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1 Introduction

Quantum electrodynamics (QED) established in the early 50s is admittedly one of the most
successful theories in modern physics. Even in the simplest case of an electron interacting
with the vacuum state of an electromagnetic (EM) field, QED predicts with high accuracy a
wide range of phenomena from the Lamb shift [1–3] to pair production [4–6]. Conventional
formulation of QED works very well for stationary states and for scattering problems [7]. In
those applications it is convenient to calculate the statistics in momentum space to compare
with the experimental or observational data. Dealing with a stationary system at finite
temperatures one can use imaginary time formulation. For scattering problems one can
calculate the transition amplitude from an in state to an out asymptotic state.

1.1 New Challenges and new issues requiring new formulations

New challenges and developments begun in the 80s and 90s called for and empowered new
formulations for more contemporary problems, such as those in relativistic transport, quantum
radiation, and quantum information. If one wishes to follow the evolution of a nonstationary
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system in real time, such as in quantum transport problems [8, 9] (e.g., in relativistic heavy
ion collision experiments [10, 11]), the asymptotic out-state cannot be stipulated at will,
because there are no asymptotic out regions at all moments in the evolution that such ‘out’
states can be well-defined. The quantum state at any moment of time t > t0 is determined by
solving the dynamics. Forcing an in-out treatment on an evolutionary problem will result in
equations of motion which are not real nor causal, see, e.g, [12, 13]. For such problems, one
needs to use the in-in (Schwinger-Keldysh or closed-time-path) formalism [8, 14–16]. The in-in
formalism is also a natural framework for treating nonequilibrium quantum processes [17, 18],
where dissipative mechanisms acquire their real-time physical meanings in a truly statistical
mechanical sense (versus identifying the imaginary parts in the transition amplitudes in
the in-out formulation). We mention radiation reaction, such as in the derivation of the
Lorentz-Abraham-Dirac or the Mino-Sasaki-Tanaka-Quinn-Wald equations [19–21, 23, 24] and
quantum processes in the early universe using the in-in formulation [25] such as cosmological
particle creation [13, 26], noise and fluctuations [27–29] and entropy generation [30–32] as
the representative main-stream problems.

In the 90s with the increasing awareness of the role quantum information concepts and
methodology may play in helping to address the fundamental issues of theoretical physics,
two kinds of quantum processes are of special interest in the study of particle-field interaction
dynamics, namely, decoherence and entanglement. Environment-induced decoherence [33]
relies on a better understanding of the effects of noise, and in the case when the environment
is a quantum field which a quantum system (like the electron) interacts with, a better
understanding of quantum noise. Quantum entanglement is intimately related to quantum
correlations. These provided a strong motive for understanding traditional field theory and
particle physics in an open quantum system perspective or for reformulating them in this
context. We mention this development because correlation, dissipation and decoherence are
indeed the main themes of this work. For a discussion of how these processes, viewed from
the nonequilibrium quantum field theory and open quantum system perspective, are rooted
in and related to each other, see, e.g., [34, 35].

1.2 Particle wavepackets for the treatment of decoherence

Having outlined the different formulations of, and described the new issues in, particle-field
interactions, let us remark briefly on how to construct a theory for a relativistic particle in
motion which can highlight the features of quantum correlations, dissipation (in this case
in the form of radiation reaction) and decoherence with clarity and economy.1 Here, the
charged particles are ‘point-like’ in the spirit of classical electrodynamics [19–24, 36, 37], and
the size of the ‘point’ charge corresponds to the minimal width of the quantum mechanical
wavepacket of the particle allowed in our effective theory, which would be of the order of
the electron Compton wavelength [38].

Indeed, our effective theory is designed to be valid well below the Schwinger limit (above
which particle pairs are produced). So far the strongest background EM fields in laboratory

1In the radiation reaction literature (see e.g., [20] and references in [21, 23, 24]) there are considerable
discussions of extended objects, with point mass or charge as a limit, and the application of effective field
theory [41, 42] in its treatment. Our preference is for conceptual and structural simplicity to facilitate direct
comparisons with experiments, such as the decoherence of single electrons in an electron microscope [43].
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are those produced by intense lasers. To our knowledge, the most powerful lasers currently in
the world can at most achieve an intensity of 1023 W/cm2 (e.g. [39, 40]), which is well below
the Schwinger limit 1029 W/cm2 [4–6]. This means that the single electrons produced in a
contemporary laboratory, even though in relativistic motion, can be treated as a quantum
mechanical particle whose wavefunction can have single-particle interpretation safely, and the
linear approximation of interaction would be good enough. Note that we are not describing
the collective behavior of an electron beam consisting of a bunch of electrons interacting
with each other. Generalization of our present work to a congruence of particles could be
useful in addressing similar issues in quantum kinetic theory [8].

The effective theory in this paper would be equivalent to those describing point particles
moving in quantum fields in terms of the worldline influence functional formalism from the
semiclassal level to the stochastic limit [e.g. refs. [21, 22] with the quantum state of the
particle’s position (the ‘worldline’) initially Gaussian]. We want to see an electron with
both particle features — a localized object, and wave features — albeit not represented as
a plane wave, as is often assumed in textbooks.2 We can distinguish the EM field-induced
decoherence on the particle, and the intrinsic quantum dispersion of the wavepacket present
even without the field as its environment.

1.3 Moving electrons and the Unruh effect

An accelerating single electron interacting with an EM field can be used to address important
properties of the Unruh effect [44] in the sense explained below. In 1976, Unruh showed
that a particle or atom undergoing uniform acceleration in the Minkowski vacuum of a
quantum field will experience vacuum fluctuations with a thermal spectrum. While this
effect can be related to the Sokolov-Ternov effect in QED about the spin depolarization
in storage rings [45, 46], further proposals about the motional degrees of freedom of single
electrons under high acceleration (e.g. [47]) have not offered detailed, complete calculations
in QED yet [22, 48, 49].

1.4 Some special features

The structure of our effective theory bears some resemblance with the Unruh-DeWitt (UD)
harmonic-oscillator (HO) detector theory [44, 50–52], with the internal degrees of freedom of a
UD HO detector replaced by the deviation of the charged particle from its classical trajectory
determined by the classical Euler-Lagrange equations (rather than put in by hand, as in
many UD detector theories.) To discern how our effective theory differs from the conventional
formulation of QED, we mention a few special features below:

a. Linear and Gaussian approximations. Since we are working well below the Schwinger
limit, the nonlinear QED effect should not be significant. This allows us to consider a linearized
quantum theory (although the classical background can be highly nonlinear) with Gaussian
wavepackets of the charged particle centered at the classical trajectory, while the vacuum
state of EM fields is also Gaussian [53]. To justify our use of the Gaussian approximation

2The wavefunction of our quantum mechanical particle is normalizable, unlike the conventional plane waves
in scattering problems. The probability is assumed to be conserved in the range of validity of our effective
theory.
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the initial width of the particle wavepacket should be no less than its Compton wavelength
divided by the Lorentz factor of its classical motion [38]. By virtue of the linearity of our
effective theory the quantum state of the combined system if initially Gaussian will always
be Gaussian. Also by virtue of the linearity of our effective theory, our operators after the
coupling is switched on can be expanded as linear combinations of the initial operators,
each initial operator is associated with a time-dependent amplitude of the mode function.
Then we are able to write down the evolution equations for the mode functions, which are
independent of quantum states.

b. Fluctuations, dissipation, and mass renormalization. In their equations of motion,
the particle mode functions are driven by the field mode functions, which can be interpreted
as vacuum fluctuations if the quantum field is initially in the Minkowski vacuum state. Then
the particle mode function will produce something similar to the self field and radiation
reaction in classical electrodynamics. In the point-particle limit, we have to introduce a mass
renormalization on the mode functions of particle to absorb the divergence from that self
field. Then the equations of motion for the mode functions of particle looks similar to the
Lorentz-Abraham-Dirac equation in classical electrodynamics [54–57].

c. Quantum state renormalization. If we assume the particle state and field state are
pure before the particle-field coupling is switched on, then the mass renormalization due to
the particle-field coupling would violate the uncertainty relation at very early times. So we
have to renormalized the quantum state from free theory in order to keep the uncertainty
relation whenever the coupling is on.

d. Time-dependent regulators. To deal with the divergences arising in the mode sum
of the particle-deviation correlators, we introduce two kinds of the regulators. The first kind
of the regulator works like a UV cutoff suppressing the contribution from the field modes
of wavelength shorter than the Compton wavelength with length contraction [38], which
will apparently depend on the coordinate time in the laboratory frame if the speed of the
particle is varying in time. The second kind of the regulators is the cutoff of the coincidence
limit corresponding to the resolution of the experiment in terms of the particle’s proper time,
which can also be time-dependent in the laboratory frame. To derive the Unruh effect for
a uniformly accelerated charged particle, the values of the second kind regulators must be
much greater than the first kind regulator [58]. The values of these regulators are explicitly
present in our final result, just like the case of the Lamb shift in QED [2]. We set the values
of these regulators according to the setting of electron interference experiments in electron
microscopes [43]. With these values our result looks reasonable.

