course, the N = 4 SYM theory at finite temperature on R3 has only one
dimensionful parameter: temperature, so no phase transition occurs even in the large N limit.
However, in the large N N = 4 SYM theory at finite temperature on S3, there exists a phase
transition, and the entropy of the system changes from O(1) to O

(
N2) [19, 32]. In the bulk

description, this is the Hawking-Page transition [18] between Thermal-AdS and Schwatzchild
AdS black hole in global coordinates. Specifically, we calculate the spectrum of the bulk
scalar and glueball on the background in this configuration.

3.1.1 Thermal AdS

First, consider the AdS5 space-time in global coordinates. We consider a situation in which a
scalar field ϕ with mass m propagates in this bulk and check the mass gap. Starting from

ds2 = −(r2 + 1)dt2 + dr2

r2 + 1 + r2dΩ2
3, (3.1)

where this metric is given by global coordinates. In the Euclidean signature, the AdS
boundary is thermal circle × compact space (Sphere), S1 × S3. On this background, the
field equation for ϕ is

1√
−g

∂µ(
√
−ggµν∂νϕ)−m2ϕ = 0, (3.2)

and we decompose ϕ = f(r)e−iωtYℓm⃗(Ω), then

1
r3
∂r[r3(r2 + 1)∂rf(r)] +

(
ω2

r2 + 1 − ℓ(ℓ+ 2)
r2

−m2
)
f(r) = 0. (3.3)

Here, Yℓm⃗(Ω) is a spherical harmonic on S3 with an eigenvalue ℓ(ℓ + 2).

Near the boundary, r → ∞. Near the boundary, this equation becomes

1
r3
∂r[r5∂rf(r)]−m2f(r) = 0 (3.4)

This equation has the following solution

f(r) = c1r
−∆ + c2r

∆−4, (3.5)

∆ = 2 + 1
2
√
42 + 4m2. (3.6)
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Furthermore, given the extreme limit to the boundary, it is understood that c2 = 0 is
necessary to extract normalizable mode and that f(r) behaves as r−∆ near the boundary
as a boundary condition.

Near the center, r → 0. On the other hand, near the center of AdS5, r = 0, the equation
of motion becomes

∂2rf(r) +
3
r
∂rf(r)−

ℓ(ℓ+ 2)
r2

f(r) = 0, (3.7)

and a solution is

f(U) = cc1r
−1−

√
1+ℓ(ℓ+2) + cc2r

−1+
√

1+ℓ(ℓ+2) (3.8)

Smoothness at r = 0 requires cc1 = 0.
It is known that the full equation can be solved in terms of Hypergeometric functions,

and the spectrum of ω is quantized under the constraint that the boundary conditions of
both the AdS boundary and the center of the bulk are satisfied. As a result, the spectrum
of ω is given by the following quantized values

ω = ∆+ ℓ+ 2n (ℓ = 0, 1, 2, · · · , n = 0, 1, 2, · · · ). (3.9)

This sum structure with respect to n and ℓ is very similar to example 3 in section 2, where the
length scale in (3.9) is measured by the AdS scale R = 1, and ∆ corresponds to the smallest
mass in example 3. Since this is a discrete spectrum, the Krylov complexity exhibits oscillation.

3.1.2 BH case

The analysis of this subsection follows [33]. The N = 4 SYM theory in the large N limit on
S3 at high temperature is dual to the following Schwarzschild black hole bulk geometry

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
3, (3.10)

f(r) = r2 + 1− µ

r2
= 1
r2

(r2 − r20)(r2 + 1 + r20), (3.11)

where µ is proportional to the mass of the black hole and r0 is the radius of the event horizon.
If we take r → ∞, this spacetime approaches to global AdS5. On this background, we
decompose ϕ = e−iωtr−

3
2ψ, then the equation of motion is given by

(−∂2z + V (z)− ω2)ψ = 0, (3.12)

V (z) = f(r)
[ 3
4r2 + ν2 − 1

4 + 9µ
4r4

]
, (3.13)

where z is a tortoise coordinate

z =
∫ ∞

r

dr

f(r) , (3.14)

and ν is defined by

∆ = 2 + ν, ν =
√
4 +m2. (3.15)
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At the horizon, the potential becomes V (z) → 0 therefore we can normalize it to be
real and thus [33]

ψ(z) = eiωz−iδ + e−iωz+iδ, (3.16)

where δ is a phase shift. Near the horizon, we have

z =
∫ ∞

r

dr

f(r) ∝
∫ ∞

r

dr

r − r0
= − log(r − r0) + const. , (3.17)

thus z decreases as we increase r. Therefore e−iωz−iδ is an out-going mode, and e+iωz−iδ is
an in-going mode. For the retarded Green’s function, we keep only the ingoing mode, on the
other hand, for the advanced Green’s function, we keep only the out-going mode. As [33], we
consider the Wightman Green function and thus kept both ingoing and outgoing modes.

From (3.12), the spectrum in the high-energy region, which is necessary for the analysis
of Krylov complexity, can be derived by the WKB method. We turn our attention to the
following mass regions

ω = νu, ν ≫ 1. (3.18)

By setting ψ(r) = eνS , we have

−ν2(∂zS)2 − ν∂2zS + ν2f(z) = ν2u2 +O(ν0). (3.19)

For the WKB method, expanding as S = S(0) + 1
νS

(1) + · · · , we obtain

S(0) =
∫
dz
√
f − u2 = −

∫ r

rc

dr′κ(r′) , (3.20)

where κ = 1
f(r)

√
f(r)− u2 , (3.21)

S(1) = log 1
(V0 − u2)1/4 , (3.22)

from (3.19) in the leading order at O
(
ν2
)

and O
(
ν1
)
. Here we used (3.14) and

f(rc) = u2 , (3.23)

at the turning point r = rc. Therefore under the WKB approximation, the approximate
solution becomes

ψ(wkb)(r) = 1
(f(r)− u2)1/4 e

νZ
(
1 +O

(
ν−1

))
, Z = −

∫ r

rc

dr′κ(r′) . (3.24)

Near the horizon f(r) → 0, the boundary condition eq. (3.16) determines the relative
normalization factor as follows.

ψ(wkb)(r) = 1√
u
ψ(r). (3.25)

Now, the bulk correlator is given by

G+ ∼ 1
ω
(rr′)−

3
2ψ(r)ψ(r′). (3.26)
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The normalizable mode asymptotically approaches ∼ r−∆. From this, the relationship
between boundary correlation function G+ and bulk correlator G+ is

G+ ∼ lim
r,r′→∞

(2νr∆)(2νr′∆)G+(r, r′) (3.27)

∼ lim
r,r′→∞

2νr∆r′∆(rr′)−
3
2

1
(f(r)− u2)1/4 e

νZ(r) 1
(f(r′)− u2)1/4 e

νZ(r′). (3.28)

Now,
(
f(r)− u2

)1/4 → r1/2 at large r, then

G+ ∼ lim
r,r′→∞

2νr∆r′∆(rr′)−
3
2

1
r1/2 e

νZ(r) 1
r′1/2 e

νZ(r′) (3.29)

∼ lim
r,r′→∞

2νrνr′νeνZeνZ ∼ lim
r,r′→∞

2νe2ν(log r+Z(r)). (3.30)

The argument of the exponent is

log r + Z(r) = log r −
∫ r

rc

dr′
1

f(r)

√
f(r)− u2. (3.31)

To evaluate the Lanczos coefficient at large n, we need to evaluate the Green function
at large ω. The turning point rc becomes large at large ω, and therefore in such a large
rc, f(r) ≈ r2 and rc ≈ u, then we have

lim
r→∞

[log r + Z] ≃ lim
r→∞

[
log r −

∫ r

rc=u
dr′

√
r2 − u2

r2

]
(3.32)

= lim
U→∞

[
log r −

∫ u−1r

1
dx

√
x2 − 1
x2

]
(3.33)

≃ 1 + log rc

2 . (3.34)

Thus the boundary correlation function G+(ω) in the large ω limit becomes

G+(ω) ∝ ω2ν at large ω. (3.35)

Therefore the spectrum grows exponentially in ω, where ν = m + O(1/m) in large m for
WKB approximation.

