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1 Introduction

As a powerful tool developed from string theory, the AdS/CFT correspondence, for its
tractability, has achieved great success in calculating and modeling strongly coupled theories
without gravity in a lower dimensional spacetime. For superconductors, we now have various
holographic models of modeling superconductivity which are enlightening in the understanding
of mechanism of high temperature superconductivity. The s-wave holographic superconductor
was constructed in the seminal papers [1–3] where a complex scalar field coupled to a U(1)
gauge field in the four dimensional Schwarzschild-AdS black hole was successful in modeling
Cooper pairs condensation. Subsequently, the p-wave [4–7] and d-wave [8–10] holographic
superconductor were also established by substituting other fields for the complex scalar field.
Moreover, other concrete phenomena relating to superconductivity, for instance, Josephson
junction [11–21] was also studied in holographic approach.

However, most of the early studies of holographic superconductor are spatially transla-
tional invariant, in which the modeled charged particles would have nowhere to dissipate
their momentum resulting a delta function at zero frequency in the real part of optical
conductivity even in the normal state, causing infinity in DC conductivity. While in real
materials, such symmetry can be broken by lattice. Thus, to break the translational invariance
and to recover real experiments is vital in holographic superconductor. In the attempts
of modeling such crucial structure, pioneering work was done in [22–24], where the lattice
structure was constructed by adding a periodic source for scalar field on the conformal
boundary; the periodicity carried by scalar field was then imprinted into the bulk spacetime,
breaking the translational symmetry, namely, scalar lattice. According to the matter that
was added to the periodic source, ionic lattice which the periodicity was carried by chemical
potential was constructed in [25].

However, due to the idea of imprinting periodic structure of matter fields into the space-
time, early attempts fell into technical difficulties of solving partial differential equations
(PDEs) embodied in spacetime metric. Afterwards, great simplification was done by ho-
mogeneous model, which made the spacetime metric depend on holographic direction only.
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To simplify numerical works, Q-lattice and helical lattice all involve explicit periodical and
non-translational invariant sources while preserving homogeneity of the spacetime metric [26].
For Q-lattice [27, 28], the model gives the modeling phase order, the scalar field, a sourced
ansatz which can be viewed as arising from two scalar fields with the same mass and a
sinusoidal periodic spatial dependence in a same conformal field boundary direction that
is shifted by a phase π/2k. The helical lattice [29, 30] is produced by a source, dual to a
vectorial operator, of a U(1) field which breaks the translational invariance on the conformal
field boundary while maintaining invariant under non-abelian Bianchi VII0 symmetry algebra.
These models have all reduced the complex numerical study of holography to a simplification
that involved ordinary differential equations (ODEs). Except for giving a periodic source,
linear axion model [31–34] has also realized momentum dissipation, avoiding complex PDEs
by exploiting a shift symmetry of the massless scalar field while the source of it is required to
be linear in the boundary coordinates. In addition, according to holographic dictionary, to
violate the conservation of energy-momentum in the dual field theory can also be realized by
giving graviton a mass because it breaks the diffeomorphism invariance in the gravitational
theory; as a simplification of avoiding multiple complex PDEs. Since the microscopic details
of lattice in the dual field theory are not fully understood therefore, massive gravity model
can be viewed as a coarse-grained description of bulk lattice or impurities [35, 36]. In addition,
as dRGT nonlinear massive gravity model is proven to be immune from Boulware-Deser
ghost, it has been widely study in holography in [36–38].

Another ingredient in this work are the excited state of holographic superconductor
solutions where in [39], these states are assumed to describe new bound states between
quasi-particles. Recent studies in [40, 41] have presented a family of solutions in excited state
where the profiles of scalar field solutions have multiple nodes along the holographic direction,
while they also show additional peaks and poles in optical conductivity. Semi-analytical
studies toward the excited state are presented in [42], while nonequilibrium process of these
states have been studied in detail in [43]. Moreover, they have been generalized to the
framework of dRGT massive gravity model in [44] as well. In this work, we present a family
of new solutions of the excited states that do not have translational symmetry. Since there
are not periodic sources added into the matter fields thus this kind of symmetry breaking can
be regarded as spontaneous symmetry breaking. Via the spontaneous mechanism of breaking
translational invariance, the results found in this work can provide a physical process of
condensate of excited state forming at Tc while vanishing at sufficiently low temperature.
Besides, the stabilities of these non-translational invariant meta-stable states are also studied.

