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1 Introduction

Bilocal holography [1] is a constructive approach to the duality [2, 3] between O(N) vector
models and higher spin gravity[4, 5]. It is a concrete example of the general framework of
collective field theory [6, 7], which provides a constructive approach to the AdS/CFT duality
[8–10] and other gauge theory/gravity dualities [11]. Concretely, bilocal holography gives an
explicit formula for the higher spin gravity fields in terms of the operators of the conformal
field theory. This realizes a construction of ‘precursors’ i.e. bulk fields in terms of boundary
operators [12], as collective fields. The mapping between the boundary and bulk theories is
achieved by matching the independent degrees of freedom in the conformal field theory to
the independent degrees of freedom in the completely gauge fixed higher spin gravity. The
fact that this can actually be carried out in complete detail is thanks to impressive work of
Metsaev [13–18] which achieves a complete gauge fixing (to light cone gauge) of the higher
spin gravity and the reduction to independent degrees of freedom on both sides of the duality.

Bilocal holography has two ingredients: there is a change of field variables and a change
of space time coordinates. The change of field variables ensures that while the loop expansion
parameter before transformation is ℏ, it becomes 1

N after the transformation. The change
of coordinates solves the Clebsch-Gordan problem of moving from the tensor product basis
(in which the collective bilocal field is written) to the direct sum basis (appropriate for the
gravity fields). This change of coordinates is highly non-trivial and the correctness of this
step was verified by showing that the complete set of generators of the conformal field theory
are mapped into those of the higher spin gravity [19]. Bilocal holopgraphy has been developed
in a number of interesting directions [20–33].

Focus for now on the duality between CFT3 and higher spin gravity on AdS4. Before
gauge fixing and reducing to independent degrees of freedom on both sides, the higher spin
gravity includes a bulk scalar as well as a gauge field of every even integer spin, while the
single trace primaries of the conformal field theory are a scalar primary of dimension ∆ = 1
and a family of conserved spinning currents, of dimension s + 1 and spin s for every even
integer s. After gauge fixing and reduction the complete set of conformal field theory degrees
of freedom are packaged in a single O(N) invariant equal time bilocal field, while on the
gravity side one remains with two polarizations (AXX···X and AX···XZ) of the spinning gauge
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with spin 2s for s > 0, as well as the bulk scalar. Given that we consider a light cone gauge
fixing, it is natural to pursue a light front quantization of both theories. In terms of the
original scalar field ϕa of the O(N) model, the bilocal field is written as

σ(x+, x−
1 , x1, x−

2 , x2) = ϕa(x+, x−
1 , x1)ϕa(x+, x−

2 , x2) (1.1)

where x± are the light cone coordinates of CFT3 and x is the single coordinate transverse
to the light cone. The bilocal field develops a large N expectation value, which we de-
note as σ0(x+, x−, x1, x−

2 , x2). Expanding about this background defines the fluctuation
η(x+, x−

1 , x1, x−
2 , x2) as follows

σ(x+, x−
1 , x1, x−

2 , x2) = σ0(x+, x−
1 , x1, x−

2 , x2) + η(x+, x−
1 , x1, x−

2 , x2) (1.2)

It is the fluctuation η(x+, x−
1 , x1, x−

2 , x2) that is identified with the dynamical fields of the
dual higher spin gravity. This is a single field that depends on 5 coordinates. On the higher
spin gravity side, it is useful to package the complete collection of higher spin gauge fields
and the bulk scalar into a single field, with the help of a book keeping coordinate θ, as follows

Φ(X+, X−, X, Z, θ) =
∞∑

s=0

(
AXX···XX(X+, X−, X, Z)

Z
cos(2sθ)

+ AXX···XZ(X+, X−, X, Z)
Z

sin(2sθ)
)

(1.3)

The fields on the right hand side are all tangent space fields. See [13] for a useful discussion.
Following [27], the mapping of the fields is most easily written in a mixed position/momentum
space representation. In both the conformal field theory and in the higher spin gravity there
is a symmetry under translations of x− and X− respectively. This allows us to perform a
Fourier transform which trades x−

1 and x−
2 for p+

1 and p+
2 in the conformal field theory, and

X− for P + in the higher spin gravity. The relation between the field can then be written as

