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1 Introduction

The discovery potential of New Physics at current colliders, such as the Large Hadron Collider
(LHC), and at next-generation machines, such as the Electron-Ion Collider (EIC) or the Future
Circular Collider (FCC), crucially depends on our ability to achieve a detailed knowledge of
the structure of protons and nuclei and to produce precise predictions by the perturbative
treatment of the theory of strong interactions, Quantum Chromodynamics (QCD). In some
kinematic regimes, the standard approach based on collinear factorization between coefficient
functions, describing the hard partonic scattering and calculated at fixed order in perturbation
theory, and nonperturbative functions, describing the partonic distribution (PDFs) in the
colliding objects and the parton fragmentation (FFs) into hadronic states, is insufficient to
reach the needed level of precision and must be enhanced by all-order resummations. One of
such kinematic regimes is the so-called semi-hard one, characterized by a neat scale hierarchy,
s≫ {Q2

i } ≫ Λ2
QCD, where s is the squared center-of-mass energy, {Qi} is a set of hard scales

typical of the process and ΛQCD is the QCD mass scale. Here, the necessary resummation is
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that of energy logarithms, which enter the perturbative calculation with a power increasing
along with the perturbative order and thus compensate the smallness of the coupling αs,
ensured, in its turn, by the hardness of the process.

The framework for the resummation of energy logarithms was established long ago by
Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1–4]; it allows the systematic resummation of all
terms proportional to [αs ln(s)]n (leading-logarithmic approximation or LLA), and of those
of the form αs[αs ln(s)]n (next-to-leading logarithmic approximation or NLLA). At the basis
of the BFKL framework is the property of gluon Reggeization in QCD [5–7], which means
that there is a Reggeon with gluon quantum numbers, negative signature and trajectory
j(t) = 1+ω(t) passing through 1 at t = 0, which gives the leading contribution to amplitudes
with gluon quantum numbers in the t-channel, in each order of perturbation theory. This
remarkable property appeared first in direct calculations at fixed order [2, 7]. Then, it
was proved, both in the LLA [8] and in the NLLA (see [9] and references therein) using
bootstrap relations [10] following from the requirement of compatibility of the pole Regge
form with the s-channel unitarity.

In the BFKL approach, (differential) cross sections can be written as the convolution,
in the space of transverse momenta, of two process-dependent impact factors, describing
the transition of each colliding particle to a definite state in its fragmentation region, and a
universal, process-independent Green’s function, which encodes the resummation of energy
logarithms. The BFKL Green’s function is determined by an integral equation, whose kernel is
known up to next-to-leading order (NLO), both for forward scattering (i.e. for t = 0 and color
singlet in the t-channel) [11, 12] and for any fixed, not growing with s, momentum transfer
t and any possible two-gluon colored exchange in the t-channel [13–17]. Recent years have
witnessed some promising steps towards the calculation of ingredients of the next-to-NLO
kernel, in N = 4 SYM [18], in pure-gauge QCD [19] and in full QCD [20–22]. The perturbative
calculation of impact factors with NLO accuracy is a challenging task and, indeed, only a few
of them are known with this accuracy: (i) quark and gluon impact factors [23–27], which are
at the basis of the calculation of the (ii) forward-jet [28–32] and (iii) forward light-hadron [33]
impact factors, (iv) the impact factor for the light vector-meson electroproduction, (v) the
(γ∗ → γ∗) impact factor [34–40], and (vi) the one for the forward-Higgs production from an
incoming proton in the infinite-top-mass limit [41–43]. Predictions for several observables
have been built with full NLLA, by combining NLO impact factors with the NLLA Green’s
function, or with only a partial inclusion of NLLA effects, by convoluting the NLLA Green’s
with one or both the impact factors taken at the leading order (LO), up to the NLO corrections
dictated by renormalization group invariance (see e.g. [44, 45] and references therein).

The availability of the NLO Higgs impact factor opens new interesting channels whereby
testing high-energy effects on the Higgs production mechanism. These channels comprise
the inclusive forward production of a Higgs in concomitance with a backward jet or an
identified hadron (a forward-backward process) or the single inclusive production of a Higgs
(a single forward process). In the first case the theoretical description is based on the
convolution of the Higgs impact factor with the BFKL Green’s function and the impact
factor for the production of the backward object; in the second case the Higgs impact factor
needs to be convoluted with an unintegrated gluon distribution (see for instance [46]). So
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far, theoretical predictions for the forward-backward Higgs plus jet production have been
carried out with partial inclusion on NLLA corrections [47–49], complemented in the most
recent investigations by a matching procedure with fixed-order calculations [50, 51]. The
comparison with predictions based on fixed-order Monte Carlo shows deviations and further
motivates the extension of the analysis with the full inclusion of NLLA effects, i.e. by using
NLO impact factors for both the forward Higgs and the backward identified object, and
by relaxing the infinite-top-mass approximation.

In this paper, we concentrate on some subtle technical issues which appeared in the
calculation of the NLO Higgs impact factor in the infinite-top-mass limit [42], which are
closely related to the use of the effective 5-dimensional Lagrangian for the direct coupling
of gluons to Higgs. Indeed, it is known that a local Higgs-gluon coupling can give rise to
peculiar perturbative behaviors [52–54]. The NLO Higgs impact factor takes contribution
from the so-called real corrections, related with the production of a parton in the association
with the Higgs in the forward region, and the virtual ones, which take into account loop
corrections. The main ingredient of the latter is the effective gluon-Reggeon-Higgs vertex
at one-loop order, denoted by Γ(1)

gH (up to color indices) in what follows. In the BFKL
framework, the procedure to determine a particle-Reggeon-particle vertex is by calculating
the high-energy limit of an amplitude with gluon quantum number exchange in the t-channel
where this vertex enters, and to extract it by comparing the calculated amplitude with
its predicted form according to the hypothesis of gluon Reggeization. As discussed above,
this hypothesis has been proven in QCD, but is not guaranteed to work in presence of an
extra vertex coming from a non-renormalizable effective Lagrangian. Indeed, in ref. [42], the
one-loop gluon-Reggeon-Higgs vertex was extracted assuming that the Regge form holds for
the amplitude gluon + quark to Higgs + quark, Agq→Hq. More precisely, it was assumed
that the interference between the Born and the one-loop correction terms of that amplitude
is as dictated by the Regge form. The considerations in ref. [42] were made at the level of
the interference between the Born and the one-loop amplitude because it was observed that
the one-loop amplitude contains unexpected leading-s contributions, which come from the
transverse part of some t-channel gluon propagators in covariant Feynman gauge. These
contributions are absent in pure QCD calculations, where t-channel gluons are dominated by
a longitudinal component, which ultimately leads to what are known as eikonal approximation
in high-energy scattering or Gribov (sometimes called “nonsense”) polarizations for the
Reggeized gluons. The unexpected, “non-Gribov” contributions which appear in presence
of a dimension-5 operator could endanger the Regge form of the one-loop amplitude, which
therefore must be checked explicitly. This is the main aim of the present paper.

Another subtle point, which arose in the calculation of Γ(1)
gH in [42], is related to the

contributions to the scattering amplitude coming from exchange of two gluons in the t-channel.
In QCD, a powerful technique has been developed [55, 56] to calculate the high-energy limit
of the box (and crossed) diagrams which appear in this part of the calculation, which we refer
to as method of rapidity regions. It exploits one of the natural characteristics of high-energy
scattering, the rapidity factorization. In [42] it was found that the naive implementation of
this technique fails. Indeed, in that work the two-gluon exchange part of the gluon + quark to
Higgs + quark amplitude was first calculated by brute force and then the high-energy limit was
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taken to extract Γ(1)
gH . In the present paper we identify the culprit for the failure of the method

of regions in the dimension-5 Higgs effective vertex and demonstrate that this latter also
spoils the rapidity partitioning of the amplitude. The unexpected factorization-breaking terms
arise in the “target” rapidity region (region B) of the gq → Hq and gg → Hg amplitudes,
when the method of regions with Gribov’s prescription is used for the computation. However
the non-Gribov terms cancel this factorisation-violating contributions, restoring the expected
rapidity partitioning and, ultimately, the Reggeization.

Another goal of the paper is to verify that the effective one-loop vertex Γ(1)
gH is unam-

biguous, by checking that its extraction from the gluon + gluon to Higgs + gluon scattering
amplitude, Agg→Hg, leads to the same result as the extraction from Agq→Hq. This also allows
to verify the agreement between the calculation performed in ref. [42] and that carried out
within the Lipatov’s effective action framework (Lipatov’s EFT) in ref. [43]. Indeed, the
calculation of the effective vertex Γ(1)

gH was verified, both in ref. [42] and in ref. [43], by using
the large-s limit of one-loop scattering amplitudes taken from the literature. The point is
that in ref. [42] the gluon-quark channel was used (i.e. the Agq→Hq amplitude), while in
ref. [43] the gluon-gluon one was considered (i.e. the Agg→Hg amplitude).

The results presented in this paper, though obtained to fix some issues related to the
presence of a specific non-renormalizable interaction, can turn to be useful in the application
of high-energy perturbative techniques in contexts different from the one considered here,
since they uncover the subtle interplay between renormalisability, eikonal approximation
and gluon Reggeization.

The paper contains six sections. In section 2, we introduce the notation and review
the standard Regge-pole form of the amplitude. In section 3, we explain the appearance
of non-Gribov contributions and discuss the one-loop Regge form of the gluon-quark into
Higgs-quark scattering amplitude in their presence. In section 4, we investigate the lack of
rapidity partitioning for this amplitude and factorisation-breaking terms. In section 5, we
investigate the gluon-gluon into Higgs-gluon amplitude, demonstrating the non-ambiguity
of the gluon-Reggeon-Higgs vertex and the agreement between the result obtained in the
standard BFKL approach and the one obtained in the Lipatov’s EFT framework. Section 6
contains our conclusions and outlook.

2 The Regge-pole form

The pole Regge form of amplitudes in QCD, valid to all orders in perturbation theory both
in the LLA and in the NLLA, implies that, in the high-energy limit s ≫ |t|, scattering
amplitudes A + B → A′ + B′ with exchange of gluon quantum numbers in the t-channel1
assume the factorized form

ΓA′A
s

t

[(
s

−t

)ω(t)
+
(−s
−t

)ω(t)
]
ΓB′B, (2.1)

1Negative signature and color octet.
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where 1 + ω(t) is the Regge trajectory, whose the expression for ω(t) at one-loop and in a
space-time with dimension D = 4 − 2ϵ reads [7]2

ω(1)(t) = g2t

(2π)D−1
N

2

∫
dD−2k⊥

k2
⊥(q − k)2

⊥
= −g

2CAΓ(1 + ϵ)(q⃗ 2)−ϵ

(4π)2−ϵ

Γ2(−ϵ)
Γ(−2ϵ) , t = q2 ≃ −q⃗ 2, (2.2)

and ΓA′A and ΓB′B are the coupling between external particles and the t-channel Reggeized
gluon.3 The s-behaviour of the amplitude in eq. (2.1) comes together with the Regge trajectory,
while the couplings ΓAA′ and ΓBB′ can depend only on the Mandelstam variable t. The Born
quark-Reggeon-quark and gluon-Reggeon-gluon effective vertices can be both written as

Γc(0)
AA′ = gδλA′λA

⟨A′|T c|A⟩ , (2.3)

where λA′ (λA) is the helicity of the outgoing (incoming) parton, while ⟨A′|T c|A⟩ stands for
the matrix element of the color group generator in the corresponding representation.

At one-loop level, particle-Reggeon-particle vertices can be extracted by considering
the high-energy limit of a reference amplitude with gluon quantum numbers exchanged in
the t-channel and comparing the fixed-order perturbative calculation with the pole Regge
form (2.1). For instance, to get the one-loop correction to the quark-Reggeon-quark vertex,
one can calculate any elastic quark-quark scattering with gluon quantum numbers exchange in
the t-channel at one-loop in the high-energy limit and compare it with its one-loop-expanded
Regge form,

A(8,−)
qq→qq = Γc

qq

s

t

[(
s

−t

)ω(t)
+
(−s
−t

)ω(t)
]
Γc

qq ≈ Γc(0)
qq

2s
t
Γc(0)

qq

+ Γc(0)
qq

s

t
ω(1)(t)

[
ln
(
s

−t

)
+ ln

(−s
−t

)]
Γc(0)

qq + Γc(0)
qq

2s
t
Γc(1)

qq + Γc(1)
qq

2s
t
Γc(0)

qq .

(2.4)

Using the known expression for the one-loop Regge trajectory in eq. (2.2) and for the Born
quark-Reggeon-quark vertex, one can easily find Γc(1)

qq . Since this vertex will be useful in the
following, we give here its expression (see, for instance, [56]):

Γc(1)
qq = Γc(0)

qq δQ, (2.5)

with

δQ =ω(1)(t)12

[
− 1
ϵ
+ ψ(1 + ϵ) + ψ(1)− 2ψ(1− ϵ) + 2− ϵ

2(1− 2ϵ)(3− 2ϵ)

− 1
2C2

A

(
1− 2

ϵ(1− 2ϵ)

)
− nf

CA

(1− ϵ)
(1− 2ϵ)(3− 2ϵ)

]
.

