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1 Introduction

The number of neutrinos — fundamental, neutral fermions of the Standard Model (SM)
— that exist has long been studied and debated. With observations of the Z-boson decay
width, it has been determined that any such particles beyond the three expected to match
the number of charged-lepton flavors (electron, muon, tau) must be ‘sterile’, i.e. uncharged
under the SM gauge group. As more has been learned about neutrino masses, mixing, and
oscillation in the past twenty-plus years, several perplexing experimental results have bubbled
up and persisted, potentially providing evidence for additional sterile neutrino states. To date,
some of the strongest evidence comes from measurements of electron-flavor neutrinos from
radioactive sources interacting with detectors constructed of gallium, wherein the observed
interaction rate is significantly smaller than the expected rate in the standard, three-neutrino
framework [1–6]. However, when interpreted in the simplest ‘3+1-neutrino’ framework,
such apparent disappearance is inconsistent with both observations from solar neutrinos
and measurements of reactor-antineutrino interaction rates at short baselines [7–9] — this
picture is further clouded by a host of positive and null results in different experimental
facilities, see, e.g., refs. [10–17].

Various solutions to this reactor/gallium dilemma have been proposed in hope of explain-
ing the apparent inconsistency between the different results, utilizing various mechanisms
both within and beyond the SM [18–21]. One of the most phenomenologically successful
ideas for relaxing this tension comes from proposing that the neutrino wave-packet size is
finite and (relatively) small, such that neutrinos propagating from nuclear reactors have time
to significantly decohere on the length scales of interest in such experiments (e.g. NEOS [22]
and PROSPECT [23]), but not over the radioactive source ones (e.g. BEST [5]). The origin
of the wavepacket size required for this scenario is unclear from a quantum-mechanical
perspective [24–26] but will nevertheless be tested by the upcoming JUNO medium-baseline
reactor-antineutrino experiment [27, 28]. In the standard 3+1 scenario, all new effects scale
with baseline length L divided by neutrino energy E (where BEST probes L ≲ 1 m and
E ≈ 750 keV, NEOS L ≈ 20 m and E ≈ 5 MeV, etc.). The wavepacket approach relaxes the
tension by introducing new length- and energy-dependence which causes dampening at large
(reactor) distances relative to short (radioactive source) ones.
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In this work, we study an alternative, related phenomenological ansatz — that the sterile
neutrino that exists beyond the standard three does not occupy a single, definite mass state.
Such a situation may be realized, for example, on the microscopic level, by UV-complete
models with a band of multiple closely spaced mass eigenstates. This echoes some of the
spirit of models involving large extra dimension constructions which also give rise to a
band of states [29–31]. Whereas such models remain in significant tension with reactor rate
measurements this is not the case for our approach, where the overall mass scale and spectral
distribution of the new states are, in principle, unrelated. To examine the potential impact of
such a class of mass spectra in a general fashion, we take, as a convenient phenomenological
ansatz, the mass spectrum attributed to the fourth sterile state to comprise a top hat function.
We dub this scenario, which we demonstrate is capable of significantly ameliorating the
aforementioned tension, as a ‘broad sterile neutrino.’ This approach parallels the studies of
ref. [32] in which deviations from the canonical 3-neutrino oscillation probabilities induced
by the ‘broadening’ of these states were systematically investigated.

The remainder of this work is organized as follows. In section 2 we introduce the
phenomenological model deployed in our investigations, before presenting the results of our
analysis on experimental neutrino data in section 3. Whilst the mass spectrum adopted
in this analysis is not intended to represent a concrete UV-complete model, we emphasize
that it constitutes a convenient means by which to examine the potential of more complex
mass spectra to relax the tension between the different experiments, showing that significant
improvement can be achieved. In section 4 we then offer an example of a specific model in which
such a broadened mass spectrum arises. We discuss its relation to the phenomenological ansatz
utilized in our analysis in addition to commenting on its potential cosmological implications.
Finally, in section 5, some concluding remarks are provided.

