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1 Introduction

The Standard Model of particle physics has been extremely successful in describing experi-
mental data at high energies. As part of this, the fundamental QCD Lagrangian has been
established beyond any reasonable doubt. However, many aspects of the resulting hadron
properties are still only poorly understood, e.g. the entanglement of two partons in the
wave functions of a proton. Work on this front is not only motivated by the goal to better
understand the strong interaction, but also by the fact that QCD effects often limit the
sensitivity of searches for physics beyond the Standard Model.

An intriguing phenomenon in hadron collisions is double parton scattering (DPS), a
mechanism in which two partons in each hadron take part in a hard scattering subprocess.
Building on pioneering work from the 1970s and 1980s [1-7], substantial progress has been
made during the last decade in an effort to develop a systematic description of DPS in
QCD [8-20]. Experimental investigations of DPS started in the 1980s [21] and were followed
by a wealth of studies at the Tevatron and the LHC, see for instance [22-25] and [26-32].

A crucial input for computing DPS are double parton distributions (DPDs), which
describe the joint distribution of two partons inside a hadron. They quantify several types of
two-particle correlations in the proton wave function and are not well known. It is natural to
explore to which extent lattice QCD calculations can provide guidance in this context. In two
previous publications [33, 34|, we presented lattice computations of two-current correlation
functions that can be related with the Mellin moments of DPDs [12]. This generalizes
the well-known relation between single-current matrix elements and the Mellin moments of
single-parton distributions, which has been extensively studied in the literature [37]. More
recently, it has been proposed in [38, 39] to study the full functional dependence of DPDs
on the lattice in the LaMET approach [40, 41]. It will be very interesting to see to which
extent this can be done in practice.



One should bear in mind that neither of these lattice approaches is sensitive to parton
momentum fractions smaller than, say, 1072, which are responsible for much of the phase
space where DPS is observed. (The same holds for quark models, which have been used
extensively to compute DPDs [42-53].) However, partons with larger momentum fractions at
low resolution scales are the “seeds” of evolution and thus have an imprint on partons with
smaller momentum fractions at high scales. At high scales, large parton momentum fractions
are probed in the production of heavy particles and thus of interest in searches for new
physics. Moreover, larger parton momentum fractions become relevant when the products
of the two hard scatters in DPS have a large rapidity separation. This is an interesting
kinematic region, where DPS is often appreciable compared to single hard scattering. Finally,
DPDs at larger momentum fractions are of interest in their own right from the point of
view of exploring hadron structure.

With this in mind, we complement in the present paper our previous study [34] of DPDs
in the nucleon. Specifically, we investigate flavor interference DPDs, which are characterized
by different flavors for the quark (or antiquark) initiating a specific hard scattering in the
amplitude and in its complex conjugate. Such distributions contribute for instance to the
double Drell-Yan process. They were introduced in [12], were it was also pointed out that they
do not mix with gluons under evolution, such that at small momentum fractions one can expect
them to be small compared with flavor diagonal DPDs. At moderate or large momentum
fractions (which are relevant for Mellin moments) there is however no argument that flavor
interference should be suppressed. We will investigate whether this is the case by comparing
the corresponding two-current matrix elements computed on the lattice. We will furthermore
compare our lattice results (both for the flavor diagonal and the interference case) with the
predictions obtained from an SU(6) symmetric three-quark wave function of the proton.

Our paper is organized as follows. In section 2, we review the different quantities relevant
to our study and explain how they are related to each other. Details of the lattice setup
we use are given in 3. Sections 4 and 5 contain the results of our calculations. In section 4,
the Mellin moments for different combinations of flavor and polarization are presented and
compared with the SU(6) predictions. In section 5 we explore to which extent DPDs can be
factorized in terms of single-parton distributions. We summarize our findings in section 6.

2 Theory background

2.1 Definitions and properties

In the following, we review some basic definitions and properties of double parton distributions
in the context of our lattice simulation. For more details the reader is referred to [33, 34].
DPDs describe the joint probability of finding two quarks with given polarization in a hadron.
In this work we focus on the proton. We average over its polarization A, which is indicated
by the notation Y7\ = %Z »- The definition of DPDs is given by
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where we use light-cone coordinates v+ := (v° + v3)/v/2 and v := (v',v?) for a given

four-vector v#. The light-cone operators are defined as

Ol ) =y = 39)Taaly+32)| ,_ . (2:2)

where a specifies the quark flavor and polarization, which is determined by the spin projections
Ty=1iy", Tag = 275, I3, =sic’ts (7 =1,2). (2.3)

q refers to an unpolarized quark, Aq to a longitudinally polarized quark and dg to a trans-
versely polarized quark. The DPDs (2.1) can be decomposed in terms of rotationally
invariant functions:
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where m denotes the proton mass and €/* is the antisymmetric tensor in two dimensions
(e!2 = 1). The definitions given above can be extended for the case of flavor-changing
operators, i.e. (2.2) is modified so that the quark field has a different quark flavor than
the conjugate quark field, q # ¢

Ouly.2) =l —32) Tad w439 ,_ - (2:5)
with a = (¢q'), A(qq’),5(qq’). The corresponding functions Fy, 4, (21, z2,y) given by inserting
the operators (2.5) in (2.1) are called flavor interference distributions or flavor interference
DPDs. For instance, an interference contribution to the unpolarized channel is given by
Flud)(du)» which corresponds to the operator combination O(,q)O(4y)- Notice that in contrast
to flavor diagonal DPDs, these interference DPDs cannot be interpreted as parton density
distributions. Hence, there is no positivity constraint for them. Flavor interference DPDs are
relevant in the description of double parton scattering, where they represent flavor interference
contributions in the cross section. An example is shown in figure 1.

In the context of lattice calculations, it is useful to introduce so-called skewed DPDs,
which are a generalization of ordinary DPDs in the sense that one introduces a difference
between the momentum fractions of the quark in the wave function and in its complex
conjugate. This difference is quantified by the skewness parameter (:
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Figure 1. Example graphs for flavor interference in the double Drell-Yan process.
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Figure 2. Skewed DPDs and their parton momentum fractions for the flavor diagonal case (left) and
for flavor interference (right).

This skewed DPD has already been used in [33, 34], where also the region of support w.r.t.
the parameters x1, o and ¢ has been discussed in detail. Let us recall that this support
region is given by:

ki<l fanl4lael <1, [ <1 (2.7)

In figure 2 we give a graphical representation of skewed DPDs, where we indicate the
longitudinal momentum fraction of the quarks in the wave function and its complex conjugate.