Similarly, one can find the one-loop correction to the gluon-Reggeon-gluon vertex, Γc(1)
gg ,

starting from the elastic gluon-gluon scattering amplitude, A(8,−)
gg→gg [56]. The validity of gluon

Reggeization then implies that the high-energy limit of the elastic quark-gluon amplitude
within the NLLA must be reproduced by using the known expressions for ω(1)(t),Γc(1)

qq and
Γc(1)

gg . This is a manifestation of the universal behavior of particle-Reggeon-particle vertices
and is induced by the property of gluon Reggeization, which is valid in QCD.

2For the definition of transverse Minkowskian four-vector see eq. (3.2).
3Since in the following we consider just the Reggeized gluon, we will refer to it as Reggeon for simplicity.
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q

k2 k′2

k1 k′1

Figure 1. Dominant contributions to the quark-quark into quark-quark scattering amplitude in the
high-energy limit.

3 The violation of Gribov’s trick for a dimension 5-operator

3.1 Quark-quark elastic amplitude at one-loop

In order to extract the high-energy behaviour of scattering amplitudes in QCD, a series of
simplifications can be applied. One of the most useful is known as eikonal approximation or
Gribov’s trick and, in order to illustrate it, let us first consider the Born quark-quark into
quark-quark scattering amplitude (see figure 1). The amplitude is

A(8,−)
q1q1′→q2q2′

= (−i)ū(k1 + q)(−i)gtajiγ
µu(k1)

(
−igµνδ

ab

q2

)
ū(k2 − q)(−i)gtbknγ

νu(k2). (3.1)

We work in light-cone coordinate, using as basis the momenta k1 and k2 of the incoming
particles.4 Therefore, a generic D-vector p is decomposed as

p = βpk1 + αpk2 + p⊥, (3.2)

where p⊥ is a D-vector orthogonal to the plane identified by k1 and k2. The Gribov’s trick
consists in replacing the numerator of all t-channel gluon propagators as

gµν = gµν
⊥⊥ + 2k

µ
2 k

ν
1 + kµ

2 k
ν
1

s
−→ 2kµ

2 k
ν
1

s
, (3.3)

in order to extract the high-energy behaviour of the amplitude in the leading power approxi-
mation in the Regge limit, i.e. up to corrections power-suppressed in (−t)/s ≪ 1. In this
way, one gets exactly the LO expansion of the Regge amplitude in eq. (2.1), i.e.

Γc(0)
q1q1′

2s
t
Γc(0)

q2q2′
, (3.4)

with
Γc(0)

q1,q1′
= gtcjiū(k1 + q)

/k2
s
u(k1) ≃ gtcjiδλq1′ λq1

(3.5)

and
Γc(0)

q2,q′2
= gtcknū(k2 − q)

/k1
s
u(k2) ≃ gtcknδλq2′ λq2

. (3.6)

4The incoming particles in the whole paper are always on the light-cone.
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(a) (b)
(c)

(d)

(e) (f ) (g)

Figure 2. Dominant contributions to the quark-quark into quark-quark scattering amplitude in the
high-energy limit at one-loop level. The blob in the diagram (e) incorporates quark, gluon and ghost
loop contributions. All propagators in red are the ones that can be approximated à la Gribov.

The possibility of using the Gribov’s trick is just a manifestation of the eikonal nature
of the interaction between the upper (lower) external particles and the t-channel gluon in
the Regge limit, which is exploited in all existing approaches to the physics of high-energy
scattering in QCD.

The Gribov’s trick becomes an essential tool at the NLO. Considering again the previous
amplitude but at one-loop accuracy, we have nine contributing diagrams5 (see figure 2).
Following the usual convention, we will refer to diagrams (a), (b), (c), (d) and (e) of figure 2
as single-gluon t-channel diagrams and to diagrams (f) and (g) of figure 2 as two-gluon
t-channel diagrams. The blob in the diagram (e) incorporates quark, gluon and ghost loop
contributions. One easily finds that, for all the gluon propagators connecting vertices with
momenta predominantly along k1 and k2, respectively (the propagators in red in figure 2),
the Gribov’s trick can be applied and enables to find the correct high-energy behaviour
of the amplitude. Using this the Gribov’s trick and performing a projection onto the
negative signature and octet color state in the t-channel, one finds exactly the form in
eqs. (2.4), (2.5), (2.6).

3.2 gq → Hq amplitude at one-loop

We would like to apply the procedure outlined in the previous section to the case when QCD
is extended by the inclusion of an effective dimension-5 interaction, such as the gluon-Higgs
effective interaction in the infinite top-mass limit. The gluon-Higgs effective Lagrangian and
the relative Feynman rules are given in appendix A. In particular, our aim is to extract,
with one-loop accuracy, the gluon-Reggeon-Higgs effective vertex, ΓgH , which is one of the

5Other diagrams are suppressed in the high-energy approximation.
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ingredients of the NLO Higgs impact factor [42]. For this purpose, we can consider as
reference amplitude the scattering of a gluon off a quark to produce a Higgs plus a quark.
The amplitude, Agq→Hq, must be calculated with one-loop accuracy in the high-energy limit
and compared with the Regge form (2.4), assuming its validity in the extended theory formed
by QCD plus the gluon-Higgs effective interaction in the infinite-top-mass limit. The leading
order amplitude, see figure 3, reads

A(8,−)
gq→Hq = (−i)ε⊥,ρ(k1)igHδ

acHρµ(−k1,−q)
(
−igµνδ

bc

q2

)
ū(k2 − q)(−i)gtbjiγ

νu(k2)

= −
ggHε⊥,ρδ

actcji

q2 (gµρk1 · q − kµ
1 q

ρ) ū(k2 − q)γµu(k2),

where we have adopted the following gauge choice for the external gluon:

ε(k1) · k2 = 0 =⇒ ερ(k1) = ε⊥,ρ(k1). (3.7)

Now, the first term of the first round bracket produces a contribution,

−
ggHt

a
ji(k1 · q)
q2 ū(k2 − q)/ε⊥u(k2),

which is suppressed in the high-energy approximation, while the second term in the same
round bracket produces the actual energy-leading term,

gHδ
acε⊥ · q⊥
2

(2s
t

)
gtajiū(k2 − q) /k1

s
u(k2). (3.8)

Hence, we find that the Born amplitude can be put in the LO Regge form

A(8,−)
gq→Hq = Γac(0)

gH

(2s
t

)
Γc(0)

qq , (3.9)

with the leading gluon-Reggeon-Higgs vertex given by

Γac(0)
gH = gHδ

acε⊥ · q⊥
2 . (3.10)

One can easily check that this is the result that we would have immediately obtained by
applying the Gribov’s trick. Let us move on now to the one-loop level, where the diagrams
contributing to the amplitude are the ones shown in figure 4. In ref. [42], it was found
that the Gribov’s prescription (again all propagators in red) can be applied to single-gluon
t-channel diagrams (from (a) to (f)), while it has to be suitably modified for the two-gluon
t-channel diagrams (from (g) to (i)). In this latter case, to obtain the correct high-energy
behaviour of the amplitude, for any t-channel propagator connected directly to the Higgs
vertex (in blue in figure 4), the prescription to be used is

gµν = gµν
⊥⊥ + 2k

µ
2 k

ν
1 + kµ

2 k
ν
1

s
−→ gµν

⊥⊥ + 2kµ
2 k

ν
1

s
, (3.11)

which contains an additional transverse term, gµν
⊥⊥, with respect to the standard Gribov’s

trick in eq. (3.3).
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q

k2 k′2

k1 k′1

Figure 3. Dominant contribution to the gluon-quark into Higgs-quark scattering amplitude in the
high-energy limit.

(d) (f )
(e)

(g) (h) (i)

(c)(b)(a)

Figure 4. Dominant contribution to the gluon-quark into Higgs-quark scattering amplitude in the high-
energy limit at the next-to-leading order. The blob in diagram (d) contains the summed contribution
of quark, gluon and ghost loop. All propagators in red are the one that can be approximated à la
Gribov, while the propagators in blue must be approximated as in eq. (3.11).
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By itself, this seems to be a simple modification of the computational technique, but it
actually has a much more profound impact. The additional terms thus arising in separate
diagrams, which we will refer to from now on as non-Gribov terms, apparently, lead to new
Lorentz structures in the amplitude, which do not allow to obtain the factorized pole Regge
form introduced in section 2. We will show an explicit computation in the next section,
but we anticipate one of the results here for illustrative purposes. The diagram (i), which
in the pure Gribov approximation would be nullified by the gauge choice for the external
gluon in eq. (3.7), gives instead a contribution

g3gH
CA

2 δactcji

(2s
t

)
ū(k2 − q)/ε⊥(k1)u(k2)i

∫
dDk

(2π)D

1
k2(k − q)2 . (3.12)

We see that in this term neither Γac(0)
gH nor Γa(0)

qq can be factorized out due to the coupling
between helicities of the gluon and quark in the Lorentz structure ū(k2 − q)/ε⊥(k1)u(k2),
which is absent in eq. (3.8). This means that, in the high-energy approximation within
NLLA, the form of the amplitudes should be

A(8,−)
gq→Hq ≈ Γac(0)

gH

2s
t
Γc(0)

q,q + Γac(0)
gH

s

t
ω(1)(t)

[
ln
(
s

−t

)
+ ln

(−s
−t

)]
Γc(0)

qq

+ Γac(0)
gH

2s
t
Γc(1)

qq + Γac(1)
gH

2s
t
Γc(0)

qq + non-Gribov contributions, (3.13)

thus apparently invalidating the Regge form, as the mere consequence of the presence of the
dimension-5 operator in the Lagrangian. However the analysis in section 3.4 shows that the
new Lorentz structures arising in the non-Gribov terms can be decomposed as a sum of the
helicity structure of the Born amplitude plus the anomalous helicity structure. It turns out
that the anomalous helicity structure cancels among different diagrams and therefore the
Regge-pole form (2.1) of the amplitude is preserved at one loop.

3.3 The appearance of non-Gribov terms

3.3.1 Non-Gribov terms from the triangular diagram

We start our discussion on non-Gribov terms, reproducing the result of the diagram (i) in
figure 4 (same as the left diagram in figure 5). We write down the amplitude approximating
the t-channel gluons with the prescription in (3.11), i.e.

An.G.(i)
gq→Hq = (−i)ε⊥,µ(k1)

∫
dDk

(2π)D
ggHf

abcV µ
δα(−k1,−k, k − q)

(−i)δdb

(
2kν

1 kδ
2

s + gδν
⊥⊥

)
k2

×
(−i)δec

(
2kβ

1 kα
2

s + gαβ
⊥⊥

)
(k − q)2 ū(k′2)(−i)gtejmγβ

iδmn(/k2 − /k)
(k2 − k)2 (−i)gtdniγνu(k2).

The product of the two Lorentz structures coming from t-channel propagators is

4
s2k

β
1 k

α
2 k

ν
1k

δ
2 +

2kν
1k

δ
2

s
gαβ
⊥⊥ + 2kβ

1 k
α
2

s
gδν
⊥⊥ + gαβ

⊥⊥g
δν
⊥⊥.

The first term is the usual Gribov term and it is nullified by our gauge choice for external
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Figure 5. Triangular diagrams in the Agq→Hq (left) and in the Agq→gq (right) amplitudes.

gluon polarization, while the last one is suppressed in the high-energy approximation. We
want to investigate the second and the third terms which, in a pure QCD calculation, would
lead to suppressed contributions. After some algebra, we find

An.G. (i)
gq→Hq = −gHg

3CAδ
actcji

2 ū(k′2)
[
/ε⊥(k1)γµ/k1 − /k1γ

µ/ε⊥(k1)
]
u(k2)

× i

∫
dDk

(2π)D

kµ

k2(k − k2)2(k − k′2)2 ,

up to energy-suppressed contributions. Taking into account that the two external quark
momenta are on-shell (k2

2 = k′ 2
2 = 0), we decompose the integral as∫

dDk

(2π)D

kµ

k2(k − k2)2(k − k′2)2 = qµ − 2kµ
2

q2

∫
dDk

(2π)D

1
k2(k − q)2 . (3.14)

In principle, both the contributions in qµ and in kµ
2 are non-Gribov terms. The first one gives

a suppressed contribution when taking the interference with the Born and hence we ignore it
for the current discussion. It is easy to see that the second contribution in eq. (3.14) gives

−gHδ
ac

2

(2s
t

)
gtcjiū(k′2)/ε⊥(k1)u(k2)g2CA

∫
dDk

i(2π)D

1
k2(k − q)2 , (3.15)

which is exactly the term we anticipated in eq. (3.12). This term is not in the Regge
form (2.1), nevertheless, if we compute the interference between this correction and the
Born gq → Hq amplitude, we find6

δ
n.G. (i)
gq→Hq ≡

A(0)∗
gq→HqA

n.G. (i)
gq→Hq

|A(0)
gq→Hq|2

= g2CAB0(q2). (3.16)

The definition and the value of the integral B0, together with all the other scalar integrals
that appear in the calculation, is given in the appendix B. This is exactly the one-loop
correction to the Higgs impact factor coming from this diagram found in [42].