1.5 Key findings and organization

Extracting from the many new results we mention two main findings. One is a direct com-
parison with observations from established electron microscope experiments, identifying the
decoherence of an electron by the EM field it interacts with. The other is a hitherto unknown
novel feature in the theoretical structure of acceleration radiation and the Unruh effect.
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a. Evidence of decoherence in electron interference experiments. Comparing our
theoretical results with well-established experiments we found that the purity of a single
electron in the electron interference experiment described in ref. [43] could be close to 1/2 in
the transverse direction when arriving the screen, while the purity was not seriously decreased
during the acceleration stage in the early history of the flying electron. Our result suggests
that vacuum fluctuations may play a major role in blurring the interference pattern in ref. [43].

b. Unruh effect on the motional degrees of freedom. We demonstrated that the
Unruh effect can naturally be identified in the two-point correlators of the particle’s deviation
from its classical trajectory in each direction. The calculated purity of the particle-motion
deviation in the direction of linear acceleration with the consideration of the Unruh effect
decays significantly faster than the results for the particle at rest with the flying time and
regulators replaced by those with time dilation (which corresponds to the condition that the
Unruh effect is artificially removed.) If a photoelectron is born with a highly relativistic
motion and then stopped by a negative voltage, then in the period of deceleration the electron
may behave differently from those with the Unruh effect. Moreover, we found that some
terms in the two-point correlators have a Planck factor corresponding to a fermionic bath
at the Unruh temperature, rather than a bosonic bath that the other terms correspond
to. Thus, one cannot trivially apply the Unruh effect to a system by simply introducing
a bosonic or fermionic environment.

This paper is organized as follows: in section 2 we present our effective theory for a
combined system of a spinless relativistic charged particle and electromagnetic fields, where we
quantize the theory and obtain the counterpart of the LAD equation for the mode functions
in our quantum theory. In section 3, we apply our theory to the case of a single electron
at rest. We solve the mode functions and calculate the regularized symmetric two-point
correlators of the particle, with which we obtain the purity of the particle’s reduced state and
compare our result with the electron-interference experiment in ref. [43]. Then we apply our
theory to the case of a charged particle accelerated in uniform electric fields in section 4. We
show how the Unruh effect emerges in the correlators, and compare our result on quantum
decoherence of single electrons with those in the acceleration stage in ref. [43]. Finally, we
summarize our findings in section 5.

2 Relativistic particle wavepacket interacting with quantum fields

Consider a relativistic particle of mass m, charge q, moving along a worldline zµ, interacting
with EM fields Aµ. The dynamics of the combined system is described by the action
S = Sz + SI + SF with [36]

Sz = −mc
∫
dτ

√
−dzµ

dτ

dzµ

dτ
= −mc2

∫
dt

√
1− 1

c2
dzi

dt

dzi

dt
(2.1)

SI = q

∫
d4x

∫
dτ
dzµ

dτ
δ4 [x− z(τ)]Aµ(x)

=
∫
dt

[
qcA0

(
t, z(t)

)
+ q

dzi

dt
Ai
(
t, z(t)

)]
, (2.2)

SF =
∫
dtd3x

µ0

[
−1
4FµνF

µν − ᾱ

2 (∂µA
µ)2
]
. (2.3)
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in the SI unit [59]. Here, Fµν = ∂µAν−∂νAµ with Aµ = (Φ/c,A) where Φ and A are the ‘scalar’
and vector potentials, respectively, in the non-relativistic expressions of electromagnetism,
ᾱ is an arbitrary constant, µ0 = 4π × 10−7 N ·A−2 is the vacuum permeability, and we are
working in Minkowski spacetime with metric ηµν = diag{−1, 1, 1, 1}. SF is the action of
free EM fields constrained by the Lorenz gauge ∂µA

µ = 0. Sz + SI is form-invariant under
a reparametrization of the proper time τ of the particle, τ → τ ′ = τ ′(τ), implying that
the number of the degrees of freedom of zµ(τ) is 4 − 1 = 3. To fix this reparametrization
freedom, we choose the Minkowski-time gauge z0 = ct for the particle and keep z = zi(=1,2,3)

as dynamical variables.
Let zi(t) = z̄i(t)+z̃i(t) and Aµ(t,x) = Āµ(t,x)+Ãµ(t,x), where z̄i(t) and Āµ(t,x) are the

classical solutions satisfying the Euler-Lagrange equations δS/δzi(t) = 0 and δS/δAµ
x(t) = 0,

where Aµ
x(t) ≡ Aµ(t,x). Later we will only quantize the deviations from classical solutions,

namely, z̃i and Ãµ. Recall that the vacuum state of EM fields is Gaussian, and in ref. [38],
one can see that the charge density of a Klein-Gordon wavepacket initially Gaussian with
the width greater than O(λC/γ̄), where λC is its Compton wavelength and γ̄ is the Lorentz
factor of its classical motion, will be approximately a Gaussian function centered around its
classical trajectory for a long time. Thus, it is justified to assume here that in the regime
of our interest the quantum states of z̃i and Ãµ are Gaussian, and the evolution of the
combined system can be approximately described by the action expanded about the classical
solutions up to the quadratic order,

S ≈ S[z̄, Ā] +
∫
dtL2 (2.4)

where∫
dtL2 ≡ 1

2

∫
dt dt′

∑
i,j

z̃i(t) δ2S

δzi(t)δzj(t′)

∣∣∣∣∣
z̄,Ā

z̃j(t′)+

2
∑
i,µ,x

z̃i(t) δ2S

δzi(t)δAµ
x(t′)

∣∣∣∣∣
z̄,Ā

Ãµ
x(t′) +

∑
µ,x,ν,y

Ãν
y(t)

δ2S

δAν
y(t)δA

µ
x(t′)

∣∣∣∣∣
z̄,Ā

Ãµ
x(t′)


=
∫
dt
m

2 γ̄(t)M̄ij(t) ˙̃zi(t) ˙̃zj(t) +
∫
dt

µ0

∑
x

[
−1
4 F̃µνF̃

µν(x)− ᾱ

2
(
∂µÃ

µ(x)
)2
]
+

q

∫
dt
∑

x

[
v̄µz̃i∂iÃ

x
µ + ˙̃ziÃx

i + ˙̃zj z̃i∂iĀ
x
j + v̄µ

2 z̃
iz̃j∂i∂jĀ

x
µ

]
δ3(x − z̄) (2.5)

with the linear terms of z̃ and Ãµ vanishing after introducing the Euler-Lagrangian equations.
Here we have chosen z0 = ct and so v̄µ ≡ (c, v̄j) = (c, ∂tz̄

j), ˙̃zi ≡ ∂tz̃
i, F̃µν ≡ ∂µÃν − ∂νÃµ,∑

x ≡
∫
d3x, γ̄ ≡

(
1− v̄iv̄

i

c2

)− 1
2 , and

M̄ij(t) ≡ ηij +
γ̄2

c2 v̄iv̄j . (2.6)

The structure of (2.5) is similar to the Unruh-DeWitt detector theory [44, 50], with the
internal degree of freedom of the detector replaced by the particle-motion deviations z̃i(t)
or their derivatives here.
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2.1 Radiation reaction at the classical level

The Euler-Lagrange equations at the classical level read

∂t

[
mγ̄v̄i(t)

]
= qF̄iµ

(
z̄(t)

)
v̄µ(t), (2.7)

∂νF̄
νµ(x) + ᾱ∂µ∂νĀ

ν(x) = −µ0qv̄
µ(t)δ3(x − z̄(t)). (2.8)

In the Lorentz gauge ∂νĀ
ν(x) = 0, eq. (2.8) reduces to

□Āµ
x(t) = −µ0qv̄

µ(t)δ3(x − z̄(t)), (2.9)

with □ ≡ ∂ν∂ν = − 1
c2∂

2
t + ∇2. One immediately obtains a solution

Āµ
x(t) = Āµ

[0]x(t) + Āµ
[1]x(t) (2.10)

where Āµ
[0]x(t) is the external field satisfying □Āµ

[0]x = 0, assumed to be regular around
the worldline of the charged particle, and Āµ

[1]x(t) is the retarded field sourced from the
charged particle, namely,

Āµ
[1]x(t) =

∫ ∞

−∞
c dt′

∫
d3x′Gret(t,x; t′,x′)µ0qv̄

µ(t′)δ3(x′ − z̄(t′)) (2.11)

with the retarded Green’s function defined by( 1
c2∂

2
t −∇2

)
Gret(t,x; t′,x′) = δ(ct− ct′)δ3(x − x′), (2.12)

or formally,

Gret(t,x; t′,x′) = 1
4πδ(σ)θ(t− t′) (2.13)

with the Synge’s world function σ(x, x′) ≡ −1
2(xµ − x′µ)(xµ − x′µ) [68]. The above retarded

Green’s function diverges as x′ → x, implying that the self field established by the charged
particle diverges around the particle as the particle size goes to zero. Following the same
method as in [21, 51], we regularize the retarded Green’s function by a UV cutoff Λ as

GΛ
ret(t,x; t′,x′) ≡ 1

4π

√
8
π
Λ2e−2Λ4σ2(x,x′)θ(t− t′)θ(σ), (2.14)

which approaches Gret(t,x; t′,x′) as Λ → ∞. Replacing the Gret in (2.10) by GΛ
ret, we get