Moreover, we define Mellin moments w.r.t. z; and zs:

1 1
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The symmetry properties of flavor diagonal DPDs are discussed in [34]. In the following we
briefly show how these properties generalize to the flavor interference case.
For unpolarized distributions, one finds

fdy@w (@1, 22, 9) = Frauywa) (21, 22, —C,9%) |
[fudydn (@1, 22, Gy = Frawyway (@1, 22, —C, 5%,
Feudyduny (@1, 22, C¥%) = flaw wa) (@2, 21, —C, 9% (2.9)
where the first relation follows from PT invariance, the second one from taking the hermitian

conjugate of the definition (2.6), and the third one from interchanging the two operators.
From the first two relations, it follows that f(,q)(qu) is real valued. Equations analogous

to (2.9) relate fa(ud)A(du) With fA(du) Acud)s fo(ud)odu) With fs(au)sua)s and f5a)50aq) With



fg( du)6(ud)” For a single transverse polarization, we have instead
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Also in this case, we find that the distributions are real valued. Parity invariance implies

that FuayAdu)s Flau)Aud)s FAud)(du)s a0d FA(du)(ud) are zero.
2.2 Euclidean matrix elements

Information about DPDs can be obtained from first principles on the lattice through Euclidean
two-current matrix elements. This has been worked out in detail for the pion [33] and the
nucleon [34]. In the following, we recall the important definitions and relations to DPDs and
extend them to the case of flavor interference. The Euclidean two-current matrix element
of the nucleon is defined as:
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where we take the average of the proton spin. The currents J I, are local quark bilinear
operators. In this work we focus on three types of currents, Wthh are defined as:

T v@) =adVd (W), Tl ay) = a)V s d (W), Ty ry) = aly)o™d (y). (2.12)

In order to make contact with the DPDs, we decompose the matrix elements in terms of
Lorentz invariant functions:
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where the basis tensors u and 4, which depend on the Lorentz vectors y and p, have
been defined in [34], equation (2.26). The quantities A (g ¢,)(g3q4)5
functions depending only on y? and py. At leading twist, we only need to consider the func-
9192)(q394)> AA(tnqz)A(q:sq4)7 At5(<11qz)(q3q4)7 A(Q1q2)6(q3q4) Aﬁ(qu]z) 6(g3qa)s
These so-called twist-two functions are directly related to the Mellin moments (2.8):
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where (2.15) is only defined for transverse polarization of a; and ag. In this work, we shall
restrict ourselves to § = 0 and, therefore, py = 0. In this case, the twist-two functions
correspond to the first moment in ¢ of the DPD:

1 1
Aaran 0y = 049) = 5= [ Al Luren (G.99). (2.16)

In [34] we found similar patterns for the twist-two functions and the reconstructed DPDs
themselves regarding their dependence on the distance y and on the quark polarization.

2.3 DPDs in the SU(6) quark model

In the following, we consider a simple SU(6)-symmetric quark model and derive its predictions
for matrix elements of two-quark currents. The spin-flavor part of the SU(6)-symmetric
proton wave function [p') is given by:

1
Iph) = 378 [|uTu¢dT) + Jutuld"y — 2 juTudY) + |uldTub) + Jutd ety — 2 |uldbu) +

+|dTuTut) + |dTutul) = 2 |dbutut)] (2.17)
where 1 (] ) indicates polarization along the positive (negative) z axis. Moreover, the quark
operators are expressed as

17, _
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and likewise for the other flavor combinations. Considering matrix elements of the form
(T (717" q2)(g37Tqa) [pT) for the proton state (2.17), we obtain:
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where it is understood that the four field operators are taken at different positions as specified
by (2.1) and (2.2). Here the factor a depends on the orbital part of the proton wave function,
which we leave unspecified. The DPDs are expressed in terms of proton matrix elements of
the operators (2.18), i.e. fayay X (PT| Oay O, [p1). Using the results given in (2.19), we find:

Jud = +6a, Juu = +6a, f(du)(ud) = —3a,
fauad = —4a, fauau = +2a, JA(du)A(ud) = +5a, (2.20)

with an overall factor @ that depends again on the orbital part of the wave function. Since
this orbital part is isotropic, there is no difference regarding the direction of the quark



polarization. Hence, the values obtained for fa,aq are the same for fs5,54, and likewise for
all other flavor combinations. Predictions that are independent of the factor @ are obtained
for ratios of DPDs, such as:

J(dw) (ud) 1 J(du) (ud) 1 fud
_ L Jdwd) _ 2 Jud _ 2.21
and
TA(dw)A(ud) 5 fAund 2 NN 1
42 S — 1z 2.22
fud 6 fud 3 fuu 3 ( )

Analogous predictions hold for the ratios of the twist-two functions A, 4, and can be directly
checked against lattice results.

3 Lattice calculation

In the following, we give an overview of the calculation of two-current matrix elements on
the lattice and briefly review the techniques that are used. A detailed explanation is given
n [34]. This shall now be extended to flavor-changing operators.

Let us first recall that the two-current matrix element (2.11) of the nucleon at 3° = 0 is
related to the nucleon four-point function Cyp(¥,t,7) by the following formula:

; — CoP(5,t,7)
Mij(p.9)| ,_ = Cibl (5) = 2V \/m? + p2 42* , (3.1)
2pt( ) o< r<t

where V is the spatial lattice volume and the four-point function C’Z_’f (4,t,7) is given by:

CHl @ t,7) = a3 e PEA (o {PyP(2 1) JilF, ) Ji(0,7) P(2,00}) . (3.2)

—»/—»

Here P, = (1 + 4) /2 projects onto positive parity, and P(Z,t) and P(Z,t) are the nucleon
interpolators, for which we choose:

P(F,1) = €ape |talz) Cr5 dy (2)] ()
P(f7t) ‘= €abc ua(flj) [UbT(fE) 075 dc(x)}

)

4=t

iy (3.3)
where C' is the charge conjugation matrix in Dirac space. The two-point function Cgpt (t)
appearing in (3.1) is defined as:

CLe(t) == a® > e P2 (P, P(2,1) P(2,0)}) . (3.4)

a,a

Wick contractions. The four-point function (3.2) decomposes into a definite set of Wick
contractions w.r.t. the fermion fields. There are five types of contractions, which we call
C1, Cs, S1, So and D. These contractions are represented by the graphs in figure 3. Notice
that, depending on the quark flavor of the operators, there are several contributions for each
contraction type. For Ci-type graphs, we denote this by the flavor indices of the operator
insertions Jy,¢,,i and Jyuq4.5, 1-€. C1 g1g2gsqu- FOr the proton, only the contractions Ci yudd,

-7 -
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Figure 3. Depiction of the five types of Wick contractions that contribute to a nucleon four-point
function. In case of C';, Cy and S the explicit contraction depends on all involved flavors. Provided
that the quark masses are taken to be equal, C5; depends only on the flavor of the quark line that is
connected to one of the insertions (red) and the source. For the disconnected diagrams Sy, S and D
we also indicate the disconnected parts Gspy and Gapy (blue), as well as the loops L; and Lo (orange).

