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1 Introduction

To describe a black hole in AdS, it is useful to consider the doubled (two-sided) Hilbert
space of boundary CFT. In particular, the eternal black hole in AdS corresponds to the
thermo-field double state [1] which is closely related to the idea of ER=EPR [2, 3]. Recently,
the doubled Hilbert space in JT gravity and the double-scaled SYK (DSSYK) model has
been extensively studied in the literature (see e.g. [4–8] and references therein).

In this paper, we consider matter correlators of DSSYK in the doubled Hilbert space
formalism. As shown in [9], the correlators of DSSYK reduce to the counting problem of chord
diagrams, which is exactly solved in terms of the q-deformed oscillator A±. The Fock space H
of the q-deformed oscillator, also known as the chord Hilbert space, can be thought of as the
Hilbert space of bulk gravity theory [10]. It turns out that matter correlators of DSSYK have
a simple expression in the doubled Hilbert space H⊗H. We find that the operator which
counts the intersection of chords is conjugated by the “entangler” E and the “disentangler” E−1

(see (4.4) and (4.11)). This structure is reminiscent of the tensor network of MERA [11, 12].
This paper is organized as follows. In section 2, we briefly review the known result of

matter correlators in DSSYK. In section 3, we define a mapping of the operator X on H
to the state |X⟩ in the doubled Hilbert space H ⊗ H and rewrite the matter correlators
as the overlap ⟨0, 0|X⟩. In section 4, we perform this rewriting explicitly for the two- and
four-point functions of matter operators. We find that the intersection-counting operator is
conjugated by the entangler and the disentangler as in (4.4) and (4.11). Finally we conclude
in section 5 with some discussion on the future problems. In appendix A we summarize some
useful formulae used in the main text. In appendix B we explain the derivation of (4.8). In
appendix C we prove the crossing symmetry of the R-matrix of Uq(su(1, 1)).
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2 Review of DSSYK

In this section we briefly review the result of DSSYK in [9]. SYK model is defined by
the Hamiltonian for N Majorana fermions ψi (i = 1, · · · , N) obeying {ψi, ψj} = 2δi,j with
all-to-all p-body interaction

H = ip/2 ∑
1≤i1<···<ip≤N

Ji1···ipψi1 · · ·ψip , (2.1)

where Ji1···ip is a random coupling drawn from the Gaussian distribution. DSSYK is defined
by the scaling limit

N, p→ ∞ with λ = 2p2

N
: fixed. (2.2)

As shown in [9], the ensemble average of the moment TrHk reduces to a counting problem
of the intersection number of chord diagrams

⟨TrHk⟩J =
∑

chord diagrams
q#(intersections) (2.3)

with q = e−λ. This counting problem is solved by introducing the transfer matrix T

T = A+ +A−√
1 − q

, (2.4)

where A± denote the q-deformed oscillator acting on the chord number state |n⟩

A+|n⟩ =
√

1 − qn+1|n+ 1⟩, A−|n⟩ =
√

1 − qn|n− 1⟩. (2.5)

Note that A± satisfy the q-deformed commutation relations

A−A+ − qA+A− = 1 − q,

A−A+ −A+A− = (1 − q)qN̂ ,
(2.6)

where N̂ denotes the number operator

N̂ |n⟩ = n|n⟩. (2.7)

Then the moment in (2.3) is written as

⟨TrHk⟩J = ⟨0|T k|0⟩. (2.8)

The transfer matrix T becomes diagonal in the θ-basis

T |θ⟩ = E(θ)|θ⟩, E(θ) = 2 cos θ√
1 − q

, (2.9)

and the overlap of ⟨n| and |θ⟩ is given by the q-Hermite polynomial Hn(cos θ|q)

⟨n|θ⟩ = Hn(cos θ|q)√
(q; q)n

, (2.10)
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where (q; q)n denotes the q-Pochhammer symbol (see appendix A for the definition). |θ⟩ and
|n⟩ are normalized as