Āµ
x(t) = Āµ

[0]x(t) + µ0
qc

4π

2 7
4Γ
(

5
4

)
γ̄

√
πc

Λv̄µ(t)− γ̄2

c2 w
µ
ν∂tv̄

ν(t)

+O(Λ−1) (2.15)

for large Λ, with

wµ
ν ≡ δµ

ν + γ̄2

c2 v̄ν v̄
µ = δµ

ν + 1
c2 ūν ū

µ, (2.16)

implying wµ
ν v̄µ = 0. In (2.15), there seems to be a Λ1 divergence corresponding to the EM

potential established by a point charge (Φ ∼ r−1) around itself (r → 0). For electrons, however,
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the value of the whole coefficient proportional to Λ1 in (2.15) can be very small compared with
the electron mass [see discussions below (2.18)]. After inserting (2.10) with (2.11) and (2.14)
into (2.7), a similar Λ1 term arises in qF̄iµ with the coefficient

∆m ≡
µ0q

22
3
4Γ
(

5
4

)
4π

√
π

Λ, (2.17)

which can be absorbed by the mass of the charged particle. Then we obtain the Lorentz-
Abraham-Dirac (LAD) equation [54–57],

m̄∂t

[
γ̄v̄i(t)

]
= qF̄

[0]
iµ

(
z̄(t)

)
v̄µ(t) + Γ̄i(t) +O(Λ−1), (2.18)

where the bare mass m has been considered as a constant of time,

m̄ ≡ m+∆m, (2.19)

is the classical renormalized (or field-corrected) mass with contributions from the self field
proportional to Λ, and F̄

[0]
µν ≡ ∂µĀ

[0]
ν − ∂νĀ

[0]
µ is the external EM field strengths. For single

electrons, however, the value of ∆m can be very small compared with the electron mass if
we introduce a finite Λ [see discussions at the end of this section].

In eq. (2.18), the radiation reaction force of order Λ0 (the LAD force) reads

Γ̄i = µ0
q2γ̄2

4πc

[
2
3w

µ
i
¨̄vµ + 2 γ̄

2

c2 v̄
ρ ˙̄vρw

µ
i
˙̄vµ

]

= q2µ0
4πc

2
3w

µ
i ∂t
[
γ̄∂t (γ̄v̄µ)

]
. (2.20)

Γ̄i contains the third derivative of particle position, ∂t∂tv̄i(t) =
...
z̄ i(t), which is contributed by

the Λ6(∆t)5 and Λ10(∆t)9 terms in the integral
∫ t
−∞ dt′ =

∫∞
0 d∆t in (2.11) with ∆t = t− t′.

Up to the LAD force Γ̄i, eq. (2.18) can be directly derived from the LAD equation
parametrized in proper time τ of the charged particle,

m̄∂τ ūν(τ) = qF̄ [0]
νµ (z̄) ūµ + Γ̄ν +O(Λ−1) (2.21)

with the four-velocity ūµ(τ) ≡ ∂τ z̄
µ(τ), by simply replacing ∂τ by γ̄∂t. Here,

Γ̄ν = q2µ0
4πc

2
3w

µ
ν∂

2
τ ūµ = q2µ0

4πc
2
3w

µ
ν γ̄∂t [γ̄∂t (γ̄v̄µ)] . (2.22)

Eq. (2.21) can also be obtained by the same regularization process for (2.18). When comparing
the above results parametrized in t and τ , we have used

∆τ = ∆t
γ̄

[
1 + ∆t

2
γ̄2

c2
˙̄vρv̄

ρ − ∆t2

3!

(
γ̄4

c4 ( ˙̄vρv̄
ρ)2 + γ̄2

c2 ( ˙̄vρ ˙̄vρ + ¨̄vρv̄
ρ)
)
+O(∆t3)

]
(2.23)

with ∆τ ≡ τ − τ ′ and ∆t ≡ t − t′, and

−
∫ τ

−∞
dτ ′ =

∫ 0

−∞
d∆τ =

∫ 0

−∞

d∆t
γ̄(t′)

=
∫ 0

−∞

d∆t
γ̄(t)

[
1 + ∆t γ̄

2

c2
˙̄vρv̄

ρ − ∆t2

2

(
γ̄4

c4 ( ˙̄vρv̄
ρ)2 + γ̄2

c2 ( ˙̄vρ ˙̄vρ + ¨̄vρv̄
ρ)
)
+O(∆t3)

]
,

(2.24)
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where, without specifying the argument, γ̄ = γ̄(t) is understood. We find that the ignored
radiation reaction force of order Λ−1 in (2.18) has an extra term to the one in (2.21).
Nevertheless, from the order of Λ−1 on, the result is expected to depend on the shape or
charge distribution of the particle if the particle has been regularized to an extended object,
and also on the form of the regularized retarded Green’s function of the field [37]. Such a
dependence on regularization scheme is negligible in the regime of our interest, and should
not be considered in our effective theory.

Recall that the action for relativistic particles Sz in (2.1) is time-reparametrization
invariant. We have chosen the parameter as the Minkowski time in (2.1) (the Minkowski-time
gauge). For what we want here the proper-time gauge is not more convenient than the
Minkowski-time gauge. Indeed, to quantize a theory for relativistic particles in terms of
proper time, one needs to go through the BRST quantization procedure [60], which introduces
ghosts and other complications.

By treating the charged particle quantum-mechanically in our effective theory, we have
implicitly assumed that the probability of finding the charged particle in the Universe is
conserved, i.e., there are no new particles created or any existing particles annihilated. We
expect that our effective theory would break down beyond the charged particle production
scale. Note that in our regularized retarded Green’s function (2.14), we have e−2Λ4σ2(x,x′) ≈
e−Λ4(c∆τ)4/2[1+O(∆τ5)], where Λ−1 sets the scale of proper length c∆τ . Thus we choose the
UV cutoff Λ as the reciprocal of the proper Compton wavelength λC = h/m̄c of the particle,
which is reference frame independent. For an electron, q = 1.6× 10−19 C, m̄ = 9.1× 10−31 kg,
λC ≈ 2.4× 10−12 m, and so ∆m ≈ 9.1× 10−34 kg ∼ 10−3m̄ in (2.17), which is a perturbative
correction. Anyway, only the renormalized mass m̄ is supposed to be physically measurable,
while the bare mass m and field correction ∆m are not.

2.2 Quantization and counterpart of LAD force at the quantum level

From (2.4), the conjugate momenta of the deviations z̃i and Ãµ
x read

p̃i =
δS

δ∂tz̃i
= mγ̄M̄ij ˙̃zj + q

(
Ãz

i + z̃j∂jĀ
z̄
i

)
, (2.25)

π̃i
x = δS

δ∂tÃx
i

= 1
µ0c

F̃ i0
x , (2.26)

π̃0
x = δS

δ∂tÃx
0
= ᾱ

µ0c
∂µÃ

µ
x, (2.27)

and the Hamiltonian of the quadratic part of S defined on the t-slice is given by

H̃2 = p̃i ˙̃zi + c
∑

x

(
π̃i

x∂0Ã
x
i + π̃0

x∂0Ã
x
0

)
− L2

= M̄ ij

2mγ̄
[
p̃i − q

(
Ãz̄

i + z̃k∂kĀ
z̄
i

)] [
p̃j − q

(
Ãz̄

j + z̃l∂lĀ
z̄
j

)]
+
∑

x

{
µ0c

2

2 π̃x
i π̃

i
x − µ0c

2

2ᾱ
(
π̃0

x

)2
+ cπ̃i

x∂iÃ
x
0 + cπ̃0

x∂iÃ
i
x + 1

4µ0
F̃x

ijF̃
ij
x

}

−q
(
v̄µz̃i∂iÃ

z̄
µ + v̄µ

2 z̃
iz̃j∂i∂jĀ

z̄
µ

)
, (2.28)

where M̄ ij is the inverse matrix of M̄ij in (2.6), defined by M̄ ijM̄jk = δi
k.
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In our linearized theory described by the above quadratic Hamiltonian Ĥ2 [or equivalently,
the quadratic action S2 ≡

∫
dtL2 in (2.5)], the Hamilton equations (or the Euler-Lagrange

equations) yield

∂t

(
mγ̄M̄ij ˙̃zj

)
= q

[
F̃ z̄

iµv̄
µ +

(
z̃j∂jF̄

z̄
iµ

)
v̄µ + F̄ z̄

ij
˙̃zj
]
, (2.29)

∂µF̃
µν
x + ᾱ∂ν∂µÃ

µ
x = −µ0qṼ

νδ3(x − z̄), (2.30)

where Ṽ ν ≡ (−cz̃j∂j , ˙̃zi − v̄iz̃j∂j).
We quantize our linearized theory by promoting the perturbative variables (deviations

from their classical values) z̃i and Ãi
x to the operators ẑi and Âi

x, and introducing the
equal-time commutation relations

[ẑi, p̂j ] = iℏδi
j , (2.31)

and
[Âµ

x, π̂
ν
y] = iℏηµνδ3(x − y). (2.32)

The evolution of the system is governed by the quadratic Hamiltonian Ĥ2 with all the
deviations Õ in (2.28) promoted to the operators Ô. Since our effective theory is linear, the
Heisenberg equations for the operators have the same form as eqs. (2.29) and (2.30) while
the deviations there are replaced by the operators.