The Wightman inner product correlator for UV regulation is

G12(t) = Tr
[
e−βHO(t− iβ/2)O(0)

]
. (3.36)

In frequency space, G12(ω) and G+(ω) are related as

G12(ω) = e−
ωβ
2 G+(ω). (3.37)

This can be understood simply by changing the contour of the t integration in the Fourier
transformation. Then

G12(ω) ∝ ω2νe−
ωβ
2 → 0 at large ω , (3.38)

goes to zero at large ω, i.e., UV regulated.
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Next, we use this Green function to evaluate the Krylov complexity. However before that,
let us comment on the validity of the WKB approximation. For the WKB approximation,
the dimension of the operator O needs to be large. However, the continuum properties of
the Green function are essentially determined by the boundary condition on the black hole
horizon. Thus, although we use the results of WKB approximation for the Green function
to evaluate the Krylov complexity, we expect that the resultant Krylov complexity are not
so much dependent on the detail of WKB approximations.

3.1.3 Krylov complexity of the discrete spectrum

We evaluate the Krylov complexity associated to the two-point function G12(t), which is
symmetric with respect to t:

G12(t) = Tr
[
e−βHO(t− iβ/2)O(0)

]
= Tr[e−βH/2eiHtOe−iHte−βH/2O]

= Tr[e−βH/2e−iHtOe+iHte−βH/2O] = G12(−t). (3.39)

In frequency space, G12(ω) is also symmetric with respect to ω:

G12(ω) :=
∫ ∞

−∞
dt eiωtG12(t) =

∫ ∞

−∞
dt eiωtG12(−t) = G12(−ω). (3.40)

From the spectrum (3.9) for thermal AdS and (3.37), we consider the following discrete
spectrum

G12(ω) =
1
N0

∑
ℓ=0

∑
n=0

e−
|ω|β

2 [δ (ω − (∆ + ℓ+ 2n)) + δ (ω + (∆+ ℓ+ 2n))] , (3.41)

where N0 is a normalization constant such that∫ ∞

−∞

dω

2πG12(ω) = 1. (3.42)

Figure 4 shows the Lanczos coefficient bn and the Krylov complexity K(t) computed
numerically from the discrete spectrum G12(ω) (3.41) for ∆ = 10 and β = 2π. The length scale
that determines the discreteness of (3.41) is the AdS scale R = 1. Since β/R = 2π ∼ O(1),
bn and K(t) behave similar to those in figure 1. Krylov complexity K(t) in the bottom figure
appears to be a band. This phenomenon is attributed to the function oscillating at a very high
frequency. The periodicity of this oscillation is about O(π/∆) as seen in the middle figure.

3.1.4 Krylov complexity of the continuous spectrum

From the holographic computation on the black hole background, the asymptotic behavior of
G12(ω) is determined as (3.38). Thus, we consider the following continuous spectrum

G12(ω) =
1
N0

|ω|2νe−
|ω|β

2 , (3.43)

and compute the Krylov complexity. Figure 5 shows the Lanczos coefficient bn and the
Krylov complexity K(t) of the spectrum (3.43) for ν = 10 and β = 2π. To see the growth
behavior, we plot K(t) and log[1 +K(t)]. One can see the linear growth of bn with one slope
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(a) Lanczos coefficient bn.
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(b) Krylov complexity K(t) in 0 ≤ t ≤ 10.
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(c) Krylov complexity K(t) in 0 ≤ t ≤ 100.

Figure 4. Numerical plots of the Lanczos coefficient bn and the Krylov complexity K(t) of the
discrete spectrum G12(ω) (3.41) for ∆ = 10 and β = 2π.
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and the linear growth of log[1 +K(t)], which means the exponential growth of K(t), and
its exponential growth rate is K(t) ∼ e

2π
β

t due to e−
|ω|β

2 in (3.43).
We comment on the sum for n in numerical computation of K(t) =

∑∞
n=1 n|φn(t)|2.

In our numerical computation for figure 5, we only calculate the Lanczos coefficient bn up
to nmax = 1000 and evaluate K(t) ∼

∑nmax
n=1 n|φn(t)|2. Under this approximation, K(t)

is bounded as K(t) ≤ nmax. To see the growth of K(t) at much later times, we need to
choose larger nmax in the numerics. On the other hand, we numerically confirmed that
K(t) of the discrete spectrum G12(ω) (3.41) in figure 4 does not change significantly when
we increase nmax.

Let us summarize our results of N = 4 SU(N) Super Yang-Mills theory in the large
N limit. Figures 4 and 5 show the two distinct behaviors of K(t): oscillation for thermal
AdS (3.1) and exponential growth for AdS5 black hole (3.10). From these two behaviors
of K(t), the Krylov complexity can be interpreted as an order parameter of the Hawking-
Page transition that is dual to a confinement/deconfinement phase transition in the large
N quantum field theory side. From the viewpoint of spectrum, the different behaviors of
Krylov complexity come from the difference between discrete spectrum (3.41) and continuous
spectrum (3.43). In the thermal AdS geometry (3.1), there is only one length scale: the AdS
scale R = 1. Therefore, the temperature scale at which the phase transition occurs and the
discrete momentum scale are determined by 1/R = 1 only.

3.2 Krylov complexity for N = 0 pure Yang-Mills theory

We consider the pure SU(N) Yang-Mills theory in the large N limit as a theory with a
confinement/deconfinement phase. Furthermore, unlike the previous subsection, this theory
does not have conformal symmetry. In holography, this is realized by N D4-branes wrapping
S1 circle with an anit-periodic boundary condition for fermions, since then fermions acquire
the mass and through one-loop, and bosons also acquire the mass [19]. See [34–37] for
calculations of glueball mass concerning the following calculations.