Φ(X+, P +, X, Z, θ) = µ(p+
1 , p+

2 )η(x+, p+
1 , x1, p+

2 , x2) (1.4)

where
µ(p+

1 , p+
2 ) =

√
p+

1 p+
2 (1.5)

The relation between the coordinates of the conformal field theory and the bulk AdS4 space
time is given by x+ = X+ as well as

P + = p+
1 + p+

2 X = p+
1 x1 + p+

2 x2

p+
1 + p+

2

Z =

√
p+

1 p+
2

p+
1 + p+

2
|x1 − x2| θ = 2 arctan

√√√√p+
2

p+
1

(1.6)

There are many tests that can be carried out once the bilocal holography mapping, as
stated above, is given. For example, bilocal holography provides an explicit bulk reconstruction
for complete set bulk gauge fields as well as the scalar field. This entails proving that the
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field Φ(X+, P +, X, Z, θ) obeys the correct equation of motion [19] as well as the correct
GKPW boundary conditions as Z → 0 [32]. It is also interesting to explore whether or
not information localizes in the bilocal holography construction as is expected in a theory
quantum gravity. By restricting to a single subregion of the conformal field theory, one
finds [27] that the subregion of the bulk that can be reconstructed is in perfect accord with
entanglement wedge reconstruction [34–39]. Further by using the mapping it is possible to
translate the statement of the holography of information [40–43]1 in the gravity theory into a
statement in the conformal field theory. Using the usual operator product expansion formula
the holography of information can be demonstrated directly in the conformal field theory [28].

Our goal in this paper is explore another feature of the holographic duality, namely
bulk locality. We will see that constructing fields that are local in the bulk AdS spacetime
naturally leads us to the coordinate map (1.6) appearing in bilocal holography. This result
which is the central result of this paper, is a useful observation since it outlines a deductive
approach to determine the change of coordinates appearing in the bilocal holography map.

In what follows we consider the general case of the duality between CFTd and AdSd+1.2

In this case the bilocal η(x+, x−
1 , x⃗1, x−

2 , x⃗2) is a function of 2d− 1 coordinates and the vector
x⃗ is a d − 2 dimensional vector transverse to the light cone. The bulk higher spin fields
are again collected into a single field3

Φ(X+, X−, X⃗, Z, αi) =
∞∑

s=0
αa1αa2 · · ·αa2s

Aa1a2···a2s(X+, X−, X⃗, Z)
Z

d−1
2

|0⟩ (1.7)

The index ai on the oscillators runs over Z and the d − 2 directions X⃗ transverse to the
lightcone. Only d − 2 of these oscillators are independent since we must impose that
Φ(X+, X−, X⃗, Z, αi) is traceless [32]. There are d + 1 coordinates X±, X⃗, Z needed to specify
an event in the AdS bulk and d − 2 independent oscillators so that Φ(X+, X−, X⃗, Z, αi) is a
function of 2d − 1 coordinates. The holographic mapping between the fields in this case is

Φ(X+, P +, X⃗, Z, α) = µ(p+
1 , p+

2 , Z)η(x+, p+
1 , x⃗1, p+

2 , x⃗2) (1.8)

where

µ(p+
1 , p+

2 , Z) = (p+
1 p+

2 )
4−d

2 Z
3−d

2 (1.9)

In the rest of the article we will determine the relation between the coordinates of the
d dimensional bilocal field theory (x+, p+

1 , x⃗1, p+
2 , x⃗2) and those of the bulk AdSd+1 space

time (X+, P +, X⃗, Z, αi), as well as the form for µ(p+
1 , p+

2 , Z) quoted above. This coordinate
mapping will be determined by requiring that the bilocal field of the conformal field theory
is dual to a local operator in the bulk.