The reason why this type of contributions appears becomes even clearer when we compare
the diagram under examination with a similar contribution to the amplitude Agq→gq (diagram
(b) in figure 5). In this latter case, the Gribov term contains the following expression:

kδ
2k

α
2 ϵ

µ(k1)ϵγ(k′1)Y
abcf

δµγα, (3.17)
6The sum over quark and gluon polarization is understood.
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Figure 6. Box diagrams in the Agq→Hq (left) and in the Agq→gq (right) amplitudes.

where Y abcf
δµγα is the four-gluon vertex, and it is thus nullified by the on-shell condition of the

incoming quark line, k2
2 = 0, and the gauge choice, ϵ(k1)·k2 = 0. In this case, however, also the

two non-Gribov terms suffer the same fate; indeed, they contain the structure like the following

kδ
2g

αβ
⊥⊥ϵ

µ(k1)ϵγ(k′1)Y
abcf

δµγα, (3.18)

and there are no non-zero contractions available for the four-vector k2 (with the gauge choices
ϵ(k1) · k2 = 0 and ϵ(k′1) · k2 = 0).

In the scattering of a gluon off a quark to produce a Higgs plus a gluon, Agq→Hq (see
diagram (i) in figure 4 or diagram (a) in figure 5) the relevant contraction is

ε⊥,µ(k1)V µ
δα(−k1,−k, k − q)

[
2kν

1k
δ
2

s
gαβ
⊥⊥ + 2kβ

1 k
α
2

s
gδν
⊥⊥

]
ū(k′2)γβ(/k2 − /k)γνu(k2). (3.19)

Let us focus only on the first of the two terms (the second follows a similar path), we have

ε⊥,µ(k1)
[
(k − k1)αgµδ + (q − 2k)µgδα + (k − q + k1)δgαµ

] 2k2,δ

s
ū(k′2)γ⊥,α(/k2 − /k)/k1u(k2).

(3.20)
Since only the last term survive, we get7

2k2 · (k + k1)
s

ū(k′2)/ε⊥(k1)(/k2 − /k)/k1u(k2). (3.21)

This term, as might be expected, contains one less /k1 in the Dirac structure than a Gribov
term and, instead, has a completely transverse object (ϵ⊥,µ). On the other side, the gggH-
vertex, being linear in the momenta, had generated a contraction of the order of s making the
non-Gribov term dominant in energy. We want to stress this last point: it was not enough for
the contraction to be non-zero, it was also necessary for the vertex to generate additional power
of s. This becomes even clearer if we consider the non-Gribov terms of a box-like diagram.

3.3.2 Non-Gribov terms from the box-type diagrams

As noted in ref. [42], also the box and the crossed diagrams (see (g) and (h) in figure 4)
contain non-Gribov contributions. As for the triangular diagram, we want to perform a

7We neglect q · k2 ∼ s0 with respect to k1 · k2 ∼ s.
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comparison between the diagram (g) (see also the left diagram in figure 6) and a similar
diagram in the Agq→gq amplitude (right diagram in figure 6). As explained before, the
t-channel gluon propagator which is not connected to the ggH-vertex can be approximated
by the standard Gribov approximation, eq. (3.3), while the one directly connected to the
vertex should be approximated as in eq. (3.11). The product of these two structures yields
a single non-Gribov term,

An.G. (g)
gq→Hq = g3gHε⊥,µ(k1)fabc(tbtc)ji

2
s

∫
dDk

(2π)D

1
k2(k − q)2(k + k1)2(k − k2)2

×Aµρν(−k, k + k1)k2,ρ g
⊥⊥
σξ H

σ
ν (−k − k1, k − q)ū(k′2)γξ(/k2 − /k)/k1u(k2),

where Aµρν(−k, k + k1) is the Lorentz structure in the three-gluon vertex. Since we are
mainly interested in comparing the behaviour in the power of s of diagrams in figure 6, we
focus on specific terms which are dominant in the high-energy limit. To this aim, in the part
of the amplitude containing the Dirac structure, we consider the term

ū(k′2)γξ/k2/k1u(k2) = sū(k′2)γξu(k2) (3.22)

which is the leading one in powers of s. Then, we perform the contraction

ε⊥,µ(k1)k2,ρA
µρν(−k, k + k1) = 2(k⊥ · ε⊥(k1))kν

2 − (2k1 + k) · k2 ε
ν
⊥(k1) (3.23)

and observe that it can, at most, produce a term of order s (either by a subsequent contraction
of kν

2 in the first term or via the dot product in the second term). Let us consider the second
term, approximating it by −sεν

⊥(k1), which therefore leads to

−s2ū(k′2)γξu(k2)εν
⊥(k1)g⊥⊥

σξ H
σ

ν (−k1 − k, k − q). (3.24)

Here, all contractions are between transverse components, but since H σ
ν is a quadratic vertex

in the momenta, it has a term proportional to g σ
ν times a scalar product and leads to

s2ū(k′2)/ε⊥(k1)u(k2) [(k1 + k) · (k − q)] . (3.25)

The term k1 · k contributes with

g3gHf
abc(tbtc)jiū(k′2)/ε⊥(k1)u(k2) 2s k1,µ

∫
dDk

(2π)D

kµ

k2(k − q)2(k + k1)2(k − k2)2 , (3.26)

which, in the integration region kµ ∼ kµ
2 , takes a value of the order

s2
∫

dDk

i(2π)D

1
k2(k − q)2(k + k1)2(k − k2)2 = s2D0(m2

H , q
2, s) ∼ s2 1

s
= s, (3.27)

and hence is leading in the high-energy approximation. Here, we have used the fact that
the integral D0 behaves as 1/s, as it can been seen in the appendix B. There might still be
a cancellation among terms that are dominant in energy, but a complete calculation using
FeynCalc [57, 58] and FeynHelpers [59] shows that this is not the case and the full result
for the non-Gribov part associated to diagrams (g) and (h) reads

δ
n.G. (g)+(h)
gq→Hq ≡

A(0)∗
gq→Hq(A

n.G. (g)
gq→Hq +An.G. (h)

gq→Hq )

|A(0)
gq→Hq|2

= g2(−3CA)B0(q2). (3.28)

This result will be useful in section 4.
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We now want to compare the previous result with the calculation of a non-Gribov
contribution from the box diagram of the Agg→gg amplitude (right diagram in figure 6).
Also in this case, we can take one of the terms, namely the one produced by approximating
the two propagators as

gργ → 2k2,ρk1,γ

s
, gσξ → g⊥⊥

σξ .

We have

An.G.
gq→gq = g4fadffdhg(tgtf )jiε⊥,µ(k1)ε∗β(k′1)

2
s

∫
dDk

i(2π)D

1
k2(k − q)2(k + k1)2(k − k2)2

×Aµρν(−k, k + k1)k2,ρ g
⊥⊥
σξ A

σβ
ν (k − q, k1 + q)ū(k′2)γξ(/k2 − /k)/k1u(k2).

We repeat the same steps as before and take

ū(k′2)γξ(/k2 − /k)/k1u(k2) −→ sū(k′2)γξu(k2), (3.29)
ε⊥,µ(k1)k2,ρA

µρν(−k, k + k1) −→ −sεν
⊥(k1). (3.30)

At this point, the contraction in the numerator is

−s2εν
⊥(k1)

(
ε∗⊥,β(k′1)−

ε∗⊥(k′1) · k′1,⊥
k1′ · k2

k2,β

)
A σβ

ν (k − q, k1 + q)ū(k′2)γ⊥,σu(k2), (3.31)

where we have specified the form of the polarization vector ε∗β(k′1) in the gauge ε∗(k′1) · k2 = 0.
The difference with what was obtained previously is clear. There is no possible contraction
that can produce an additional factor s, since the momenta in the three-gluon vertex contract
either transverse objects or a k2 divided by a dot product of the order of s. Hence, the
contribution is of the order

s

∫
dDk

i(2π)D

1
k2(k − q)2(k + k1)2(k − k2)2 = sD0(m2

H , q
2, s) ∼ s0, (3.32)

which shows that this kind of terms are suppressed in a pure QCD computation.8

3.4 The fate of the anomalous helicity structure

We now consider more closely the helicity structure of the Born amplitude, which is always
preserved in the Gribov part of the one-loop amplitude, and reads

HBorn ≡ (ε⊥(k1) · q⊥) ū(k2 − q)
/k1
s
u(k2). (3.33)

Using the Sudakov decomposition for the momentum transfer in the t-channel,

qµ = q2
⊥
s
kµ

1 + m2
H − q2

⊥
s

kµ
2 + q⊥, (3.34)

we have

(ε⊥(k1) · q⊥) ū(k2 − q)/
q − /q⊥
q2
⊥

u(k2) = (ε⊥(k1) · q⊥) ū(k2 − q) /q⊥
|q⊥|2

u(k2), (3.35)

8Similar considerations hold for the Aqq→qq or the Agg→gg amplitude.
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where in the last step we used ū(k2 − q)/qu(k2) = ū(k2 − q)
(
/q − /k2 + /k2

)
u(k2) = 0. Defining

the following basis in transverse space:

nµ
x = qµ

⊥
|q⊥|

, nµ
y = ϵµν+− q⊥ν

|q⊥|
, (3.36)

where the + and − components identify the directions along k1 and k2 respectively, then the
“transverse form” of the helicity structure of the Born amplitude reads

HBorn = (ε⊥(k1) · nx) ū(k2 − q)/nxu(k2). (3.37)

On the other hand, the above-discussed Lorentz structure produced by the non-Gribov
contributions is

ū(k2 − q)/ε⊥(k1)u(k2) = −ū(k2 − q)γµu(k2)
(
nµ

xn
ν
x + nµ

yn
ν
y

)
ε⊥,ν = −HBorn −Hanomalous,

(3.38)
where the anomalous helicity structure is

Hanomalous ≡ ū(k2 − q)/nyu(k2) (ny · ε⊥) . (3.39)

In the full Agq→Hq scattering amplitude, other types of Lorentz structures are also encoun-
tered, e.g.

ū(k2 − q)
/k1
s
/q⊥/ε⊥(k1)u(k2) = HBorn +Hanomalous, (3.40)

but they are always reducible to the independent helicity structures HBorn and Hanomalous.
When we take the interference between the one-loop and the Born amplitude, the contribution
from the Hanomalous-part is proportional to

∑
spin

ū(k2 − q)/nxu(k2)ū(k2)/nyu(k2 − q) = Tr
[
/k2/ny(/k2 − /q)/nx

]
= 0, (3.41)

and thus vanishes. This implies that non-Gribov terms contribute to the interference between
1-loop and Born amplitude, but only through the Born helicity structure and explains why
the Regge ansatz straightforwardly holds at the level of the interference [42].

However, the Reggeization is a statement at the level of amplitudes, it is therefore
reasonable to study the complete amplitude, preserving both Born and anomalous helicity
structures. After producing the diagrams through FeynArts [60] and calculating their Regge
limit by using FeynCalc [57, 58], we used the relations (3.38), (3.40) to express the result in
terms of the two independent helicity structures HBorn and Hanomalous. We observed that
the anomalous structure cancels out in the sum between diagrams (g), (h) and (i) in the
figure 4. This is in agreement with the result obtained in ref. [61] for helicity amplitudes.
The outcome is therefore that, at one-loop level, although the amplitude receives non-Gribov
contributions, it can still be cast into the Regge form.
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4 Computing the gluon-Reggeon-Higgs vertex through the strategy of
rapidity regions

In refs. [55, 56] a powerful technique to extract NLO high-energy vertices has been developed.
It makes possible to calculate complicated high-energy amplitudes at NLO in a compact and
elegant way. The technique is based on two fundamental ingredients. The first is exactly the
Gribov’s trick, the second is the factorization of effective high-energy vertices in different
regions of rapidity. The latter property has been demonstrated for several effective vertices,
which are however constructed from renormalizable Lagrangians.

We want to discuss how this technique can be used in presence of the gluon-Reggeon-
Higgs vertex. In previous sections we saw that, in this case, the Gribov’s trick is violated.
Nonetheless, the contributions generated by this violation have been carefully isolated in
eqs. (3.16), (3.28) and sum up to

δn.G.
gq→Hq = g2(−2CA)B0(q2) = ᾱs

4π

(
q⃗ 2

µ2

)−ϵ [
−2CA

ϵ
− 4CA

]
. (4.1)

Treating this contribution separately, we can think of using the region technique on the Gribov
terms, not only as an elegant and effective short-cut for the computation of amplitudes in the
high-energy limit, but also as a tool to analyze factorization properties of the effective vertex
at one-loop. Here, new features are expected in presence of an effective non-renormalizable
dimension-5 operator.

In the following, we briefly recall the method of regions in QCD, then we consider its
application in presence of the gluon-Reggeon-Higgs vertex.

4.1 Strategy of rapidity regions for QCD vertices

At one-loop order, Feynman diagrams for the process A+B → A′ +B′ can be divided into
four classes. The first class includes corrections to the t-channel gluon propagator, the second
and third are related to corrections to the interaction of the t-channel gluon with the particles
A,A′ and B,B′ correspondingly, and the last one contains the diagrams with the two-gluon
exchange in the t-channel. The first three classes fit into the diagrams that in figures 2, 4
we have labeled as single-gluon t-channel diagrams. The contributions of the diagrams of
the first three classes have the same dependence on s as the Born amplitudes; moreover,
the contributions of the first and second (first and third) classes depend on properties of
the particles B,B′ (A,A′) in the same way as the Born amplitudes. It is evident therefore
that the contribution of the diagrams of the second (third) class must be attributed to the
vertex ΓA′A (ΓB′B), whereas the contribution of the first class must be divided in equal
parts between these vertices. As we have seen, these considerations also fit perfectly into the
computation of the gluon-Reggeon-Higgs vertex.9 On the other side, the contributions of
two-gluon exchange diagrams to the two vertices and to the trajectory are mixed and the
problem of their separation arises. For these diagrams, the fundamental idea is to decompose
the loop momentum k à la Sudakov,

k = βk1 + αk2 + k⊥, (4.2)
9Remember that this class of diagrams have no problem related to the violation of the Gribov’s trick.
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−α0

−β0 β0
Central regionRegion A

Region B

Region B

Region A

Region C Region C

β

α

Region CRegion C

Figure 7. Schematic representation of the four different rapidity regions.

and then to split the integration domain into four regions, introducing two rapidity parameters
α0 and β0 such that

α0 ≪ 1, β0 ≪ 1, sα0β0 ≫ |t|.