Chuuun and Cy gyyq contribute (together with C ggyy and Ch ygdu, which are obtained by
exchanging the two currents). In our calculation, we consider only proton matrix elements
in the iso-symmetric limit, where the u-quark and the d-quark have the same mass. In
that case, there are two independent contributions with Cs- or Si-topology, namely C5 ,,
C2,4, S1,u and Sy 4. The indicated flavor refers to the quark line that connects one of the
currents with the proton source.

The explicit set of contractions contributing to the four-point function depends on the
quark flavors of the considered operators. In the following we list the decomposition of all
possible matrix elements of two light-quark operators in a proton:

Muudd,ij(pvy)| C1 uudd<_’) Sm]( ) + Sﬂ’p( ﬂ)‘i‘Dij’ﬁ(?j),
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Maudduii (0 9)] yo—o = Clduua(—9) + C3 () + O3 (=5) + 857 (7). (3.5)
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7)+ SPP (@) + SiEF (7))
),

)+
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where we use

ii B - S Clnﬁdd y,t, T
C’ffudd(y) =2V\/m?2 + p2 u“— (3.6)

<Lkt
and similarly for all other Wick contractions.

Renormalization. The lattice operators are renormalized multiplicatively and converted
to the MS-scheme using the factors Z;:

IS (y) = 2T (). (3.7)
For 8 = 3.4, the corresponding values of Z; are [54]:
Zy = 0.7128, Z A =0.7525, Z7r =0.8335, (3.8)
for the choice
=2 GeV. (3.9)
The renormalization of the two-current matrix elements is given by:
Mé\f§2q3q4ﬂlll2 Z Z Mé?f]gq3q4vzll2 (310)

Technical details on Wick contractions. A sketch summarizing the techniques used
to evaluate the Wick contractions is given in figure 4. The proton source is realized by a
point source. Both the proton source and the proton sink are momentum smeared [55]. The
corresponding smeared point-to-all propagator at the source z is denoted by M f P (y). The
contractions where at least one of the two currents is directly connected to the proton source
or sink require usage of the sequential source technique. C; and Cs additionally involve
stochastic wall sources for a given timeslice t, for which we use Zs x Z5 sources. We denote
the corresponding propagated stochastic source (”stochastic propagator”) by wt(g), where /¢
indicates the stochastic source. In the case of Cs, the stochastic source timeslice and the
timeslice where the stochastic propagator is evaluated are identical. Therefore, the propagator
is improved by removing terms in the corresponding hopping parameter expansion that are
trivially zero in the exact case but contribute to the stochastic noise. A similar improvement
is performed for the loop L; appearing in S; and D, which is also evaluated using stochastic
propagators. Notice that for the D contraction we have two versions, one using stochastic
sources for both loops, and one where we use point sources only for one of the two loops.
More details on the techniques are given in [34]. This reference gives also explicit expressions
for the quantities that are evaluated on the lattice, except for the contraction C gyuq, which
contributes only in the context of flavor interference. We find:

Ci],d};ud(_’ Z Z <{ 2,t,3 ) 4 t(z) (z + ?J)D

(3.11)

r4=7,y4=0
with
(a50)" ) = (S5ins) ) = (STas) . @),
(qg,’t(,?)z (y) == [¢Z’(€)(y) Ly M7 (y)r 7 (3.12)

«

where S is defined in equation (A.19) of [34].
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Figure 4. Sketch of all Wick contractions that are considered in this work. Colors have no meaning
regarding the evaluation technique but only indicate to which source the corresponding propagator
belongs. We use two evaluation methods for the D graph, which are drawn at the bottom center and
the bottom right.

id B a[fm] L3xT K] K my[MeV] mg[MeV] m,La
H102 3.4 0.0856 323 x96 0.136865 0.136549339 355 441 4.9

Table 1. Details on the gauge ensemble H102, which is employed for our simulation [35, 36]. We use
990 configurations.

Lattice setup. We extend our simulation of reference [34] using the same lattice setup. In
our simulation we employ the CLS ensemble H102 with n; = 2 + 1 dynamical Sheikholeslami-
Wohlert fermions [35, 36]. For completeness we list again the corresponding lattice parameters
in table 1.

In addition to the contractions C1 yudds C1,uuuus C2,us Co.ds S1,u, S1,d, S2 and D, which
have been already calculated, we compute the contraction C gyuq according to (3.11) for
proton momentum § = 0. Like for the other C; contractions, we choose as source-sink
separation ¢ = 12a and evaluate the four-point functions for insertion times 7 € [3a,t — 3al.
The corresponding data is fitted to a constant behavior in 7.
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Figure 5. Dependence on the insertion time 7 of the contractions C1 yuuy (green), Ci yuda (red), and
C1 duud (magenta) for the current combination VoV, and fixed quark separation § = (—3,4,3). The
orange band represents the constant fit that returns the final value for the given %.

4 Results for invariant functions

4.1 Data quality

Before we discuss our results in a physical context, we first investigate the quality of our data.
In particular, we focus on the potential presence of excited states and of lattice artifacts,
such as anisotropy effects. We only treat the contraction C gyud, since all other contributions
have been already investigated in our previous work [34, 56].

Excited states. In the following we consider the 7-dependence of the four-point correlator
Cupt(t, 7,7) defined in (3.2) for fixed y. If there is a contamination of the data by excited
states, this leads to a curvature along 7. It turns out that there is in fact no visible dependence
of the data on 7. As an example we show the data of the (VyVy) correlator for the quark
separation § = (—3,4,3)a in figure 5. The absence of curvature shows that excited states are
sufficiently suppressed at the scale of our statistical uncertainties. The final value for the
two-current correlator ground state is obtained by a constant fit in the region 3 <7 < 9. It
has a reasonably small error and is also represented in figure 5 by the magenta band.