⟨θ|θ′⟩ = 2π
µ(θ)δ(θ − θ′), ⟨n|m⟩ = δn,m,

1 =
∫ π

0

dθ

2πµ(θ)|θ⟩⟨θ| =
∞∑

n=0
|n⟩⟨n|,

(2.11)

and the measure factor µ(θ) is given by

µ(θ) = (q, e±2iθ; q)∞. (2.12)

As discussed in [9], we can also consider the matter operator O∆

O∆ = is/2 ∑
1≤i1<···<is≤N

Ki1···isψi1 · · ·ψis (2.13)

with a Gaussian random coefficient Ki1···is which is drawn independently from the random
coupling Ji1···ip in the SYK Hamiltonian. In the double scaling limit (2.2), the effect of this
operator can be made finite by taking the limit s→ ∞ with ∆ = s/p held fixed. Then the
correlator of O∆’s is also written as a counting problem of the chord diagrams∑

chord diagrams
q#(H-H intersections)q∆i#(H-O∆i

intersections)q
∆i∆j#(O∆i

-O∆j
intersections)

. (2.14)

Note that there appear two types of chords in this computation: H-chords and O-chords
coming from the Wick contraction of random couplings Ji1···ip and Ki1···is , respectively. The
O-chord is also called matter chord.

Let us consider the bi-local operator O∆e
−βHO∆, where the overline denotes the Wick

contraction of random coupling Ki1···is . As shown in [9], this operator is given by (see also [13])

O∆e
−βHO∆ =

∞∑
n,m,ℓ=0

(q2∆; q)ℓ

(q; q)ℓ

√
(q; q)m+ℓ(q; q)n+ℓ

(q; q)m(q; q)n
|m+ℓ⟩⟨m|q∆N̂e−βT q∆N̂ |n⟩⟨n+ℓ|. (2.15)

Using the relation

|n⟩ =
An

+√
(q; q)n

|0⟩, Aℓ
+|n⟩ =

√
(q; q)n+ℓ

(q; q)n
|n+ ℓ⟩, (2.16)

(2.15) is rewritten as

O∆e
−βHO∆ =

∞∑
ℓ=0

(q2∆; q)ℓ

(q; q)ℓ
Aℓ

+q
∆N̂e−βT q∆N̂Aℓ

−. (2.17)

As shown in [9], this bi-local operator commutes with T[
T,O∆e

−βHO∆
]

= 0. (2.18)

The two-point function of matter operator O∆ is given by

⟨0|e−β2TO∆e
−β1HO∆|0⟩ = ⟨0|e−β2T q∆N̂e−β1T |0⟩. (2.19)

– 3 –



J
H
E
P
0
4
(
2
0
2
4
)
0
9
1

Note that only the ℓ = 0 term in (2.17) contributes to the two-point function since Aℓ
−|0⟩ = 0

for ℓ ≥ 1.
Similarly, the uncrossed four-point function is given by

⟨0|e−β4TO∆2e
−β3HO∆2e

−β2TO∆1e
−β1HO∆1 |0⟩

= ⟨0|O∆2e
−β3HO∆2e

−(β2+β4)TO∆1e
−β1HO∆1 |0⟩

= ⟨0|e−β3T q∆2N̂e−(β2+β4)T q∆1N̂e−β1T |0⟩.

(2.20)

In the first equality we have used the relation (2.18) and the last equality follows from the
fact that only the ℓ = 0 term in (2.17) contributes in this computation when sandwiched
between ⟨0| and |0⟩.

The crossed four-point function is given by [9]

⟨0|e−β4TO∆2e
−β3HO∆1e

−β2HO∆2e
−β1HO∆1 |0⟩

=
∞∑

ℓ=0

(q2∆2 ; q)ℓ

(q; q)ℓ
q∆1ℓ⟨0|e−β4TAℓ

+q
∆2N̂e−β3T q∆1N̂e−β2T q∆2N̂Aℓ

−e
−β1T |0⟩.