The four regions are 

Central region |α| ≲ α0, |β| ≲ β0,

Region A |α| ≲ α0, |β| > β0,

Region B |α| > α0, |β| ≲ β0,

Region C |α| > α0, |β| > β0,

and are schematically depicted in figure 7. The factorization of vertices in different rapidity
regions requires that in the region |α| ≪ 1 (|β| ≪ 1) we can factor out the vertex Γ(0)

B′B

(Γ(0)
A′A) from the diagrams. This assertion is proved for all vertices of QCD and for the

vertex γ(∗)R → qq̄.
Let us discuss the general expected structure of the contribution in each of these four

regions, postponing the details of the calculation to the particular case of the gluon-Reggeon-
Higgs vertex.
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Region C. The first observation is that the contribution from the region C is suppressed by
a factor |t|/(α0β0s) ≪ 1. This not only allows us to exclude this region from the calculation,
but also to remove the |α| < α0 (|β| < β0) restriction in the region A (B), if necessary, since
this would correspond to adding a power-suppressed quantity.

Central region. In the central region the upper and the lower vertices factorize out and
for the box diagram we obtain

A(8,−)
box,Central = −g2CAs

2Γ(0)
A′A Icentral Γ(0)

B′B,

where

Icentral = s

2

∫ α0

−α0

∫ β0

−β0

∫
dD−2k⊥
(2π)Di

dα dβ

(αβs+ k2
⊥ + i0)(αβs+ (q − k)2

⊥ + i0)(−βs+ i0)(αs+ i0) .

(4.3)
The calculation of this integral leads to10 [56]

A(8,−)
box,Central = Γ(0)

A′A

2s
t
Γ(0)

B′B ω(1)(t)
[1
2 ln

(−s
−t

)
+ ϕ(α0)

2 + ϕ(β0)
2

]
, (4.4)

where
ϕ(z) = ln z + 1

2

(
−1
ϵ
− ψ(1) + ψ(1 + ϵ)− 2ψ(1− ϵ) + 2ψ(1− 2ϵ)

)
.

We need also to include the crossed diagram and this leads to the following result

A(8,−)
Central = Γ(0)

A′A

2s
t
Γ(0)

B′B ω(1)(t)
[1
2 ln

(−s
t

)
+ 1

2 ln
(−s
−t

)
+ ϕ(α0) + ϕ(β0)

]
. (4.5)

This contributions is then split into a correction to the upper vertex,

Γ(Central)
A′A = Γ(0)

A′A ω(1)(t)ϕ(β0),

a correction to the lower vertex,

Γ(Central)
B′B = Γ(0)

B′B ω(1)(t)ϕ(α0)

and a contribution containing energy logarithms which contribute to the one-loop Regge
trajectory in eq. (2.1). We want to emphasize two important points:

• The contribution calculated in this region is universal, i.e. it does not depend on the
particular ΓA′A,ΓB′B vertices.

• The separation into regions has induced rapidity divergences when α0, β0 go to zero,
which, as we shall see, will be cancelled by analogous divergences in the regions A
and B.

10In appendix B, we reproduce the calculation of this integral.
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Figure 8. Box, crossed box and triangle diagrams with the corresponding momentum routings.

Region A and Region B. In the region A, the lower vertex ΓB′B factorizes and we find
a correction that is assigned to the upper vertex,

Γ(A)
A′A = Γ(0)

A′Aδ
(A)
NLO = Γ(0)

A′A

[
−ω(t) ln β0 + δ̃

(A)
NLO

]
,

where the term proportional to ln β0 is universal, while δ̃(A)
NLO varies according to the specific

vertex. Similarly, region B provides a correction, which is naturally assigned to the lower
vertex, of the form

Γ(B)
B′B = Γ(0)

B′B δ
(B)
NLO = Γ(0)

B′B

[
−ω(t) lnα0 + δ̃

(B)
NLO

]
.

4.2 Strategy of rapidity regions for the gluon-Reggeon-Higgs vertex

In this section, we intend to compute the Gribov part of diagrams with two gluons in
the t-channel (in the top of figure 8) by the strategy of rapidity regions. These diagrams
are complicated, but they greatly simplify when taken in combination with the triangular
correction shown in the bottom of figure 8.

Let us start by considering the box and the crossed diagram in figure 8. The second
one can be obtained from the first one by using the crossing symmetry

ACross = −ABox(s→ u ≃ −s). (4.6)

Using the Gribov’s trick for the two propagators connecting regions separated by large
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(−i)× (−kµ1/s)

(−i)× (−kρ2/s)

(2s/t)

q

(a)

q, c

p, a, µ k, b, ν

gfacbY µν(p, k, q)

(b)

Figure 9. Diagrammatic representation of the Gribov prescriptions in the Regge limit for the triangle
amplitude (a) and the full Reggeon-gluon-gluon vertex (b).

interval of rapidity, we find

ABox ≃ 4
s2 g

3gHϵµ(k1)fabc(tbtc)ji

×
∫

dDk

(2π)D

k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q)ū(k2 − q)/k1(/k2 − /k)/k1u(k2)
k2(k − q)2(k + k1)2(k − k2)2 . (4.7)

From the Sudakov decomposition (4.2) for k, we get that

ū(k2 − q)/k1(/k2 − /k)/k1u(k2) = s(1− α)ū(k2 − q)/k1u(k2).

Taking into account that the color factor is

fabc(tbtc)ji =
1
2f

abc(tbtc − tctb)ji =
i

2CAt
a
ji =

i

2CAδ
actcji,

we obtain

ABox ≃ −2
s
g3gHϵµ(k1)CAδ

actcjiū(k2 − q)/k1u(k2)

×
∫

dDk

i(2π)D

(1− α)k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q)
k2(k − q)2(k + k1)2(k − k2)2 . (4.8)

4.2.1 Region A

In the region A, due to crossing symmetry (4.6), the contribution from the crossed diagram
is equal to the one from the box, so we have

AA = −4g2gHϵµ(k1)CAδ
acΓc(0)

qq′

∫
dDk

i(2π)D

k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q)
k2(k − q)2(k + k1)2(k − k2)2 .

(4.9)
Moving to Sudakov variables, we express the integration measure as∫

dDk

i(2π)D
= s

2

∫
dα

2πi

∫
dβ

∫
dD−2k⊥
(2π)D−1 (4.10)
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and approximate the last propagator as

(k − k2)2 ≃ −βs. (4.11)

In this way, we easily find

AA = 4
s
g2gHδ

acϵµ(k1)CAΓc(0)
qq′

s

2

∫
|α| ≲ α0

dα

2πi

∫
|β| > β0

dβ

β

∫
dD−2k⊥
(2π)D−1

× k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q)
k2(k − q)2(k + k1)2 . (4.12)

Restoring formally the 1/t propagator factor, we can cast the contribution from the box
and crossed diagram as

AA = Γc(0)
qq′

(2s
t

)
gHδ

acϵµ(k1)(−g2CA) s
∫
|α| ≲ α0

dα

2πi

∫
dβ

∫
dD−2k⊥
(2π)D−1

×
Aµ

ργ(−k, k + k1)χρ
α(−k, k − q, q2, β0, s)Hγα(−k − k1, k − q)
k2(k − q)2(k + k1)2 , (4.13)

where we single-out the factor
[

2q2

s
k2,α kρ

2
−βs

]
θ
(∣∣∣−βs

s

∣∣∣− β0
)

from the integrand, rewriting it
in terms of the vertex

χρ
α(p, k, q2, β0, s) =

[
2q2

s

k2,α k
ρ
2

k2(p− k)

]
θ

(∣∣∣∣k2(p− k)
s

∣∣∣∣− β0

)
, (4.14)

which is analogous to the “induced” Reggeon-gluon-gluon coupling in Lipatov’s EFT, discussed
in section 5.3 (eq. (5.31)). As anticipated above, adding together the region A of the box
and crossed diagram with the triangle greatly simplifies the computation. To facilitate the
addition of these contributions we have introduced the vertex (4.14) in such a way that
combining the eq. (4.13) with the Gribov projection of the triangle diagram (figure 9(a))
boils down to the simple replacement of the vertex χα

ρ in eq. (4.13) by the complete effective
Reggeon-gluon-gluon vertex (figure 9(b)) with the tensorial structure

Y µν(p, k, q) = k2,ρ

s
Aµρν(p+ k,−k) + χµν(p, k, q2, β0, s) (4.15)

=
[
gµν k2(k − p)

s
+ kµ

2
s
(2p+ k)ν − kν

2
s
(2k + p)µ + 2q2

s

kµ
2 k

ν
2

k2(p− k)

]
θ

(∣∣∣∣k2(p− k)
s

∣∣∣∣− β0

)
.

This vertex had been introduced e.g. in figure 3 of ref. [39]. The theta function multiplies
all four terms for convenience of algebraic simplifications in the numerator of the amplitude,
but will affect only those terms in which the eikonal denominator k2(p− k) does not cancel,
where it is needed to regularize the singularity in the point β = 0.

We also emphasize that while the region A is identified by the condition |α| < α0, which
restricts the α-integration domain, one still can remove this restriction and integrate over
α between −∞ and ∞ as a consequence of the fact that the contribution from the region
C is power-suppressed.
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4.2.2 Triangular correction plus box contribution from the region A

With the help of the effective vertex (4.15) one can write the sum of triangle and region
A of the box diagrams as

Γac(Tri+A)
gH = −iϵµ(k1)

∫
dDk

(2π)D
gfabhAµδν(−k, k1 + k)

(
−igδρδ

hg

k2

)
(4.16)

× (−gfgfc)Y ρβ(−k, k − q, q)
(
−igβαδ

ef

(k − q)2

)(
−igνγδ

bd

(k1 + k)2

)
igHδ

deHγα(−k − k1, k − q),

which immediately gives

Γac(Tri+A)
gH = gHδ

acϵµ(k1)
2 (−g2CAs)

∫
dD−2k⊥
(2π)D−1

∫ ∞

−∞
dβ

∫ ∞

−∞

dα

2πi

×

[
Aµ

ργ(−k, k1 + k)Y ρ
α(−k, k − q, q)Hγα(−k − k1, k − q)

]
(αβs+ k2

⊥ + i0)((β − βq)(α− αq)s+ (q − k)2
⊥ + i0)(α(1 + β)s+ k2

⊥ + i0) , (4.17)

where we used the Sudakov decomposition for q,

q = βqk1 + αqk2 + k⊥, (4.18)

with
βq = −q⃗ 2

s
, αq = m2

H + q⃗ 2

s
. (4.19)

We want to use the residue theorem to perform the integration over the variable α. We
observe that there are three α-poles in the integrand,11

α1 = −k2
⊥ − i0
βs

, α2 = αq +
−(q − k)2

⊥ − i0
(β − βq)s

, α3 = −k2
⊥ − i0

(1 + β)s . (4.20)

Let us note that the integration over α vanishes for β > 0 or β < −1, having βq < 0. In the
region −1 < β < βq, two poles are found in the region of the complex α-plane where ℑα > 0,
while the other, α3, belongs to ℑα < 0. Finally, in the region βq < β < 0, one pole is found
in the region of the complex α-plane where ℑα > 0, while the others, α2 and α3, belongs to
ℑα < 0. Closing the integration path in the region ℑα < 0, we have a contribution from the
pole α3 for −1 < β < 0 and a contribution from the pole α2 for βq < β < 0.

At this point, a remark is in order. In the case of the term coming from the box and
crossed diagrams in the region A, the contribution of the α2 pole is completely negligible. In
fact, by definition, in the region A we have β ≫ βq and α2 does not give any contribution.
Nonetheless, the presence of the aforementioned pole is important for the triangular diagram
that we are calculating in completely general kinematic conditions. We therefore proceed
in this way: (i) we consider the contribution that comes from the α3 pole by combining
all diagrams together12 and (ii) we compute separately the contribution to the triangular
diagram coming from the pole α2.

11The fourth term in Y ρ
α does not bring further α-poles.

12In this case, setting βq = 0.
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Contribution from the α3-pole: we close the integration path in the region ℑα < 0,
and after trivial calculation (and making the substitution β → −β), we find13

Γac(Tri−α3+A)
gH = gHδ

acϵµ(k1)
2 g2CA

∫
dD−2k⊥
(2π)D−1

∫ 1

0
dβ (4.21)

×
(1− β)

[
Aµ

ργ(−k, k1 + k)Y ρ
α(−k, k − q, q)Hγα(−k − k1, k − q)

]β→−β

α=α3

k2
⊥
[
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

] .