2 Experimental landscape & phenomenological approach

Oscillations among the three, light, SM-like neutrinos have been measured to remarkable
precision [33–35], leading to a coherent three-flavor mixing paradigm. However, some other
results may point to one or more additional ‘sterile’ neutrino states around the eV scale.
Following refs. [32, 36], we allow for non-standard neutrino spectral densities ρ(µ2) in the
Källén-Lehmann representation. Since the spectral densities of mi, 1 ≤ i ≤ 3, are well
constrained [32], we focus on the scenario in which the fourth (mostly-sterile) mass-eigenstate
can be modeled as a state with a central mass value at µ2 = m2

4 with some finite breadth
b. The spectral densities are thus

ρee

(
µ2
)

=


|Ue1|2δ(µ2 − m2

1) , µ2 = m2
1

|Ue2|2δ(µ2 − m2
2) , µ2 = m2

2
|Ue3|2δ(µ2 − m2

3) , µ2 = m2
3

1
b |Ue4|2 , m2

4 − b
2 ≤ µ2 ≤ m2

4 + b
2

 , (2.1)

where Uei represent the elements of the (extended 4 × 4) leptonic mixing matrix. We use
the standard parameterization in which Ue4 = sin θ14. This spectral density is illustrated
in figure 1. Naturally, we will only be sensitive to this scenario with experiments that have
access to the energy/length scales dictated by m2

4 and/or b.
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Figure 1. Sketch of spectral functions composed of 3 delta function (black arrows) and 1 top-hat
function (blue box) as defined in eq. (2.1).

The amplitude for νe → νe transitions (relevant for reactor antineutrino oscillations)
can be expressed as

iAee =
∫ ∞

0
dµ2e−i µ2L

2E ρee

(
µ2
)

= sinc
(

bL

4E

)
|Ue4|2e−

iLm2
4

2E +
3∑

i=1
|Uei|2e−

iLm2
i

2E . (2.2)

In the limit that ∆m2
41 ≫ |∆m2

31|, ∆m2
21 and that the phases associated with ∆m2

21 and
∆m2

31 have yet to develop, the oscillation probability Pee ≡ |Aee|2 can be approximated as

Pee ≃
(

1 +
(

sinc
(

bL

4E

)
− 1

)
|Ue4|2

)2
(2.3)

− 4|Ue4|2
(
1 − |Ue4|2

)
sin2

(
∆m2

41L

4E

)
sinc

(
bL

4E

)
.

Here we have defined ∆m2
ij ≡ m2

i − m2
j . The sinc term appearing in eq. (2.3) provides an

energy-dependent overall normalization as well as an energy-dependent modification of the
effective mixing angle between the sterile and active states. The dominant effect of the breadth
b in this respect is to replace sin2 (2θee) = 4|Ue4|2(1 − |Ue4|2) with sin2

(
2θeff.

ee

)
(E), where

sin2
(
2θeff.

ee

)
(E) = sin2 (2θee) sinc

(
bL

4E

)
. (2.4)

This effect mirrors the exponential suppression present in the decoherence model studied in
refs. [19, 20] and the decay model in ref. [20], particularly when L/E is large (relative to the
size of b). For this reason, we expect the broad sterile neutrino scenario introduced here to
be able to achieve a similar impact on neutrino data as the decoherence and decay scenarios.

We demonstrate the impact of nonzero b on the oscillation probability in figure 2, akin to
the presentations in refs. [19, 20]. Concretely, in the broad sterile neutrino scenario (green)
we assume L = 24 m (as in NEOS), ∆m2

41 = 1.83 eV2, sin2 2θ14 = 0.15, and b = 0.24∆m2
41.

The pink line demonstrates the oscillation probability, relative to the three-flavor case, with
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Figure 2. Demonstration of the damped oscillations from the broad sterile neutrino. We plot the
ratio of the oscillation probabilities between the 3+1 sterile neutrino model and the three-neutrino
model as a function of energy, assuming a baseline of 24 m and ∆m2

41 = 1.83 eV2. The pink line
corresponds to the vanilla 3 + 1 scenario, whereas the green line assumes b̃ = b/∆m2

41 = 0.24 such
that the low-energy damping effect is apparent.

b = 0. Similar to the above references which study the decohering and decaying sterile-
neutrino scenarios, we find a dampening of the new oscillations at relatively low neutrino
energies, relative to the vanilla 3 + 1 case. In contrast, however, the sinc function presented
here causes a ‘rebounding’ of the oscillation probability, which could allow for distinctions
between the various scenarios. The effect of the sinc term is most evident below the energy
we have labeled ‘E = Ebroad’, where the sinc function begins to contribute noticeably to
the oscillation probability.

3 Analysis & results

With this formalism in mind, we turn to the impact of such a broad sterile neutrino on
neutrino oscillation data. For clarity, we assume a normal mass ordering and that m4 ≫ m1,
so that ∆m2

41 ≈ m2
4. We introduce a (dimensionless) reduced breadth parameter b̃ ≡

b/m2
4 ≈ b/∆m2

41 such that b̃ < 2. We include this scenario into the framework presented in
ref. [19] (code available at [37]) which allows us to analyze the Daya Bay [38, 39], NEOS [22],
PROSPECT [23], and BEST [3] experiments either individually or simultaneously.