Setting. The above configuration, in the large N limit, can be described by the follow-
ing metric,

ds2 =
(
U

R

)3/2
(
−dt2 +

3∑
i=1

(dxi)2 + f(U)dx24

)
+
(
R

U

)3/2
(
dU2

f(U) + U2dΩ4

)
, (3.44)

where

f(U) = 1− U3
KK

U3 . (3.45)

This is the metric for D4-brane wrapping on the thermal circle x4. Here x4 must satisfy
the periodicity

x4 = x4 +
4π
3
R3/2

U
1/2
KK

, (3.46)

such that at U = UKK , there is no conical deficit. In other words, (U, x4) coordinate
represents flat 2-dimensional space at U = UKK , like the tip of the cigar geometry. We
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(a) Lanczos coefficient bn.
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Figure 5. Numerical plots of the Lanczos coefficient bn and the Krylov complexity K(t) of the
continuous spectrum G12(ω) (3.43) for ν = 10 and β = 2π.
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also impose a periodic boundary condition

xi = xi + L. (3.47)

Note that the metric eq. (3.44) is AdS “soliton” solution, obtained from large N D4-brane
black hole metric

ds2 =
(
U

R

)3/2
(
−f(U)dt2 +

3∑
i=1

(dxi)2 + dx24

)
+
(
R

U

)3/2
(
dU2

f(U) + U2dΩ4

)
, (3.48)

by the double Wick rotation t → −ix4, x4 → +it, where R3 ∝ N . Here f(U) is

f(U) = 1− U3
0

U3 , (3.49)

where U = U0 is a horizon and the black hole temperature is given by

1
T

= β = 4π
3
R3/2

U
1/2
0

. (3.50)

Even though (3.44) and (3.48) are related by Wick rotation, their physical implication is
quite different.

1. The metric (3.44) represents the cigar-like geometry, where there is no black hole horizon,
and gtt is negative for any U . In (3.44), there is no geometry at U < UKK , and the bulk
IR cut-off UKK is associated with the QCD scale. The temperature can be arbitrary,
i.e., in Euclidean time τ := it, the periodicity of τ can be any value. Since (3.48)
has already a periodicity (3.50), then τ, x4 are periodic in both metrics. When these
periodicities coincide, the free energies calculated from these Euclidean metrics are the
same. Therefore, the Hawking-Page phase transition temperature is β = 4π

3
R3/2

U
1/2
KK

.

2. On the other hand, (3.48) is a black hole solution where there is a horizon at U = U0
and therefore it has a definite temperature determined by U0 as (3.50).

Mathematically both blackening factors f behave the same. But in one case U = UKK is
a flat space, and in the other case, U = U0 is a horizon.

Let’s consider the scalar equation of motion in this bulk geometries. The equation
of motion is

(□−m2)ϕ = 1
√
g
∂µ (√ggµν∂νϕ)−m2ϕ = 0. (3.51)

This bulk scalar is coupled to the D4’s Tr[FµνF
µν ], which is a “glueball” operator. Therefore

the spectrum of this bulk scalar corresponds to the glueball spectrum. We will solve this
equation both A) on the AdS soliton, and B) on the BH separately.

Furthermore, we always take the ansatz

ϕ = exp (−iωt+ ikixi) ϕ̃(U), (3.52)
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namely, the wave function depends on t, xi, and U only, independent of x4 and Ω4, where
the momentum ki is discrete,

ki =
2πℓi
L

. (3.53)

We always set R = 1. To restore the AdS scale, we can shift U → U/R, UKK → UKK/R,
U0 → U0/R.

3.2.1 AdS soliton case

For the metric (3.44), √g ∝ U4, the equation of motion is

1
U4∂U

(
U4+3/2f(U)∂U ϕ̃

)
+ U−3/2

(
ω2 − k2i

)
ϕ̃−m2ϕ̃ = 0. (3.54)

From the on-shell condition on the boundary,

ω2 − k2i =M2, (3.55)

where M is the mass of the boundary glueball, then

1
U4∂U

(
U4+3/2f(U)∂U ϕ̃(U)

)
+
(
M2

U3/2 −m2
)
ϕ̃ = 0. (3.56)

Near the boundary, U → ∞. First we solve the equation of motion in the large U region,
where f(U) → 1 and M2/U3/2 ≪ m2, and the equation becomes asymptotically as

1
U4∂U

(
U4+3/2∂U ϕ̃(U)

)
−m2ϕ̃ ≈ 0 at large U. (3.57)

Asymptotic solutions are given by

ϕ̃(U) ≈ c1
I9
(
4mU1/4

)
(
4mU1/4)9 + c2

K9
(
4mU1/4

)
(
4mU1/4)9 , at large U, (3.58)

where I and K are Bessel functions. At large U ,

lim
U→∞

I9
(
4mU1/4

)
(
4mU1/4)9 → ∞ , lim

U→∞

K9
(
4mU1/4

)
(
4mU1/4)9 → 0, (3.59)

therefore we need the boundary condition c1 = 0.

Near the tip, U → UKK. On the other hand, near the tip of the cigar U = UKK , we
have f(U) ≈ 3

UKK
(U − UKK), the equation of motion reduces to

3U1/2
KK∂U

(
(U − UKK)∂U ϕ̃

)
+
(
U

−3/2
KK M2 −m2

)
ϕ̃ ≈ 0. (3.60)

Asymptotic solutions are given by

ϕ̃(U) ≈ ctip1I0
(
mG

√
U − UKK

)
+ ctip2K0

(
mG

√
U − UKK

)
, (3.61)

– 24 –



J
H
E
P
0
4
(
2
0
2
4
)
1
1
9

where

mG ≡ 2√
3UKK

(
m2 − M2

U
3/2
KK

)
. (3.62)

Again at the tip of the cigar,

lim
U→UKK

I0
(
mG

√
U − UKK

)
→ 1 , lim

U→UKK

K0
(
mG

√
U − UKK

)
→ ∞ (3.63)

therefore we need the boundary condition ctip2 = 0 at U = UKK .
In summary, we have two boundary conditions c1 = 0 at the boundary and ctip2 = 0 at

the tip. However, this is impossible for a general value of M2. By imposing c1 = 0 at the
boundary and extrapolating the solution to U = UKK , we obtain the solution with ctip2 = 0
only for certain values of M2. Just as in ordinary quantum mechanics, this is the reason why
M2 is quantized and we obtain the holographic discrete spectrum for scalar glueball operators.

One possible way to determine the values of M2 is the shooting method; numerically to
start with the solution at large U with c1 = 0 and then extrapolate the solution to U = UKK .
For generic value of M2, ϕ̃ diverges so we fine-tune M2 so that at U = UKK , ϕ̃ converges.
Specifically, in the shooting method, we consider the following boundary condition at large Ub:

ϕ̃(Ub) = c2
K9

(
4mU1/4

b

)
(
4mU1/4

b

)9 ,
dϕ̃(U)

dU

∣∣∣
U=Ub

= c2
d

dU

K9
(
4mU1/4

)
(
4mU1/4)9

 ∣∣∣∣∣
U=Ub

, (3.64)

where we choose c2 so that ϕ̃(Ub) = 1. By solving the EOM (3.56) numerically with this
boundary condition, we can compute ϕ̃(UKK + ϵ) for a given value of M , where ϵ is a
small constant.

We plot ϕ̃(UKK + ϵ) for UKK = 1, m = 10, Ub = 104, ϵ = 10−4 in figure 6, where the
horizontal axis is M . For generic value of M , |ϕ̃(UKK + ϵ)| is very large, which means the
divergence of ϕ̃ at U = UKK . However, for some quantized value of M , |ϕ̃(UKK + ϵ)| is zero,
which means that ϕ̃ for such a value of M converges at U = UKK .