Anisotropy. Since we compute on a lattice with periodic boundary conditions, the effect
of so-called “mirror charges” becomes important if the distance between the two current
approaches half the lattice size [57, 58]. As a consequence, there are anisotropy effects
whose size depends on the angle (%) between ¢ and the closest diagonal of the lattice.
Moreover, the lattice propagator itself exhibits anisotropy effects, which become large at
small distances [59, 60]. This is the case for contractions where both operators are connected
directly via a quark propagator, i.e. the Cs and S contributions. In order to reduce the
violation of Lorentz invariance, only regions with || = y > 4a are considered. As discussed
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Figure 6. The anisotropy of the C} gyuq contribution to (VpVp), revealed by a saw tooth pattern for
larger angles € between the ¥ vector and the nearest lattice diagonal.

in section 4.1 of [34], we limit ourselves to distances y < 16a and take into account only
data points close to the lattice diagonal, in order to reduce discretization artifacts and finite
volumes effects. Specifically, only data points which fulfill

cos(f(y)) > 0.9 (4.1)

are considered. For the contraction C gy,q the most important source of anisotropy is
given by mirror charges, which leads to the saw tooth pattern already observed in other
contractions with C; topology. This is illustrated in figure 6, where the data points fulfilling
the constraint (4.1) are plotted in red.

4.2 Invariant functions

In the following, we consider physical matrix elements given by (3.5). We take only into
account the connected contributions C7 and Cs for quark separations fulfilling 4a < y < 16a
and cos(f(y)) > 0.9. The disconnected contribution S; was found to be small (but noisy)
compared to C7 and Cy in [34], whereas the errors on D were too large to make any useful
statement about its size. As pointed out in [34], S2 is seen to violate Lorentz invariance for
y < 7a, whereas it is orders of magnitudes smaller than the other contractions for larger
quark distances. For that reason, we do not take into account this contraction in our physical
results. The twist-two functions A, 4, and Bsgsy are obtained from the data by solving the
overdetermined equation system (2.13) for momentum § = 0. The system of equations is
solved by y2-minimization (see section 3.2 of [33]). The corresponding results are shown
in figure 7 for the functions Ay, A5y, and Asgsy.! Here we show the results from [34]
for the flavor diagonal combinations uu, ud, and dd, and compare them to our new results
for the flavor interference channel. The latter are significantly different from zero and tend

'Our flavor generic notation ¢ and ¢’ for indices includes the flavor interference cases (ud) and (du).
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Figure 7. Twist-two functions for three different polarization combinations and the flavor combinations
uu, ud, dd and (du)(ud). Only the graphs Cy and Cs are taken into account. The hadron momentum
used is always zero, § = 0.

to be of similar size as the dd contribution. Moreover, in the case of A,y and Ay, we
observe a change in sign for the (du)(ud) combination as a function of y. Hence, we can
conclude that flavor interference can indeed be sizable for DPDs. We note that our results
for Bsesq have rather large statistical uncertainties for all flavor combinations other than
ud and are hence not shown here.

4.3 Comparison with SU(6) predictions

In the following, we compare the ratios (2.21) derived for an SU(6)-symmetric three-quark
wave function with the corresponding data we obtain from the lattice. Note that the evaluation
of the DPDs from a three-quark wave function corresponds to the contraction C. whereas
the interpretation of C5 involves wave functions with additional quark-antiquark pairs, as
discussed in section 4.1 of [33]. We therefore compare the SU(6) predictions with either C}
alone, or with the sum of C; and C5. This is shown in figure 8 for the unpolarized flavor
ratios (2.21) and in figure 9 for the polarization ratios (2.22).

In the case of two unpolarized quarks, the SU(6) model results are fairly consistent with
the corresponding C results. For large quark distances y, this also holds for the sum of C
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is the SU(6) model prediction.

and Cy. However, for smaller y, discrepancies become rather large. By contrast, lattice results
for polarization ratios, which are shown in figure 9, disagree strongly with the SU(6) model.

5 Factorization tests

A common strategy for modeling DPDs is to express them in terms of single-parton distribu-
tions, assuming that correlations between the two partons can be neglected. A corresponding
ansatz can also be formulated at the level of twist-two functions [33, 34]. We now extend this
formulation to the flavor interference case, which we will find to be special in this context.
We limit ourselves to unpolarized quarks in the following

Technically, the factorization ansatz is obtained by inserting a complete set of eigenstates

between the two operators in the DPD matrix element in (2.1) and neglecting all intermediate
states except for the ground state:

/
Z <p7)‘| Oa, (y’zl) Oa2(0722) |p7 )‘>

=Y s

AN

dp't d?p/

iz ¢ " 0 O (0.21) [, X) 9, X1 00 0,22) . )

(5.1)
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In the flavor diagonal case, the matrix elements on the r.h.s. can be directly identified with
GPD matrix elements fM' (&, €, p’, p), which leads to the factorization formula for DPDs [12]:

? 1 d*r —iry AN (= M (=
Fa1a2(x17$2ag)y) = 2(1 _ C) / (2,”)2 € %\;fal (x17_£707 _T) fa2 ($2>£a _T>0)7 (52)

where f is defined in equation (5.5) of [34]. The notation Z indicates that (5.2) is an
assumption, which we investigate in the following. Z; and £ are functions of { and/or x;:

2$Z‘

=3¢

Ti(z, ) - £(¢) = (5:3)

<

2—-(°
For flavor-changing operators, the matrix elements in the second line of (5.1) are related to
GPDs for the transition between a proton and a neutron. In figure 10 we show a pictorial

representation of the factorized expression in the flavor diagonal and non-diagonal cases.
Using isospin symmetry, one can relate these transition GPDs to ordinary ones [61]:

(| O(uay In) = (p| Ou |p) — (p| Ou |p) = (n| O(au) IP) (5.4)

which leads to the following decomposition of the flavor interference matrix element in terms
of flavor conserving matrix elements:

(8l Oty In) (1] Ogaay 1) = [(0] O Ip) — (61 Oulp)]
= (p| Ou |p) {p| Ou|p) — 2 (p| Ou |p) (P| Oa |p) + (p| Oa|p) (p| Oulp) - (5.5)
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Inserting this into the factorization hypothesis (5.1), we find that we can relate the flavor
interference DPDs to a combination of flavor diagonal ones:

Flud)(dw) (1,22, Y) = Fuu(1,22,(Y) — 2Fua(21, 22, () + Faa(z1,22,¢y) . (5.6)

Moreover, taking Mellin moments and performing a Fourier transform w.r.t. ¢, we find for
the invariant functions:

Aty dw)(PY: ¥) = Auwu(py, ¥*) = 24ua(py,y°) + Aaa(py, v - (5.7)