(4.22)

After very long but simple algebra, we end up with

Γac(Tri−α3+A)
gH = gHε⊥,µ(k1)δac

2

(
−g

2CA

2

)∫ 1

0

dβ

β
θ(|β| − β0)

∫
dD−2k

(2π)D−1
1
k2
⊥

× 1[
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

]{kµ
⊥

[
(1− β)

(
β(3− β(2D − 3))((1− β)q2

⊥ − 2k⊥ · q⊥)

+β2m2
H(3β + 2(1− β)D − 5) + 2q2

⊥

)
− 2β2(D − 1)k2

⊥

]
+ qµ

⊥

[
2(3− 2β)βk2

⊥

+(1− β)
(
(1− β)(2− β)(−βm2

H − (1− β)q2
⊥)− 2(3− β)βk⊥ · q⊥

)]}
.

Adding and subtracting some quantities and using the fact the scaleless Feynman integral are
zero in dimensional regularization,14 we can greatly simplify the expression and obtain

Γac(Tri−α3+A)
gH = gHε⊥,µ(k1)δac

2

(
−g

2CA

2

)∫
dD−2k⊥
(2π)D−1

1
k2
⊥

∫ 1

0

dβ

β
θ(|β| − β0)

×
{
kµ
⊥
2(D − 4)β2(1− β)m2

H − β(3 + β)k2
⊥ + 2(1− β)q2

⊥
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

− qµ
⊥
2(1− β)

(
βm2

H + (1− β)q2
⊥
)
− 3β(1− β)k2

⊥
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

}
. (4.23)

We can split this into four contributions, three of which do not have any singularity for
β ∼ 0. The first is

Γac(Tri−α3+A)
gH,1 = Γac(0)

gH

g2CA

2

∫
dD−2k⊥
(2π)D−1

∫ 1

0
dβ

−3(1− β)
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

= Γac(0)
gH

[
−g2CAΓ(1 + ϵ)

(4π)2−ϵ

](
−3
ϵ

Γ(1− ϵ)Γ(2− ϵ)
Γ(3− 2ϵ) (−m2

H)−ϵ
)
, (4.24)

where we have used eq. (B.4). The second contributions reads

Γac(Tri−α3+A)
gH,2 = gHε⊥,µ(k1)δac

2
g2CA

2

∫
dD−2k⊥
(2π)D−1

∫ 1

0
dβ

kµ
⊥(3 + β)

(k⊥ − (1− β)q⊥)2 + β(1− β)m2
H

.

(4.25)
13The notation [. . .]β→−β

α=α3
means that the contraction has to be calculated fixing α to α3 and performing

the substitution β → −β.
14We work with same regulator for UV and IR-sector, ϵUV = ϵIR.
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By performing the translation k⊥ → k⊥ + (1− β)q⊥, and using again eq. (B.4), we find

Γac(Tri−α3+A)
gH,2 = Γac(0)

gH

[
−g2CAΓ(1 + ϵ)

(4π)2−ϵ

]
(−m2

H)−ϵ
( 5
3ϵ +

59
18

)
+O(ϵ). (4.26)

The third term is

Γac(Tri−α3+A)
gH,3 = gHεµ,⊥(k1)δac

2

(
−g

2CA

2

)∫ 1

0

dβ

β

∫
dD−2k⊥
(2π)D−1 θ(|β| − β0)

×
kµ
⊥
[
2(1− β)q2

⊥
]
− qµ

⊥2(1− β)
[
βm2

H + (1− β)q2
⊥
]

k2
⊥
[
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

] (4.27)

and it is the only term which is singular in β = 0 and, thus, for which we cannot send β0
to 0. We can calculate this third contribution by introducing the Feynman parametrization
and, after that, performing the translation k⊥ → k⊥ + x(1− β)q⊥. In this way, we find

Γac(Tri−α3+A)
gH,3 =Γac(0)

gH

(
−g2CA

) ∫ 1

β0

dβ

β
(1− β)

∫ 1

0
dx
[
(1− x)(1− β)q⃗ 2 − βm2

H

]
×
∫
dD−1k⊥
(2π)D−2

1
[⃗k 2 + L]2

, (4.28)

where
L = x(1− β)

[
(1− x)(1− β)q⃗ 2 − βm2

H

]
. (4.29)

Using eqs. (B.4) and the integral

∫ 1

0
dx x−ϵ−1

[
1− (1− β)q⃗ 2

(1− β)q⃗ 2 − βm2
H

x

]−ϵ

= −1
ϵ
+O(ϵ), (4.30)

we obtain

Γac(Tri−α3+A)
gH,3 = Γac(0)

gH

2g2CAΓ(1 + ϵ)
(4π)2−ϵ

1
ϵ

∫ 1

β0

dβ

β
(1−β)−ϵ

[
(1− β)q⃗ 2 − βm2

H

]−ϵ
+O(ϵ). (4.31)

Performing the ϵ-expansion and setting β0 = 0 where possible, within the required accu-
racy, we find

Γac(Tri−α3+A)
gH,3 = −Γac(0)

gH

2g2CAΓ(1 + ϵ)(q⃗ 2)−ϵ

(4π)2−ϵϵ

(
ln β0 − ϵ

(
ζ(2) + Li2

(
1 + m2

H

q⃗ 2

)))
+O(ϵ)

= Γac(0)
gH

[
−g

2CAΓ(1 + ϵ)
(4π)2−ϵ

(q⃗ 2)−ϵ

](
−2ζ(2)− 2Li2

(
1 + m2

H

q⃗ 2

))
− Γac

gHω
(1)(t) ln β0 +O(ϵ).

(4.32)

The fourth term is

Γac(Tri−α3+A)
gH,4 = gHε⊥,µ(k1)δac

2

(
−g

2CA

2

)∫
dD−2k⊥
(2π)D−1

∫ 1

0

dβ

β

×
kµ
⊥
[
2(D − 4)β2(1− β)m2

H

]
k2
⊥
[
(k⊥ − (1− β)q⊥)2 + β(1− β)m2

H

]θ(|β| − β0), (4.33)
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which, after trivial mathematical steps, becomes

Γac(Tri−α3+A)
gH,4 =Γac(0)

gH

[
4m2

Hg
2CAΓ(1 + ϵ)
(4π)2−ϵ

]
ϵ

∫ 1

0
dβ β(1− β)1−ϵ

×
∫ 1

0
dx x−ϵ

[
(1− x)(1− β)q⃗ 2 − βm2

H

]−ϵ−1
= O(ϵ). (4.34)

Within constant terms in the ϵ-expansion, we obtain the result by summing eqs. (4.24), (4.26)
and (4.32). We can then define

δ
(Tri−α3+A)
NLO ≡

Γac(Tri−α3+A)
gH

Γac(0)
gH

= −ω(1)(t) ln β0 −
g2CAΓ(1 + ϵ)

(4π)2−ϵ
(q⃗ 2)−ϵ

×

−3
ϵ

Γ(1− ϵ)Γ(2− ϵ)
Γ(3− 2ϵ)

(
−m

2
H

q⃗ 2

)−ϵ

+
( 5
3ϵ +

59
18

)(
−m

2
H

q⃗ 2

)−ϵ

− 2ζ(2)− 2Li2
(
1 + m2

H

q⃗ 2

) ,
(4.35)

or, equivalently,

δ
(Tri−α3+A)
NLO = −ω(1)(t) ln β0 +

ᾱs

4π

(
q⃗ 2

µ2

)−ϵ

×
{
−1
6
CA

ϵ
− 5

18CA + 1
6CA ln

(
−m

2
H

q⃗ 2

)
+ 2CA

(
π2

6 + Li2
(
1 + m2

H

q⃗ 2

))}
+O(ϵ). (4.36)

Contribution from the α2-pole: let us now turn our attention to the contribution from
the pole α2-pole. Starting from eq. (4.17) and calculating the residue at the pole, we find

Γac(Tri−α2)
gH = gHε⊥,µ(k1)δac

2
g2CA

2

∫ 1

0
dβ

∫
dD−2k⊥
(2π)D−1

kµ
⊥ − 3qµ

⊥
(1− β)k2

⊥ + β(k − q)2
⊥
, (4.37)

where we performed the re-scaling β → βqβ = (q2
⊥/s)β. Then, it is easy to see that this

contribution reads

Γac(Tri−α2)
gH = Γac(0)

gH

g2CAΓ(1 + ϵ)(q⃗ 2)−ϵ

(4π)2−ϵ

1
ϵ

Γ2(1− ϵ)
Γ(2− 2ϵ)

5
2 = Γac(0)

gH

ᾱs

4π

(
q⃗ 2

µ2

)−ϵ [5
2
CA

ϵ
+ 5CA

]
(4.38)

and we can therefore define

δ
(Tri−α2)
NLO = ᾱs

4π

(
q⃗ 2

µ2

)−ϵ [5
2
CA

ϵ
+ 5CA

]
. (4.39)

4.2.3 Central region

In the central region a minor surprise is avaiting us. We start considering only the box
contribution, which reads

ABox,Central = Γc(0)
qq′

(2s
t

)
gHϵµ(k1)δac

(
−g

2CAt

s

)

× s

2

∫ α0

−α0

dα

2πi

∫ β0

−β0
dβ

∫
dD−2k

(2π)D−1
k2,σk2,ρA

µρν(−k, k + k1)H σ
ν (−k − k1, k − q)

k2(k − q)2(k + k1)2(k − k2)2 . (4.40)
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It is easy to see that in this region

k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q) ≃ s2

2 (qµ
⊥ − kµ

⊥) (4.41)

and hence

ABox,Central =Γc(0)
qq′

(2s
t

)
gHϵµ(k1)δac

(
−g

2CAst

2

)

× s

2

∫ α0

−α0

dα

2πi

∫ β0

−β0
dβ

∫
dD−2k

(2π)D−1
qµ
⊥ − kµ

⊥
k2(k − q)2(k + k1)2(k − k2)2 . (4.42)

The denominators can be written as

k2 = αβs+ k2
⊥, (q − k)2 = (αq − α)(βq − β)s+ (q − k)2

⊥,

(k + k1)2 = α(1 + β)s+ k2
⊥, (k − k2)2 = (α− 1)βs+ k2

⊥. (4.43)

We are going to integrate in the s|α|-complex plane (the integration in this case will be
done from −sα0 and sα0, which tend to −∞ and +∞, respectively, when s → ∞) and
we have the following poles:

sα1 = −k
2
⊥ + i0
β

, sα2 = −(q − k)2
⊥ + i0
β

, sα3 = −k
2
⊥ + i0
1 + β

, sα4 = −−sβ + k2
⊥ + i0

β
.

(4.44)
First, we observe that the integral will be non-zero only in the region (−β0 < β < 0) and
then that, when s→ ∞, β0 → 0 (and hence β ∼ 0). This means that, when s→ ∞ while the
pole sα3 is found at a “fixed” position in the s|α|-complex plane, all other poles are found in
the region in which ℜ{sα} → −∞, ℑ{sα} → ∞. Thanks to this, we can make a shift in the
complex plane in a region in which s|α| ≫ k2

⊥ always in the domain, in order to have

(k + k1)2 = α(1 + β)s+ k2
⊥ ≃ αs. (4.45)

An analogous shift in the s|β|-plane leads to the conclusion15

(k − k2)2 = (α− 1)βs+ k2
⊥ ≃ −βs. (4.46)

Then, we obtain

ABox,Central = Γc(0)
qq′

(2s
t

)
gHϵµ(k1)δac

(
−g

2CAst

2

)
(4.47)

× s

2

∫ α0

−α0
dα

∫ β0

−β0
dβ

∫
dD−2k⊥
(2π)Di

qµ
⊥ − kµ

⊥
(αβs+ k2

⊥ + i0)(αβs+ (q − k)2
⊥ + i0)(−βs+ i0)(αs+ i0) .

Here, we note the first important difference with respect to [56], that we reviewed in section 4.1:
at this step of the computation the lower and upper Born effective vertices were factorized out
of the integration, leaving the universal integral Icentral. In the present case, the numerator
contains two terms. The first one is not problematic, because q could be factored out and

15Using the same argument we neglect αq and βq with respect to α and β respectively.
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leave us with the aforementioned universal integral. However, the second one contains the
loop variable and therefore cannot be taken out of the integral. This shows that the gluon-
Reggeon-Higgs vertex does not factorize in the kinematic regions where the longitudinal
component of the loop momentum k along k1, i.e. β, is small.