In the same way as example 3 in section 2, if β/L → ∞, only ki = 2πℓi
L = 0 mode

is dominant in the spectrum. As β/L decreases, the spectrum includes a correction by
nonzero ℓi modes. As well as (3.41) for thermal AdS, we first consider the following discrete
spectrum for β/L → ∞

G12(ω) =
1
N0

∑
n=0

e−
|ω|β

2 [δ (ω −Mn) + δ (ω +Mn)] , (3.65)

where Mn is the quantized value determined by the shooting method, and the sequence
of Mn is taken as follows

Mn1 < Mn2 if n1 < n2. (3.66)

For example, M1 −M0 ∼ 2 in figure 6. Next, including the collection of nonzero ki = 2πℓi
L ,

consider the following discrete spectrum

G12(ω) =
1
N0

∑
n=0

∑
ℓi

e−
|ω|β

2 [δ (ω − ωnℓi
) + δ (ω + ωnℓi

)] , (3.67)

ωnℓi
:=

√
M2

n +
(2π
L

)2 (
ℓ21 + ℓ22 + ℓ23

)
, (3.68)
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Figure 6. M -dependence of ϕ̃(UKK + ϵ) for UKK = 1, m = 10, Ub = 104, ϵ = 10−4.

where ℓi takes integer values in the sum. If β/L≪ 1, the momentum ki = 2πℓi
L can be treated

as continuous, and the spectrum (3.67) is close to continuous.
In the AdS soliton geometry, there are two length scales for the periodic boundary

conditions (3.46) and (3.47), where 4π
3

R3/2

U
1/2
KK

is associated to the QCD scale, and L is associated

to the discrete momentum ki = 2πℓi
L . The phase transition occurs when β = 4π

3
R3/2

U
1/2
KK

.
Therefore, for the prescription in section 2, we should take

β ∼ R3/2

U
1/2
KK

, β/L ≳ 1. (3.69)

In the following numerical computations, we set R = 1, UKK = 1, m = 10, β = 2π.
Figure 7(a) shows the Lanczos coefficient bn of the spectrum (3.65) for β/L→ ∞. One

can see the two-slope behavior of bn, which is a characteristic behavior for discrete spectrum
like (2.18). Next, figure 7(b) shows the Lanczos coefficient bn of the spectrum (3.67) for
β/L = 150. At small n, bn in figure 7(b) also has the two-slopes behavior. However, from
n ∼ 300, the slopes for odd n and even n seem to be the same. Two such identical slopes are
observed in a massive free scalar theory in non-compact space [14, 15] whose spectrum is
continuous. Finally, figure 7(c) shows the Lanczos coefficient bn of the spectrum (3.67) for
β/L = 100, where the two slopes behavior ends at n ∼ 200. These figures show that, as the
length scale L of compact space increases, the behavior of Lanczos coefficient bn approaches
the behavior for a continuous spectrum at smaller n due to the momentum ki = 2πℓi

L .
Figure 8(a) shows the Krylov complexity K(t) computed from the discrete spectrum

G12(ω) (3.65) for β/L → ∞, where K(t) oscillates and does not grow. In particular, the
maximum value of K(t) is K(t) ∼ 1, which is similar to (2.30). Figures 8(b) and 8(c)
shows K(t) computed from the discrete spectrum G12(ω) (3.67) for β/L = 150, 100. At
least in the time region 0 ≤ t ≤ 100, which is larger than the time scale t ∼ β = 2π, these
three figures are identical. In these figures, the values of dimensionless scales measuring
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the discreteness of (3.67) are

β(M1 −M0) ∼ 4π ∼ O(10), β/L ≳ O(100). (3.70)

Due to these not-small values, K(t) shows the oscillation behavior. Moreover, due to the
oscillation, K(t) in figure 8 appears to be in a band. To see the oscillation clearly, we plot K(t)
on a short time scale 0 ≤ t ≤ 10 in figure 9. We note that this plot is identical to (2.30) with
m =M0 ∼ 11.7. This is because only n = 0 mode in (3.65) contributes to K(t) due to (3.70).

Three figures of K(t) in figure 8 are identical since β/L is too large as β/L ≳ O(100). If
β/L ∼ O(1), K(t) would depend on the value of β/L. Figure 10 shows K(t) computed from
the discrete spectrum G12(ω) (3.67) for UKK = 1, m = 10, β = 2π, β/L = 7, 5. Compared
to K(t) in figure 8, the maximum values of K(t) in figure 10 are larger due to β/L ∼ O(1).
The values of t at which the Krylov complexity is maximized change as β/L changes since
the eigenvalue interval in the discrete spectrum changes. Our numerical results show the
validity of prescription II in section 2. By compactifying the space sufficiently β/L ≳ 1, the
exponential growth of K(t) due to continuous momentum does not occur, and thus K(t)
oscillates and does not grow if the mass spectrum is discrete.

3.2.2 BH case

Similarly for the BH background metric (3.48), with √
g ∝ U4, the equation of motion is

1
U4∂U

(
U4+3/2f(U)∂U ϕ̃

)
+ U−3/2

(
ω2

f(U) − k2i

)
ϕ̃−m2ϕ̃ = 0. (3.71)

Additional warping factor in front of ω2 is the crucial difference between this black hole
metric and (3.54) for AdS soliton. Again before we use the tortoise coordinate and make the
equation into the form of Schrodinger equation. Then, let us analyze the boundary condition.

Near the boundary, U → ∞. In this case, the analysis is the same as the AdS soliton
case. The solution is given by (3.58) and (3.59), and we need the boundary condition c1 = 0.

Near the horizon, U → U0. The crucial difference appears here. Near the horizon, we
have f(U) ≈ 3

U0
(U − U0), and ω2/f(U) ≫ k2i ,m

2. The equation of motion reduces to

3U1/2
0 ∂U

(
(U − U0)∂U ϕ̃

)
+
(
U

−3/2
0

(
U0 ω

2

3(U − U0)
− k2i

)
−m2

)
ϕ̃ (3.72)

= 3U1/2
0 ∂U

(
(U − U0)∂U ϕ̃

)
+ ω2

3U1/2
0 (U − U0)

ϕ̃ ≈ 0 at U → U0, (3.73)

which allows

ϕ̃(U) ≈ cbhc cos
(
ω log(U − U0)

3
√
U0

)
+ cbhs sin

(
ω log(U − U0)

3
√
U0

)
(3.74)

= cbh1 exp
(
i

ω

3
√
U0

log(U − U0))
)
+ cbh2 exp

(
−i ω

3
√
U0

log(U − U0))
)
. (3.75)
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(a) bn of the spectrum (3.65) for β/L→ ∞.
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(b) bn of the spectrum (3.67) for β/L = 150.
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(c) bn of the spectrum (3.67) for β/L = 100.

Figure 7. Numerical plots of the Lanczos coefficients bn for UKK = 1, m = 10, β = 2π.
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(a) Krylov complexity K(t) of the discrete spectrum
G12(ω) (3.65) for β/L→ ∞.

0 20 40 60 80 100

0

2

4

6

8

10

t

K(t)

(b) Krylov complexity K(t) of the discrete spectrum
G12(ω) (3.65) for β/L = 150.
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(c) Krylov complexity K(t) of the discrete spectrum
G12(ω) (3.65) for β/L = 100.

Figure 8. Numerical plots of the Krylov complexity K(t) for UKK = 1, m = 10, β = 2π.
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Figure 9. Numerical plots of the Krylov complexity K(t) on a short time scale 0 ≤ t ≤ 10 for
UKK = 1, m = 10, β = 2π, β/L→ ∞.

Even though both solutions oscillate very heavily near the horizon, there is no divergence.
So we can set both cbh1 and cbh2 to be nonzero consistently. Again the crucial difference
is f(U) in front of ω, which is due to gtt.