1For a beautiful set of lectures, incredibly helpful when learning this material, go to ref. [44].
2We limit ourselves to d ≥ 3. The d = 2 case is more subtle because in this case the free scalar fields are

not primary operators.
3We are using the very useful oscillator representation introduced in [13].
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2 Bulk locality

A point in the bulk AdSd+1 space time is specified by d+1 coordinates4 XM = (Xµ, Z), where
Xµ is a set of d coordinates and Z is the radial (holographic) coordinate. The bulk metric is

ds2 = dXµdXνηµν + dZ2

Z2 (2.1)

where η = diag(−1, 1, · · · , 1). The isometries of this metric are generated by

P µ = ∂µ Jµν = Xµ∂ν − Xν∂µ

D = Xµ∂µ + Z∂Z Kµ = −1
2(XµXµ + Z2)∂µ + XµD (2.2)

These generators generate the group SO(2,d). In what follows we employ lightcone coordinates,
obtained by setting

X± = 1√
2

(
Xd−1 ± X0

)
(2.3)

The vector X⃗ has components Xi for i = 1, 2, · · · , d − 2 which are coordinates transverse to
the lightcone. Z is the coordinate for the extra holographic dimension.

AdS spacetime is an example of a symmetric space[45]. Starting from any particular
point in the AdS spacetime, we can reach any other point with the action of some element of
SO(2,d). Not every element of SO(2,d) will move a particular point: each point has an isotropy
group under whose action the given point is fixed. For the case we are discussing here, the
isotropy group is SO(1,d) so that we can identify AdS spacetime as the coset SO(2,d)/SO(1,d).
As a particularly simple example, consider the bulk point Xµ = 0 and Z = Zp where Zp is a
definite value. Fixing these values of the coordinates the generators become

P µ = ∂µ Jµν = 0 D = Zp∂Z Kµ = −1
2Z2

p∂µ (2.4)

Thus, the generators Jµν and Kµ + 1
2Z2

pP µ both vanish when acting on our bulk point. They
are non-zero acting on any other point so we can define this bulk location as the point that is
annihilated by the group generated by {Jµν , Kµ + 1

2Z2
pP µ}. This group is SO(1,d) - it is the

isotropy group of the bulk point we are considering. Note that the coset SO(2,d)/SO(1,d) is
a d + 1 dimensional space and each class in this coset corresponds to a point in the bulk of
the AdSd+1 spacetime. Choosing a different bulk point leads to a different isotropy group,
which is still isomorphic to SO(1,d). The data of the isotropy group and the bulk point are
equivalent pieces of data. The isotropy group is giving us information about bulk locality
- it tells us what it means to be localized at a specific bulk point.

Since the isotropy group leaves the bulk point fixed, it will only shuffle the different
polarizations of a spinning field amongst each other. Thus, for example, to construct

4In what follows we always use capital letters for coordinates of the bulk AdS spacetime and little letters
for the coordinates of the space time of the CFT.
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an operator OΨ in the bilocal field theory that is dual to a bulk operator localized at
XM = (0, Zp) in the AdS bulk, we solve the equations5

[
Jµν , OΨ

]
= 0 =

[
Kµ + 1

2Z2
pP µ , OΨ

]
(2.5)

This is the minimal requirement for operators in the bilocal field theory to be dual to operators
localized in the AdS bulk. See [46–49] for related discussion. The second equation above
is telling: an operator localized at a boundary point is primary, whilst an operator located
in the bulk corresponds to a non-trivial combination of the primary and its descendents.
So AdS/CFT geometrizes the space of CFT operators, introducing an extra holographic
dimension with coordinate Z and placing the primaries on the boundary of the AdS bulk.
Since the single trace primaries generate the complete set of gauge invariant operators, all
the information sits on the boundary, consistent with the holography of information.

Our goal is now to use the requirement of bulk locality to derive the coordinate trans-
formation of bilocal holography. Towards that end, consider the set of bulk points given
by X+ = 0, X⃗ = X⃗p, Z = Zp where X⃗p and Zp are definite values. Notice that X− is left
arbitrary i.e. we are considering a light like line of points in the AdSd+1 bulk. For this line of
points the momentum P + and special conformal transformation K+ become

P + = ∂+ K+ = −1
2(X⃗ · X⃗ + Z2

p)∂+ (2.6)

The second of (2.5) provides a non trivial differential equation that a bulk field localized
on the light like line must obey(

K+ + 1
2(X⃗ · X⃗ + Z2

p)P +
)

OΨ = 0 (2.7)