We assume the charged particle and EM fields are not coupled until the moment t = t0.
Then for t ≤ t0, we have q = 0, and eqs. (2.25), (2.29), and (2.30) give

p̂i = mγ̄M̄ij
˙̂zj , ˙̂pj = 0, (2.33)

0 = ∂µF̂
µν
x + ᾱ∂ν∂µÂ

µ
x, (2.34)

where ẑj and Âµ
x are operators. Thus, before the coupling is switched on, p̂i are independent

of time, and the time dependence of the deviation from the classical worldline of the particle,

ẑi(t) = ẑi(t̄0) + p̂j

∫ t

t̄0
dt̃
M̄ ij(t̃ )
mγ̄(t̃ )

(2.35)

with a constant t̄0 ≤ t0, is purely from the coefficients of p̂j .
As for EM fields, following the canonical quantization in the Lorentz-Feynman gauge

(ᾱ = 1) [7], we write

Âµ
[0]x(t) =

∑
k

3∑
λ=0

[
ϵµ(λ)ke

−iωt+ik·x b̂
(λ)
k + ϵµ∗(λ)ke

iωt−ik·x b̂
(λ)†
k

]
(2.36)

for t ≤ t0, with ω = |k|c,

∑
k

≡
∫

d3k

(2π)3

√
ℏ

2ωε0
(2.37)

with vacuum permittivity ε0 = (µ0c
2)−1 ≈ 8.85 × 10−12 C2 · N−1 ·m−2 and

[b̂(λ)
k , b̂

(λ′)†
k′ ] = (2π)3η(λ)(λ′)δ3(k − k′). (2.38)
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Here ϵµ(0)k = δµ
0 is the unit temporal vector in the t direction, ϵµ(3)k = (0,k/|k|) is the longitudi-

nal unit vector, and ϵµ(1)k and ϵµ(2)k are the two orthonormal polarization vectors perpendicular
to ϵµ(3)k and ϵµ(0)k. Following the Gupta-Bleuler formalism, we will adopt the physical states
|ψphys⟩ of EM fields in the Lorentz gauge as those satisfying

(
b̂

(0)
k − b̂

(3)
k

)
|ψphys⟩ = 0 [7]. Note

that the Minkowski vacuum state |0M ⟩ of EM fields is a physical state.
For t > t0, the particle-field interaction has been switched on. One can write

ẑi(t) =
3∑

j=1

[
Z i

zj (t)ẑj + Z i
pj
(t)p̂j

]
+
∑

k

3∑
λ=0

[
Z i

(λ)k(t)b̂
(λ)
k + Z i∗

(λ)k(t)b̂
(λ)†
k

]
, (2.39)

Âµ
x(t) =

3∑
j=1

[
Aµ

zj (t,x)ẑj +Aµ
pj
(t,x)p̂j

]
+
∑

k

3∑
λ=0

[
Aµ

(λ)k(t,x)b̂
(λ)
k +Aµ∗

(λ)k(t,x)b̂
(λ)†
k

]
, (2.40)

and the conjugate momenta

p̂i(t) = mγ̄M̄ij(t) ˙̂zj(t) + q
[
Â

z̄(t)
i (t) + ẑj∂jĀ

z̄(t)
i (t)

]
, (2.41)

π̂i
x(t) = 1

µ0c
F̂ i0

x (t), (2.42)

π̂0
x(t) = ᾱ

µ0c
∂µÂ

µ
x(t), (2.43)

from (2.25)–(2.27). Here and below, ẑj ≡ ẑj(t̄0), p̂i ≡ p̂i(t̄0) and b̂
(λ)
k ≡ b̂

(λ)
k (t̄0) for some

t̄0 ≤ t0 [see (2.35)] are understood, and we set t̄0 → t0− for simplicity.
Compare (2.39) and (2.40) with the free operators (2.35) and (2.36), one can read off

the free mode functions as

Z i
[0]zj (t) = δi

j , Z i
[0]pj

(t) =
∫ t

t̄0
dt̃
M̄ ij(t̃ )
mγ̄(t̃ )

Z i
[0](λ)k(t) = 0, (2.44)

and
Aµ

[0]zj = Aµ
[0]pj

= 0, Aµ
[0](λ)k(t,x) = ϵµ(λ)ke

−iωt+ik·x. (2.45)

Before the coupling is switched on (t ≤ t0), one has Z i
Ω(t) = Z i

[0]Ω(t) and Aµ
Ω(t,x) = Aµ

[0]Ω(t,x)
labeled by the collective index Ω ≡ (zj , pj , (λ)k).

Applying the commutation relations (2.31) and (2.32) to the Heisenberg equations, one
can see that the evolution equations for the mode functions are again in the same form
as the Euler-Lagrange equations of the deviations eqs. (2.29) and (2.30) after the coupling
is switched on, namely,

∂t

(
mγ̄M̄ijŻj

Ω

)
= q

[
F z̄

Ωiµv̄
µ + Zj

Ω
(
∂jF̄

z̄
iµ

)
v̄µ + F̄ z̄

ijŻ
j
Ω

]
(2.46)

∂µFµν
Ω (t,x) + ᾱ∂ν∂µAµ

Ω(t,x) = −µ0qVν
Ωδ

3(x − z̄), (2.47)

by virtue of the linearity of our quadratic Hamiltonian Ĥ2. Here FΩ
µν = ∂µAΩ

ν − ∂νAΩ
ν ,

V0
Ω(t) ≡ −cZj

Ω∂j , V i
Ω(t) ≡ ∂tZ i

Ω − v̄iZj
Ω∂j . (2.48)

Note that, for simplicity, we assume that the particle-field coupling in the classical equa-
tions (2.7), (2.8), and (2.18) has been switched on at past infinity without runaways. This
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would allow us to use the simple classical trajectory of a uniformly accelerated charge in
our discussion of the Unruh effect in section 4.

In the Lorentz-Feynman gauge ᾱ = 1, (2.47) can be written as

□Aµ
Ω(t,x) = −µ0qV

µ
Ω(t)δ

3(x − z̄(t)), (2.49)

where the four components µ = 0, 1, 2, 3 decouple, similar to the classical equation (2.9). Note
that here we cannot impose the condition ∂µAµ

Ω = 0 analogous to the Lorentz gauge ∂µĀ
µ = 0

at the classical level, otherwise from (2.40) we will have ∂µÂ
µ = 0, which is inconsistent

with the commutation relation (2.32) for ν = 0.
Eq. (2.49) has a general solution similar to (2.10), reading

Aµ
Ω(t,x) = Aµ

[0]Ω(t,x) +Aµ
[1]Ω(t,x), (2.50)

where
Aµ

[1]Ω(t,x) = µ0q

∫ ∞

t0

c dt′
∫
d3x′Gret(t,x; t′,x′)Vµ

Ω(t
′)δ3(x′ − z̄(t′)). (2.51)

Using the same regularization and renormalization as those in section 2.1, we obtain

m̄∂t

{
γ̄M̄ij∂tZj

Ω(t)
}
=

3∑
n=1

∂Γ̄i

∂ (∂n
t z̄

j)∂
n
t Z

j
Ω+

q
{
v̄µF [0]Ω

iµ (t, z̄(t)) + v̄µZj
Ω∂jF̄

[0]
iµ (t, z̄) + F̄

[0]
ij (t, z̄)∂tZj

Ω

}
+O(Λ−1), (2.52)

for t − t0 ≫ (cΛ)−1. Here,

3∑
n=1

∂Γ̄i

∂ (∂n
t z̄

j)∂
n
t Z

j
Ω = µ0

q2γ̄4

4πc3 ×{
2c2

3γ̄2 M̄ij∂
3
t Z

j
Ω + 2

[
v̄k ˙̄vkηij +

(
˙̄vi + 2 γ̄

2

c2 v̄
k ˙̄vkv̄i

)
v̄j

]
∂2

t Z
j
Ω

+2
[
1
3 v̄

k ¨̄vkηij +
γ̄2

c2

(
v̄k ˙̄vk

)2
ηij +

1
3 v̄i ¨̄vj +

2
3
¨̄viv̄j +

4γ̄2

3c2 v̄
k ¨̄vkv̄iv̄j

+ ˙̄vi ˙̄vj +
γ̄2

c2 v̄
k ˙̄vk

(
4 ˙̄viv̄j + 2v̄i ˙̄vj

)
+ 6

(
γ̄2

c2 v̄
k ˙̄vk

)2

v̄iv̄j

 ∂tZj
Ω

 , (2.53)

and the renormalized mass m̄ is the same as (2.19) for the classical LAD equation (2.18).
Expanding the canonical momentum of the particle (2.41) in the same way as (2.39),

we have

p̂i(t) =
3∑

j=1

[
P i

zj (t)ẑj + P i
pj
(t)p̂j

]
+
∑

k

3∑
λ=0

[
P i

(λ)k(t)b̂
(λ)
k + P i∗

(λ)k(t)b̂
(λ)†
k

]
. (2.54)

Before the coupling is switched on, one has

P i
[0]zj (t) = 0, P i

[0]pj
(t) = ηij , P i

[0](λ)k(t) = 0, (2.55)
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from (2.44) and (2.33). When t > t0, the mode functions P i
Ω become

PΩ
i (t) = mγ̄M̄ij(t)Żj

Ω(t) + q
[
AΩ

i (t, z̄(t)) + Zj
Ω(t)∂jĀ

z̄
i (t)

]
= γ̄M̄ijm̄

′∂tZj
Ω + q

[
A[0]Ω

i (t, z̄(t)) + Zj
Ω(t)∂jĀ

[0]z̄
i (t)

]
−µ0

q2c

4π

[
∂t

(
γ̄2

c2 M̄ij∂tZj
Ω

)
+ γ̄4

c4
˙̄viv̄j∂tZj

Ω

]
+O(Λ−1) (2.56)

with the self fields of Ai
Ω(t,x) and Āi

x(t) around the position of the charged particle x → z̄
from (2.51) and (2.15), respectively, inserted. Here

m̄′ ≡ m+ 2∆m = m̄+∆m, (2.57)

in which a physically non-measurable parameter ∆m defined in (2.17) is explicitly present.
This may not be a problem. Since (2.56) contains AΩ

i , which is gauge dependent, the canonical
momentum of the particle itself would not be physically measurable.