Notice that the ordering of the operators is important. If we considered O(4,) O(yq) instead
of Oud) O(qu), the intermediate state with lowest energy would not be a nucleon and the
corresponding transition GPDs could not be related with those in the proton. Hence, we are
restricted to the operator ordering given in (5.5). In [34], we pointed out that the regions
of support of the two sides of (5.2) differ to a degree that depends on the value of ¢. In
particular, the mismatch is worst for ¢ < 0 (see figure 11). Hence, we used (5.2) only for
¢ > 0 whilst for ¢ < 0 we derived a factorized expression for the order O,,0,,. As we just
explained, we cannot do that in the flavor interference case, where we have to keep one
ordering of the operators and integrate over the entire (-region. This leads to:

Auay(aw) (py = 0,4%)

2

AN
X |:f1i\)\l(x17 _gﬂ 07 _T)fzi\,/\(x%f: _T70> _2f1_/t\)\/(x17 _57 07 _T) d)\l)\(x%g’ -r, 0)
+f£\/\/($1,—f,O,—'I’)fé\/A(.TQ,f,—T,O)} ’ (58)

where y = |y| and r = |r|. Notice that the expressions in the square brackets are rotationally
invariant w.r.t. to the momentum r, which allowed us to perform the angular part of the
integration over r. After integration over xy and xo, they can be expressed in terms of
Pauli and Dirac form factors, F; and F;. For the second term in the square brackets
of (5.8), we obtain:

1 ! !
52/(1581/(1332 fvj)\ ($17_€70)_T) j\)\($2,€, _T’O)

AN

= Ky(QF (O F(t) — K(C) [F (O FS (1) + Fi () Fy (0)]

,’,2
+ <K3(C) + 4mzK4(C)> Fy(t)Fs(t), (5.9)
with
o <2m2 +T2 - - CQ
t(¢,7?) = Y Ki(Q):==1-Ks(),  Ka(C) =Goo
2
i) o= L KalQ) = 1 (5.10)

Analogous expressions hold for the other terms.
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Figure 12. Factorization of the unpolarized flavor conserving twist-two functions A4 and A,,. The
blue band shows the result for the factorization for the reduced support region that has been published
in [34]. The orange band represents the factorization result where (5.2) has been directly applied
without exchanging the order of operators.

For the Dirac and Pauli form factors, we take the results of lattice simulations obtained
with the same ensemble used in the present work. We fitted these data to several parametriza-
tions in [34]. In the following plots, bands correspond to the range obtained when inserting
these different parametrizations into the factorization formula.

In order to check the impact of integrating (5.1) over the entire (-region instead of
exchanging the order of operators, we repeat the factorization analysis of the flavor diagonal
DPDs given in [34] by using the correspondingly modified ansatz. The result of this is shown
in figure 12, along with our original result from [34], where (5.1) was only used for ¢ > 0.
We see that the difference due to the increased unphysical support region is considerable
when going to quark distances below about 0.8 fm. This shows that integrating (5.1) over the
entire (-region yields a very poor approximation for small quark distances. Unfortunately,
for the flavor interference contribution this is the only possibility we have found.

The result for flavor interference DPDs is plotted in figure 13 and compared to the
corresponding result of the direct calculation (green). Based on the comparison in figure 13,
we consider the factorization formula that uses the full {-region as unreliable for y < 0.8 fm.
In the region 0.8 fm < y < 1.1 fm, we observe that the factorization ansatz yields the wrong
sign. The only approximate agreement with the four-point result can be observed for very
large quark distances, where the result is close to zero. Hence, we conclude that within
a wide range of y, the factorization ansatz is either not reliable because of the mismatch
of the support regions, or it fails.

Let us finally discuss the flavor relation (5.7), which follows from our factorization
formula but is more general. We see in figure 13 that the left- and right-hand sides of this
relation typically differ by a factor around 2 in the full y range of the plot. The relation
is thus satisfied somewhat better than the factorization hypothesis for A(,q4)ay) in terms
of three-point correlation functions.
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and the r.h.s. of the flavor relation (5.7) (red).

6 Conclusions

We extended our work on nucleon DPDs [34] by considering flavor interference distributions.
We calculated the corresponding Wick contractions and extracted the twist-two functions for
the flavor combination (ud)(du) for all relevant quark polarizations. This we did for zero proton
momentum, which implies py = 0. We find that the resulting signal for flavor interference is
non-negligible and of the same order of magnitude as the dd contributions. This suggests
that at large parton momentum fractions, flavor interference DPDs may not be negligible.

Several relations between the different flavor and polarization combinations can be derived
in a simple SU(6) quark model, which can then be compared to the corresponding lattice
quantities. We observe good agreement between the lattice data and the SU(6) results
for unpolarized quarks if we only take into account the contribution of the C; contraction,
which is most consistent with the picture of a three-quark wave function. If one considers
the full connected contribution (Cy + C2) there is a significant mismatch, which increases
for smaller quark distances. The SU(6) model completely fails in the case of two-parton
matrix elements for polarized quarks. Finally, we considered the factorization of flavor
interference DPDs in terms of GPDs. We found that, depending on the considered quark
distance, the factorization ansatz is either not reliable or it does not work in the region
where the signal is clearly non-zero.

Acknowledgments

This work was in part supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) by project SCHA 458/23 and FOR 2926, grant number 40965613. The
project leading to this publication received funding from the Excellence Initiative of Aix-
Marseille University — A*MIDEX, a French “Investissements d’Avenir” programme, AMX-
18-ACE-005. We gratefully acknowledge helpful discussions with Gunnar Bali. Moreover,
we acknowledge the CLS effort for generating the ny = 2 + 1 ensembles, one of which was
used for this work.

,19,



Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] P.V. Landshoff and J.C. Polkinghorne, Calorimeter Triggers for Hard Collisions, Phys. Rev. D
18 (1978) 3344 [INSPIRE].

[2] R. Kirschner, Generalized Lipatov-Altarelli-Parisi Equations and Jet Calculus Rules, Phys. Lett.
B 84 (1979) 266 [nSPIRE].

[3] H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

[4] N. Paver and D. Treleani, Multi-Quark Scattering and Large pr Jet Production in Hadronic
Collisions, Nuovo Cim. A 70 (1982) 215 [nSPIRE].

[5] V.P. Shelest, A.M. Snigirev and G.M. Zinovev, The Multiparton Distribution Equations in QCD,
Phys. Lett. B 113 (1982) 325 [INSPIRE].

[6] M. Mekhfi, Multiparton Processes: An Application to Double Drell-Yan, Phys. Rev. D 32 (1985)
2371 [INSPIRE].

[7] T. Sjostrand and M. van Zijl, Multiple Parton-parton Interactions in an Impact Parameter
Picture, Phys. Lett. B 188 (1987) 149 [INSPIRE].

[8] B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The four jet production at LHC and
Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] INSPIRE].