Therefore by numerically starting with the solution at large U with c1 = 0, we can
extrapolate the solution to the horizon U = U0. For the generic value of ω without any
fine-tuning, ϕ̃ converges even at the horizon. This is the reason why ω takes continuous
value for the black hole case. Intuitively it is clear that there are localized waves near the
horizon whose energy is extremely low due to the warping factor of gtt → 0. This is the
reason why the spectrum becomes continuous even for the compact space in the presence
of a black hole horizon.

To solve the equation, let us use the tortoise coordinate;

z =
∫ ∞

U

(
R

U

)3/2 dU

f(U) . (3.76)

Then, z-derivative becomes −(U/R)3/2f(U)∂U = ∂z, and we decompose ϕ into

ϕ = exp (−iωt+ ikixi)Uαψ(U) (3.77)

By tuning α = −2, one can make the equation in the form of a Schrodinger equation. Then
the equation of motion becomes

− ∂2zψ(U) + V (U)ψ(U) = ω2ψ(U) (3.78)

where V (U) = f(U)
[
5Uf(U) + 2U2f ′(U) +m2U3/2 + k⃗2

]
, (3.79)

where k⃗ = 2π
L (nx, ny, nz) is quantized momentum. At U → ∞, the mass term potential

dominates

lim
U→∞

V (U) ≈ m2U3/2. (3.80)
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(a) Krylov complexity K(t) of the discrete spectrum
G12(ω) (3.67) for β/L = 7.
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(b) Krylov complexity K(t) of the discrete spectrum
G12(ω) (3.67) for β/L = 5.

Figure 10. Numerical plots of the Krylov complexity K(t) for UKK = 1, m = 10, β = 2π.

This is essential because AdS is a gravitational box. Therefore we choose the boundary
condition so that ϕ ∝ ψ(U)/U2 at U → ∞ converges as we have seen previously.

At the horizon U = U0, V (U) → 0 therefore we can normalize it to be real as (3.16)

ψ(U) = eiωz−iδ + e−iωz+iδ . (3.81)

From (3.76), as we increase U , z decreases. Therefore,

1. e−iωz−iδ, which corresponds to exp
(
i ω
3
√

U0
log(U − U0))

)
, is an out-going mode.

2. e+iωz−iδ, which corresponds to exp
(
−i ω

3
√

U0
log(U − U0))

)
, is an in-going mode.

As [33], we consider the Wightman Green function and thus kept both ingoing and out-
going modes.
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We can now solve this by using the WKB approximation, where m→ ∞. We will read
the large ω behavior of the spectral function for the Krylov complexity.

WKB approximation. We turn our attention to the following scaling limit

ω = νu , m = ν , k⃗ = νl⃗ , ν ≫ 1. (3.82)

By setting

ψ(U) = eνS , (3.83)

from (3.78), we have

−ν(∂2zS)− ν2(∂zS)2 + ν2V0 = ν2u2 +O
(
ν0
)
, (3.84)

where V0 is

V0 = f(U)
(
U3/2 + l⃗2

)
. (3.85)

This V0 is obtained from V in eq. (3.79) as

V = f(U)
[
5Uf(U) + 2U2f ′(U) +m2U3/2 + k⃗2

]
(3.86)

= ν2V0 +O
(
ν0
)
. (3.87)

Setting

S = S(0) + 1
ν
S(1) + · · · , (3.88)

for the WKB approximation, leading and subleading order S(0), S(1) satisfies

−ν
(
∂2zS

(0) + 1
ν
∂2zS

(1)
)
− ν2

(
∂zS

(0) + 1
ν
∂zS

(1)
)2

+ ν2V0 = ν2u2 +O
(
ν0
)
. (3.89)

Therefore in the leading order at O
(
ν2
)
,

− (∂zS
(0))2 + V0 = u2 → ∂zS

(0) = +
√
V0 − u2 (3.90)

→ S(0) =
∫
dz
√
V0 − u2 = −

∫ U

Uc

dU ′κ(U ′) , (3.91)

where κ =
(
R

U

)3/2 1
f(U)

√
V0 − u2 . (3.92)

Here we used (3.76) and

V0(Uc) = u2 , (3.93)

at the turning point U = Uc. At the subleading order O(ν),

−∂2zS(0) − 2∂zS
(0)∂zS

(1) = 0 → S(1) = log 1
(V0 − u2)1/4 . (3.94)
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Therefore under the WKB approximation, the approximate solution becomes

ψ(wkb)(U) = 1
(V0 − u2)1/4 e

νZ
(
1 +O

(
ν−1

))
, Z = −

∫ U

Uc

dU ′κ(U ′) . (3.95)

Near the horizon V0 → 0 due to f(U) → 0, the normalization condition eq. (3.81) determines
the relative normalization factor as follows

ψ(wkb)(U) = 1√
u
ψ(U). (3.96)

Now, the bulk correlator is

G+ ∼ 1
ω
(UU ′)−2ψ(U)ψ(U ′). (3.97)

From (3.59), the normalizable mode approaches asymptotically

lim
U→∞

K9
(
4mU1/4

)
(
4mU1/4)9 →

√
π

2(4mU1/4)
e−4mU1/4

(4mU1/4)9
→ 0 ,

(
lim

z→∞
K(z) =

√
π

2z e
−z
)
. (3.98)

From this, the relationship between boundary correlation function G+ and bulk correlator G+ is

G+ ∼ lim
U,U ′→∞

(e4mU1/4(4mU1/4)19/2)(e4mU ′1/4(4mU ′1/4)19/2)G+(U,U ′) (3.99)

∼ lim
U,U ′→∞

(e4mU1/4(4mU1/4)19/2)(e4mU ′1/4(4mU ′1/4)19/2)(UU ′)−2

× 1
ν

1
(V0 − u2)1/4 e

νZ 1
(V0 − u2)1/4 e

νZ . (3.100)

Now
(
V0 − u2

)1/4 → U3/8 at large U , then

G+ ∼ lim
U,U ′→∞

(e4mU1/4(4mU1/4)19/2)(e4mU ′1/4(4mU ′1/4)19/2)(UU ′)−2 1
ν

1
U3/8 e

νZ 1
U ′3/8 e

νZ

(3.101)

∼ lim
U,U ′→∞

(4m)19 1
ν
e2ν(4U1/4+Z). (3.102)

The argument of the exponent is

4U1/4 + Z = 4U1/4 −
∫ U

Uc

dU ′
( 1
U ′

)3/2 1
f(U ′)

√
V0 − u2. (3.103)

To evaluate the Lanczos coefficient at large n, we need to evaluate the Green function
at large ω. However, at large ω, the turning point Uc becomes large from (3.93). Therefore
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in such a large Uc, f(U) ≈ 1, V0 ≈ U3/2, and Uc ≈ u4/3. Then we have

lim
U→∞

[
4U1/4 + Z

]
≃ lim

U→∞

[
4U1/4 −

∫ U

Uc=u4/3
dU ′

√
U ′3/2 − u2

U ′3/2

]
(3.104)

= lim
U→∞

[
4U1/4 − u1/3

∫ u−4/3U

1
dx

√
x3/2 − 1
x3/2

]
(3.105)

= lim
U→∞

4U1/4 − u1/3

4 (u−4/3U
)1/4

−
9
√
3πΓ

(
5
3

)
Γ
(
1
6

) +O
(
U−1/4

)
(3.106)