3 Wavepacket of charged particle at rest

Consider a charged particle situated at rest in the Minkowski vacuum with zero background
fields F̄µν

[0] = 0. Let the particle’s worldline be z̄µ(t) = (ct, 0, 0, 0). Then its four velocity is
v̄µ = (c, 0, 0, 0), which yields M̄ij = ηij from (2.6), and so eq. (2.52) reads

m̄∂2
t ZΩ

i (t) = qcF [0]Ω
i0 (t,0) + sm̄∂3

t ZΩ
i (t) +O(Λ−1) (3.1)

after the particle-field coupling is switched on at t = t0, and let t0 ≡ 0 for simplicity. Here
the small parameter s is defined as

s ≡ q2µ0
6πcm̄ (3.2)

with unit of time. For electrons, the time scale s ≈ 6.3× 10−24 s corresponds to a length scale
sc = 2r0/3, where r0 ≡ q2/(4πε0m̄c

2) ≈ 2.8×10−15 m is the classical electron radius. When we
apply our effective theory to electrons at rest, the length resolution ∼ Λ−1 = λC ≈ 2.4×10−12

m is much greater than r0 and sc, namely, s ≪ 1/(cΛ) = tC ≈ 8.1 × 10−21 s (the electron
Compton time). Note that the regularization-scheme-dependent O(Λ−1) terms in (2.52)
are those with m̄s/(cΛ) times the fourth proper-time derivatives of Zj

Ω or some product of
lower derivatives of Zj

Ω and z̄µ having the same dimensions. In the approximations with
the O(Λ−1) terms in (3.1) neglected, therefore, the m̄s2 terms should also be negligible [61].
In other words, the s/(cΛ)-, s2-, and higher-order corrections to the mode functions will
be neglected in this paper.

3.1 Mode functions

The third-derivative term in eq. (3.1) will produce unphysical self-accelerating solutions
in the absence of ‘external force’ qcF [0]Ω

i0 (t,0). To avoid those runaway solutions, assume
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that in (3.1), sm̄∂3
t ZΩ

i is always a small correction to the other terms. Then inserting
m̄∂2

t ZΩ
i (t) = qcF [0]Ω

i0 (t,0)+O(m̄s) to the quantum LAD force s∂t

[
m̄∂2

t ZΩ
i

]
in (3.1), we obtain

m̄∂2
t ZΩ

i (t) = qc (1 + s∂t)F [0]Ω
i0 (t,0) +O(m̄s/(cΛ), m̄s2) (3.3)

which is the counterpart of the Landau-Lifshitz (LL) equation [62], now at the quantum
level. The difference between (3.3) and (3.1) are beyond O(Λ−1) and so negligible here [61].
Solutions to (3.3) for t > t0 with O(Λ−1) neglected can be formally written as

ZΩ
j (t) = Z [0]Ω

j (t) + 1
m̄

∫ t

t0
dt̃K(t, t̃ )qc (1 + s∂t̃)F

[0]Ω
i0 (t̃,0), (3.4)

where m̄Z [0]Ω
j (t) ∼ C + C̃ t with constants C and C̃ from homogeneous solutions, and the

evolution kernel

K(t, t̃ ) = t− t̃ (3.5)

is the solution to ∂2
tK(t, t̃ ) = 0 satisfying the boundary conditions K(t̃, t̃ ) = 0 and

∂tK(t, t̃ ) = 1.
From eq. (2.45), we have

F [0]k
(λ)j0(t,x) = ∂jA

[0]k
(λ)0(t,x)− ∂0A

[0]k
(λ)j(t,x) (3.6)

= E k
(λ)j0e

−iωt+ik·x, (3.7)

where

E k
(0)j0 = −ikj , E k

(1)j0 = i
ω

c
ϵk
(1)j , E k

(2)j0 = i
ω

c
ϵk
(2)j , E k

(3)j0 = ikj , (3.8)

and F [0]zl

j0 = F [0]pl
j0 = 0. Assume that the transient during the switching-on of the particle-field

interaction and the minimal time scale (cΛ)−1 of the quantum LAD or LL equation does not
change the form of the mode functions. Then, after inserting the above F [0]Ω

j0 into eq. (3.3)
and matching the initial condition to the free mode functions (2.44) at t = t0 = t̄0, we find

Zj

zj′ =
m

m̄
δj

j′ , Zj

pj′ =
ηjj′

m̄
(t− t0), (3.9)

and
Zj

(λ)k = qc

m̄
Ek j

(λ) 0 (1− isω) fω(t, t0) (3.10)

with

fω(t, t0) ≡
∫ t

t0
dt̃K(t, t̃ )e−iωt̃e−ωϵ/2

= e−ωϵ/2
[
− 1
ω2

(
e−iωt − e−iωt0

)
− i

ω
e−iωt0(t− t0)

]
, (3.11)

which goes to (t− t0)2/2 as ω → 0. Here we have introduced a regulator cϵ > 0 to suppress
the contribution from short-wavelength fluctuations of EM fields to the correlators, which
will be calculated below.
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3.2 Particle correlators

Suppose at t = t0 = 0 the initial state of the combined system is ρ I = ρ I
P
⊗ ρ I

F
, which is a

direct product of a Gaussian state ρ I
P

of the charged particle and the Minkowski vacuum
state ρ I

F
= |0M ⟩⟨0M | of EM fields. Then, by virtue of the linearity of our effective theory,

the symmetrized two-point correlators of the renormalized charged particle’s deviation from
classical trajectory split into two parts, which are labeled as P -part and F -part:3

⟨ẑj(t), ẑj′(t)⟩ ≡ Tr
[
ρ I {ẑj(t), ẑj′(t)}

]
= ⟨ẑj(t), ẑj′(t)⟩P + ⟨ẑj(t), ẑj′(t)⟩F , (3.12)

where {A,B} ≡ 1
2(AB +BA), under the expansion of ẑj(t) given in (2.39). The P -part

⟨ẑj(t), ẑj′(t)⟩P ≡ Tr

ρ I
P

∑
l,l′

{(
Zj

zl(t)ẑl + Zj
p

l
(t)p̂l

)
,
(
Zj′

zl′ (t)ẑl′ + Zj′
p

l′
(t)p̂l′

)}
=
∑
l,l′

[
⟨ẑl, ẑl′⟩I Z

j
zl(t)Zj′

zl′ (t) + ⟨p̂l, p̂l′⟩I Z
j
pl(t)Zj′

pl′ (t) +

⟨ẑl, p̂l′⟩I Z
j
zl(t)Zj′

pl′ (t) + ⟨p̂l, ẑl′⟩I Z
j
pl(t)Zj′

zl′ (t)
]

(3.13)

with ⟨Ôl, Ôl′⟩I ≡ Tr
[
ρ I

P
{Ôl, Ôl′}

]
depends on the initial state of the particle ρ I

P
only, and

the F -part

⟨ẑj(t), ẑj′(t)⟩F ≡ lim
t′→t

∑
k,k′

1
2
(
Zj

(λ)k(t)Z
j′∗
(λ′)k′(t′) + Zj′

(λ)k(t
′)Zj∗

(λ′)k′(t)
)
⟨0M |b̂(λ)

k b̂
(λ′)†
k′ |0M ⟩

(3.14)
depends on the initial state of the field ρ I

F
only. In (3.14),

∑
k has been defined in (2.37),

and ⟨0M |b̂(λ)
k b̂

(λ′)†
k′ |0M ⟩ = (2π)3η(λ)(λ′)δ3(k − k′) from (2.38).