[9] J.R. Gaunt and W.J. Stirling, Double Parton Scattering Singularity in One-Loop Integrals,
JHEP 06 (2011) 048 [arXiv:1103.1888] [INSPIRE].

[10] M.G. Ryskin and A.M. Snigirev, A fresh look at double parton scattering, Phys. Rev. D 83 (2011)
114047 [arXiv:1103.3495] [NSPIRE].

[11] B. Blok, Y. Dokshitser, L. Frankfurt and M. Strikman, pQCD physics of multiparton
interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].

[12] M. Diehl, D. Ostermeier and A. Schéafer, Elements of a theory for multiparton interactions in
QCD, JHEP 03 (2012) 089 [Erratum ibid. 03 (2016) 001] [arXiv:1111.0910] [INSPIRE].

[13] A.V. Manohar and W.J. Waalewijn, A QCD Analysis of Double Parton Scattering: Color
Correlations, Interference Effects and Evolution, Phys. Rev. D 85 (2012) 114009
[arXiv:1202.3794] [INSPIRE].

[14] A.V. Manohar and W.J. Waalewijn, What is Double Parton Scattering?, Phys. Lett. B 713
(2012) 196 [arXiv:1202.5034] [NSPIRE].

[15] M.G. Ryskin and A.M. Snigirev, Double parton scattering in double logarithm approximation of
perturbative QCD, Phys. Rev. D 86 (2012) 014018 [arXiv:1203.2330] [INSPIRE].

[16] J.R. Gaunt, Single Perturbative Splitting Diagrams in Double Parton Scattering, JHEP 01
(2013) 042 [arXiv:1207.0480] [iNSPIRE].

[17] B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in
multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].

[18] M. Diehl, J.R. Gaunt and K. Schonwald, Double hard scattering without double counting, JHEP
06 (2017) 083 [arXiv:1702.06486] [INSPIRE].

— 20 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.18.3344
https://doi.org/10.1103/PhysRevD.18.3344
https://inspirehep.net/literature/129077
https://doi.org/10.1016/0370-2693(79)90300-9
https://doi.org/10.1016/0370-2693(79)90300-9
https://inspirehep.net/literature/7683
https://doi.org/10.1016/0550-3213(80)90172-8
https://inspirehep.net/literature/152727
https://doi.org/10.1007/BF02814035
https://inspirehep.net/literature/176630
https://doi.org/10.1016/0370-2693(82)90049-1
https://inspirehep.net/literature/177670
https://doi.org/10.1103/PhysRevD.32.2371
https://doi.org/10.1103/PhysRevD.32.2371
https://inspirehep.net/literature/196490
https://doi.org/10.1016/0370-2693(87)90722-2
https://inspirehep.net/literature/235558
https://doi.org/10.1103/PhysRevD.83.071501
https://arxiv.org/abs/1009.2714
https://inspirehep.net/literature/867363
https://doi.org/10.1007/JHEP06(2011)048
https://arxiv.org/abs/1103.1888
https://inspirehep.net/literature/892070
https://doi.org/10.1103/PhysRevD.83.114047
https://doi.org/10.1103/PhysRevD.83.114047
https://arxiv.org/abs/1103.3495
https://inspirehep.net/literature/892964
https://doi.org/10.1140/epjc/s10052-012-1963-8
https://arxiv.org/abs/1106.5533
https://inspirehep.net/literature/916103
https://doi.org/10.1007/JHEP03(2012)089
https://arxiv.org/abs/1111.0910
https://inspirehep.net/literature/944460
https://doi.org/10.1103/PhysRevD.85.114009
https://arxiv.org/abs/1202.3794
https://inspirehep.net/literature/1089398
https://doi.org/10.1016/j.physletb.2012.05.044
https://doi.org/10.1016/j.physletb.2012.05.044
https://arxiv.org/abs/1202.5034
https://inspirehep.net/literature/1090169
https://doi.org/10.1103/PhysRevD.86.014018
https://arxiv.org/abs/1203.2330
https://inspirehep.net/literature/1093538
https://doi.org/10.1007/JHEP01(2013)042
https://doi.org/10.1007/JHEP01(2013)042
https://arxiv.org/abs/1207.0480
https://inspirehep.net/literature/1120779
https://doi.org/10.1140/epjc/s10052-014-2926-z
https://arxiv.org/abs/1306.3763
https://inspirehep.net/literature/1238823
https://doi.org/10.1007/JHEP06(2017)083
https://doi.org/10.1007/JHEP06(2017)083
https://arxiv.org/abs/1702.06486
https://inspirehep.net/literature/1514562

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

B. Cabouat, J.R. Gaunt and K. Ostrolenk, A Monte-Carlo Simulation of Double Parton
Scattering, JHEP 11 (2019) 061 [arXiv:1906.04669] [INSPIRE].

B. Cabouat and J.R. Gaunt, Combining single and double parton scatterings in a parton shower,
JHEP 10 (2020) 012 [arXiv:2008.01442] [INSPIRE].

AXIAL FIELD SPECTROMETER collaboration, Double Parton Scattering in pp Collisions at
Vs =63-GeV, Z. Phys. C' 34 (1987) 163 [INSPIRE].

CDF collaboration, Study of four jet events and evidence for double parton interactions in pp
collisions at \/s = 1.8 TeV, Phys. Rev. D 47 (1993) 4857 [INSPIRE].

CDF collaboration, Measurement of double parton scattering in pp collisions at /s = 1.8 TeV,
Phys. Rev. Lett. 79 (1997) 584 [nSPIRE].

DO collaboration, Double parton interactions in v + 3 jet events in pp collisions /s = 1.96 TeV,
Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].

DO collaboration, Evidence for simultaneous production of J/v and T mesons, Phys. Rev. Lett.
116 (2016) 082002 [arXiv:1511.02428] [INSPIRE].

LHCB collaboration, Observation of double charm production involving open charm in pp
collisions at /s =7 TeV, JHEP 06 (2012) 141 [Addendum ibid. 03 (2014) 108]
[arXiv:1205.0975] [INSPIRE].

ATLAS collaboration, Measurement of hard double-parton interactions in W(— lv) + 2 jet
events at /s =7 TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038
[arXiv:1301.6872] [INSPIRE].

CMS collaboration, Study of Double Parton Scattering Using W + 2-Jet Fvents in
Proton-Proton Collisions at /s =7 TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].

ATLAS collaboration, Study of hard double-parton scattering in four-jet events in pp collisions
at /s =7 TeV with the ATLAS experiment, JHEP 11 (2016) 110 [arXiv:1608.01857] [INSPIRE].