=
9
√
3πΓ

(
5
3

)
Γ
(
1
6

) u1/3 = C(ν)ω1/3, (3.107)

where

C(ν) ≡
9
√
3πΓ

(
5
3

)
Γ
(
1
6

) 1
ν1/3 . (3.108)

Thus the G+(ω) in the large ω limit becomes

G+(ω) ∝ eC(ν)ω1/3 at large ω, (3.109)

where ν = m. Therefore the spectrum grows exponentially in ω.
As is studied in [33], for correlator with UV regularization as

G12(t) = Tr
[
e−βHO(t− iβ/2)O(0)

]
. (3.110)

In frequency space, they are related as

G12(ω) = e−
ωβ
2 G+(ω). (3.111)

This can be understood simply by changing the contour of the t integration of the Fourier
transformation. Then

G12(ω) ∝ eC(ν)ω1/3−ωβ
2 → 0 at large ω , (3.112)

goes to zero at large ω, i.e., UV regulated.
A few comments are in order;

1. Eq. (3.112) is our final result for the N = 0 holographic QCD, i.e., glueball Green
function at large ω in the holographic bulk D4 on S1 geometry at the deconfinement
phase.

2. For D3-brane AdS5 case, eq. (4.23) of [33] showed that

G12(ω) ∝ ω2νe−
ωβ
2 → 0 at large ω . (3.113)
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3. However for D4 on S1 case, our result is eq. (3.112). The difference is that there
is additional ω1/3 power in the argument of the exponential. Although this effect is
subleading, eq. (3.109) shows that there is a scale from the exponential. On the other
hand, eq. (4.15) in [33] shows there is no scale in AdS5 case.

4. Given this, we expect that if we consider the theory dual to large N QCD, generically
it behave as

G12(ω) ∝ ωbeA(ω/ν)a−ωβ
2 → 0 at large ω , (3.114)

where a and b are some constant with a < 1. Eq. (3.109) is a special case of
a = 1/3, b = 0.

Given the generic structure (3.114) in black hole case for holographic QCD, one can read off
the Lanczos coefficients and see how the Krylov complexity should grow as a function of t.

Based on the asymptotic behavior of G12(ω) (3.114), we compute the Krylov complexity
of the following continuous spectrum

G12(ω) =
1
N0

|ω|beA(|ω|/ν)a− |ω|β
2 , (3.115)

for the holographic N = 0 pure YM case (3.112), i.e., a = 1/3, b = 0, A = 9
√
3πΓ( 5

3)
Γ( 1

6)
∼

4.5. Figure 11 shows the Lanczos coefficient bn and the Krylov complexity K(t) of the
spectrum (3.115) for the holographic N = 0 pure YM case with ν = 10 and β = 2π. The
growth behaviors of bn and K(t) are similar to the behaviors in figure 5. This is because we
set a = 1/3, and in that case, A(|ω|/ν)a at large |ω| in (3.114) is smaller than |ω|β

2 . Thus, the
large n behavior of bn and the late time behavior of K(t) are mainly determined from e−

|ω|β
2 .

Just as N = 4 case, we implicitly assume the dimension of the operator O for the
Krylov complexity is large enough such that WKB approximation is valid. However, the
continuum spectrum from the Green function is determined by the boundary conditions on
the horizon thus we expect that the resultant Krylov complexity are not much dependent
on the WKB approximation.

Let us summarize our results of N = 0 Yang-Mills theory in the large N limit, where
we can arbitrarily choose a length scale L of the compact space. For our prescription in
section 2, we considered AdS soliton geometry (3.44) that satisfies (3.69). The Krylov
complexity of discrete spectrum (3.67) for such a geometry oscillates and does not grow.
In contrast, the Krylov complexity of continuous spectrum (3.115) for AdS black hole
geometry (3.48) shows the exponential growth behavior. Together with our results of N = 4,
the Krylov complexity can be an order parameter of the Hawking-Page transition that is
dual to a confinement/deconfinement phase transition at large N by compactifying the space
appropriately to avoid continuous momentum.

4 Summary

In this paper, we proposed that the Krylov complexity of operators such as O = Tr[FµνF
µν ]

can be an order parameter of confinement/deconfinement transitions in large N quantum
field theories. It has been conjectured that the Krylov complexity grows exponentially in the
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(a) Lanczos coefficient bn.
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(b) Log plot log[1 +K(t)] of the Krylov complexity.

Figure 11. Numerical plots of the Lanczos coefficient bn and the Krylov complexity K(t) of the
continuous spectrum G12(ω) (3.115) for ν = 10, β = 2π, a = 1/3, b = 0, A = 9

√
3πΓ( 5

3 )
Γ( 1

6 )
, which is for

the holographic N = 0 pure YM case (3.112).

thermodynamic limit of chaotic systems. However, it is not true that a system is chaotic if
the Krylov complexity grows exponentially. An example is free scalar quantum field theories
on non-compact space, where continuous momentum in the non-compact space direction
is the reason why exponential growth occurs. This implies that the exponential growth of
Krylov complexity is sensitive to the continuity of the spectrum. To avoid this exponential
growth in free field theory, we can compactify the space on which the field theory is located
as L ≲ Λ−1

QCD for discrete momentum. Furthermore, if we consider large N field theories, the
systems can exhibit confinement/deconfinement transitions. We propose that the exponential
growth of Krylov complexity in large N field theories can detect such phase transitions.

Our proposal is inspired by previous studies [14, 16, 28, 29] in which the Krylov complexity
behaves in various ways depending on the continuity or discreteness in the spectrum of two-
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point functions. For a concrete proposal, we formulated conditions of the spectrum that the
Krylov complexity grows exponentially: (A) the spectrum is continuous rather than discrete,
and (B) the high-energy tail of the spectrum exponentially decays to zero.

In compact space, the continuity of the spectrum depends on various dimensionful
scales such as mass spectrum, temperature, and length scales of the compact space. To use
the exponential growth of Krylov complexity as a measure of confinement/deconfinement
transitions due to the change of mass spectrum, the spectrum must be prevented from
becoming continuous by momentum.

To clearly distinguish the continuity of spectrum due to the KK momentum and mass
spectrum, we considered a model of infinitely many free scalars with various masses in compact
space. By compactifying the space small enough, one can ignore nonzero discrete momentum,
and the continuity of the spectrum is determined by the mass spectrum. Then, the exponential
growth of Krylov complexity can be a measure of the continuity of the mass spectrum.

From the above model, we explicitly proposed the prescription to use the exponential
growth of Krylov complexity as a measure of confinement/deconfinement transitions in large
N field theories. First, take the temperature near the phase transition scale such as the
QCD scale. Next, compactify the space small enough to discretize momentum. Then, the
continuity of the spectrum is determined by the continuity of the mass spectrum that changes
drastically under the phase transition, and the exponential growth of Krylov complexity can
be a measure to detect such change in the spectrum.

As further evidence of our proposal, we studied the Krylov complexity of N = 4, 0 SU(N)
Yang-Mills theories in the large N limit via holography. First, we analyzed the spectrum of a
scalar operator by using a holographic method in [33]. If the background geometry is a black
hole geometry, the spectrum is continuous, where we use the WKB approximation to compute
the mass spectrum by assuming large scaling dimension. Otherwise, the spectrum is discrete.
Then, we calculated the Krylov complexity from the obtained spectrum and confirmed that
the behavior of Krylov complexity changes whether the spectrum is continuous or discrete.
Therefore, the Krylov complexity can detect the Hawking-Page transitions that are dual to
confinement/deconfinement transitions in the large N Yang-Mills theories.