Figure 3 shows the main results of this analysis. The pink line and shaded regions
respectively show the constraints from reactor experiments and the parameter space preferred
by the BEST experiment, under the standard 3 + 1 sterile neutrino scenario. Significant
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tension is evident between these results. Considering nonzero breadth, we allow b̃ to vary and
find that (a) the parameter space preferred by BEST does not change substantially (green
shaded region) and (b) the constraints by reactor experiments on sin2 2θ14 as a function
of ∆m2

41 relax considerably. We present these results at 2σ confidence level and see that,
while the reactor analysis’ best-fit point (green cross) is far outside the preferred region of
BEST, there is significant overlap between the datasets for relatively large mixing angles. We
present the reactor antineutrino results as a 2σ CL (∆χ2 = 6.18) upper limit with respect
to the null hypothesis, rather than the best-fit point. We do this for two reasons: first, it
allows for a direct comparison to the results of ref. [19], which adopted the same approach.
We see in figure 3 that the broad sterile neutrino scenario provides as good of a relaxation,
if not better, to this tension than the wavepacket approach. Secondly, this decision also
allows for a slightly more conservative limit than in drawing contours with respect to the
best-fit point, and guards against statistical fluctuations leading to (potentially) overstated
significance for sterile neutrino evidence. Refs. [6–8] have explored the issues associated
with these statistical fluctuations in great detail; we direct the interested reader to them for
further discussion. The reactor-only best-fit point moves from (sin2 2θ14, ∆m2

41) = (0.03,
1.76 eV2) to (0.09, 1.73 eV2) when b ̸= 0 is allowed.

Not drawn in figure 3 is the constraint on such a scenario from solar neutrino measure-
ments [8, 40], which disfavors sin2 2θ14 ≳ 0.15 (0.23) at 2σ (3σ) CL in the 3 + 1 scenario.
Like with the decoherence scenario [19], we expect that nonzero b will not significantly relax
such a constraint and so this tension remains.

In contrast to the marginalized-b figure 3, in figure 4 the data is analyzed with fixed
b̃ = 0.24. Because we have fixed this parameter, the green constraints are not as relaxed
(compared to the b = 0 ones), but agreement does start to appear between reactors and BEST
for ∆m2

41 ≈ 5 eV2. Overall, the newfound agreement between the reactor constraints and
the BEST preferred region arises because the breadth dampens the (expected) oscillations
at (primarily) NEOS and Daya Bay, but does not have a large impact on the relatively
small BEST scales.

Finally, we also are interested in the rough value of b̃ preferred in such an analysis.
figure 5 demonstrates the test-statistic ∆χ2 (relative to the best-fit) as a function of b̃,
marginalized over the mixing angle and mass-squared splitting. The best fit lies at b̃ = 0.032
(b = 0.055 eV2), and improves the global reactor fit by approximately 6 units of χ2. We
summarize the quality of this fit and its improvement over the delta function 3 + 1 scenario
in table 1. Effectively, the tension is reduced when b ̸= 0 is allowed because it allows for a
smaller effective mixing angle at the reactor experiments (operating at larger L/E than the
source ones (at lower L/E), where this effective mixing angle is suppressed by b. We find
similar improvement to this data to the decohering sterile neutrino hypothesis. We leave the
statistical significance of this improvement to future work, but briefly highlight the prospects
of disentangling these two scenarios. The decohering sterile neutrino hypothesis (as well
as the decaying one) predicts the oscillation amplitudes to go to zero for sufficiently large
L/E, whereas our broadened scenario predicts this to “rebound.” In principle, precise enough
low-energy reactor antineutrino data could discern the mechanism at play.
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Figure 3. Joint constraint from reactor antineutrino experiments (solid lines) vs. the preferred region
by BEST (shaded) at 2σ CL. Pink line/regions correspond to the standard 3 + 1 scenario, where
green allows for nonzero sterile neutrino breadth b (where we have marginalized over this parameter
in the analysis). Crosses indicate the best-fit point of the reactor analyses in each scenario — see text
for more detail.

Experiments χ2/dof (b ̸= 0) χ2/dof (b = 0)
PROSPECT 125.7/157 126.1/158
NEOS+DayaBay 68.9/137 73.9/138
Reactor Global 198.7/297 205.0/298

Table 1. Best fit χ2/dof for various experiments.