(2.21)

Here we have suppressed the overall factor q∆1∆2 coming from the intersection of the O∆1-
chord and the O∆2-chord.

Let us take a closer look at the two-point function (2.19). Inserting the complete set
{|n⟩}n=0,1,··· in (2.19), the two-point function becomes

⟨0|e−β2T q∆N̂e−β1T |0⟩ =
∞∑

n=0
q∆n⟨0|e−β2T |n⟩⟨n|e−β1T |0⟩. (2.22)

As discussed in [9, 10], |n⟩ represents the state at a constant time-slice of the bulk geometry
with n H-chords threading that slice. The factor q∆n comes from the intersection of matter
chord and n H-chords. Thus q∆N̂ in (2.19) can be thought of as the operator counting
the intersection of O∆-chord and H-chords. This operator q∆N̂ plays an important role
in what follows.

3 Doubled Hilbert space

As we reviewed in the previous section, the matter correlator of DSSYK takes the form
⟨0|X|0⟩, where X is a linear operator on the chord Hilbert space H spanned by the chord
number states |n⟩ (n = 0, 1, · · · )

H =
∞⊕

n=0
C|n⟩. (3.1)

In order to study the matter correlators in DSSYK, it is useful to consider the doubled Hilbert
space H ⊗ H and regard the operator X as a state |X⟩ in H ⊗ H

X ∈ End(H) 7→ |X⟩ ∈ H ⊗H. (3.2)

– 4 –
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In terms of the basis {|n⟩}n=0,1,···, this mapping (3.2) is given by

X =
∞∑

n,m=0
|n⟩⟨n|X|m⟩⟨m| 7→ |X⟩ =

∞∑
n,m=0

|n,m⟩⟨n|X|m⟩, (3.3)

where |n,m⟩ is the natural basis of H ⊗ H

|n,m⟩ := |n⟩ ⊗ |m⟩. (3.4)

In particular, the identity operator 1 corresponds to the state

|1⟩ =
∞∑

n=0
|n, n⟩ = E|0, 0⟩, (3.5)

where E is given by (see (2.16) and (A.2))

E =
∞∑

n=0

An
+ ⊗An

+
(q; q)n

= 1
(A+ ⊗A+; q)∞

. (3.6)

Note that the state |1⟩ is the maximally entangled state and the operator E generates the
entanglement when acting on the pure state |0, 0⟩. Similarly, the operator q∆N̂ corresponds
to the state |q∆N̂ ⟩

∣∣q∆N̂〉 =
∞∑

n=0
q∆n|n, n⟩ = E∆|0, 0⟩ (3.7)

with
E∆ = 1

(q∆A+ ⊗A+; q)∞
. (3.8)

Using ⟨n|m⟩ = δn,m in (2.11), the inner product of our |n,m⟩ in (3.4) is given by

⟨n,m|n′,m′⟩ = ⟨n|n′⟩⟨m|m′⟩ = δn,n′δm,m′ . (3.9)

Namely, the inner product is diagonal in our |n,m⟩-basis.
Note that we can append and/or prepend strings of operators as1

|XY Z⟩ = (X ⊗ tZ)|Y ⟩ (3.10)

where X,Y, Z ∈ End(H) and tZ denotes the transpose of Z

⟨n|tZ|m⟩ = ⟨m|Z|n⟩. (3.11)

We should stress that we do not take the complex conjugation of Z on the right hand side
of (3.10); we simply reverse the order of multiplication and take the transpose of Z in (3.10).