Our work is arranged as follows: the holographic setup is given at section 2; the
numerical solutions of matter fields and details of condensate and temperature are given
at subsections 3.1, 3.2; we also analyze the stability of our model at subsection 3.3; brief
discussion and conclusion are arranged at section 4.

2 Holographic setup

The bulk action is read as follow where a Maxwell field and a charged complex scalar field
are coupled in the Einstein gravity with a negative cosmological constant, Λ = −3/ℓ2 where
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the ℓ is the length scale of AdS3+1 spacetime.

S = 1
16πG

∫
d4x

√
−g

[
R+ 6

ℓ2
− 1

4F
µνFµν − (Dµψ)(Dµψ)∗ − α2ψψ∗

]
. (2.1)

The action we use is just the minimal gravitational action introduced in [1] with the
gauge covariant derivative Dµ = ∇µ − iqAµψ, where a abelian gauge field Aµ minimally
couples a scalar field ψ with mass α and charge q. The field strength of the U(1) gauge
field is represented by Fµν = ∂µAν − ∂νAµ.

Since we will work in the probe limit approximation, we adopt q → ∞ with the following
scaling transformations.

A→ A/q, ψ → ψ/q. (2.2)

Under the probe limit setting, because of a 1/q2 in front of the matter fields of the
lagrangian density (2.1), the gravity is decoupled from the matter fields and thus the solution
of Einstein equation is just the Schwarzschild anti-de Sitter black hole:

ds2 = −f(r)dt2 + dr2

f(r) + r2(dx2 + dy2). (2.3)

Where f(r) = r2

ℓ2 (1 − r3
h/r

3), and rh is the radius of the event horizon, which determines
the Hawking temperature of the black hole:

T = 1
4π

df
dr

∣∣∣∣
r=rh

= 3rh
4πℓ2 . (2.4)

For simplicity, hereafter, we will numerically set ℓ = 1 and rh = 1. And the non-backreacting
gauge field and the scalar field determined by the coupled field equations read

(∇µ − iAµ)(∇µ − iAµ)ψ − α2ψ = 0, (2.5)
∇µF

µν − i[ψ∗(∇ν − iAν)ψ − ψ(∇ν + iAν)ψ∗] = 0. (2.6)

So far, the above settings are just the non-backreacting s-wave holographic superconductor
if the spacetime and matter fields are only determined by radial coordinate r. Since we want
to find solutions that are non-trivially dependent on the conformal boundary coordinate, say
x direction, and thus breaks the translational symmetry. We adopt the following ansatz

ψ = ψ(r, x), A = ϕ(r, x)dt. (2.7)

Therefore, by considering the specific direction x on the boundary these two matter
fields satisfy

1
r2f

ψxx + ψ′′ +
(
f ′

f
+ 2
r

)
ψ′ + ϕ2

f2ψ − α2

f
ψ = 0 , (2.8)

1
r2f

ϕxx + ϕ′′ + 2
r
ϕ′ − 2ψ2

f
ϕ = 0. (2.9)

Where, the prime denotes derivative on radius r, while subscript x means derivative on x

direction. Compare (2.8) and (2.9) with equations of motion derived, for example, from [1] one
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can immediately notice there are two second rank derivative terms of both ψ and ϕ according
to x. Moreover, the matter field solutions in s-wave holographic superconductor without
backreaction also satisfy our equations of motion since the first and second derivatives on x

of the homogeneous matter fields solutions are zero. At r → ∞ boundary, the asymptotic
behaviours of the matter fields are