4 Complete model

It remains to present a concrete microscopic theory which could lead to such a broad sterile
neutrino. Our goal here is not to build a model that exactly fits the data analysis under the
phenomenological approach presented in sections 2 and 3, but to provide a demonstrative
example of a scenario which shares the desired phenomenological features required to reduce
the experimental tension. We will assume that the active SM neutrinos are Majorana, such
that at the energy scales of interest their masses are generated via the usual lepton-number-
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Figure 4. Same as figure 3 but with b̃ = 0.24 fixed instead of marginalized.

Figure 5. ∆χ2 vs. b̃ relative to its minimum value, marginalizing over ∆m2
41 and mixing for various

experiments. The best-fit mass and mixing are ∆m2
41 = 1.73 eV2, sin2(2θ14) = 0.09.
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violating Weinberg operator

Lν = 1
Λλij(LiH)(LjH) . (4.1)

The generated neutrino mass matrix is assumed to be diagonalized by the usual PMNS
matrix, such that να = Uαiνi. The main novel ingredient in this construction is that these
states will mix with a band of sterile neutrinos with a mass spectrum centred around a value
M and with an effective mass-squared width b.

There are many scenarios that could give rise to such a band of sterile states, particularly
if a hidden sector involved a strongly coupled composite sector. Consider, for instance, a
QCD-like sector with two light quarks and no electroweak group and keep in mind throughout,
for intuition, the QCD sector of the Standard Model. At low masses there are no composite
fermions, due to the mass gap. Just above the mass gap one would have the equivalent of the
proton, neutron, and then above that a number of composite fermionic states. Continuing
to higher masses, once well above the scale of strong coupling there are no new fermionic
resonances as individual quark production channels open. Thus such a QCD-like sector would
give rise to a band of fermionic resonances in the region of the strong coupling scale which are
sterile to us SM observers. The fact that such a band of fermionic states has already arisen
in the visible sector lends weight to the possibility that it could also do so in a hidden sector.

For concreteness we may model such a sector by employing a ‘clockwork-inspired’ con-
struction as per refs. [41–43]. In this model one has a ring of sterile Majorana fermions ‘S’
with site translation-invariant clockwork-inspired masses

L ⊃ M

2q2

∑
Ring

Sj

(
(1 + q2)Sj − 2q (Sj−1 + Sj+1)

) . (4.2)

The mass matrix is

MS = M

q2



1 + q2 −q 0 · · · −q

−q 1 + q2 −q · · · 0
0 −q 1 + q2 · · · 0
...

...
... . . . ...

0 0 0 · · · 1 + q2 −q

−q 0 0 · · · −q 1 + q2


, (4.3)

with eigenvalues

mJ = M

q2

(
1 + q2 − 2q cos

(2πJ

N

))
. (4.4)

For q ≫ 1 we thus have a band of states centered at mass M with fractional width scaling
as ∝ 1/q. The rotation matrix for the mass matrix is

RCW
JK =

cos
(

2πJK
N

)
+ sin

(
2πJK

N

)
√

N
. (4.5)

Thus far the SM and hidden sectors are decoupled and may be independently diagonalized
by the matrices U and RCW respectively.
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In linking the two sectors we assume that the only interaction between the active and
sterile sectors is through the neutrino portal

LνN =
∑
iI

αIiSILiH , (4.6)

where α is an N × 3 matrix, where N is the number of sterile neutrino mass eigenstates.
The combined mass matrix in the weak eigenstate basis is thus

M =
(

Mν α∗
αT
∗ MS

)
, (4.7)

where α∗ = αv/
√

2 and v denotes the Higgs VEV. It is this matrix which must, provided a
given α, be diagonalized to reveal the physical neutrino mass and mixing matrices required
to compute the oscillation probabilities.

With the model thus outlined, we seek to investigate its correspondence to the effective
‘broad’ description deployed in our above analysis. We do this by seeking a set of model
parameters for which the νe → νe oscillation probability as a function of L/E approximates
that predicted by our broad ansatz for the parameters which best fit the experimental data (b̃
= 0.24, sin2 2θ14 = 0.15, ∆m2

41 = 1.83 eV2), whilst remaining consistent with the usual mass-
squared splittings and mixings between the active neutrinos as determined experimentally.