This equation is completely general, holding for fields of any spin, thanks to the form of K+

given in (3.71) of [13]. The coordinate transformation (1.6) was determined by matching the
generators of conformal transformations of the bilocal conformal field theory with those of
the higher spin gravity. To obtain a relation between the coordinates of the field theory and
those of the gravity, we will insert the bilocal generators into the above equation. Further, if
we now take a Fourier transform on X− in gravity, the differential operator ∂+ is replaced
by the variable P +. Since we have localized only to the light like line parameterized by X−,
the Fourier transformed field obeys the same bulk locality condition. Similarly, if we take
a Fourier transform in the bilocal theory, ∂+

1 and ∂+
2 are replaced by p+

1 and p+
2 . Bilocal

holography matches the Hilbert space of the bilocal theory with that of the higher spin
gravity. Since these are each defined at fixed light cone time we should identify X+ = x+.
Inserting the bilocal expression for the generators into (2.7), we obtain(

− 1
2(x⃗1 · x⃗1p+

1 + x⃗2 · x⃗2p+
2 ) + 1

2(X⃗ · X⃗ + Z2
p)(p+

1 + p+
2 )
)

OΨ = 0 (2.8)

5Here we are studying a scalar state for simplicity. If we have a spinning state we would again use oscillators
and add the spin contribution Mµν = αµᾱν − αν ᾱµ to Jµν and Mµνxν to Kµ. In addition Jµν would no
longer annihilate the state, but would mix the different spin states amongst each other.
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Notice that this is a polynomial multiplied by the field. Since the field does not vanish the
polynomial does and in the end we obtain the equation

−1
2(x⃗1 · x⃗1p+

1 + x⃗2 · x⃗2p+
2 ) + 1

2(X⃗p · X⃗p + Z2
p)(p+

1 + p+
2 ) = 0 (2.9)

which relates the bulk AdSd+1 coordinates X⃗p and Zp to the coordinates x⃗1, x⃗2, p+
1 and

p+
2 of the conformal field theory.

3 Holographic mapping

In this section we will solve (2.9) to explicitely demonstrate the link between bulk locality and
the bilocal holography mapping. One of the key pieces of evidence motivating the discovery
of AdS/CFT was a matching between the global symmetries of the conformal field theory and
the isometries of the dual AdS gravity. Our solution of (2.9) will also make use of this fact.

The symmetry X− → X− + a in the bulk corresponds to x−
1 → x−

1 + a and x−
2 →

x−
2 + a in the bilocal collective field theory. Thus, the generator producing an infinitesimal

transformation of X− in the bulk must generate an infinitesimal transformation of both
x−

1 and x−
2 which implies that

P + = p+
1 + p+

2 (3.1)

An identical argument for the directions transverse to the light cone allows us to conclude that

P i = pi
1 + pi

2 (3.2)

Now consider an SO(d-2) transformation Ri
j which acts as

Xi → Ri
jXj (3.3)

in the bulk, and as

xi
1 → Ri

jxj
1 xi

2 → Ri
jxj

2 (3.4)

in the bilocal field theory. Thus, X⃗, x⃗1 and x⃗2 are all in the d − 2 dimensional vector
representation of SO(d-2). Higher powers of these coordinates are not generally even in
an ireducible representation, and in particular, they are not in the vector representation.
A simple way to ensure that all three are in the vector representation is to take a linear
relation between them6

X⃗ = αx⃗1 + βx⃗2 (3.5)

Next, the translation X⃗ → X⃗ + a⃗ in the bulk corresponds to x⃗1 → x⃗1 + a⃗ and x⃗2 → x⃗2 + a⃗

in the bilocal field theory. This forces β + α = 1 so that we have

X⃗ = αx⃗1 + (1 − α)x⃗2 (3.6)
6In principle one could add a constant X⃗0 on the right hand side. This can always be removed with a

judicious choice of origin.
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The arguments we have considered so far allow the parameter α to be an arbitrary function
of p+

1 and p+
2 .