ψ(r, x) r→∞−→ ψ(1)(x)
r∆−

+ ψ(2)(x)
r∆+

+ · · · , (2.10)

ϕ(r, x) r→∞−→ µ− ρ(x)
r

+ · · · , (2.11)

where, according to AdS/CFT dictionary, ∆± = (3 ±
√

9 + 4α2)/2 are interpreted as the
scaling dimensions of the dual field theory operators. As long as one of the operators,
say ⟨O∆+⟩, acquires a non-vanishing vacuum expectation value, the ψ(2)(x) is dual to the
condensate value with ψ(1)(x) being its source. Since we require the translational symmetry
on the boundary to be broken spontaneously we choose ψ(1)(x) = 0. And for simplicity,
we also choose α2 = −2. The chemical potential and the charge density are represented
by µ and ρ(x), respectively. In scalar lattice model, the periodicity of charge density is
introduced by adding a periodic source for the neutral scalar operator, while keeping the
chemical potential constant. Here, we also keep chemical potential constant, but without
a source. Also, we will conduct a coordinate transformation for the sake of simplicity of
numerical calculation, which reads

z = rh/r, z∞ = 0, zh = 1. (2.12)

Such that the integration region will be 0 ≤ z ≤ 1, while in the z direction the boundary
conditions we choose are as follow

ψ(0, x) = 0, ϕ(0, x) = µ, ϕ(zh, x) = 0. (2.13)

It is easy to notice that this is just the boundary condition imposed on s-wave holographic
superconductor with translational symmetry, where below critical temperature the scalar
hair can live outside the black hole while vanishing on the conformal boundary; the Abelian
field entirely absorbed near the horizon, while asymptotically approaching µ on the boundary.
When the temperature T is higher than critical temperature Tc, the matter fields vanish,
thus illustrating a scenario without superconductivity.

In the following, by means of an iterative process based on Newton-Raphson method,
we will demonstrate that within this simple setup, solutions of excited states with broken
translational symmetry do exist.

3 Numerical results

Before giving the results of excited states with broken translational symmetry, we would
like to introduce how the excited states are solved out at first. Using an iterative process
by means of Newton-Raphson method, the scalar field solution of n-th excited state that
possesses n nodes along the radius coordinate will be given a good initial guess that also has
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Figure 1. Example of scalar field in first excited state with translational symmetry below Tc.

n nodes. As an example, the profile of homogeneous scalar field solution of the first excited
state is shown in figure 1 by giving an initial guess that has one node along z coordinate.

Based on this idea, we will give an initial guess for solution with broken symmetry on x

coordinate as well. For example, below Tc, the initial guess on the conformal boundary for the
scalar field can be set as ψinitial(0, x) = βcos(2πx/L), where β is a constant. Here, we define
0 ≤ x ≤ L as a lattice’s length, where L can be interpreted as a length scale of the lattice.

3.1 Solutions with broken translational symmetry

In figure 2 we present example of the scalar field solutions in the first excited states where
we fix L = 0.825. Subfigures on upper left, upper right and under middle correspond to
µ = 15.615, µ = 18 and µ = 24.05, respectively. Recall that in a probe limit approximation,
temperature is proportional to µ−1, thus these subfigures show how the solution develops
from high temperature to low temperature.

From the figure, we can see that below Tc the tendency of the broken translational
symmetry is tiny when µ is small and mainly concentrates on the ridge between z = 0 and the
first node. After further cooling the system, the tendency of the broken region becomes larger,
developing to a peak at x = L/2, while the values near x = 0 and x = L decrease. When the
temperature is sufficiently low the peak continues to grow and the values at x = 0, x = L

develop to two valleys, forming almost a cosine function at z ≈ 0.1 (black line in figure 2)
right between z = 0 and the original first node, while the scalar field vanishes around the
horizon indicating that there is no condensate.