As an example of (3.10), let us consider the relation

A−q
∆N̂ = q∆N̂q∆A−. (3.12)

1A similar construction is discussed in [14].
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Using tA± = A∓ and (3.10), we find2

(A− ⊗ 1)
∣∣q∆N̂〉 = (1⊗ q∆A+)

∣∣q∆N̂〉. (3.13)

We can also show that

(1⊗A−)
∣∣q∆N̂〉 = (q∆A+ ⊗ 1)

∣∣q∆N̂〉. (3.14)

From (2.11), the state |1⟩ is written in terms of the |θ⟩-basis as

|1⟩ =
∫ π

0

dθ

2πµ(θ)|θ, θ⟩, (3.15)

and the state corresponding to the operator e−βT is given by

|e−βT ⟩ =
(
e−

1
2 βT ⊗ e−

1
2 βT

)
|1⟩ =

∫ π

0

dθ

2πµ(θ)e−βE(θ)|θ, θ⟩. (3.16)

This state |e−βT ⟩ is known as the thermo-field double state.

4 Matter correlators in the doubled Hilbert space formalism

In this section, we consider matter correlators of DSSYK in the doubled Hilbert space
formalism. In general, the matter correlator of DSSYK takes the form ⟨0|X|0⟩ with some
operator X ∈ End(H). In the doubled Hilbert space formalism, ⟨0|X|0⟩ is expressed as

⟨0|X|0⟩ = ⟨0, 0|X⟩. (4.1)

4.1 Two-point function

Let us first consider the bi-local operator in (2.17), which is the basic building block of
the two-point function and the uncrossed four-point function. The state |O∆e

−βHO∆⟩
corresponding to the operator in (2.17) is given by

|O∆e
−βHO∆⟩ =

∞∑
ℓ=0

(q2∆; q)ℓ

(q; q)ℓ
(Aℓ

+ ⊗Aℓ
+)(q∆N̂ ⊗ q∆N̂ )|e−βT ⟩

= (q2∆A+ ⊗A+; q)∞
(A+ ⊗A+; q)∞

(q∆N̂ ⊗ q∆N̂ )|e−βT ⟩,
(4.2)

where we used the summation formula in (A.3). Using the relation

q∆N̂A+ = q∆A+q
∆N̂ , (4.3)

2The state
∣∣q∆N̂

〉
in (3.7) is reminiscent of the boundary state |Ba⟩ of the end of the world brane [15]

|Ba⟩ = 1
(aA+; q)∞

|0⟩.

As shown in [15], the boundary state |Ba⟩ is a coherent state of the q-deformed oscillator

A−|Ba⟩ = a|Ba⟩,

where the parameter a is related to the tension of the brane.

– 6 –
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(4.2) is rewritten as

|O∆e
−βHO∆⟩ = E(q∆N̂ ⊗ q∆N̂ )E−1|e−βT ⟩, (4.4)

where E is defined in (3.6). The appearance of the operator q∆N̂ ⊗ q∆N̂ in (4.4) is natural
since it counts the number of intersections between the H-chord and the matter chord. The
important point is that this operator q∆N̂ ⊗ q∆N̂ should be conjugated by E

q∆N̂ ⊗ q∆N̂ → E(q∆N̂ ⊗ q∆N̂ )E−1. (4.5)

This conjugation guarantees that the β → 0 limit of the state (4.4) reduces to |1⟩ in (3.5)

lim
β→0

|O∆e
−βHO∆⟩ = E(q∆N̂ ⊗ q∆N̂ )E−1|1⟩

= E(q∆N̂ ⊗ q∆N̂ )|0, 0⟩
= E|0, 0⟩
= |1⟩.

(4.6)

In other words, the conjugation (4.5) is necessary for the following operator identity to hold3

O∆O∆ = 1. (4.7)

Following the language of tensor networks, we call E and E−1 as “entangler” and “disentangler”,
respectively. Our result (4.4) shows that we have to insert the disentangler E−1 before acting
the intersection-counting operator q∆N̂ ⊗q∆N̂ . In the context of MERA [11, 12], disentanglers
are usually assumed to be unitary operators. However, our E and E−1 are not unitary.
Thus, (4.5) is a similarity transformation, not a unitary transformation.