Under a translation Xi → Xi + ai the bulk coordinate Z is unchanged. This translation
takes xi

1 → xi
1 + ai and xi

2 → xi
2 + ai in the bilocal field theory so that Z is a function

only of xi
1 − xi

2. Next, under the SO(d-2) transformation Ri
j we know that Z is unchanged.

This implies that Z is a function only of |x⃗1 − x⃗2|. If we now assume that Z is a linear
function of |x⃗1 − x⃗2| we can write

Z = δ|x⃗1 − x⃗2| (3.7)

where again, our arguments allow δ to be an arbitrary function of p+
1 and p+

2 . The assumption
of linearity will be motivated below.

Recall that the equation we wish to solve, (2.9), is given by

−(x⃗1 · x⃗1p+
1 + x⃗2 · x⃗2p+

2 ) + (X⃗ · X⃗ + Z2)(p+
1 + p+

2 ) = 0 (3.8)

A simple computation shows that

X⃗ · X⃗ + Z2 = α2x⃗1 · x⃗1 + (1 − 2α + α2)x⃗2 · x⃗2 + 2α(1 − α)x⃗1 · x⃗2
+δ2(x⃗1 · x⃗1 + x⃗2 · x⃗2 − 2x⃗1 · x⃗2) (3.9)

Inserting (3.9) into (3.8) and equating the coefficients of x⃗1 · x⃗1, x⃗2 · x⃗2 and x⃗1 · x⃗2 to zero,
we obtain the following three equations

−p+
1 + (α2 + δ2)(p+

1 + p+
2 ) = 0

−p+
2 + (1 − 2α + α2 + δ2)(p+

1 + p+
2 ) = 0

(2α(1 − α) − 2δ2)(p+
1 + p+

2 ) = 0 (3.10)

The last equation above implies that δ2 = α(1 − α). Inserting this into the first equation
above gives a linear equation for α so that α and δ are determined. This unique solution
ensures that all three equations above are satisfied. The solution is

α = p+
1

p+
1 + p+

2
1 − α = p+

2
p+

1 + p+
2

δ =

√
p+

1 p+
2

p+
1 + p+

2
(3.11)

This argument therefore implies that

X⃗ = p+
1 x⃗1 + p+

2 x⃗2

p+
1 + p+

2
Z =

√
p+

1 p+
2

p+
1 + p+

2
|x⃗1 − x⃗2| (3.12)

which is precisely the coordinate transformation for the bulk AdS coordinates given by the
bilocal holography mapping (1.6).

Let us now return to the assumption that Z is linear in |x⃗1 − x⃗2|. To get some insight
into why this must be the case, note that we can rewrite (2.9) as

−(x⃗1 · x⃗1p+
1 + x⃗2 · x⃗2p+

2 ) + X⃗ · X⃗(p+
1 + p+

2 ) = −Z2(p+
1 + p+

2 ) (3.13)

– 7 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
9

Recalling the formula (3.6), it is clear that all terms on the left hand side of this equation
are quadratic in x⃗i. Thus, the right hand side must be too and this forces Z to be a linear
function of |x⃗1 − x⃗2|.

An alternative way to approach (2.9) is to take its commutator with P i, which gives

0 = −1
2
(
[P i, x⃗1 · x⃗1]p+

1 + [P i, x⃗2 · x⃗2]p+
2

)
+ 1

2
(
[P i, X⃗p · X⃗p] + [P i, Z2

p ]
)

(p+
1 + p+

2 )
= −xi

1p+
1 − xi

2p+
2 + Xi

p(p+
1 + p+

2 ) (3.14)

which immediately implies that

Xi
p = xi

1p+
1 + xi

2p+
2

p+
1 + p+

2
(3.15)

Inserting this into (2.9) we find

Z2
p = (x⃗1 · x⃗1p+

1 + x⃗2 · x⃗2p+
2 )

p+
1 + p+

2
− X⃗p · X⃗p

= p+
1 p+

2
(p+

1 + p+
2 )2 |x⃗1 − x⃗2|2 (3.16)

which is the result we obtained above.
To complete the holographic mapping we still have to determine the angles that are

used to package the higher spin fields into a single field. Following [20] we will show how
the spin components of the angular momentum generators are determined. We start by
considering the rotations transverse to the light cone7

J ij = XiP j − P iXj + mij (3.17)

The first two terms are the orbital contribution while the third term in the spin part. It
is the spin part that we would like to determine. It is therefore convenient to perform the
analysis at the bulk point Xi = 0, which sets the orbital terms to zero. In this case we have