Substituting the mode functions Zj
Ω obtained in section 3.1 to the above expressions,

we can calculate the two-point correlators up to O(s). For example, the F -part of the
particle-motion deviation correlator is formally

⟨ẑj(t), ẑj′(t)⟩F ≡ lim
t′→t

∫
d3k

(2π)3

√
ℏ

2ωε0

∫
d3k′

(2π)3

√
ℏ

2ω′ε0
×

1
2
(
Zj

(λ)k(t)Z
j′∗
(λ′)k′(t′) + Zj′

(λ)k(t
′)Zj∗

(λ′)k′(t)
)
(2π)3η(λ)(λ′)δ3(k − k′)

= ℏ
(2π)3ε0

Re lim
t′→t

∫ ∞

0

ω2

c2
dω

2ωc

∫ 2π

0
dφ

∫ π

0
dθ sin θ ×

qc

m̄
E(λ)j

k 0 (1− isω) fω(t, t0)
qc

m̄
Ek j′∗

(λ) 0 (1 + isω) f∗ω(t′, t0) (3.15)

from (3.10). Since ϵj(0)k = δj
0 = 0, one can see that

ϵ
(λ)j
k ϵj

′∗
(λ)k ≡

3∑
λ,λ′=0

η(λ)(λ′)ϵj(λ)kϵ
j′∗
(λ′)k =

3∑
λ=1

ϵj(λ)kϵ
j′∗
(λ)k = ηjj′ . (3.16)

3The ‘P -part’ and ‘F -part’ correlators are the counterparts of the ‘a-part’ and ‘v-part’ correlators, respec-
tively, in [51] and our series of papers on the Unruh-DeWitt detectors afterward.
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From (3.8), one further has

E(λ)j
k 0 ϵ

j′∗
(λ)k = iω

c
ηjj′ , E(λ)j

k 0 E
k j′∗
(λ) 0 = ω2

c2 η
jj′ − kjkj′ , (3.17)

and so ∫ 2π

0
dφ

∫ π

0
dθ sin θ E(λ)j

k 0 E
k j′∗
(λ) 0 = 8π

3
ω2

c2 η
jj′ , (3.18)

where k = (ω
c sin θ cosφ, ω

c sin θ sinφ, ω
c cos θ) = ω

c ϵ⃗(3)k. Thus,

⟨ẑj(t), ẑj′(t)⟩F = ℏq2ηjj′

6π2c3ε0m̄
2 lim

t′→t
lim

t′0→t0
Re
∫ ∞

0
dω ω3

(
1 + s2ω2

)
fω(t, t0)f∗ω(t′, t′0), (3.19)

where we have distinguished the lower limits of the time integrations, namely, t0 in fω and
t′0 in f∗ω, to control the divergence.

3.2.1 Coincidence limit

In the Unruh-DeWitt detector theory, the coincidence limits t′ → t and t′0 → t0 produce
logarithmic divergences in the two-point correlators [51, 52, 58]. Similar divergences arise
here. For example, inserting (3.11) to (3.19), ⟨ẑj(t), ẑj′(t)⟩F will have a term proportional to

lim
t′→t

lim
t′0→t0

∫ ∞

0

dω

ω

[
e−ω[ϵ+i(t−t′)] + e−ω[ϵ−i(t′0−t0)] − e−ω[ϵ+i(t−t′0)] − e−ω[ϵ−i(t′−t0)]

]
= lim

t′→t
lim

t′0→t0

[
Ei
(
ω[ϵ+ i(t− t′)]

)
+ Ei

(
ω[ϵ− i(t′0 − t0)]

)
−Ei

(
ω[ϵ+ i(t− t′0)]

)
− Ei

(
ω[ϵ− i(t′ − t0)]

)]∣∣∣∞
ω=0+

= − lim
ϵ0,ϵ1→0

[
ln |ω0(ϵ+ iϵ1)|+ ln

∣∣ω0(ϵ− iϵ0)
∣∣

− ln
∣∣ω0
[
ϵ+ i(t− t0 − ϵ0)

]∣∣− ln
∣∣ω0 [ϵ− i(t− t0 − ϵ1)]

∣∣] (3.20)

contributed by the ω−2 terms in (3.11). Here ω0 is a constant with the unit of frequency,
ϵ1 ≡ t − t′ and ϵ0 ≡ t′0 − t0 are the minimal time scales that the observer can resolve for
the observation time and the initial time, respectively, in the history of the charged particle
(t− t0 ≥ ϵ0 + ϵ1 here and below.) Ei(x) ≡

∫∞
−x dy (e−y/y) is the exponential integral function

with the asymptotic behaviors Ei(x) = γe + ln |x|+ x+ O(x2) as |x| → 0 with the Euler’s
constant γe ≈ 0.577216, and e−xEi(x) = x−1 + x−2 + O(x−3) as |x| ≫ 1.

In appendix A of ref. [58], we learned that one should take ϵ≪ ϵ1, ϵ0 to get the results
with desired properties. There, the regulator ϵ should go to zero before further calculations
with ϵ1 are done, and so we interpret ϵ as a ‘mathematical’ cutoff in [58]. And here, following
the argument by Bethe [2, 3] in his calculation for the Lamb shift, we set ϵ as the electron
Compton time tC such that cϵ = λC for electrons at rest. Suppose ϵ ≪ ϵ1, ϵ0 really holds,
then the time-independent part in (3.20) becomes approximately − lnω0ϵ1 − lnω0ϵ0, which
looks like logarithmic divergences as ω0ϵ0, ω0ϵ1 → 0. Nevertheless, the finite values of ϵ0 and
ϵ1 would depend on experimental settings described below.
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3.2.2 The regulators

In ref. [43], Tonomura et al. demonstrated in their experiment that a train of coherent single
electrons can gradually form an interference pattern after passing through a biprism. While
our wavepacket for a charged particle at rest in vacuum would not form any interference fringes
since our wavepacket is neither for a moving particle (we have the longitudinal wavevector
k1 = 0) nor for a superposition of two quantum states moving in non-parallel directions (we
have transverse wavevector k2 = k3 = 0), the coherent lengths in transverse and longitudinal
directions in ref. [43] can still help us to choose reasonable values for the regulators ϵ0 and ϵ1.

Due to the thermal and quantum fluctuations of the cathode, electrons just emitted
by a field-emission electron gun (FEG) operating at room temperature typically have an
energy spread ∆E ≈ 0.3 eV [63]. This implies an uncertainty ∆t ∼ h/∆E ≈ 1.4 × 10−14 s
of time tagging to the history (or the characteristic longitudinal coherence time [64]) of an
emitted electron. The same energy spread also corresponds to the longitudinal coherent
length ∆z1 ∼ v∆t ≈ 1.7 × 10−6 m [64], which is close to the value of the longitudinal
coherence length 1 µm (corresponding to ∆E ≈ 0.5 eV) given in refs. [43, 65] as the width
of the electron wavepacket in the longitudinal direction.

The time resolution of single electron detectors can reach the order of 0.1 ns (e.g.
TimePix4 [66]), yet this is still much greater than the time scale of ∆t. Considering ∆t as the
ultimate time resolution in this experiment, and the single electron here is at rest (or in non-
relativistic motion in electron microscopes), let us set ϵ0 ≈ ϵ1 = ∆t = 1.4× 10−14 s,4 which is
indeed much greater than ϵ = tC ≈ 8.1× 10−21 s. This fits our assumption learned from [58].

If the particle-field coupling is switched on at the initial moment t0, the ω−1 term in (3.11)
will produce a t2-dependent term in the leading-order F -part correlator (3.19) as

ℏq2ηjj′

6π2c3ε0m̄
2Re lim

t′→t
lim

t′0→t0
(t− t0)(t′ − t′0)

∫ ∞

0
dω ωe−ω(ϵ−iϵ0)

≈ ℏs
πm̄

ηjj′Re (t− t0)2

(ϵ− iϵ0)2 (3.21)

for charged particles from (3.19) and (3.2) (note that µ0ε0 = c−2). When ϵ0 ≫ ϵ, the above
term will be negative. One may worry whether it would dominate over the t2-term in the
P -part of the particle-motion deviation correlator,

⟨ẑj(t), ẑj′(t)⟩P ∼ ⟨p̂j , p̂j′⟩I
m̄2 (t− t0)2 (3.22)

[inserting (3.9) into (3.13).] If so, one would have a growing negative value of ⟨ẑj(t), ẑj′(t)⟩
at late times, which is not a non-adiabatic transient only. Fortunately, with the values of
regulators we used earlier in this section, the negative (3.21) is just a small correction to
the positive (t − t0)2 term in (3.22).

Indeed, since we have ϵ0 ≫ ϵ, the value of the coefficient of (t − t0)2 term in (3.21)
would be CF ≡ Re ℏs/[πm̄(ϵ − iϵ0)2] ≈ −ℏs/(πm̄ϵ20) ≈ −1.18m2/s2. On the other hand,
according to [63], an electron wavepacket emitted by a FEG and moving in the x1 direction

4For accelerated single electrons in relativistic motion, the condition ϵ0 ≈ ϵ1 may not hold; see section 4.2.
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can be considered to have an initial width
[
⟨ẑ2

T⟩I

]1/2 ≈ 5 nm in the transverse directions,
T = 2, 3, where ⟨ẑ2

T⟩I will be defined in (3.51). Then the coefficient of (t− t0)2 term in (3.22)
would have the value CP ≡ ⟨p̂2

T⟩I/m̄
2 =

(
m̄
m̄′
)2 [ℏ2/(4m̄2⟨ẑ2

T⟩I) +
3ϵ2

0
2ϵ2

1
|CF |

]
≈ 1.3× 108 m2/s2

from (3.52) and (3.50) with ϵ1 ≈ ϵ0 and m̄′ ≈ m̄, and so CP + CF is positive.
In the longitudinal direction, the initial width of the wavepacket

[
⟨ẑ2

1⟩I

]1/2 ≈ 1.7µm
as mentioned gives CP ≈ 1.2 × 103 m2/s2, which is still much greater than |CF | for ϵ0 ≈
1.4 × 10−14 s. So CP + CF keeps positive, too.