We calculated the Krylov complexity from the spectrum of a bulk scalar that corresponds
to the glueball correlator in this paper. But pure Yang-Mills theories contain many other
operators. It is a straightforward future work to generalize our computations to the spectrum
of bulk gauge or bulk tensor fields and the Krylov complexity of their dual fields.

In principle, the Krylov complexity can be computed numerically if the spectrum of a
two-point function is given. It is interesting to evaluate the Krylov complexity from the
spectrum in realistic field theories such as QCD. If we do not take the large N limit, a
smooth crossover may occur, and the Krylov complexity may also transit smoothly.

In lattice gauge theories, the Yang-Mills action can be approximated by the Wilson
action as a sum of plaquette Wilson loops, and a correlation function of two parallel plaquette
Wilson loops is used to study a mass gap. Since the Krylov complexity in lattice systems can
be defined for k-local operators acting on k lattice points, it may be possible to formulate the
Krylov complexity for a plaquette Wilson loop operator as a lattice version for O = Tr[FµνF

µν ].
In the same manner, it may be also possible to formulate the Krylov complexity in quantum
field theories for an integral of a local operator on a finite space domain.
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A Spectrum from two-point function

In this section, we will give a note on the spectrum appearing in the calculation of the Krylov
complexity. In general, the Krylov complexity is related to the spectrum ρ(ω) = ReG(ω)
determined from a two-point function G(t). Note that this generally does not coincide with
the Hamiltonian energy eigenvalues, i.e. the full energy spectrum of the system. Taking
the harmonic oscillator

H = p2

2m + 1
2mω

2
0x

2, (A.1)

(full spectrum H = ℏω0(n + 1
2)) as an example, we will now calculate the Wightman

inner product two-point function and its spectrum given by the Fourier transformation.
Starting from

G(t) = 1
Z(β) Tr

(
e−

βH
2 x(t)e−

βH
2 x(0)

)
(A.2)

= 1
Z(β) Tr

(
e−

βH
2 eiHtx(0)e−iHte−

βH
2 x(0)

)
, (A.3)

where Z(β) is the partition function. Let us write down by using full energy eigenstate |n⟩,

G(t) = 1
Z(β)

∑
n,n′

⟨n|e−
βH

2 eiHtx(0)|n′⟩ ⟨n′|e−iHte−
βH

2 x(0)|n⟩

= 1
Z(β)

∑
n,n′

e−
β
2 (En+En′ )ei(En−En′ )t ⟨n|x(0)|n′⟩ ⟨n′|x(0)|n⟩ .

From knowledge of harmonic oscillators, the matrix components can be calculated as follows

⟨n′|x(0)|n⟩ =
√

ℏ
2mω0

(
δn′,n+1

√
n+ 1 + δn′,n−1

√
n
)
. (A.4)

From these,

G(t)= 1
Z(β)

ℏ
2mω0

∑
n,n′

e
−

β

2 (En+En′ )
ei(En−En′ )t

(
δn,n′+1

√
n′+1δn′,n−1

√
n+δn,n′−1

√
n′δn′,n+1

√
n+1

)

= 1
Z(β)

ℏ
2mω0

(∑
n=1

ne
−

β

2 (En+En−1)
ei(En−En−1)t+

∑
n=0

(n+1)e−
β

2 (En+En+1)
ei(En−En+1)t

)
= 1

Z(β)
ℏ

2mω0

∑
n=1

ne−ℏω0βn
(
eiℏω0t+e−iℏω0t

)
= ℏcos[ℏω0t]

2mω0 sinh[ℏω0β/2] , (A.5)
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where we used En = ℏω0(n + 1
2) and Z(β) = Tr

(
e−βH

)
=
∑

n e
−βℏω0(n+ 1

2 ) = 1
2 sinh[βℏω0/2] .

Fourier transformation of this function is

G(ω) =
∫
dteiωtG(t) = 1

Z(β)

∫
dt

ℏ
2mω0

∑
n=1

ne−ℏω0βn
(
ei(ω+ℏω0)t + ei(ω−ℏω0)t

)
= πℏ

2mω0 sinh[ℏω0β/2]
(δ(ω + ℏω0) + δ(ω − ℏω0)) . (A.6)

Since the sum over n is simply a constant, this spectrum is simply a delta-functional
distribution with ω = ±ℏω0. This is related to the fact that the matrix components of x can
only represent transitions between neighboring energy eigenstates. Therefore, the spectrum
calculated from the two-point function of x, which is different from the full energy spectrum
En = ℏω0(n + 1

2), is also in such a way that only transitions between neighboring energy
states are allowed. The Krylov complexity uses information on the spectrum determined
from the two-point function.

B Basis of Krylov complexity

In this subsection, we will briefly review the definition of Krylov complexity and a related
important quantity, Lanczos coefficient. Let us consider a local operator Ô and its time
evolution

Ô(t) = eiHtÔe−iHt = Ô + it[H, Ô] + (it)2

2! [H, [H, Ô]] + · · · (B.1)

=
∞∑

n=0

(it)n

n! LnÔ = eiLtÔ , (B.2)

LnÔ ≡ [H, [H, [H, · · · , [H, Ô]]]]︸ ︷︷ ︸
n commutators

. (B.3)

The Krylov complexity measures the spread of Ô(t) in Hilbert space and should answer
the question of how much Ô(t) deviates from the original one Ô(0) as it evolves in time.
Specifically, as Ô(t) evolves in time, it will be described by a linear combination of LnÔ, and
we need to construct an orthonormalized basis to measure the spread of Ô(t). To do so, we
introduce an inner product (Â|B̂) between operators Â and B̂, and then do orthogonalization
by the Gram-Schmidt method. By choosing a suitable inner product, a matrix Lm,n, defined by

Lm,n ≡ (Ôm|LÔn), (B.4)

becomes a Hermitian matrix, where {Ôn} is the obtained orthonormalized basis such that
(Ôm|Ôn) = δmn. We call {Ôn} Krylov basis, which obeys

Ô−1 ≡ 0, Ô0 ≡ Ô, (B.5)

LÔn = anÔn + bnÔn−1 + bn+1Ôn+1, (B.6)

Lm,n ≡ (Ôm|LÔn) =



a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

... . . .


, (B.7)
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where an and bn are called Lanczos coefficients and play a very important role in the
calculation of the Krylov complexity.

In particular, these Lanczos coefficients can be read off from a two-point correlation
function. The method is as follows. First, consider a two-point correlator G(t) = (Ô(t)|Ô),
where its Taylor expansion is given by

G(t) =
∑
n=0

Mn
(−it)n

n! , Mn = 1
(−i)n

dnG(t)
dtn

∣∣∣∣
t=0

= (Ô0|LnÔ0) ≡ (Ô0|Ln|Ô0). (B.8)

Here, Mn can also be computed from the Fourier transformation of G(t) as

Mn =
∫ ∞

−∞

dω

2π ω
nf(ω), (B.9)

f(ω) ≡
∫ ∞

−∞
dteiωtG(t). (B.10)

Since LnÔ0 can be expressed by {Ôn} and the Lanczos coefficients from (B.6), the Lanczos
coefficients can be read from Mn as follows.