J ij = mij (3.18)

This should be matched to the generator of the bilocal field theory, which reads

J ij = xi
1

∂

∂xj
1
− xj

1
∂

∂xi
1

+ xi
2

∂

∂xj
2
− xj

2
∂

∂xi
2

(3.19)

To perform the comparison, note that since the angles are translation invariant, they can only
be a function only of xi

1 − xi
2. Setting Xi = 0 implies that x⃗1 and x⃗2 are not independent

variables, but rather they obey the relation

p+
1 x⃗1 + p+

2 x⃗2 = 0 (3.20)

Using this relation, it is simple to argue that

x⃗1 = p+
2

p+
1 + p+

2
(x⃗1 − x⃗2) x⃗2 = − p+

1
p+

1 + p+
2

(x⃗1 − x⃗2) (3.21)

7This formula assumes that d > 3.
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After using these identities in (3.19) and equating the result to (3.18) we learn that

mij = (x1 − x2)i

p+
1 + p+

2
(p+

2 pj
1 − p+

1 pj
2) − (x1 − x2)j

p+
1 + p+

2
(p+

2 pi
1 − p+

1 pi
2) (3.22)

which is in complete agreement with the known result [20].
Next consider the miz contribution to the spin angular momentum. It proves useful to

study the special conformal generator Ki which is given by [13]

Ki = −1
2
(
2X+X− + X⃗ · X⃗ + Z2

)
P i + XiD + mijXj + miZZ + mi−X+ (3.23)

This can be simplified dramatically if we situate ourselves at the light like line of bulk points
specified by X+ = 0 = Xi and any X−. In this case Ki becomes

Ki = −1
2Z2P i + miZZ (3.24)

The only unknown in this expression is miZ . We know that the spin generator miZ is
translation invariant which implies that it is again only a function only of xi

1 − xi
2. Equating

this to the corresponding expression in the bilocal field theory, we obtain

Ki = µ(p+
1 , p+

2 , Z)
(
−1

2(x⃗1 · x⃗1pi
1 + x⃗2 · x⃗2pi

2) + xi
1D1 + xi

2D2

) 1
µ(p+

1 , p+
2 , Z)

= µ(p+
1 , p+

2 , Z)
(
− 1

2

(
(p+

2 )2

(p+
1 + p+

2 )2 |x⃗1 − x⃗2|2pi
1 + (p+

1 )2

(p+
1 + p+

2 )2 |x⃗1 − x⃗2|2pi
2

)

+ p+
2

p+
1 + p+

2
(xi

1 − xi
2)D1 −

p+
1

p+
1 + p+

2
(xi

1 − xi
2)D2

) 1
µ(p+

1 , p+
2 , Z)

(3.25)

where when acting on ϕa(x+, x−
1 , x1) we have

D1 = x+p−1 + x−
1 p+

1 + xj
1pj

1 + d − 2
2

= x−
1 p+

1 + p+
2

p+
1 + p+

2
(xj

1 − xj
2)pj

1 + d − 2
2 (3.26)

and when acting on ϕa(x+, x−
2 , x2) we have

D2 = x−
2 p+

2 − p+
1

p+
1 + p+

2
(xj

1 − xj
2)pj

2 + d − 2
2 (3.27)

Equating (3.24) and (3.25) we easily find

miZ = xi
1 − xi

2
|x⃗1 − x⃗2|

√p+
1 p+

2 (x−
1 − x−

2 ) + ((p+
1 )2pj

2 + (p+
2 )2pj

1)(xj
1 − xj

2)

(p+
1 + p+

2 )
√

p+
1 p+

2


+ 1

2
p+

1 − p+
2

p+
1 + p+

2
|x⃗1 − x⃗2|

pi
1

√√√√p+
2

p+
1
− pi

2

√√√√p+
1

p+
2

 (3.28)

which is in complete agreement with the known result [20, 32]. This computation also fixes

µ(p+
1 , p+

2 , Z) = f(Z)(p+
1 p+

2 )
4−d

2 (3.29)
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Finally, by matching the action of the CFT dilatation operator on
µ(p+

1 , p+
2 , Z)η(x+, p+

1 , x⃗1, p+
2 , x⃗2) with the action of the bulk dilatation operator on

Φ(X+, P +, X⃗, Z, α), we fix

µ(p+
1 , p+

2 , Z) = (p+
1 p+

2 )
4−d

2 Z
3−d

2 (3.30)

This completes the derivation of the coordinate transformation, by making use of
bulk locality.