From the time-translation invariance (2.18) of the bi-local operator O∆e
−βHO∆, it follows

that the state |O∆e
−βHO∆⟩ in (4.4) is diagonal in the |θ⟩-basis

|O∆e
−βHO∆⟩ =

∫ π

0

dθ

2πµ(θ)|θ, θ⟩⟨θ|q∆N̂e−βT |0⟩. (4.8)

See appendix B for the derivation of this expression.

4.2 Crossed four-point function

Next, let us consider the crossed four-point function (2.21)

G4 :=
∞∑

ℓ=0

(q2∆2 ; q)ℓ

(q; q)ℓ
q∆1ℓ⟨0|e−β4TAℓ

+q
∆2N̂e−β3T q∆1N̂e−β2T q∆2N̂Aℓ

−e
−β1T |0⟩. (4.9)

In the doubled Hilbert space formalism, this is written as

G4 =
∞∑

ℓ=0

(q2∆2 ; q)ℓ

(q; q)ℓ
q∆1ℓ⟨0, 0|(e−β4T ⊗e−β1T )(Aℓ

+ ⊗Aℓ
+)(q∆2N̂ ⊗ q∆2N̂ )(e−β3T ⊗e−β2T )|q∆1N̂ ⟩.

(4.10)
3See also footnote 1 in [13].

– 7 –



J
H
E
P
0
4
(
2
0
2
4
)
0
9
1

Using (A.3) and (4.3), one can show that (4.10) is written as

G4 = ⟨0, 0|(eβ4T ⊗ eβ1T )E∆1(q∆2N̂ ⊗ q∆2N̂ )(E∆1)−1(eβ3T ⊗ eβ2T )|q∆1N̂ ⟩, (4.11)

where E∆1 is defined in (3.8). Again, the operator q∆2N̂ ⊗q∆2N̂ is conjugated by E∆1 in (4.11);
E∆1 and (E∆1)−1 can be thought of as the entangler and the disentangler associated with
the state |q∆1N̂ ⟩ = E∆1 |0, 0⟩. G4 in (4.11) is schematically depicted as

|q∆1N̂ ⟩⟨0, 0|

β2

β3β4

β1
, (4.12)

where the red line and the blue line correspond to the O∆1-chord and the O∆2-chord,
respectively. In this picture, the bra and the ket are treated asymmetrically and some of the
symmetries of G4 are not manifest in our representation (4.11). In particular, the crossing
symmetry (12) ↔ (34) of G4 is not manifest in (4.11).

The crossing symmetry (or the exchange of bra and ket) of G4 can be seen as follows
(see appendix C for the details). Inserting the resolution of identity 1 in (2.11), G4 in (4.11)
is written as

G4 =
∫ 4∏

k=1

dθk

2π µ(θk)e−βkE(θk)R(θ1, θ2, θ3, θ4) (4.13)

with

R(θ1, θ2, θ3, θ4) = ⟨θ4, θ1|E∆1(q∆2N̂ ⊗ q∆2N̂ )(E∆1)−1|θ3, θ2⟩⟨θ3|q∆1N̂ |θ2⟩. (4.14)

This R(θ1, θ2, θ3, θ4) is proportional to the R-matrix of the quantum group Uq(su(1, 1)),
which is written in terms of the basic hypergeometric series 8W7. Using the Bailey trans-
formation (C.4) of 8W7, one can show that R(θ1, θ2, θ3, θ4) in (4.14) is invariant under the
crossing symmetry (12) ↔ (34)

R(θ1, θ2, θ3, θ4) = R(θ3, θ4, θ1, θ2), (4.15)

which implies that G4 is invariant under (β1β2) ↔ (β3β4). This symmetry of G4 is schemat-
ically depicted as

|q∆1N̂ ⟩⟨0, 0|

β2

β3β4

β1

= |q∆1N̂ ⟩⟨0, 0|

β4

β1β2

β3
. (4.16)
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5 Conclusion and outlook