In this latter respect, for both simplicity and demonstrative purposes, we work in the
‘alignment’ limit in which the matrix O required to diagonalize M can be factorized to the form

O =
(

cos(θ)U sin(θ)T
− sin(θ)T T cos(θ)R̃

)
, (4.8)

where, U is the usual PMNS matrix, R̃ is an N × N rotation matrix and T is a 3 × N

matrix defined according to

Tij =

1, if i = 1
0, if i ̸= 1

, (4.9)

∀j ∈ 1, . . . , N .
By definition one has that

M = OMDOT , (4.10)

where

MD =
(

M̃D
ν 0

0 M̃D
S ,

)
(4.11)

and M̃D
ν and M̃D

S are respectively 3× 3 and N ×N diagonal matrices containing the physical
mass eigenvalues of the active and sterile neutrinos.

For the purpose of comparison, we construct a matrix M according to eq. (4.10), setting R̃

to RCW, M̃D
ν to diag(0,

√
∆m2

21,
√

∆m2
31) and M̃D

S to (RCW)T MSRCW. We then diagonalize
this numerically to obtain the physical mass, MD

n and mixing, On matrices.
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We emphasize that whilst the eigenvalues that we obtain post diagonalization will not
equal the ‘guesses’ used as input in our starting choices of M̃D

ν and M̃D
S exactly, due the

form of O, the differences are small. Similarly, the upper 3 × 3 sub-matrix of On that
encodes the mixing between the active states, should, by construction, approximately equal
the input PMNS matrix U .

We compute the νe → νe oscillation probability from the numerically obtained mass
and mixing matrices according to

P (νe → νe) =

∣∣∣∣∣∣
N+3∑
j=1

|(On)1j |2e−
iLm2

j
2E

∣∣∣∣∣∣
2

, (4.12)

where mj ≡ (MD
n )jj .

With these choices in hand, there remain 4 free parameters — N , M , q and θ. We wish
to demonstrate that the broad sterile neutrino ansatz adequately describes the oscillation
spectrum of this concrete clockwork-inspired band model. To this end, for demonstration we
fix N = 40 in the clockwork band model and perform a least squares fit of the clockwork
model probability distribution to the broad model probability distribution as a function of
L/E over the range 1–10 m/MeV, fitting for the clockwork parameters M , q and θ. For the
broad model we use the parameters corresponding to the best-fit to the oscillation data,
b̃ = 0.24, sin2 θ = 0.15, ∆2

41 = 1.83 eV2.
The agreement between the probability distributions as a function of L/E for the selected

broad case and corresponding clockwork band model is displayed in figure 6. For reference,
the standard 3+1 oscillation probability for the same θ14 and ∆m2

41 as used in the broad case
is shown in black. The lower panel shows the residuals of the fit of the band model to the
broad case. The concordance between the band model and broad ansatz is excellent at low
L/E (including the entirety of the domain measured at BEST) where the experiments are
unable to resolve the different microscopic splittings within the band. We note here that the
oscillation probabilities for neutrinos (e.g. BEST) are identical to those for antineutrinos (e.g.
reactors). As expected, the oscillation probability for the band model deviates from that of
the broad ansatz at higher L/E, above the BEST line as the experiments gain sensitivity
to the differences in the microphysical structure of their mass spectra. Crucially, however,
the desired amelioration of tension persists as the amplitude of the oscillations in the ν̄e

disappearance probability are damped at reactor experiments relative to the radioactive
source ones, even though the spectra do not match precisely.

In figure 7 we plot the density of states for these models using the same parameters
as detailed above. Corresponding to formally infinite delta functions, the vertical extent
of the states for the band case are for illustrative purposes only. We note that the three
lightest states in the band and broad case are (up to small corrections) coincident, and
thus plotted here in blue only.

It is interesting to note that the band model is centred at a lower µ2 than the broad
model. Indeed, it is centred at M2 = 1.69 eV2, as opposed to 1.83 eV2. This may seem
to point to an inconsistency between the two pictures, however it is important to keep in
mind the mixing angles in eq. (4.12). If one calculates the mass-squared differences weighted
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Figure 6. Comparisons of νe → νe (equivalent for antineutrino oscillations) oscillation probabilities
as a function of L/E determined from the standard 3+1 scenario (black), the same with a broadened
fourth state (blue), and from the ‘best-fit’ band scenario (green) obtained by a least-squares fit.
Parameters for each are given in the legend. Colored shaded regions in the top panel indicate portions
of L/E to which BEST and NEOS are most sensitive.