4 A concrete example

In the previous section we have written down the generators of the angular momentum. In
this section, for the specific case that d = 4, we will translate these angular momenta into a
collection of angles. Denote the coordinates of the conformal field theory by xµ = (t, w, x, y).
Light cone coordinates are defined as x± = t ± w and the bilocal field depends on 7
coordinates σ(x+, x−

1 , x1, y1, x−
2 , x2, y2). Bilocal holography relates these 7 coordinates to the

AdS5 coordinates X+, X−, X, Y, Z and two angles θ, φ. The two angles will be extracted
from the angular momenta mXY , mXZ and mY Z .

Using the results of the previous section, we have

mXY = (x1 − x2)p+
2 py

1 − p+
1 py

2
p+

1 + p+
2

− (y1 − y2)p+
2 px

1 − p+
1 px

2
p+

1 + p+
2

(4.1)

Now, to interpret this formula note that[
p+

2 pi
1 − p+

1 pi
2

p+
1 + p+

2
,
p+

1 xj
1 + p+

2 xj
2

p+
1 + p+

2

]
= 0

[
p+

2 pi
1 − p+

1 pi
2

p+
1 + p+

2
, xj

1 − xj
2

]
= δij (4.2)

so that we can interpret the momentum P i = p+
2 pi

1−p+
1 pi

2
p+

1 +p+
2

as the momentum conjugate to the
relative coordinate. The total momentum, which must commute with the relative coordinate
and is conjugate to the X⃗ coordinate, also behaves as expected

[
pi

1 + pi
2, xj

1 − xj
2

]
= 0

[
pi

1 + pi
2,

p+
1 xj

1 + p+
2 xj

2
p+

1 + p+
2

]
= δij (4.3)

Consequently, if we set

x1 − x2 = |x⃗1 − x⃗2| cos(φ) y1 − y2 = |x⃗1 − x⃗2| sin(φ) (4.4)

where
|x⃗1 − x⃗2| ≡

√
(x1 − x2)2 − (y1 − y2)2 (4.5)

then we have

mXY = ∂

∂φ
(4.6)
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Next consider the pair of generators

mXZ = x1−x2
|x⃗1− x⃗2|

×

√p+
1 p+

2 (x−
1 −x−

2 )+ ((p+
1 )2px

2 +(p+
2 )2px

1)(x1−x2)+((p+
1 )2py

2 +(p+
2 )2py

1)(y1−y2)

(p+
1 +p+

2 )
√

p+
1 p+

2


+ 1

2
p+

1 −p+
2

p+
1 +p+

2
|x⃗1− x⃗2|

px
1

√√√√p+
2

p+
1
−px

2

√√√√p+
1

p+
2


= cosφ

∂

∂θ
−cotθ sinφ

∂

∂φ

= cosφPθ −cotθ sinφPφ (4.7)

mY Z = y1−y2
|x⃗1− x⃗2|

×

√p+
1 p+

2 (x−
1 −x−

2 )+ ((p+
1 )2px

2 +(p+
2 )2px

1)(x1−x2)+((p+
1 )2py

2 +(p+
2 )2py

1)(y1−y2)

(p+
1 +p+

2 )
√

p+
1 p+

2


+ 1

2
p+

1 −p+
2

p+
1 +p+

2
|x⃗1− x⃗2|

py
1

√√√√p+
2

p+
1
−py

2

√√√√p+
1

p+
2


= sinφ

∂

∂θ
+cotθ cosφ

∂

∂φ

= sinφPθ +cotθ cosφPφ (4.8)

where the angles θ, φ are given by

θ = 2 arctan

√√√√p+
2

p+
1

φ = arctan y1 − y2
x1 − x2

(4.9)

which agrees with the angle θ appearing in the d = 3 bilocal holography map. Thus, we are
indeed able to identify two extra angles. Finally, the momenta conjugate to these angles are