In this paper we have studied the matter correlators of DSSYK in the doubled Hilbert space
formalism. In our formalism, a matter correlator of the form ⟨0|X|0⟩ is expressed as the
overlap between ⟨0, 0| and the state |X⟩ ∈ H ⊗H corresponding to the operator X, where
the relation between X and |X⟩ is given by (3.3). We find that the intersection-counting
operator q∆N̂ ⊗ q∆N̂ should be conjugated by the entangler E and the disentangler E−1 as
in (4.4) (or the entangler E∆1 and disentangler (E∆1)−1 in the case of crossed four-point
function (4.11)). In our representation of a matter correlator ⟨0, 0|X⟩ (4.1), the bra and
the ket are treated asymmetrically and hence some of the symmetries of the correlators
are not manifest. Nevertheless, the bra-ket exchange symmetry (or crossing symmetry)
of the four-point function (4.16) can be shown rather non-trivially by using the Bailey
transformation (C.4) of 8W7.

We should stress that our formalism is different from that in [8]. The authors of [8]
introduced the two-sided chord Hilbert space in the presence of the matter operator, spanned
by the states {|nL, nR⟩} where nL and nR denote the number of H-chords to the left and
right of the matter chord. Our |n,m⟩ in (3.4) is not equal to |nL, nR⟩ in [8]. According to
the discussion in [14], our |n,m⟩ can be expanded as a linear combination of |nL, nR⟩ in [8].
It would be interesting to find a precise relation between our |n,m⟩ and |nL, nR⟩ in [8].

The construction of the two-sided chord Hilbert space in [8] is based on a picture of
cutting open the “bulk path integral”. On the other hand, our formalism is based on a
honest, direct rewriting of the known result of matter correlators in [9]. At present we do
not understand clearly how these two approaches are related. In particular, in our formalism
we do not need to introduce the co-product of q-deformed oscillator A±, which played an
important role in the discussion of symmetry algebra in [8]. Perhaps, (3.13) and (3.14) might
be a good starting point to consider the relationship between the two approaches. We leave
this as an interesting future problem.

Acknowledgments

This work was supported in part by JSPS Grant-in-Aid for Transformative Research Areas
(A) “Extreme Universe” 21H05187 and JSPS KAKENHI Grant 22K03594.

A Useful formulae

In this appendix, we summarize some useful formulae used in the main text. The q-
Pochhammer symbol is defined by

(a; q)n =
n−1∏
k=0

(1 − aqk), (a1, · · · , as; q)n =
s∏

i=1
(ai; q)n. (A.1)

The following summation formulae play an important role in this paper:
∞∑

n=0

tn

(q; q)n
= 1

(t; q)∞
, (A.2)

∞∑
n=0

(a; q)n

(q; q)n
tn = (ta; q)∞

(t; q)∞
. (A.3)
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The q-Hermite polynomial Hn(x|q) is defined by the recursion relation

2xHn(x|q) = Hn+1(x|q) + (1 − qn)Hn−1(x|q), (A.4)

with the initial condition H−1 = 0, H0 = 1. In the computation of matter correlators, we
need the following formula for the Poisson kernel of the q-Hermite polynomials

⟨θ1|tN̂ |θ2⟩ =
∞∑

n=0
tn⟨θ1|n⟩⟨n|θ2⟩

=
∞∑

n=0

tn

(q; q)n
Hn(cos θ1|q)Hn(cos θ2|q)

= (t2; q)∞
(tei(±θ1±θ2); q)∞

.