3.2.3 Regularized correlators of particle-motion deviations

With the regulators, (3.19) and (3.11) yield

⟨ẑj(t), ẑj′(t′)⟩F = ℏsηjj′

πm̄
Re
{
ln
[(η − ϵ0 − iϵ)(η − ϵ1 + iϵ)

(ϵ0 + iϵ)(ϵ1 − iϵ)

]
+

ϵ0 + ϵ1
ϵ0 + iϵ

− η

η − ϵ1 + iϵ
− η − ϵ0 − ϵ1
η − ϵ0 − iϵ

− η(η − ϵ0 − ϵ1)
(ϵ0 + iϵ)2 +O(s2)

}
(3.23)

with η ≡ t− t0 [cf. (3.20) and (3.21)]. Here we require that t is no less than t0 + ϵ0 + ϵ1, due
to the uncertainty of time-tagging to the history of the charged particle.

The P -part correlators (3.13) can be obtained straightforwardly. Suppose our initial
state has ⟨ẑj , p̂j′⟩I = 0, then (3.9) and (3.13) yield

⟨ẑj(t), ẑj′(t′)⟩P ≈ m2

m̄2 ⟨ẑ
j , ẑj′⟩I +

⟨p̂j , p̂j′⟩I
m̄2 η2 (3.24)

after the η′ → η limit is taken. Summing up (3.23) and (3.24), we get the symmetrized
two-point correlator of particle-motion deviation for η ≫ ϵ1 ≈ ϵ0 ≫ ϵ ≫ s,

⟨ẑj(t), ẑj′(t′)⟩ ≈ m2

m̄2 ⟨ẑ
j , ẑj′⟩I +

⟨p̂j , p̂j′⟩I
m̄2 η2 +

ℏs
πm̄

ηjj′
[
ln η2

ϵ0ϵ1
− η2

ϵ20
+
(
ϵ1
ϵ0

+ 1
)
η

ϵ0
+ ϵ1
ϵ0

− 1
]
+O(s3). (3.25)

3.2.4 Correlators with canonical momentum of the particle

The symmetrized two-point correlators of the renormalized charged particle’s canonical
momentum from (2.41) is

⟨p̂j(t), p̂j′(t)⟩ ≡ Tr
[
ρ I {ẑj(t), ẑj′(t)}

]
= ⟨p̂j(t), p̂j′(t)⟩P + ⟨p̂j(t), p̂j′(t)⟩F , (3.26)

where

⟨p̂j(t), p̂j′(t)⟩P ≡ Tr

ρ I
P

∑
l,l′

{(
Pj

zl(t)ẑl + Pj
p

l
(t)p̂l

)
,
(
Pj′

zl′ (t)ẑl′ + Pj′
p

l′
(t)p̂l′

)}
=
∑
l,l′

[
⟨ẑl, ẑl′⟩I P

j
zl(t)Pj′

zl′ (t) + ⟨p̂l, p̂l′⟩I P
j
pl(t)Pj′

pl′ (t) +

⟨ẑl, p̂l′⟩I P
j
zl(t)Pj′

pl′ (t) + ⟨p̂l, ẑl′⟩I P
j
pl(t)Pj′

zl′ (t)
]
, (3.27)

⟨p̂j(t), p̂j′(t)⟩F ≡ lim
t′→t

∑
k,k′

1
2
[
Pj

(λ)k(t)P
j′∗
(λ′)k′(t′) + Pj′

(λ)k(t
′)Pj∗

(λ′)k′(t)
]
⟨0M |b̂(λ)

k b̂
(λ′)†
k′ |0M ⟩.

(3.28)
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From (2.56), the particle at rest has the momentum mode functions

Pj
Ω(t) = m̄′∂tZj

Ω(t)−
3
2sm̄∂

2
t Z

j
Ω(t) + qA[0]j

Ω (t,0) (3.29)

with A[0]j
Ω (t,0) given by (2.45). From (3.9) and (3.10), Pj

Ω read

Pj

zj′ = 0, Pj
pj′

= m̄′

m̄
ηjj′ , (3.30)

and
Pj

(λ)k = qcEk j
(λ) 0(1− isω)

[
m̄′

m̄
ḟω − 3

2sf̈ω

]
+ qϵj(λ)ke

−iωte−ωϵ/2. (3.31)

Substituting the above mode functions Pj
Ω to (3.27) and (3.28), with (3.16)–(3.18), the closed

form of ⟨p̂j(t), p̂j′(t)⟩ up to O(s) can be obtained by the same techniques for ⟨ẑj(t), ẑj′(t)⟩.
The F -part of the particle-momentum correlator reads

⟨p̂j(t), p̂j′(t′)⟩F = ℏsm̄
π

ηjj′Re
∫ ∞

0
dω ω

{
ω2
[
m̄′

m̄

]2
ḟω(t)ḟ∗ω(t′)

+ 3m̄′

2m̄ ωe−ωϵ/2
[
ieiωt′ ḟω(t)− ie−iωtḟ∗ω(t′)

]
+ 3

2e
−iω(t−t′)−ωϵ +O(s)

}
= ℏsm̄

π
ηjj′Re

{[
m̄′

m̄

]2 [
− 1
(ϵ1 − iϵ)2 − 1

(ϵ0 + iϵ)2 + 1
(η − ϵ0 − iϵ)2 + 1

(η − ϵ1 + iϵ)2

]
+3m̄′

2m̄

[ 1
(ϵ1 − iϵ)2 − 1

(η − ϵ1 + iϵ)2 + 1
(−ϵ1 + iϵ)2 − 1

(η − ϵ0 − iϵ)2

]
−3
2

1
(ϵ1 − iϵ)2 +O(s2)

}
, (3.32)

where the O(s1) corrections in the curly brackets cancel out. At late times (η ≡ t− t0 ≫ ϵ0 ≈
ϵ1 ≫ ϵ), from (3.30), (3.27), and (3.32), one has the corrected particle-momentum correlator

⟨p̂j(t), p̂j′(t′)⟩ →
[
m̄′

m̄

]2
⟨p̂j , p̂j′⟩I +

ℏsm̄
π

ηjj′
[
−
[
m̄′

m̄

]2 ( 1
ϵ21

+ 1
ϵ20

)
+ m̄′

m̄

3
ϵ21

− 3
2ϵ21

]
, (3.33)

and at the ‘initial’ moment η ≡ t − t0 ≈ ϵ0 + ϵ1 ≫ ϵ for the observer, one has

⟨p̂j(t′0 + ϵ1), p̂j′(t′0)⟩ ≈
[
m̄′

m̄

]2
⟨p̂j , p̂j′⟩I +

3ℏsm̄
2π ηjj′

[
m̄′

m̄

( 1
ϵ21

− 1
ϵ20

)
− 1
ϵ21

]
. (3.34)

It is also straightforward to obtain the correlators

⟨p̂j(t), ẑj′(t)⟩ = ⟨p̂j(t), ẑj′(t)⟩P + ⟨p̂j(t), ẑj′(t)⟩F , (3.35)

of the particle momentum and deviation with

⟨p̂j(t), ẑj′(t′)⟩P =
∑
l,l′

[
⟨ẑl, ẑl′⟩I P

j
zl(t)Zj′

zl′ (t′) + ⟨p̂l, p̂l′⟩I P
j
pl(t)Zj′

pl′ (t′)

+⟨ẑl, p̂l′⟩I P
j
zl(t)Zj′

pl′ (t′) + ⟨p̂l, ẑl′⟩I P
j
pl(t)Zj′

zl′ (t′)
]
, (3.36)

⟨p̂j(t), ẑj′(t′)⟩F = ℏ
16π3ε0c

3Re
∫ ∞

0
ωdωe−ωϵ

∫ 2π

0
dφ

∫ π

0
dθ sin θP(λ)j

k (t)Zj′∗
(λ)k(t

′). (3.37)
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After some algebra, we find

⟨p̂j(t), ẑj′(t′)⟩F = ℏs
π
ηjj′Re

{
m̄′

m̄

[ −1
ϵ1 − iϵ

+ 1
ϵ0 + iϵ

+ 1
η − ϵ0 − iϵ

− 1
η − ϵ1 + iϵ

+(η − ϵ0 − ϵ1)
( −1
(ϵ0 − iϵ)2 + 1

(η − ϵ0 + iϵ)2

)]
+3
2

[ 1
ϵ1 − iϵ

− 1
η − ϵ0 − iϵ

− η − ϵ0 − ϵ1
(η − ϵ0 − iϵ)2

]
+O(s2)

}
, (3.38)

which vanishes at the ‘initial’ moment η = ϵ0 + ϵ1. The O(s) corrections in the above braced
brackets cancel out again. Suppose initially ⟨p̂j , ẑj′⟩I = 0, then at late times (η ≫ ϵ0, ϵ1),

⟨p̂j(t), ẑj′(t′)⟩ →
[
⟨p̂j , p̂j′⟩I

m̄
+ ℏs

π
ηjj′

(
− 1
ϵ20

+O(s2)
)]

m̄′

m̄
η. (3.39)

The contribution from the F -part of the correlator is negative and proportional to 1/ϵ20
in the above result.