Pφ = mXY (4.10)

Pθ =
√

p+
1 p+

2 (x−
1 − x−

2 ) + x1 − x2
2


√√√√p+

2
p+

1
px

1 +

√√√√p+
1

p+
2

px
2

+ y1 − y2
2


√√√√p+

2
p+

1
py

1 +

√√√√p+
1

p+
2

py
2



5 Discussion and conclusions

Collective field theory provides a constructive approach to the AdS/CFT duality and other
gauge theory/gravity dualities. It formulates the dynamics of quantum field theory in terms
of gauge invariant collective fields. This reorganization of the degrees of freedom has an
important consequence: while the loop expansion parameter of the original theory is ℏ,
after the change of field variables the loop expansion parameter becomes 1

N , matching that
of the dual gravity description. For the specific case of the duality between O(N) vector
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models and higher spin gravity, the collective fields are bilocal and the resulting collective
construction is called bilocal holography.

Bilocal holography has two ingredients: the change of field variables we have just discussed,
as well as a change of space time coordinates. The change of space time coordinates is needed to
develop the physical interpretation of the theory. The scalar field of the O(N) model transforms
in the spin zero and dimension d−2

2 representation of SO(2,d). The bilocal transforms in a
tensor product of two copies of this representation. This representation is reducible and each
irreducible component corresponds to a different bulk field in the gravitational description.
Consequently, to develop the physical interpretation of the bilocal collective field theory we
must solve the Clebsch-Gordan problem of moving from the tensor product basis (in which
the collective bilocal field is written) to the direct sum basis (appropriate for the gravity
fields). This is accomplished by a change of space time coordinates.

In the original work [19] this change of coordinates was discovered by brute force and
then verified by demonstrating that it reproduces the bulk AdS isometry generators starting
from the conformal generators in the bilocal field theory. In this paper we have outlined a
deductive approach to determining this change of coordinates.

The idea is to formulate a minimal requirement for operators in the bilocal field theory
to be dual to an operator located at a given bulk point. More correctly, we have considered
the conditions needed to localize operators to a light like line in space time. The first step is
the choice of the light like line in the bulk AdS space time. The isotropy group of this line
is then determined. The generators of the isotropy group act by shuffling polarizations of
the spinning field. Using a Fourier transform on the light like line, we have constructed a
mixed momentum/position description. Within this description an algebraic equation was
determined, which fixed the form of the AdS bulk coordinates in terms of those of the bilocal
conformal field theory. Finally, additional angles used to package the complete collection
of spinning bulk fields into a single field, were determined (implicitly) by evaluating the
spin contribution to the conformal generators.

There are two different approaches which can be followed to rewrite the vector model in
terms of bi-local fields which are then mapped to the bulk. The approach taken in this article
uses the Hamiltonian language. In this description the bi-local operators are constructed
from fields at different points in space but at the same time. This breaks manifest Lorentz
invariance. A second approach [26, 33, 52] uses bilocal fields constructed from fields that
are separated both in space and time. This preserves Lorentz invariance as well as the full
conformal group. Both descriptions are useful. The two time description is useful as it makes
the underlying conformal symmetry manifest. On the other hand, studying the theory at
finite temperature is straightforward in the Hamiltonian approach, but it is non-trivial in
the two time approach. The relation between the single time and two time descriptions has
been considered in [20, 53]. In the two-time description one can impose constraints and
perform a gauge fixing to the single time description.

Our construction is likely to be useful in more general applications of collective field theory
to gauge theory/gravity dualities. An immediate application would be to gauge theories.
In this case, the theory includes matrix fields transforming in the adjoint representation.
Consequently, there is a much richer set of invariant variables: one can take traces of fields
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at different locations, so that bilocal operators, trilocal operators and in general k-local
operators appear in the set of invariants. The construction of the change of coordinates
needed for this case is highly non-trivial and has been an obstacle to progress. The application
of bulk locality can be used to overcome this difficulty [50]. Another interesting application
of bulk locality is to consider fermionic vector models [51] which are potentially relevant
for an understanding of the holography of de Sitter space. This application would involve
using the isotropy group of a point in de Sitter spacetime.
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