In figure 3, we show the process of scalar field solution with broken translational symmetry
initial value in the second excited state developing from relatively high temperature to
sufficiently low temperature, where the lattice scale is fix at L = 0.625, and subfigures on
upper left, upper right and under middle correspond to µ = 15.32, µ = 16.3 and µ = 17.37,
respectively. Similar to the first excite state, the translational symmetry is, firstly, broken
spontaneously on the ridge between z = 0 and the first node. A peak is formed at x = L/2
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Figure 2. Example of scalar field solution in the first excited state with broken translational symmetry
initial value developing from µ = 15.615 to µ = 24.05 with length L = 0.825.

with values on the two edges of x coordinate develop to two valleys. In comparison with the
first excited state, even though the scalar field solution has two nodes initially, it is interesting
that the broken area exists only on the first ridge; when the temperature is sufficiently low,
the scalar field profiles of these two excited states develop to an identical pattern where
the scalar field vanishes near the horizon and thus no condensate. For the convenience of
discussion, we define the chemical potential where translational symmetry of the scalar field
initially breaks as µd, while the chemical potential where condensate vanishes as µv; the
corresponding temperatures are thus marked as Td and Tv, respectively.

3.2 Condensate and chemical potential

Figure 4 shows plots of condensate in the first (left panel) and second (right panel) excited
states, where black lines correspond to these states with translational symmetry while red,
blue and green lines are results under different L and without the symmetry. Since we now
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Figure 3. Example of scalar field solution in the second excited state with broken translational
symmetry initial value developing from µ = 15.32 to µ = 17.37 with length L = 0.625.

have a hairy black hole with rippled matter fields, the condensates are read off from the
mean expectation value of the scalar field, namely,

⟨O2⟩ = ψ(2)(x)
√

2. (3.1)

Where the results shown in black lines are identical to those of excited states presented
in previous work [40] with perfect translational symmetry. The junctions marked with Td
and Tv correspond to the situations in the upper left and under middle subfigures shown in
figure 2 and figure 3. One should note that the critical temperatures (black lines) that we are
going to discuss here correspond only to the excited states [40, 41]. These temperatures are
lower than the ground state (standard) critical temperature [1], below them corresponding
excited-state solutions appear.

From the figure, we can clearly see the physics of our model — below Tc, the condensate
forms; after that its value starts to decrease under a temperature Td due to spontaneously
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Figure 4. Condensate in the first (left) and second (right) excited states, where black lines correspond
to situations with translational symmetry. Red, blue and green lines in the left panel correspond
to L = 0.65, L = 0.825 and L = 0.95, respectively. Red, blue and green lines in the right panel
correspond to L = 0.455, L = 0.5 and L = 0.625, respectively.

translational symmetry breaking; eventually, after reaching a higher temperature Tv ≥ Td,
the condensate vanishes; between Tc and Tv the state is superconducting. In the figure,
we also give condensates in the two states with different L, where one can find that the
corresponding Td and Tv become higher by increasing L. This phenomenon of condensate
forming below Tc while decreasing at a temperature Td and eventually vanishing at sufficiently
low temperature Tv has also been seen in multi-order holographic model. For example, in [45],
condensates are modeled by two scalar fields, and thus each condensate has different critical
temperature. When one of the scalar fields, say ψ1, starts to condense, the other is, at
that moment, zero. After continuing to lower the temperature, condensate corresponding
to ψ1 decreases, while the other starts to form; under a sufficiently low temperature, the
condensate corresponding to ψ1 vanishes. In our model, the process of condensate that forms
under Tc and eventually vanishes at Tv closely resembles the process of one of the scalar
fields in two fields competing model.