2(eV2)
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2 )
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Figure 7. A plot of the spectral function ρ(µ2) for the broad and the band cases, using the same
parameters as in figure 6. The vertical extent of the formally infinite δ functions corresponding to the
band case are for illustrative purposes only.
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by the mixing angles, according to

m2
Band =

∑N
j=1 |(On)1j |2m2

j∑N
j=1 |(On)1j |2

, (4.13)

one finds, for the parameters of figure 6,

m2
Band = 1.83 eV2 , (4.14)

in perfect agreement with the central value of the broad model.
In this way we can also understand the connection between the overall mixing angles in

the two approaches. If an effective broad sterile neutrino arises microscopically as a result of
a band of N sterile neutrinos each with a mixing angle ∼ θ with the active neutrinos then the
total effective mixing angle of the broad sterile neutrino, θb will be approximately given by

sin2 θb ≈ N sin2 θ . (4.15)

For example, if we consider N = 40, then an effective mixing angle sin2 2θb ≈ 0.15 required
by BEST may be generated by sin2 2θ ≈ 0.004, as observed in figure 6.

Cosmology. Cosmological production from scattering for a single sterile neutrino state
with active-sterile mixing angle θ will scale proportional to sin2 θ. Thus, for a band of states
the total abundance of produced sterile states will scale as N sin2 θ. However, we already saw
that this is the same as ∝ sin2 θb, for the effective broad neutrino. Thus for a single broad
neutrino, no matter the underlying microscopic narrow states which give rise to the effective
breadth, one expects to generate a similar cosmological production rate as would be generated
for a single narrow sterile neutrino state with mixing angle θb. In other words, there is no
special N -dependence which can significantly modify the scaling of cosmological production.

Sterile neutrinos have a rich and complex impact on the early universe and observational
cosmology. See, for instance, ref. [44] for a recent review. While a broad sterile scenario can
render a gallium anomaly explanation consistent with reactor data, an additional source of
tension comes from cosmological Neff determinations, from BBN, CMB and BAO observables
(see also refs. [18, 45]). For the same mixing and mass, if the N states of the band thermalize,
then this model will predict a contribution to Neff which is a factor ∼N greater than for
a single thermalized sterile neutrino. Since a single thermalized sterile neutrino is already
ruled out, in this case some additional mechanism must be appealed to in order to render
predictions consistent with observations. On the other hand, if the sterile neutrinos do not
thermalize, for instance due to a low reheat temperature, then one expects a comparable
Neff contribution as for a single sterile neutrino, hence the scenarios proposed here will also
be in tension to a similar overall degree.1

Many of the proposed resolutions for ameliorating cosmological tensions in the case of
standard sterile neutrinos can apply in these cases — see ref. [46] for a recent review. For
instance, if the states comprising the band of sterile neutrinos can decay into an active neutrino
and radiation, such as a new ultralight boson, on a fast enough timescale (i.e. well before SM-
neutrino decoupling), then predictions can be brought into line with cosmological observations.

1We thank Thomas Schwetz for dicsussions on this aspect.
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5 Discussion & conclusions

In this work we have reassessed a long-standing neutrino-physics tension between the null
results of reactor antineutrino experiments and the putative positive signal in gallium source
experiments. We have drawn on previous analyses which suggested that decoherence from
small neutrino wavepackets is at play. Building on this suggestion, we have demonstrated
that a ‘broad sterile neutrino’ scenario, where the additional neutrino species does not occupy
a single definite mass state, is qualitatively similar in relaxing the tension between these
experimental results.

We have shown that this scenario provides a relatively good, albeit not perfect, fit to
the data of interest. In doing so, we have identified the rough scale of the sterile neutrino
breadth as a target for future experimental efforts. Such nonzero breadth could be discovered
in future studies of reactor antineutrino experiments.

Finally, we have placed a significant emphasis on the fact that such a broad sterile
neutrino could be realized in a variety of UV-complete, beyond-the-Standard-Model theories.
The concrete model we have focused on resembles a clockwork scenario of new fermions,
strongly coupled to each other and weakly coupled (via mixing) to the Standard Model
neutrinos. We have shown that, for length and energy scales of interest, this model can
be reasonably well described by the simple phenomenological approach we have used in
fitting data. It would be interesting to investigate if alternative microscopic models could
improve the gallium/reactor tension even further, since the shape of the phenomenological
model has not been optimized to this end.

Whether the evidence from gallium source experiments is bona fide new physics remains
to be seen, but, if it is, additional phenomena are required to resolve tension with reactor
antineutrino measurements, as well as predictions regarding solar neutrinos and cosmology
which lie beyond our main focus. Broad sterile neutrinos provide a novel and interesting
class of potential solutions.
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