Nonetheless, in this region, we can use the symmetry of denominators in eq. (4.48) under
the exchange k⊥ → q⊥ − k⊥, to replace the numerator by 1

2q⊥ and obtain

ABox,Central = Γc(0)
qq′

(2s
t

)
Γac(0)

gH

(
−g

2CAst

2

)

× s

2

∫ α0

−α0
dα

∫ β0

−β0
dβ

∫
dD−2k

(2π)Di

1
(αβs+ k2

⊥ + i0)(αβs+ (q − k)2
⊥ + i0)(−βs+ i0)(αs+ i0) ,

(4.48)

which is exactly in the form (4.1). Hence, the result is [56]

ABox,Central = Γc(0)
qq′

(2s
t

)
Γac(0)

gH ω(1)(t)
[1
2 ln

(−s
−t

)
+ ϕ(α0)

2 + ϕ(β0)
2

]
. (4.49)

Using the crossing symmetry in eq. (4.6), we find

ACross,Central = Γc(0)
qq′

(2s
t

)
Γac(0)

gH ω(1)(t)
[1
2 ln

(
s

−t

)
+ ϕ(α0)

2 + ϕ(β0)
2

]
(4.50)

and, therefore,

ACentral = Γc(0)
qq′

(2s
t

)
Γac(0)

gH ω(1)(t)
[1
2 ln

(
s

−t

)
+ 1

2 ln
(−s
−t

)
+ ϕ(α0) + ϕ(β0)

]
. (4.51)

Although the vertex did not factorize immediately at the integrand level, the result in the
central region reproduces the standard result in eq. (4.5) and the vertex correction turns
out to be16

Γac(Central)
gH = Γac(0)

gH δ
(central)
NLO , (4.52)

with

δ
(central)
NLO = ω(1)(t)ϕ(β0) = ω(1)(t) ln(β0) +

ᾱs

4π

(
q⃗ 2

µ2

)−ϵ {
−CA

ϵ2

}
+O(ϵ0). (4.53)

Fortunately, it appears that our dimension-5 operator has no dramatic impact in this region,
indeed (i) logarithms of energy are as we would expect, (ii) the correction to the vertex contains
the correct logarithmic rapidity divergence in β0 and the correct double pole17 in eq. (5.18).

16We recall that the term depending on ϕ(α0) should be assigned to the lower impact factor, while the one
depending on the energy-logarithms to the Regge trajectory.

17A double pole can only be generated from this region in this one-loop computation.
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4.2.4 Region B and factorisation-violating eikonal terms

In the region B, again, the contribution coming from the crossed diagram is equal to the
one coming from the box, so we have

AB = − 4
s
g3gHϵµ(k1)CAδ

actcjiū(k2 − q)/k1u(k2)

×
∫

dDk

i(2π)D

(1− α)k2,σk2,ρA
µρν(−k, k + k1)H σ

ν (−k − k1, k − q)
k2(k − q)2(k + k1)2(k − k2)2 . (4.54)

The third propagator can be approximated as

(k + k1)2 = α(1 + β)s+ k2
⊥ ≃ αs. (4.55)

In this region, the contraction in the numerator is exactly as in eq. (4.41) and hence

AB = Γc(0)
qq′

(2s
t

)
ϵµ(k1)δacgH

2 (−2g2CAts)
∫

dDk

i(2π)D

(1− α)(qµ
⊥ − kµ

⊥)
k2(k − q)2αs(k − k2)2

= Γc(0)
qq′

(2s
t

)
ϵµ(k1)δacgH

2 (−g2CAts)
∫
|α|>α0

dα

α
(1− α)

×
∫
dD−2k⊥
(2π)D−1 (q

µ
⊥ − kµ

⊥)
∫
|β|<β0

dβ

2πi
1

k2(k − q)2(k − k2)2 . (4.56)

Denominators can be expressed as
1
k2 = 1

αβs+ k2
⊥
,

1
(k − k2)2 = 1

β(α− 1)s+ k2
⊥
,

1
(k − q)2 = 1

α(β − βq)s+ (k − q)2
⊥
.

(4.57)
This time, the longitudinal component with respect to k2 of the exchanged momenta q, αq, is
neglected with respect to α, while βq = q2

⊥/s is retained. We can again extend the integration
in β from −∞ to +∞, by just adding a suppressed contribution from region C, and obtain

Γc(0)
qq′

(2s
t

)
ϵµ(k1)δacgH

2 (−g2CAts)
∫
|α|>α0

dα

α
(1− α)

∫
dD−2k⊥
(2π)D−1 (q⊥ − k⊥)µ

×
∫ ∞

−∞

dβ

2πi
1

(αβs+ k2
⊥)(β(α− 1)s+ k2

⊥)(α(β − βq)s+ (k − q)2
⊥)
. (4.58)

The integral is non-zero only for α0 < α < 1 and, by using the residue theorem, we find

AB = Γc(0)
qq′

(2s
t

)
ϵµ(k1)δacgH

2 g2CAt

∫ 1

α0

dα

α
(1−α)2

∫
dD−2k

(2π)D−1
(q − k)µ

⊥
k2
⊥(k⊥ − (1− α)q⊥)2 . (4.59)

Performing a tensor reduction, the correction from this region is

AB

Γac(0)
gH

(
2s
t

)
Γc(0)

qq′

= g2CAt

2

∫ 1

α0

dα

α
(1− α)2 (1 + α)

∫
dD−2k⊥
(2π)D−1

1
k2
⊥(k⊥ − (1− α)q⊥)2 . (4.60)

Now, after comparison with ref. [56], the first term in the bracket (1 + α) gives the contribution
which is assigned to the lower quark vertex, while the second gives

δ
(B)
NLO = ᾱs

4π

(
q⃗ 2

µ2

)−ϵ [2CA

ϵ
+ 4CA

]
. (4.61)
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Typically, the non-logarithmic contribution coming from the region B would be entirely
attributed to the target (quark) impact-factor. However, we cannot modify the known one-
loop quark-Reggeon-quark vertex and hence we are forced to assign the factorisation-violating
contribution (4.61) to the gluon-Reggeon-Higgs vertex. In this region, the lack of factorization
of the vertex has generated an additional term. In fact, it was the tensor reduction in the
integral over k⊥ that generated the factor (1 + α), i.e. the anomalous term is related with
the momentum dependence of the Hgg-vertex.

If we sum the results in eqs. (4.36), (4.39), (4.53), (4.61), and add the contributions
coming from the remaining single-gluon t-channel diagrams, i.e. the diagrams (b), (c) and (d)
(this latter weighted with the factor 1/2) of figure 4 we obtain the “Gribov” (or “eikonal”)
part of the interference between the one-loop and Born amplitudes. The elegant computation
of the eikonal part with the method of regions, which is presented in this section, is in
complete agreement with the brute-force computation of the Regge limit of this amplitude
with all t-channel propagators replaced by the standard Gribov’s prescription (3.3), which
we also have performed using FeynCalc.

To obtain the correct result for the interference between one-loop and tree-level amplitude
one has to add to the eikonal part discussed in the previous paragraph the full non-Gribov
part isolated in eq. (4.1). The result for the effective gluon-Reggeon-Higgs vertex, obtained
from the complete amplitude, agrees with earlier results [42, 43].

The most important observation in this section is that the factorisation-violating
eikonal contribution (4.61) exactly cancels out the one generated by non-Gribov contribu-
tions (4.1). This means that at one loop not only the Regge form of the amplitude is
preserved, but also that in a completely non-trivial way two anomalies generated by the
non-renormalizable interaction cancel each other out.

5 The Regge limit of gg → gH amplitude

Below in section 5.1, we verify the non-ambiguity of the effective gluon-Reggeon-Higgs vertex.
For this purpose, we extract the effective vertex starting from the Agg→Hg amplitude. The
obtained result for the one-loop gluon-Reggeon-Higgs effective vertex [42] is in agreement
with the computation performed within the Lipatov’s EFT in ref. [43]. This leads to the
natural question: why does Lipatov’s EFT leads straightforwardly to the right result? In the
Lipatov’s EFT, the Reggeized gluon is a scalar particle and t-channel Reggeon exchanges
cannot lead to the above-mentioned anomalous helicity structure of the non-Gribov terms
in the amplitude. The answer lies in the cancellation mechanism between the non-Gribov
contributions and those that break the rapidity factorization. To show this, in section 5.1
we isolate the non-Gribov terms and then, in section 5.2, we calculate the contribution from
the kinematical region B of the box and cross diagrams contributing to Agg→Hg and show
that these two contributions cancel as they did in the case of Agq→Hq. Finally, in section 5.3,
in light of what has been described, we review the Lipatov’s effective action framework and
discuss the details of the computation done in [43] within this framework.
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q

k2 k′2

k1 k′1

Figure 10. Dominant contribution to the gluon-gluon into Higgs-gluon scattering amplitude in the
high-energy limit.

5.1 gg → gH amplitude at one loop

In this section, we make a one-loop check of the strategy illustrated in section 3 and we study
the non-Gribov contributions arising in the case of a gluon target. To do this, we consider
the scattering of a gluon off a gluon to produce a Higgs plus a gluon, Agg→Hg. The relevant
Born diagram is shown in figure 10 and leads to the following amplitude

A(0)
gg→Hg = gHδ

acε⊥,µ(k1)Hµρ (−k1,−q)
1
t

(
g⊥⊥

ρη + 2k1,ρk2,η

s
+ 2k1,ηk2,ρ

s

)
gT c

bd

×Aηγδ(−k2, k2 − q)ε⊥,γ(k2)εδ(k′2), (5.1)

where we employ the gauge choices

ε(k1) · k2 = 0 =⇒ ε(k1) = ε⊥(k1), (5.2)
ε(k2) · k1 = 0 =⇒ ε(k2) = ε⊥(k2), (5.3)

ε∗(k′2) · k1 = 0 =⇒ ε∗(k′2) = −ε
∗
⊥(k′2) · k′2
k′2 · k1

k1 + ε∗⊥(k′2). (5.4)

The second term in the round bracket of (5.1) gives a vanishing contribution, while the
first gives a contribution suppressed like 1/s with respect to the expected leading behaviour.
Hence, we consider only the third term, the Gribov one, and get

A(0)
gg→Hg = gHδ

acε⊥(k1) · q⊥
2

(2s
t

)
gT c

bd(−ε⊥(k2) · ε⊥(k′2)) = Γac(0)
gH

(2s
t

)
Γcbd(0)

gg , (5.5)

where
Γcbd(0)

gg = gT c
bd(−ε⊥(k2) · ε⊥(k′2)) = gT c

bdδλ2′λ2 , (5.6)

and which has the expected Regge form.
We now turn our attention to the one-loop computation of the Agg→Hg. Although there

are results available in the literature, we re-compute this amplitude from scratch to establish
if the modified Gribov prescription suggested in eq. (3.11) works in the case of the gg → gH

amplitude. The idea is to generate all contributing diagrams using FeynArts [60, 62] and
compute them in a fully general kinematics. We then take the high-energy limit to compare
it with what expected from a computation based on high-energy techniques. At one-loop, in
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 11. Dominant contribution to the gluon-gluon into Higgs-gluon scattering amplitude in
the high-energy limit at the next-to-leading order. The blob in diagram (f) contains the summed
contribution of quarks, gluons and ghosts, while the triangle in the diagram (d) should be understood
as the sum of quark, anti-quark, ghost and anti-ghost contributions. All propagators in red are the
one that can be approximated à la Gribov, while the propagators in blue must be approximated as in
eq. (3.11).

Feynman gauge, there are 60 diagrams, 46 of which are zero or suppressed in the high-energy
limit. The s-leading diagrams are shown in figure 11. For the first three diagrams we find

A(1),(a)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= g2CA

4(D − 2)(1−D)
(
m2

H + q⃗ 2)2
×
{
2(D − 1)

[(
−5(D − 2)m4

H − 4(3D − 8)m2
H q⃗

2 + (16− 7D)(q⃗ 2
2 )2

)
B0(q2)

+2(D − 2)m2
H

(
2m4

H + 3m2
H q⃗

2 + (q⃗ 2)2
)
C0
(
q2,m2

H

)]
+
(
−D(D − 2)(q⃗ 2)2

+ (D(D(4D − 35) + 92)− 60)m4
H − 2(D(−2(D − 9)D − 41) + 24)m2

H q⃗
2
)
B0(m2

H)
}
, (5.7)
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A(1),(b)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= −3
2g

2CAB0(q2), (5.8)

A(1),(c)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= g2CA
(1− ϵ)

2(3− 2ϵ)B0(m2
H). (5.9)

These results coincide with those found in [42] for the corresponding diagrams in which
the lower gluon line is replaced by the quark line. This confirms that these diagrams are
dominated by the Gribov’s approximation on the propagator shown in red in diagrams (a),
(b), (c). In fact, when the Gribov’s trick is applied to those propagators, the lower Born
vertex factorizes completely and the final result becomes insensitive to the specific target.
The sum of the diagrams (d) and (e) in the high-energy approximation reduces to

A(1),(d)+(e)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= ω(1)(t)
[
− 3
8ϵ +

1
2(1− ϵ) −

5
4(1− 2ϵ) −

1
3− 2ϵ +

nf

2CA

2(1− ϵ)3 + ϵ2

(1− ϵ)2(1− 2ϵ)(3− 2ϵ)

]
, (5.10)

which coincides with the helicity-conserving part18 of the irreducible three-gluon vertex
contribution in eq. (56) of ref. [56]. This confirms that also in these diagrams the Gribov
contribution is the only dominant one in the high-energy limit. Similarly, diagram (f) gives
the usual t-channel gluon self energy

A(1),(f)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= ω(1)(t)(5− 3ϵ)CA − (1− ϵ)nf

2(1− 2ϵ)(3− 2ϵ)CA
. (5.11)

We therefore conclude that all single t-channel gluon exchange diagrams are dominated by the
usual Gribov’s approximation, in complete analogy to what is found for the Agq→Hq amplitude.