Another interesting feature at sufficiently low temperature Tv (or µv) is the kink-like
solution, as shown in figure 5. In the figure, lines of different colours are condensation
amplitudes of different length scales. Recall that the rippled condensates are solved out
from initial guesses of cosine functions with L being their periods, thus, the figure we show
are ⟨O2⟩(x) in two adjacent lattices. Where, in the left panel, for both the first (solid
lines) and second (dash lines) excited states, one can find that the amplitudes of these
non-superconducting solutions decrease with the increase of L. Analogous kink-like solutions
can also be found at [46–49], where, as the previous holographic studies illustrated, these
inhomogeneous solutions are important results from microscopic models like the BCS theory
and the Gross-Neveu model, and conventional phenomenological Ginzburg-Landau theory
with higher-derivative interactions terms, to which holographic models must recover. Except
for the left panel where L are relatively large (we will see that L have limits in figure 7),
⟨O2⟩(x) of the first excited state shown in the right panel that have smaller L qualitatively
resemble kink crystalline condensate refered in [46]. Where, in the right panel, with the
decrease of L, the peaks of cos-like functions grow higher and the smooth peaks become flat.
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x
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〈O2〉(x)

Figure 5. Kink-like condensates ⟨O2⟩(x). Solid black, red and blue lines in the left panel correspond
to the first excited state with L = 0.7, µv = 34.30, L = 0.825, µv = 24.05 and L = 0.925, µv = 19.05,
respectively. Dash black, red and blue lines in the left panel correspond to the second excited state
with L = 0.455, µv = 41.67, L = 0.555, µv = 25.16 and L = 0.615, µv = 18.40, respectively. Solid
black, red, blue and green lines in the right panel are ⟨O2⟩(x) of the first excited state corresponding to
L = 0.4, µv = 143.2, L = 0.5, µv = 93.8, L = 0.55, µv = 74.2 and L = 0.625, µv = 47, respectively.

A common feature of the previous studies is that the amplitudes of inhomogenous
solutions are “balanced” along x direction at all chemical potentials, which means the mean
value of ψ(2)(x) is zero at all temperatures and, thus, non-superconducting. Meanwhile, our
model can not only give qualitatively the same results but, more importantly, can supplement
physical process from initially homogenous and superconducting states to Tv where the
translational symmetry breaking is so intense that ψ(2)(x) = 0, as shown in figure 6. In this
figure, ⟨O2⟩(x) of first excited state with a fixed L developing from µd to µv is presented,
where chemical potentials from small to large are marked by black, orange, purple and red
lines. At µ = µd = 15.615 where the translational symmetry starts to break, the mean
value of ⟨O2⟩(x) is the largest; afterwards, with µ becomes larger, ⟨O2⟩(x) decreases, and
eventually becomes zero at µ = µv = 24.05.

As we can immediately conclude from figure 4, the chemical potential µd where the
translational symmetry breaks and the chemical potential µv where the condensate vanishes
are closely related to the length L. We therefore give their relations in figure 7.

From the figure, we can clearly see that µd is smaller than µv and, by increasing L, they all
decrease to an identical minimum value below which there does not exist condensate; for the
first excited state the minimum lattice length scale is approximately L ≈ 1.27, the minimum
value for the second excited state is approximately L ≈ 0.66. Within the shadow regions
(Red is for the first excited state, blue is for the second), the states are superconducting
while the translational symmetry is spontaneously broken.

3.3 Free energy

In this section, we study the free energy of the holographic superconductor in both situations
with and without translational symmetry in excited states. For our model, the free energy

– 9 –



J
H
E
P
0
4
(
2
0
2
4
)
0
9
8

μ=15.615
μ=16

μ=18
μ=24.05

0.0 0.5 1.0 1.5 2.0

-150

-100

-50

0

50

100

150

x

L

〈O2 〉(x)
μ=15.615 μ=18 μ=22 μ=24.05

0.0 0.5 1.0 1.5 2.0

40

60

80

100

120

x

L

ρ(x)

Figure 6. Process of ⟨O2⟩(x) and ρ(x) of first excited state developing from relatively high temperature
to sufficiently low temperature with L = 0.825, where lines of different colours correspond to different
temperatures. left panel: µ = 15.615 (black), 16 (orange), 18 (purple), 24.05 (red). Right panel:
µ = 15.615 (black), 18 (orange), 22 (purple), 24.05 (red).
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Figure 7. Relations between µd, µv and L in first and second excited states, where black and red
lines correspond to µd and µv in the second excited state, while blue and green lines relate to µd and
µv in the first excited state.