M1 = (Ô0|L|Ô0) = a0, (B.11)
M2 = (Ô0|L2|Ô0) = a20 + b21, (B.12)
M3 = (Ô0|L3|Ô0) = a30 + 2a0b21 + a1b

2
1, · · · . (B.13)

Once the Lanczos coefficients are obtained, the Krylov complexity can then be calculated
as follows. First, we prepare

Ô(t) ≡
∑
n=0

inφn(t)Ôn. (B.14)

This is simply a rewriting of the time evolution of Ô, where inφ(t) is the coefficient when
we expand Ô(t) in the Krylov basis. In other words,

φn(t) = i−n(Ôn|Ô(t)). (B.15)

On the other hand, time derivative of Ô(t) is

dÔ(t)
dt

=
∑
n=0

in
dφn(t)
dt

Ôn

= i[H, Ô(t)] = iLÔ(t) =
∑
n=0

in+1φn(t)LÔn, (B.16)

and
dφn(t)
dt

= ianφn(t)− bn+1φn+1(t) + bnφn−1(t), (B.17)

φ−1 ≡ 0, φ0(t) = G∗(t). (B.18)

The Krylov complexity is defined by

K(t) ≡
∞∑

n=1
n|φn(t)|2. (B.19)
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As is clear from the definition and its construction, the Krylov complexity represents the
operator growth in the Krylov subspace of total Hilbert space associated with the time
evolution of an initial local operator. This quantity is often used to study chaotic systems.

Our explicit numerical method is as follows. Suppose that spectrum f(ω) = G(ω) :=∫∞
−∞ dteiωtG(t) is given. From this spectrum, we numerically compute the moments Mn (B.9)

up to n = 2nmax + 1. By using relations between Mn and Lanczos coefficients an and bn

like (B.11), we can numerically calculate a0, · · · , anmax and b1, · · · , bnmax fromM1, · · · ,M2nmax+1.
See [26] for specific numerical algorithms. Once the Lanczos coefficients are obtained, we
numerically solve the first-order differential equations (B.17) for φ0(t), · · · , φnmax(t) with
the following initial condition

φn(0) = δn0. (B.20)

Since we only compute the Lanczos coefficients up to n = nmax, we set bnmax+1 = φnmax+1(t) =
0 in numerical calculations. From the obtained wave functions, we finally obtain Krylov
complexity

K(t) =
nmax∑
n=1

n|φn(t)|2. (B.21)

When dimension of Krylov subspace is infinite, the exact expression of K(t) is (B.21)
with nmax → ∞. However, in numerical computations, we can only compute (B.21) with
finite nmax, and therefore late-time behaviors of φn(t) and K(t) are not precise as seen in
figure 3. We also note that

∑nmax
n=0 |φn(t)|2 = 1 is always valid in our numerics since we set

bnmax+1 = φnmax+1(t) = 0. In principe, we can choose any large nmax, but the numerical
cost will be larger.

From the above, it can be seen that once the Lanczos coefficients are known, the Krylov
complexity can be specifically calculated from them. Furthermore, its behavior at the late
time is found to be determined from the asymptotic form of the Lanczos coefficients [30]. In
particular, when the system is chaotic, bn is expected to increase linearly with n when n is
large, which leads to an exponential growth of the Krylov complexity

bn ∼ αn, K(t) ∼ e2αt, (B.22)

up to log corrections. Furthermore, the asymptotic form of bn is shown in [38] to reflect the
tail structure of the spectrum density f(ω). For example, if f(ω) ∼ exp[−|ω/ω0|] at large
|ω|, the asymptotic form of bn is bn ∼ πω0

2 n and behaves linearly for sufficiently large n. This
observation leads to condition B in this paper.

C Heat kernel

In this appendix, we give a rough calculation of the heat kernel.

Heat kernel on S1. From the definition,

KS1(s, τ) = ⟨τ |es∂2
τ |0⟩ =

∑
n,m

⟨τ |n⟩ ⟨n|es∂2
τ |m⟩ ⟨m|0⟩ (C.1)
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Now wave function is ⟨τ |n⟩ = 1√
β
e−ipnτ , (pn = 2πn

β ). Therefore

KS1(s, τ) = 1
β

∑
n,m

e−ipnτe−sp2
nδnm = 1

β

∑
n

e−sp2
n−ipnτ

= 1√
4πs

∑
n

e−
(τ+nβ)2

4s (C.2)

In the last equality, Poisson resummation∑
n∈Z

f(n) =
∑
k∈Z

f(k), f(k) =
∫ ∞

−∞
f(x)e−i2πkxdx (C.3)

was used.

Heat kernel on S3. Eigenvalue λℓ of ∇S3 where S3 has the radius R and it’s degeneracy
Dℓ is known,

λℓ = −ℓ(ℓ+ 2)
R2 , Dℓ = (ℓ+ 1)2, ℓ = 0, 1, 2, · · · (C.4)

Up to constant factor,

KS3(s) ∝
∞∑

ℓ=0
(ℓ+ 1)2e−sℓ(ℓ+2)/R2 =

∞∑
n=1

n2e−s(n2−1)/R2 ∝
∞∑

n=−∞
n2e−s(n2−1)/R2

∝ es/R2

s3/2

∑
ℓ∈Z

e−
π2R2ℓ2

s

(
1− 2π

2R2ℓ2

s

)
(C.5)

Finally, Poisson resummation was again used. To take even the coefficients into account,
we have

KS3(s) =
∑

l,k,m

| ⟨θ1, θ2, θ3|ℓ, k,m⟩ |2e−sℓ(ℓ+2)/R2 (C.6)

There is a good formula, Unsöld’s theorem. If we consider Super spherical harmonics on
Sn which has n angular coordinate ω1, ω2, · · · , ωn, then those have n quantum number
l1, l2, · · · , ln, ∑

k,m

| ⟨ω1, ω2, · · · , ωn|l1, l2, · · · , ln⟩ |2 =
Dℓ

Vol(Sn) (C.7)

If we consider n = 2 case, | ⟨θ, ϕ, |l,m⟩ |2 = |Yℓm(θ, ϕ)|2, Dℓ = 2ℓ + 1 and Vol(S2) = 4π,
therefore

ℓ∑
m=−ℓ

|Yℓm(θ, ϕ)|2 = 2ℓ+ 1
4π , on Unit Sphere (C.8)

This is a well-known result. Now we want use n = 3 case, then | ⟨ω, θ, ϕ, |l, k,m⟩ |2 =
|Yℓkm(ω, θ, ϕ)|2, Dℓ = (ℓ + 1)2 and Vol(S2) = 2π2R3. Therefore, we get

∑
k,m

| ⟨ω, θ, ϕ, |l, k,m⟩ |2 = (ℓ+ 1)2

2π2R3 (C.9)

– 42 –



J
H
E
P
0
4
(
2
0
2
4
)
1
1
9

Then

KS3(s) =
∞∑

l=0

(ℓ+ 1)2

2π2R3 e
−sℓ(ℓ+2)/R2 = 1

2
∑
l∈Z

n2

2π2R3 e
−s(n2−1)/R2

= es/R2

(4πs)3/2

∑
ℓ∈Z

e−
π2R2ℓ2

s

(
1− 2π

2R2ℓ2

s

)
. (C.10)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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