(A.5)

Al-Salam-Chihara polynomial Qn(x|a, b, q) is defined by the recursion relation

2xQn = Qn+1 + (a+ b)qnQn + (1 − qn)(1 − abqn−1)Qn−1 (A.6)

with the initial condition Q−1 = 0, Q0 = 1. Using the summation formula in [16], we find
that the matrix element of Aℓ

+q
∆N̂ is given by the Al-Salam-Chihara polynomial

⟨θ1|Aℓ
+t

N̂ |θ2⟩ =
∞∑

n=0
tn⟨θ1|Aℓ

+|n⟩⟨n|θ2⟩

=
∞∑

n=0

tn

(q; q)n
Hn+ℓ(cos θ1|q)Hn(cos θ2|q)

= ⟨θ1|tN̂ |θ2⟩
Qℓ(cos θ1|te±iθ2 , q)

(t2; q)ℓ
.

(A.7)

B Derivation of (4.8)

In this appendix, we derive the relation (4.8). To this end, let us consider the overlap of
⟨θ1, θ2| and the state |O∆e

−βHO∆⟩ in (4.2)

⟨θ1, θ2|O∆e
−βHO∆⟩ =

∞∑
ℓ=0

(q2∆; q)ℓ

(q; q)ℓ

∫ π

0

dθ

2πµ(θ)e−βE(θ)⟨θ1|Aℓ
+q

∆N̂ |θ⟩⟨θ2|Aℓ
+q

∆N̂ |θ⟩, (B.1)

where we used the integral form of the thermo-field double state |e−βT ⟩ in (3.16). Plug-
ging (A.7) into (B.1), we find

⟨θ1, θ2|O∆e
−βHO∆⟩ =

∫ π

0

dθ

2πµ(θ)e−βE(θ)⟨θ1|q∆N̂ |θ⟩⟨θ2|q∆N̂ |θ⟩

×
∞∑

ℓ=0

Qℓ(cos θ1|q∆e±iθ, q)Qℓ(cos θ2|q∆e±iθ, q)
(q, q2∆; q)ℓ

.
(B.2)

Using the summation formula [17]
∞∑

ℓ=0

Qℓ(cos θ1|q∆e±iθ, q)Qℓ(cos θ2|q∆e±iθ, q)
(q, q2∆; q)ℓ

= ⟨θ1|θ2⟩
⟨θ1|q∆N̂ |θ⟩

, (B.3)
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(B.2) becomes

⟨θ1, θ2|O∆e
−βHO∆⟩ = ⟨θ1|θ2⟩

∫ π

0

dθ

2πµ(θ)e−βE(θ)⟨θ1|q∆N̂ |θ⟩

= ⟨θ1|θ2⟩
∫ π

0

dθ

2πµ(θ)⟨θ1|q∆N̂e−βT |θ⟩

= ⟨θ1|θ2⟩⟨θ1|q∆N̂e−βT |0⟩.

(B.4)

In the last equality we used the relation∫ π

0

dθ

2πµ(θ)|θ⟩ = |0⟩, (B.5)

where |0⟩ on the right hand side stands for |n = 0⟩. One can easily see that (B.4) is equivalent
to our desired relation (4.8). This completes the proof of (4.8).

C Crossing symmetry of R(θ1, θ2, θ3, θ4)

In this appendix, we prove the crossing symmetry of R(θ1, θ2, θ3, θ4) in (4.15). Using (A.7),
R(θ1, θ2, θ3, θ4) in (4.14) is written as

R(θ1, θ2, θ3, θ4) = ⟨θ4, θ1|
( ∞∑

ℓ=0

(q2∆2 ; q)ℓ

(q; q)ℓ
q∆1ℓAℓ

+ ⊗Aℓ
+

)
(q∆2N̂ ⊗ q∆2N̂ )|θ3, θ2⟩⟨θ3|q∆1N̂ |θ2⟩

= ⟨θ3|q∆1N̂ |θ2⟩⟨θ4|q∆2N̂ |θ3⟩⟨θ1|q∆2N̂ |θ2⟩

×
∞∑

ℓ=0

q∆1ℓ

(q2∆2 , q; q)ℓ
Qℓ(cos θ4|q∆2e±iθ3 ; q)Qℓ(cos θ1|q∆2e±iθ2 ; q)