is expressed as follow [50],

Ω
Vol = 1

L

∫ L

0
dx

[
−1

2µρ(x) +
∫ 1

0
dz

(
ϕ(x)2

fz4 ψ(x)2
)]

. (3.2)

Here, the Vol=
∫
dzdxdy = L

∫
dy. We will compare the thermal stability that has the

symmetry to those that has not.
In figure 8, we plot Ω/Tc as a function of T/Tc for the first and second excited states

with different L. Where the solid lines are excited states that are translational invariant,
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Figure 8. Free energies of the first (left panel) and second excited (right panel) states. Solid
lines correspond to states that have translational symmetry, while dash lines correspond to states
where the symmetry is spontaneously broken. Black, red and blue lines relate to different L from
small to large sequence. Left panel: L = 0.80 (black), 1.00 (red), 1.20 (blue). Right panel: L =
0.255 (black), 0.455 (red), 0.655 (blue).

while dash lines correspond to those that are not. The black, red and blue lines in the two
subfigures correspond to different length scale L in a small to large sequence, where more
details of blue lines are shown in insets. In the figure, we only give Ω/Tc corresponding
to broken translational symmetry from Td/Tc where the symmetry of matter fields starts
to break to Tv/Tc where the condensate goes to zero. Within this region, the model is
still superconducting.

From the figure, we can see that all these curves raise from high temperature to low
temperature. Besides, for a fixed temperature, free energies of both situations also raise as L
increases. This simple fact can be immediately found by looking at integration (3.2); when
one increases L and thus increases the integral domain, larger free energy value is inevitable.

However, a surprise is that, between Td/Tc and Tv/Tc where the symmetry of matter
fields are broken but still superconducting, the free energies shown by dash lines are all
lower than solid lines that correspond to perfect translational symmetry. This indicates that
the excited states with broken translational symmetry are more thermodynamically stable
than they were studied with the symmetry.

4 Conclusion and discussion

In our work, we extended HHH model to an ansatz that matter fields rely on x coordinate
except the holographic coordinate and investigated the mechanism of translational symmetry
breaking of excited states. In the setup, we did not assign any periodicity as source for
any ingredient. Besides, no special boundary conditions were imposed on x direction as
well, and thus the translational symmetry was broken spontaneously. For a fixed value
of L, the translational symmetry of the matter fields solutions was broken spontaneously
at a temperature Td < Tc, resulting condensate to decrease; after sufficiently cooling the
holographic superconductor to a temperature Tv, the condensate modeled by scalar field
would vanish. We also found that, in the model, Td and Tv, all lower than Tc, would increase
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with the increase of L. This indicated that the length L had a limit, as we found the
maximum L for the first excited state was approximately 1.27, while the maximum L for
the second excited state was about 0.66.

However, we have to mention that our method of introducing translational symmetry
breaking was based on excited states, whereas we have not found solutions in ground state
with such broken symmetry. Even though, the excited states might represent new bound
states of interactions between quasi-particles excited above the ground state, as studied
in [43], were found to be meta-stable; given considerable time, these excited states would
evolve back to the ground state. Therefore, before recovering real experiments or finding
new phenomenon via excited states, it is necessary to find solutions in these states that can
be stable. In this work, we have surprisingly found the model in excited states with broken
symmetry, which was still superconducting, could be more stable than those with perfect
translational symmetry. Although, they were still far from being as stable as ground state.

Based on the above findings, there can be many expansions in future studies. One of
which is to build new actions that bear self-interaction terms of scalar field to find solutions
with translational symmetry breaking in ground state. Moreover, as various orders were
found in real high temperature superconductor [45], the property of our model of condensates
in excited states appearing at Tc while vanishing at Tv due to spontaneously translational
symmetry breaking can be generalized to competition of multi order parameters model; where
under this situation, a much more stable mode of excited state and ground state, or between
excited states coexisting, is likely to be found.
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