LHCB collaboration, Production of associated Y and open charm hadrons in pp collisions at
Vs =7 and 8 TeV via double parton scattering, JHEP 07 (2016) 052 [arXiv:1510.05949]
[[NSPIRE].

LHCB collaboration, Observation of Enhanced Double Parton Scattering in Proton-Lead
Collisions at \/syn = 8.16 TeV, Phys. Rev. Lett. 125 (2020) 212001 [arXiv:2007.06945]
[INSPIRE].

CMS collaboration, Observation of same-sign WW production from double parton scattering in
proton-proton collisions at /s = 13 TeV, Phys. Rev. Lett. 131 (2023) 091803
[arXiv:2206.02681] [INSPIRE].

G.S. Bali et al., Double parton distributions in the pion from lattice QCD, JHEP 02 (2021) 067
[arXiv:2006.14826] [INSPIRE].

G.S. Bali et al., Double parton distributions in the nucleon from lattice QCD, JHEP 09 (2021)
106 [arXiv:2106.03451] [INSPIRE].

M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2+ 1 flavor ensembles, Phys.
Rev. D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE].

M. Bruno et al., Simulation of QCD with Ny = 2 + 1 flavors of non-perturbatively improved
Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].

H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper,
Prog. Part. Nucl. Phys. 100 (2018) 107 [arXiv:1711.07916] [INSPIRE].

— 21 —


https://doi.org/10.1007/JHEP11(2019)061
https://arxiv.org/abs/1906.04669
https://inspirehep.net/literature/1739382
https://doi.org/10.1007/JHEP10(2020)012
https://arxiv.org/abs/2008.01442
https://inspirehep.net/literature/1810051
https://doi.org/10.1007/BF01566757
https://inspirehep.net/literature/236082
https://doi.org/10.1103/PhysRevD.47.4857
https://inspirehep.net/literature/357601
https://doi.org/10.1103/PhysRevLett.79.584
https://inspirehep.net/literature/442025
https://doi.org/10.1103/PhysRevD.81.052012
https://arxiv.org/abs/0912.5104
https://inspirehep.net/literature/841289
https://doi.org/10.1103/PhysRevLett.116.082002
https://doi.org/10.1103/PhysRevLett.116.082002
https://arxiv.org/abs/1511.02428
https://inspirehep.net/literature/1403548
https://doi.org/10.1007/JHEP06(2012)141
https://arxiv.org/abs/1205.0975
https://inspirehep.net/literature/1113596
https://doi.org/10.1088/1367-2630/15/3/033038
https://arxiv.org/abs/1301.6872
https://inspirehep.net/literature/1216670
https://doi.org/10.1007/JHEP03(2014)032
https://arxiv.org/abs/1312.5729
https://inspirehep.net/literature/1272853
https://doi.org/10.1007/JHEP11(2016)110
https://arxiv.org/abs/1608.01857
https://inspirehep.net/literature/1479760
https://doi.org/10.1007/JHEP07(2016)052
https://arxiv.org/abs/1510.05949
https://inspirehep.net/literature/1399056
https://doi.org/10.1103/PhysRevLett.125.212001
https://arxiv.org/abs/2007.06945
https://inspirehep.net/literature/1806797
https://doi.org/10.1103/PhysRevLett.131.091803
https://arxiv.org/abs/2206.02681
https://inspirehep.net/literature/2091619
https://doi.org/10.1007/JHEP02(2021)067
https://arxiv.org/abs/2006.14826
https://inspirehep.net/literature/1803316
https://doi.org/10.1007/JHEP09(2021)106
https://doi.org/10.1007/JHEP09(2021)106
https://arxiv.org/abs/2106.03451
https://inspirehep.net/literature/1867377
https://doi.org/10.1103/PhysRevD.95.074504
https://doi.org/10.1103/PhysRevD.95.074504
https://arxiv.org/abs/1608.08900
https://inspirehep.net/literature/1484681
https://doi.org/10.1007/JHEP02(2015)043
https://arxiv.org/abs/1411.3982
https://inspirehep.net/literature/1328089
https://doi.org/10.1016/j.ppnp.2018.01.007
https://arxiv.org/abs/1711.07916
https://inspirehep.net/literature/1637373

[38]

[39]

[40]

[41]

[42]

[43]

[46]

[47]

[48]

[49]

[55]

[56]

[57]

J.-H. Zhang, Double Parton Distributions from Euclidean Lattice, arXiv:2304.12481 [INnSPIRE].

M. Jaarsma, R. Rahn and W.J. Waalewijn, Towards double parton distributions from first
principles using Large Momentum Effective Theory, JHEP 12 (2023) 014 [arXiv:2305.09716|
[INSPIRE].

X. Ji, Parton Physics on a Fuclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002
[arXiv:1305.1539] INSPIRE].

X. Ji et al., Large-momentum effective theory, Rev. Mod. Phys. 93 (2021) 035005
[arXiv:2004.03543] [INSPIRE].

H.-M. Chang, A.V. Manohar and W.J. Waalewijn, Double Parton Correlations in the Bag Model,
Phys. Rev. D 87 (2013) 034009 [arXiv:1211.3132] INSPIRE].

M. Rinaldi, S. Scopetta and V. Vento, Double parton correlations in constituent quark models,
Phys. Rev. D 87 (2013) 114021 [arXiv:1302.6462] [INSPIRE].

W. Broniowski and E. Ruiz Arriola, Valence double parton distributions of the nucleon in a
simple model, Few Body Syst. 55 (2014) 381 [arXiv:1310.8419] [INSPIRE].

M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton correlations and constituent
quark models: a Light Front approach to the valence sector, JHEP 12 (2014) 028
[arXiv:1409.1500] [iNSPIRE].

W. Broniowski, E. Ruiz Arriola and K. Golec-Biernat, Generalized Valon Model for Double
Parton Distributions, Few Body Syst. 57 (2016) 405 [arXiv:1602.00254] INSPIRE].

T. Kasemets and A. Mukherjee, Quark-gluon double parton distributions in the light-front
dressed quark model, Phys. Rev. D 94 (2016) 074029 [arXiv:1606.05686] [INSPIRE].

M. Rinaldi, S. Scopetta, M.C. Traini and V. Vento, Correlations in Double Parton Distributions:
Perturbative and Non-Perturbative effects, JHEP 10 (2016) 063 [arXiv:1608.02521] [INSPIRE].

M. Rinaldi and F.A. Ceccopieri, Relativistic effects in model calculations of double parton
distribution function, Phys. Rev. D 95 (2017) 034040 [arXiv:1611.04793] [INSPIRE].

M. Rinaldi, S. Scopetta, M. Traini and V. Vento, A model calculation of double parton
distribution functions of the pion, Eur. Phys. J. C' 78 (2018) 781 [arXiv:1806.10112] [INSPIRE].