We now turn our attention to the two-gluon t-channel exchange diagrams. The three
diagrams that do not vanish are identical to those of the amplitude Agq→Hq if the lower
gluon line is replaced by the quark one. Again, the diagram (i), which would be zero in a
pure Gribov approximation, does not vanish and gives

A(1),(i)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= g2CA

(
8ϵ3 − 18ϵ2 + 7ϵ+ 2

8ϵ(ϵ− 1)2

)
B0(q2). (5.12)

In this result, the transverse terms in eq. (3.11) must be kept for both propagators. Diagrams
(g) and (h), as expected, contain terms beyond the Gribov approximation; their sum of
these latter reads

A(1),(g)+(h)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= −g2CA

(
24ϵ2 − 50ϵ+ 25

8(ϵ− 1)2

)
B0(q2). (5.13)

In this case, we observe that no t-channel propagator can be approximated à la Gribov.
18The helicity-non-conserving part vanishes when we take the interference with the Born amplitude.
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It remains to be verified whether the correction found allows us to uniquely define the
virtual contribution to the Higgs impact factor at one-loop. The sum of Regge limits for all
interferences of Born and one-loop diagrams without approximations reads

A(1)
gg→Hg A(0)∗

gg→Hg = |A(0)
gg→Hg|

2CA
Γ2(1− ϵ)
Γ(1− 2ϵ)

ᾱs

4π

(
q⃗ 2

µ2

)−ϵ

×
{
− 3
ϵ2

+ 1
ϵ

(
ln
(−s
−t

)
+ ln

(
s

−t

))
+ 2Li2

(
1 + m2

H

q⃗ 2

)
+ 4ζ(2)

}
,

(5.14)

where
ᾱs = g2Γ(1 + ϵ)µ−2ϵ

(4π)1−ϵ
. (5.15)

This result agrees with previous results that can be found in literature [43, 61]. We can
immediately cast the correction into the following form:

A(1)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

= ᾱs

4π
Γ2(1− ϵ)
Γ(1− 2ϵ)

(
q⃗ 2

µ2

)−ϵ{
− 3
ϵ2
CA + 2CA

(
Li2

(
1 + m2

H

q⃗ 2

)
+ 2ζ(2)

)}

+ ω(1)(t)
2

(
ln
(
s

−t

)
+ ln

(−s
−t

))
.

(5.16)

To extract the correction to be associated to the gluon-Reggeon-Higgs vertex, we must
subtract the contribution that goes into the Regge trajectory, as well as the contribution
associated to the one-loop corrections to the gluon-Reggeon-gluon effective vertex, Γc(1)

gg . The
latter contribution can be constructed using the one-loop result in ref. [56] and gives

Γc(1)
gg

Γc(0)
gg

≡ δ
(+)
G = ᾱs

4π
Γ2(1− ϵ)
Γ(1− 2ϵ)

(
q⃗ 2

µ2

)−ϵ

×
{
− 2
ϵ2
CA −

(11CA − 2nf

6ϵ

)
+ 5

9nf − 67
18CA + 3ζ(2)CA

}
. (5.17)

Hence, we find that the one-loop correction to the Higgs vertex is

Γac(1)
gH

Γac(0)
gH

=

A(1)
gg→Hg A(0)∗

gg→Hg

|A(0)
gg→Hg|2

− ω(1)(t)
2

(
ln
(
s

−t

)
+ ln

(−s
−t

))
− δ

(+)
G


= ᾱs

4π

(
q⃗ 2

µ2

)−ϵ{
−CA

ϵ2
+ 11CA − 2nf

6ϵ − 5nf

9 + CA

(
2Li2

(
1 + m2

H

q⃗ 2

)
+ 2ζ(2) + 67

18

)}
,

(5.18)

in agreement with [42]. This calculation tells us that, using the idea proposed in ref. [42],
we obtain a consistent result between the two channels gq → Hq and gg → gH. It also
confirms the full agreement between the calculation in [42] and the one in the Lipatov’s
EFT framework [43].
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Subtracting from the eq. (5.14) the result of the same computation but with the Gribov
prescription for all t-channel propagators, we obtain the non-Gribov contribution to the
interference:

δn.G.
gg→Hg = ᾱs

4π

(
q⃗ 2

µ2

)−ϵ
CA

4

[ 1
ϵ2

− 5
ϵ
− 9− ζ(2)

]
+O(ϵ). (5.19)

At this point, it is natural to expect that this amplitude also has the factorisation-
breaking contribution in the kinematical region B of the Gribov part. This calculation is
presented in the next subsection.

5.2 The region B of Agg→Hg and factorisation-violating eikonal terms

In this section, we calculate the contribution of the kinematical region B19 of diagrams (g)
and (h). The sum of the two contributions gives

MB = 4gHg
3

s2 CAf
abcε⊥,µ(k1)ε⊥,ν(k2)ε∗γ(k′2)

∫
dDk

(2π)D
k2,ρk2,ζk1,λk1,δ

×
Aµρ

σ(−k, k1 + k)Hσζ(−k1 − k, k − q)Aλν
β(−k2, k2 − k)Aδβγ (k − k2, k2 − q)

k2(k − q)2(k + k1)2(k − k2)2 .

(5.20)

Performing the contractions and introducing the Sudakov variables, we get

Γ(0)dbc
gg′

(2s
t

)
gHδ

adε⊥,µ(k1)
2

(
−q2g2CA

) ∫ ∞

−∞

dα

α

(
1− α

2

)2 ∫ dD−2k⊥
(2π)D−1 (q − k)µ

⊥

×
∫ ∞

−∞

d(βs)
2πi

1
(αβs+ k2

⊥)(β(α− 1)s+ k2
⊥)(α(β − βq)s+ (k − q)2

⊥)
. (5.21)

Performing the integration over β and the tensor reduction on the k⊥-integral, we obtain

Γ(0)dbc
gg′

(2s
t

)
Γ(0)ad

gH

g2CAq
2
⊥

2

∫
dD−2k⊥
(2π)D−1

1
k2
⊥(k⊥ − q⊥)2

∫ 1

α0

dα

α
(1 + α)(1− α)D−5

(
1− α

2

)2
.

(5.22)
Now, after comparison with ref. [56], the first term in the bracket (1 + α) gives the contribution
which is assigned to the lower gluon vertex, while the second must be again assigned to
the Higgs vertex and reads

δ
(B)
gg→Hg = ω(1)(t)

∫ 1

α0
dα (1− α)−1−2ϵ

(
1− α

2

)2

= ω(1)(t)
[
− 1
2ϵ −

Γ(−2ϵ)
Γ(2− 2ϵ) +

Γ(−2ϵ)
2Γ(3− 2ϵ)

]

≃ ᾱs

4π

(
q⃗ 2

µ2

)−ϵ
CA

4

[
− 1
ϵ2

+ 5
ϵ
+ 9 + ζ(2)

]
+O(ϵ). (5.23)

Recalling eq. (5.19), we realize that

δn.G.
gg→Hg + δ

(B)
gg→Hg = 0. (5.24)

As it happened for the quark target, the two anomalies cancel each other out.
19Recall the definition of this region at the beginning of section 4.1.
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5.3 Comparison with the Lipatov’s EFT framework

To facilitate understanding of this section, we provide a brief introduction to the gauge-
invariant effective field theory for multi-Regge processes in QCD, also known as Lipatov’s EFT
framework. We closely follow ref. [43] and adapt our notation to it. In the EFT literature
the following Sudakov decomposition for an arbitrary four-vector is used:

kµ = 1
2
(
k+n

µ
− + k−n

µ
+
)
+ kµ

T , (5.25)

where nµ
− = (n−)µ = 2kµ

2 /
√
s, nµ

+ = (n+)µ = 2kµ
1 /

√
s (with the momenta k1,2 of figure 3),

s = (k1 + k2)2, so that n2
± = 0, n+n− = 2. We use the convention, where the position of

± indices has no meaning: k± = k± = n±k and n±kT = 0. The square of a four-vector
is given by k2 = k+k− − k2

T .
The fundamental idea of the High-Energy EFT [63] is to slice the whole rapidity range

into intervals, corresponding to clusters of particles, highly separated in rapidity. At leading
power in energy, only Reggeized gluon exchanges in t-channels contribute to the amplitudes
we are interested in, so we drop the Reggeized quark contributions to the Lagrangian. For
each interval of rapidity, a separate copy of the QCD Lagrangian is defined. The complete
Lagrangian of the EFT is

Leff = 4tr
[
R+∂

2
TR−

]
+
∑

i

[
LQCD(A[yi,yi+1]

µ , ψ[yi,yi+1]
q ) + LRg(A[yi,yi+1]

µ , R+, R−)
]
, (5.26)

where the index [yi, yi+1] of the field means, that the real part of the rapidity of its momentum
modes is restricted to lie within the interval yi ≤ Re(y) ≤ yi+1 and R± are the Reggeized
gluon fields which are scalar fields in the adjoint representation of the color group SU(Nc) in
this EFT. The kinetic part of the Lagrangian (5.26) leads to bare propagators, connecting
the R+-field with R−: −i/(2q2

T ), where qT is the transverse part of the momentum of the
Reggeon. Due to MRK-kinematics, fields R± are subject to the following constraints:

∂+R− = ∂−R+ = 0, (5.27)

where ∂± = nµ
±∂µ = 2∂/∂x∓.

The fields R± are gauge invariant and this requirement mostly fixes the form of their
“tree-level” interactions with the QCD gluons up to various iε prescriptions for the eikonal
denominators. The latter prescriptions become important at loop level and can be determined
from the requirement of factorisation and negative signature of the one-Reggeon exchange
contributions [64]. The following Hermitian form of the effective action [65, 66] satisfies
requirements of definite signature and factorisation, introduced in the ref. [64]:

LRg(x) =
i

gs
tr
[
R+(x)∂2

ρ∂−
(
Wx[A−]−W †

x [A−]
)
+R−(x)∂2

ρ∂+
(
Wx[A+]−W †

x [A+]
)]
,

(5.28)
where Wx[A±] is (past-pointing) half-infinite Wilson line, stretching in the (+) or (−) light-
cone direction from the point x:

Wx[A±] = P exp

−igs

2

x∓∫
−∞

dx′∓A±
(
x±, x

′
∓,xT

)
= 1− igs

(
∂−1
± A±

)
+ (−igs)2

(
∂−1
± A±∂

−1
± A±

)
+ . . . , (5.29)
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where we have defined operators ∂−1
± to act as ∂−1

± f(x) =
x∓∫
−∞

dx′∓/2 f(x±, x′∓,xT ) so that

on the level of Feynman rules, they correspond to eikonal denominators with definite iε-
prescription:−i/(k± + iε).

The Lagrangian (5.28) generates an infinite sequence of induced vertices of interaction of
Reggeized gluon with n QCD gluons. The simplest of them are the R+g-transition vertex
and R+gg interaction vertex, corresponding respectively to O(g0

s) and O(g1
s) terms in (5.28):

∆ab1
+µ1(q, k1) = (−iq2)n−µ1δab1 , (5.30)

∆ab1b2
+µ1µ2(q, k1, k2) = gsq

2(n−µ1n
−
µ2)

fab1b2

[k−1 ]
, (5.31)

where q is the (incoming) momentum of the Reggeon with the color index a, k1,2 are the
(incoming) momenta of gluons coupled to the vertex, with their color(Lorentz) indices denoted
as b1,2(µ1,2) and k−1 + k−2 = 0 due to the MRK constraint (5.27) and 1/[k−] = [1/(k− +
iε) + 1/(k− − iε)]/2 is the PV pole prescription. The vertex (5.30) is nothing but the
Gribov’s prescription, while the vertex (5.31) coincides with the vertex (4.14) which we
have introduced in the region analysis.

As seen from the QCD computations by the method of regions, when a rapidity separation
is introduced, the various regions are affected by a new type of singularities, usually called
rapidity divergences. In the original formulation [63] of the EFT such divergences are
regulated by explicit cutoffs on the real part of rapidity that are imposed in each region:
yi ≤ Re{y} ≤ yi+1. The dependence on the regulators, yi’s, cancels between the contributions
of neighboring clusters in each order of perturbation theory. The regularisation by the
“hard” rapidity cutoff is inconvenient for the practical computations of Feynman integrals,
therefore in ref. [43], following the techniques proposed in [67, 68], the approach based on
tilted Wilson lines was adopted, which boils down to the shift of the direction vectors of
Wilson lines in the Lagrangian (5.28):

nµ
± → ñµ

± = nµ
± + rnµ

∓,
1

[k±]
→ 1

[k̃±]
= 1

[k± + rk∓]
, 0 < r ≪ 1, (5.32)

to the finite rapidity ±(ln r)/2, note that now ñ2
± = 4r and ñ+ñ− = 2(1 + r). To keep

the effective action gauge invariant at finite r, the MRK kinematic constraints (5.27) also
have to be modified to [43]

(∂+ + r∂−)R− = (∂− + r∂+)R+ = 0. (5.33)

In ref. [43] the Higgs→ gR scattering vertex at one loop had been computed in the
Lipatov’s EFT formalism and it was found that, when properly combined with the one-
loop correction to the Reggeized gluon propagator and g → Rg vertex, the obtained result
reproduces the Regge limit of one-loop QCD amplitude (5.14). From the discussion in
the previous sections, it is clear that the correctness of the calculation made through the
Lipatov’s EFT is non-trivial. Indeed, the Reggeized gluon is a scalar particle in Lipatov’s EFT
and t-channel Reggeon exchanges can not lead to the anomalous helicity structures of the
non-Gribov terms in the amplitude. In this case, the Gribov’s trick (eikonal approximation) is
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already incorporated into the construction of the Reggeized gluon fields, leading to the vertex
of eq. (5.30). On the other hand, effective interaction vertices with Reggeons in the EFT are
obtained from expansions of Wilson lines that are insensitive to the specific “projectile vertex”.
This means that the factorisation breaking eikonal contribution of the region B is also excluded
from the EFT calculation and this therefore explains the agreement with the QCD calculation.