= ⟨θ4|q∆2N̂ |θ3⟩⟨θ3|q∆1N̂ |θ2⟩⟨θ2|q∆2N̂ |θ1⟩⟨θ1|q∆1N̂ |θ4⟩

× (q∆1e−i(θ2+θ3), q∆1+∆2ei(θ2±θ4), q∆1+∆2ei(θ3±θ1); q)∞
(q2∆1 , q∆1+2∆2ei(θ2+θ3); q)∞

× 8W7(q−1+∆1+2∆2ei(θ2+θ3); q∆1ei(θ2+θ3), q∆2ei(θ3±θ4), q∆2ei(θ2±θ1); q, q∆1e−i(θ2+θ3)).
(C.1)

In the last step, we have used the Poisson kernel of the Al-Salam-Chihara polynomials [17]

1
⟨θ1|tN̂ |θ4⟩

∞∑
ℓ=0

tℓ

(ab, q; q)ℓ
Qℓ(cos θ4|a, b; q)Qℓ(cos θ1|α, β; q)

=(βa−1t, αte±iθ4 , ate±iθ1 ; q)∞
(t2, aαt; q)∞ 8W7(q−1aαt;αb−1t, ae±iθ4 , αe±iθ1 ; q, βa−1t)

(C.2)

where ab = αβ and the well-poised basic hypergeometric series 8W7 is defined by4

8W7(a; b, c, d, e, f ; q, z) =
∞∑

n=0

(a,±qa
1
2 , b, c, d, e, f ; q)n

(q,±a
1
2 , qa/b, qa/c, qa/d, qa/e, qa/f ; q)n

zn. (C.3)

4The basic hypergeometric series
∞∑

n=0

(a, α1, · · · , αs; q)n

(q, β1, · · · , βs; q)n
zn

is called well-poised when aq = α1β1 = · · · = αsβs. 8W7(a; b, c, d, e, f ; q, z) is called very well-poised
when z = λq/ef .
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The crossing symmetry of R(θ1, θ2, θ3, θ4) in (C.2) can be shown by using the Bailey
transform of 8W7 (see e.g. [18])

8W7
(
a; b, c, d, e, f ; q, λq

ef

)
=

(
aq, aq

ef ,
λq
e ,

λq
f ; q

)
∞(

λq, λq
ef ,

aq
e ,

aq
f ; q

)
∞

8W7
(
λ; b̃, c̃, d̃, e, f ; q, aq

ef

)
, (C.4)

where
λ = qa2

bcd
, b̃ = λb

a
, c̃ = λc

a
, d̃ = λd

a
. (C.5)

Note that the dual version of the first relation of (C.5) is given by

a = qλ2

b̃c̃d̃
. (C.6)

Thus the transformation of the parameters (a, b, c, d) → (λ, b̃, c̃, d̃) in (C.4) is a Z2 involution.5

We can apply the Bailey transformation (C.4) to our case (C.2) by setting

a = q−1+∆1+2∆2ei(θ2+θ3),

b = q∆1ei(θ2+θ3),

c = q∆2ei(θ2−θ1),

d = q∆2ei(θ3−θ4),

e = q∆2ei(θ1+θ2),

f = q∆2ei(θ3+θ4).

(C.7)

Then the dual parameters are given by

λ = q−1+∆1+2∆2ei(θ1+θ4),

b̃ = q∆1ei(θ1+θ4),

c̃ = q∆2ei(θ4−θ3),

d̃ = q∆2ei(θ1−θ2).

(C.8)

We can see that the mapping from (a, b, c, d) in (C.7) to (λ, b̃, c̃, d̃) in (C.8) corresponds
to the crossing symmetry (12) ↔ (34). We can also check that the prefactor of 8W7
in (C.2) is correctly transformed under the Bailey transformation (C.4). Finally we find that
R(θ1, θ2, θ3, θ4) in (C.2) is invariant under the crossing symmetry (4.15).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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