A. Courtoy, S. Noguera and S. Scopetta, Double parton distributions in the pion in the
Nambu-Jona-Lasinio model, JHEP 12 (2019) 045 [arXiv:1909.09530] [INSPIRE].

W. Broniowski and E. Ruiz Arriola, Double parton distribution of valence quarks in the pion in
chiral quark models, Phys. Rev. D 101 (2020) 014019 [arXiv:1910.03707] nSPIRE].

W. Broniowski and E. Ruiz Arriola, Double parton distributions of the pion in the NJL model,
PoS LC2019 (2020) 031 [arXiv:2001.00883] [INSPIRE].

RQCD collaboration, Nonperturbative Renormalization in Lattice QCD with three Flavors of
Clover Fermions: Using Periodic and Open Boundary Conditions, Phys. Rev. D 103 (2021)
094511 [Erratum ibid. 107 (2023) 039901] [arXiv:2012.06284] [NSPIRE].

G.S. Bali, B. Lang, B.U. Musch and A. Schéfer, Novel quark smearing for hadrons with high
momenta in lattice QCD, Phys. Rev. D 93 (2016) 094515 [arXiv:1602.05525] InSPIRE].

RQCD collaboration, Two-current correlations and DPDs for the nucleon on the lattice, PoS
LATTICE2019 (2019) 040 [arXiv:1911.05051] [NSPIRE].

M. Burkardt, J.M. Grandy and J.W. Negele, Calculation and interpretation of hadron correlation
functions in lattice QCD, Annals Phys. 238 (1995) 441 [hep-1at/9406009] [INSPIRE].

— 922 —


https://arxiv.org/abs/2304.12481
https://inspirehep.net/literature/2654037
https://doi.org/10.1007/JHEP12(2023)014
https://arxiv.org/abs/2305.09716
https://inspirehep.net/literature/2660493
https://doi.org/10.1103/PhysRevLett.110.262002
https://arxiv.org/abs/1305.1539
https://inspirehep.net/literature/1232221
https://doi.org/10.1103/RevModPhys.93.035005
https://arxiv.org/abs/2004.03543
https://inspirehep.net/literature/1790338
https://doi.org/10.1103/PhysRevD.87.034009
https://arxiv.org/abs/1211.3132
https://inspirehep.net/literature/1202690
https://doi.org/10.1103/PhysRevD.87.114021
https://arxiv.org/abs/1302.6462
https://inspirehep.net/literature/1221267
https://doi.org/10.1007/s00601-014-0840-4
https://arxiv.org/abs/1310.8419
https://inspirehep.net/literature/1262817
https://doi.org/10.1007/JHEP12(2014)028
https://arxiv.org/abs/1409.1500
https://inspirehep.net/literature/1315128
https://doi.org/10.1007/s00601-016-1087-z
https://arxiv.org/abs/1602.00254
https://inspirehep.net/literature/1418836
https://doi.org/10.1103/PhysRevD.94.074029
https://arxiv.org/abs/1606.05686
https://inspirehep.net/literature/1471292
https://doi.org/10.1007/JHEP10(2016)063
https://arxiv.org/abs/1608.02521
https://inspirehep.net/literature/1479977
https://doi.org/10.1103/PhysRevD.95.034040
https://arxiv.org/abs/1611.04793
https://inspirehep.net/literature/1498105
https://doi.org/10.1140/epjc/s10052-018-6256-4
https://arxiv.org/abs/1806.10112
https://inspirehep.net/literature/1679797
https://doi.org/10.1007/JHEP12(2019)045
https://arxiv.org/abs/1909.09530
https://inspirehep.net/literature/1755295
https://doi.org/10.1103/PhysRevD.101.014019
https://arxiv.org/abs/1910.03707
https://inspirehep.net/literature/1758221
https://doi.org/10.22323/1.374.0031
https://arxiv.org/abs/2001.00883
https://inspirehep.net/literature/1774032
https://doi.org/10.1103/PhysRevD.103.094511
https://doi.org/10.1103/PhysRevD.103.094511
https://arxiv.org/abs/2012.06284
https://inspirehep.net/literature/1836150
https://doi.org/10.1103/PhysRevD.93.094515
https://arxiv.org/abs/1602.05525
https://inspirehep.net/literature/1422054
https://doi.org/10.22323/1.363.0040
https://doi.org/10.22323/1.363.0040
https://arxiv.org/abs/1911.05051
https://inspirehep.net/literature/1764328
https://doi.org/10.1006/aphy.1995.1026
https://arxiv.org/abs/hep-lat/9406009
https://inspirehep.net/literature/374177

[58] C. Alexandrou and G. Koutsou, A Study of Hadron Deformation in Lattice QCD, Phys. Rev. D
78 (2008) 094506 [arXiv:0809.2056] [INSPIRE].

[59] G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: Exploring
universality and higher-twist effects, Phys. Rev. D 98 (2018) 094507 [arXiv:1807.06671]
[INSPIRE].

[60] K. Cichy, K. Jansen and P. Korcyl, Non-perturbative renormalization in coordinate space for
Ny =2 mazimally twisted mass fermions with tree-level Symanzik improved gauge action, Nucl.
Phys. B 865 (2012) 268 [arXiv:1207.0628] [INSPIRE].

[61] L. Mankiewicz, G. Piller and T. Weigl, Hard leptoproduction of charged vector mesons, Phys.
Rev. D 59 (1999) 017501 [hep-ph/9712508] [INSPIRE].

— 23 —


https://doi.org/10.1103/PhysRevD.78.094506
https://doi.org/10.1103/PhysRevD.78.094506
https://arxiv.org/abs/0809.2056
https://inspirehep.net/literature/796339
https://doi.org/10.1103/PhysRevD.98.094507
https://arxiv.org/abs/1807.06671
https://inspirehep.net/literature/1682987
https://doi.org/10.1016/j.nuclphysb.2012.08.006
https://doi.org/10.1016/j.nuclphysb.2012.08.006
https://arxiv.org/abs/1207.0628
https://inspirehep.net/literature/1121003
https://doi.org/10.1103/PhysRevD.59.017501
https://doi.org/10.1103/PhysRevD.59.017501
https://arxiv.org/abs/hep-ph/9712508
https://inspirehep.net/literature/452808

	Introduction
	Theory background
	Definitions and properties
	Euclidean matrix elements
	DPDs in the SU(6) quark model

	Lattice calculation
	Results for invariant functions
	Data quality
	Invariant functions
	Comparison with SU(6) predictions

	Factorization tests
	Conclusions