The explanation above relies on the fact that the loop corrections to both impact factors
in the EFT are gauge-invariant and completely independent. In the computation of the
Higgs→ gR vertex in ref. [43] it turned out to be important to keep the O(r) terms in the
numerator of the amplitude, arising from the regularisation (5.32) and modified kinematic
constraint (5.33) to preserve the gauge-invariance of the result even at O(r0) due to the
following mechanism. At one of the stages of tensor reduction of the diagrams (4), (6) and
(7) in the figure 3 of ref. [43], the following integral appears:∫

dDl lµ

l2(q − l)2[l̃−]
= ñµ

−
4r

∫
dDl

l2(q − l)2 , (5.34)

with the momentum of the Reggeon q satisfying the constraint q̃− = 0 following from eq. (5.33).
The term proportional to qµ in the r.h.s. of eq. (5.34) is absent because

∫
dDl/{l2(q−l)2[l̃−]} =

0. The singularity of the eq. (5.34) at r → 0 cancels with some O(r) terms in the numerator
of the amplitude to produce contributions ∝ n− · ε(k1), which are important for the gauge
invariance of the g → R+Higgs vertex.

6 Conclusions and outlook

The resummation of large energy contributions to Higgs boson production channels, in a
full next-to-leading logarithmic approximation, has received attention in recent years [41–
43, 47, 69, 70]. A very useful tool, widely used in the literature, allowing to considerably
simplify the computation, is the infinite-top-mass approximation. Nevertheless, in the
infinite-top-mass limit, the gluon-gluon-Higgs coupling is described in terms of a local
non-renormalizable operator of dimension five and therefore the Regge ansatz for partonic
scattering amplitudes should be questioned.

In this work, we carefully investigated the high-energy behavior of the one-loop Agq→Hq

and Agg→Hg amplitudes in the aforementioned limit and found several non-trivial differences
with respect to standard full QCD amplitudes. First of all, the presence of leading-s non-
eikonal contributions, i.e. terms which are dominant in the s-expansion of amplitudes, but
do not come from the usual Gribov’s effective polarization for the t-channel gluons. In the
Agq→Hq amplitude such contributions couple helicities of the incoming gluon and quarks. We
demonstrated that the aformentioned terms can be organized as the sum of a contribution
that preserves the helicity structure of the Born amplitude and one that violates it. This
latter contribution would invalidate the Regge form of the amplitude, but it disappears due
to a cancellation across different diagrams, thus preserving the one-loop Regge form. However
the non-Gribov terms still contribute even to the part of the amplitude proportional to the
Born-level helicity structure. We also carefully analyzed the Gribov’s part of the Agq→Hq

amplitude using the strategy of rapidity regions [56]. We showed that a naive implementation
of this technique fails and identified the culprit for this failure in the lack of rapidity regions
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partitioning of the amplitude. This latter is due to the non-factorizability of the gluon-
Reggeon-Higgs effective vertex in the kinematic region where the longitudinal component
of the loop momentum k along k1 is small (the region B in section 4.1) which leads to the
appearance of the factorisation-violating eikonal terms. Interestingly, the two anomalous
contributions, i.e. the non-Gribov terms with the Born helicity structure and factorisation-
violating eikonal terms, cancel each other out in the full amplitude. Furthermore, we showed
the universality of the one-loop correction and demonstrated the agreement between the
result obtained in the standard BFKL approach and the one obtained using the Lipatov
effective action. Even in the Agg→Hg amplitude, the non-Gribov terms with the Born helicity
structure and factorisation-violating eikonal terms appear which again cancel each other
out. In the EFT calculation both of these contributions are automatically excluded from
the beginning due to the properties of factorisation and gauge invariance of impact-factors
which are enforced by the Lipatov’s EFT formalism.

There are several possible continuations for this work. The most natural is to calculate
the effective vertex for the Higgs production at the physical value of mt. In this case, given
the absence of non-renormalizable interactions, one would not expect any anomalous behavior.
On the other side, the Higgs impact factor in the complete theory still presents a peculiarity:
it has a loop already at the leading order. A quark or gluon (but also a scalar particle) that
interacts with a Reggeon can be thought of as a projectile that interacts with an infinite
number of gluons as it propagates. In the high-energy limit, all these subsequent interactions
are eikonal and therefore these gluon propagators in the t-channel can be always approximated
à la Gribov. In the impact factor for the production of the Higgs, a quark/gluon line is
replaced by an object containing a loop. In fact, the projectile is represented by a gluon
fluctuating in a heavy Q-Q̄ pair which, after the infinite series of interactions with the gluons
in the t-channel, recouples to produce the Higgs. The eikonality of the subsequent interactions
does not seem obvious a priori. A successful determination of this impact factor would be
of great practical use. Although very complex, its leading term in the mt-expansion could
provide an important confirmation of the calculation discussed here and in ref. [42].20

Another interesting development would be to test the Regge form of the Agq→Hq and
Agg→Hg amplitudes at higher loops to understand whether the mechanism that preserves
the Regge form is valid also beyond the one-loop order of perturbation theory.
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p1, a, µ

p2, b, ν

(a) igHδ
abHµν(p1, p2) (b) gHgf

abcV µνρ(p1, p2, p3)

p1, a, µ
p2, b, ν

p3, c, ρ

Figure 12. Feynman rule for the (a) ggH vertex and (b) gggH vertex.

Skłodowska-Curie action “RadCor4HEF” under grant agreement No. 101065263. All the
pictures in this work have been done using JaxoDraw [71].

A Higgs effective field theory framework

In the approximation of the infinite mass of the top quark, the Higgs field couples to QCD
via the effective Lagrangian,

LggH = −gH

4 F a
µνF

µν,aH, (A.1)

where H is the Higgs field, F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν is the field strength tensor.

The Feynman rules associated to the Lagrangian (A.1) and used in this work are shown in
figure 12. The tensor structures appearing in figure 12 are

Hµν(p1, p2) = gµν(p1 · p2)− pν
1p

µ
2 , (A.2)

V µνρ(p1, p2, p3) = (p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ. (A.3)

B Useful integrals

In this appendix we give a list of useful results.

One-loop scalar integrals in D and D − 2 dimensions. We need the scalar integrals

B0(−q⃗ 2) =
∫

dDk

i(2π)D

1
k2(k + q)2 = − 1

(4π)2−ϵ

Γ(1 + ϵ)Γ2(−ϵ)
2(1− 2ϵ)Γ(−2ϵ)(q⃗

2)−ϵ, (B.1)

C0(q 2,m2
H) =

∫
dDk

i(2π)D

1
k2(k + q)2(k + pH)2

= 1
(4π)2−ϵ

Γ(1 + ϵ)Γ2(−ϵ)
2Γ(−2ϵ)

1
ϵ

(
(q⃗ 2)−ϵ −

(
−m2

H

)−ϵ
)

m2
H + q⃗ 2 ,

(B.2)
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D0(m2
H , q

2, s) =
∫

dDk

i(2π)D

1
k2(k − q)2(k + k1)2(k − k2)2

= Γ(1 + ϵ)Γ2(−ϵ)
(4π)2−ϵq⃗ 2s

1
ϵΓ(−2ϵ)

[
(q⃗ 2)−ϵ + (−s)−ϵ −

(
−m2

H

)−ϵ

− ϵ2
(

Li2
(
1 + m2

H

q⃗ 2

)
+ 1

2 ln2
(
− q⃗

2

s

)
+ π2

3

)]
+O(ϵ).

(B.3)

In the last integral, the kinematic constraints (k1 + q)2 = p2
H = m2

H and (q− k2)2 = (k′2)2 = 0
have been used.

We also extensively use the Feynman integral

∫
dD−2k⃗

(2π)D−2
1

[⃗k 2 + L]a
= 1

(4π)D−2
2

Γ
(
a− D−2

2

)
Γ(a) L

D−2
2 −a. (B.4)

Universal integral of the central region. We calculate here the integral

Icentral = s

2

∫ α0

−α0

∫ β0

−β0

∫
dD−2k

(2π)Di

dα dβ

(αβs+ k2
⊥ + i0)(αβs+ (q − k)2

⊥ + i0)(−βs+ i0)(αs+ i0) .

We first perform the longitudinal integrations; we thus define the auxiliary integral

I ≡
∫ α0

−α0
dα

∫ β0

−β0
dβ

1[
k⃗2 − (q⃗ − k⃗)2

] 1
(−βs+ i0)(αs+ i0)

×
[

1
(αβs+ k2

⊥ + i0) −
1

(αβs+ (q − k)2
⊥ + i0)

]
≡ I1 + I1(k⊥ → (q − k)⊥). (B.5)

I1 can be further decomposed as

I1 = 1[
k⃗ 2 − (q⃗ − k⃗)2

] ∫ α0

−α0
dα

∫ β0

−β0
dβ

1
(αβs+ k2

⊥ + i0)
1

(−βs+ i0)(αs+ i0)

≡ − 1
k⃗ 2

1[
k⃗ 2 − (q⃗ − k⃗)2

] (J(k⃗ 2)− J ′)
)
, (B.6)

where the integral J ′ is21

J ′ =
∫ α0

−α0
dα

1
αs+ i0

∫ β0

−β0
dβ

1
βs− i0 = π2

s2 , (B.7)

while

J(k⃗ 2) =
∫ α0

−α0
dα

∫ β0

−β0
dβ

α

(αs+ i0)(αβs+ k2
⊥ + i0) . (B.8)

21We calculate it in the sense of the principal value.
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To compute this integral, we split the α-domain in three regions: 1) [−α0,− k⃗ 2

sβ0
], 2) [− k⃗ 2

sβ0
, k⃗ 2

sβ0
]

and 3)[ k⃗ 2

sβ0
, α0]. In this way, we have22

J (1)(k⃗ 2) =
∫ − k⃗ 2

sβ0

−α0
dα

∫ β0

−β0
dβ

α

(αs+ i0)(αβs+ k2
⊥ + i0)

=
∫ − k⃗ 2

sβ0

−α0
dα

α

(αs+ i0)

∫ β0

−β0
dβ

[
P

(
1

αβs+ k2
⊥

)
− iπδ(αβs+ k2

⊥)
]

= 1
s2

∫ − k⃗2
sβ0

−α0
dα

1
α
ln
(
−αβ0s− k2

⊥
−αβ0s+ k2

⊥

)
+ iπ

s2 ln
(

−k2
⊥

α0β0s

)
(B.9)

and similarly

J (3)(k⃗ 2) =
∫ α0

k⃗ 2
sβ0

dα

∫ β0

−β0
dβ

α

(αs+ i0)(αβs+ k2
⊥ + i0)

= − 1
s2

∫ − k⃗2
sβ0

−α0
dα

1
α
ln
(
−αβ0s+ k2

⊥
−αβ0s− k2

⊥

)
+ iπ

s2 ln
(

−k2
⊥

α0β0s

)
. (B.10)

The central region gives

J (2)(k⃗ 2) =
∫ k⃗ 2

sβ0

− k⃗ 2
sβ0

dα

∫ β0

−β0
dβ

α

(αs+ i0)(αβs+ k2
⊥ + i0) = − π2

2s2 . (B.11)

Summing the three contributions, the result is

J(k⃗ 2) = − π2

2s2 + 2πi
s2 ln

(
−k2

⊥
α0β0s

)
+ 1
s2

∫ − k⃗ 2
sβ0

−α0
dα

1
α
ln
(
(−αβ0s− k2

⊥)
(−αβ0s+ k2

⊥)
(−αβ0s− k2

⊥)
(−αβ0s+ k2

⊥)

)

≃ −π
2

s2 + 2πi
s2 ln

(
−k2

⊥
α0β0s

)
= −π

2

s2 − 2πi
s2 ln

(
α0β0s

−k2
⊥

)
. (B.12)

Using
ln
(
s

|t|

)
− iπ = ln

(
s

t

)
, (B.13)

we can reconstruct

I = I1 + I1(k⊥ → (q − k)⊥)

= 1
k⃗ 2 − (q⃗ − k⃗)2

{
1
k⃗ 2

2πi
s2 ln

(
−α0β0s

−k 2
⊥

)
− 1

(q⃗ − k⃗)2
2πi
s2 ln

(
−α0β0s

−(q − k)2
⊥

)}
. (B.14)

Finally, we come back to the original integral in eq. (4.3), which reads

Icentral = 1
2s

∫
dD−2k

(2π)D−1
1

k⃗ 2 − (q⃗ − k⃗)2

{
1
k⃗ 2

ln
(
−α0β0s

−k2
⊥

)
− 1

(q⃗ − k⃗)2
ln
(

−α0β0s

−(q − k)2
⊥

)}
,

(B.15)

and perform the transverse momentum integration, to get

Icentral = Γ(1 + ϵ)(q⃗ 2)−ϵ

(4π)2−ϵ

Γ2(−ϵ)
Γ(−2ϵ)

1
st

[
ln
(−s
−t

)
+ ϕ (α0) + ϕ (β0)

]
. (B.16)

22P indicates the principal value.
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