3.3 Quantum coherence of particle state

The reduced state of the charged particle can be obtained by tracing out the field degrees
of freedom in the quantum state of the combined system. In the presence of particle-field
coupling, the reduced state of the charged particle is a mixed state. For Gaussian states of a
single charged particle considered in this paper, the purity, von Neumann entropy, and the
effective temperature of it can be computed using the uncertainty function [52]

U(τ) ≡
√
|detC| (3.40)

where C is the 6 × 6 covariance matrix

C =
(
⟨p̂i(τ), p̂j(τ)⟩ ⟨ẑi(τ), p̂j(τ)⟩
⟨p̂i(τ), ẑj(τ)⟩ ⟨ẑi(τ), ẑj(τ)⟩

)
. (3.41)

The purity of the reduced state of the particle then reads

P = (ℏ/2)3

U
. (3.42)

Since one can always diagonalize the particle sector of the quadratic Hamiltonian (2.28)
and the Gaussian states of the particle |zI⟩ simultaneously, without loss of generality, we con-
sider the cases where the three degrees of freedom of the particle motion are decoupled. Assume
⟨Ôi, Ôj⟩I ≡ Tr

[
ρI{Ôi(t̄0), Ô′

j(t̄0)}
]
∝ ηij for O,O′ = z, p. Then, after the particle-field cou-

pling has been switched on, one still has ⟨Ôi(t), Ô′
j(t)⟩ = ⟨Ôi(t), Ô′

j(t)⟩P+⟨Ôi(t), Ô′
j(t)⟩F ∝ ηij

from (3.25), (3.33), and (3.39) for the particle at rest. Thus,

U =
3∏

i=1

√
ui, (3.43)

where
ui(t) ≡ ⟨ẑi(t), ẑi(t)⟩⟨p̂i(t), p̂i(t)⟩ − ⟨ẑi(t), p̂i(t)⟩⟨p̂i(t), ẑi(t)⟩ (3.44)
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for each i = 1, 2, 3 (no sum). To evaluate the quantum coherence of a particle, one may
perform interference experiments separately in different directions or independent degrees
of freedom. To compare with experimental results, it would be convenient to define the
purity for a single, independent degree of freedom as

Pi ≡
ℏ/2
√
ui
, (3.45)

whence the purity of the system is P =
∏3

i=1 Pi. For a general covariant matrix C, the
values of √ui and Pi could be taken after the covariant matrix is transformed into three
2× 2 blocks of independent degrees of freedom, though their connection with experimental
results may become indirect.

Right before the particle-field coupling is switched on, one has

ui(t0) = ⟨ẑ2
i ⟩I ⟨p̂2

i ⟩I − ⟨ẑi, p̂i⟩I⟨p̂i, ẑi⟩I. (3.46)

for t̄0 → t0− from (3.12), (3.26), and (3.35) with (2.44), (2.55). If we assume that the particle
at that time was in a pure state, the condition

⟨ẑ2
i ⟩I ⟨p̂2

i ⟩I −
(
⟨ẑi, p̂i⟩I

)2 =
(ℏ
2

)2
, (3.47)

for each i would be introduced to give P = 1 initially. Around the ‘initial’ moment for the
observer η ≈ ϵ0 + ϵ1 after the coupling is switched on, however, one has ⟨ẑj(t), ẑj′(t)⟩ ≈
m2

m̄2 ⟨ẑj , ẑj′⟩I from (3.23) and (3.24). Together with (3.34), we would have

ui ≈
[(

m

m̄

)2
⟨ẑ2

i ⟩I

] [(
m̄′

m̄

)2
⟨p̂2

i ⟩I −
3ℏsm̄
2πϵ21

]
, (3.48)

if ϵ0 ≈ ϵ1, and ⟨p̂j(t), ẑj′(t)⟩ is vanishing at that moment. Suppose ⟨p̂i, ẑi⟩I = 0, which implies
⟨ẑ2

i ⟩I ⟨p̂2
i ⟩I = ℏ2/4. Then (3.48) becomes

ui ≈
m2m̄′2

m̄4
ℏ2

4 − 3ℏsm̄
2π

m2

m̄2
⟨ẑ2

i ⟩I
ϵ21

, (3.49)

where m2m̄′2

m̄4 =
[
1− (∆m/m̄)2]2 < 1 in the first term, and the second term in (3.49) is

negative. Thus, the ui in (3.49) must be less than ℏ2/4, indicating that the reduced state of
the particle with these parameter values would be unphysical.

To avoid this, we noticed that the bare correlators ⟨ẑ2
i ⟩I and ⟨p̂2

i ⟩I are not physically
measurable. Also, since FEGs produce single electrons via quantum tunneling, which is a
purely quantum effect, it is reasonable to assume that the electron just emitted by a FEG is
in a nearly pure state. Even if we put in an artificial switching function for the particle-field
interaction in our description, the non-adiabatic effect during the period of switching-on, if
any, should not hurt the purity significantly. For this reason, we assign ui ≡ ℏ2/4 in (3.48) at
the ‘initial’ moment η ≡ t− t0 = ϵ0 + ϵ1 ≈ 2ϵ0 right after the first appearance of the single
electron. In other words, we renormalize the quantum state such that

⟨ẑ2
i ⟩I⟨p̂2

i ⟩I ≡
ℏ2

4 (3.50)
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with

⟨ẑ2
i ⟩I ≡ ⟨zi(t′0 + ϵ1), zi(t′0)⟩ ≈

m2

m̄2 ⟨ẑ
2
i ⟩I, (3.51)

⟨p̂2
i ⟩I ≡ ⟨pi(t′0 + ϵ1), pi(t′0)⟩ ≈

m̄′2

m̄2 ⟨p̂
2
i ⟩I −

3ℏsm̄
2πϵ21

, (3.52)

and ⟨ẑ2
i ⟩I is supposed to be physically measurable in experiments. We will not ask whether

the bare quantum state of an electron satisfies ⟨z2
i ⟩I ⟨p2

i ⟩I = ℏ2/4, or equivalently, whether the
electrons before the particle-field coupling is switched-on was in a pure state or in a mixed state.

At late times (η ≫ ϵ0 ≈ ϵ1), (3.25), (3.33), and (3.39) yield

ui ≈
ℏsm̄′

πϵ21

(3
2 − m̄′

m̄

)[
⟨ẑ2

i ⟩I +
ℏs
πm̄

(
ln η2

ϵ0ϵ1
+ η

ϵ20
(ϵ0 + ϵ1) +

ϵ1
ϵ0

− 1
)]

+[
⟨p̂2

i ⟩I +
ℏsm̄
π

(
3
2ϵ21

− m̄′2

m̄2ϵ20

)][
⟨ẑ2

i ⟩I +
ℏs
πm̄

(
ln η2

ϵ0ϵ1
+ η

ϵ20
(ϵ0 + ϵ1) +

ϵ1
ϵ0

− 1
)
+

ℏs
πm̄′

(3
2 − m̄′

m̄

)
η2

ϵ21

]
. (3.53)

For electrons at rest, ∆m ∼ 10−3m̄ and so m̄′/m̄ ≈ 1 +O(10−3). One can see that the above
ui will never be less than ⟨ẑ2

i ⟩I⟨p̂2
i ⟩I for η ≫ ϵ0.

Since η ≫ ϵ0 ≫ ϵ≫ s at late times, the η2/ϵ20 term in (3.53) dominates over the
(
ln η2

ϵ0ϵ1
+

· · ·
)

term. Suppose the initial width of the wavepacket
(
⟨ẑ2

i ⟩I
) 1

2 ≪
√
ℏπϵ21/(2sm̄) ≈ 75µm

such that ⟨p̂2
i ⟩I = ℏ2/

(
4⟨ẑ2

i ⟩I
)
≫ ℏsm̄/(2πϵ21) and so the first line of the right-hand-side

of (3.53) is small compared to the other terms for m̄′ ≈ m̄ and ϵ1 ≈ ϵ0. Then (3.53) can
be reduced to

ui ≈
[
⟨p̂2

i ⟩I +
ℏsm̄
π

( 3
2ϵ21

− 1
ϵ20

)] [
⟨ẑ2

i ⟩I +
ℏs

2πϵ21m̄
η2
]
. (3.54)

since m̄′ ≈ m̄. The purity in the xi direction, Pi in (3.45), drops from 1 significantly when
the η2 term in the above ui becomes comparable with the first term ⟨ẑ2

i ⟩I, namely, when
η2ℏs/(2πϵ21m̄) ∼ ⟨ẑ2

i ⟩I. Accordingly, we estimate the decoherence time in this direction as

T dc
i ≡

√
6πm̄ϵ21
ℏs

√
⟨ẑ2

i ⟩I, (3.55)

which is proportional to the initial width of the electron wavepacket in the xi direction,(
⟨ẑ2

i ⟩I
)1/2. At η ≡ t − t0 = T dc

i , we have Pi ≈ 1/2.
Now we apply our formula to the electron interference experiment in ref. [43]. According

to [43], the distance from the source to the screen in their electron microscope is about 1.5
m, and in most of the journey the single electrons are approximately in inertial motion. The
coherent electrons tunneling out of the FEG are accelerated to a speed v ≈ 50 keV = 1.2×108

m/s ≈ 0.4 c, corresponding to a de Broglie wavelength 5.4 × 10−12 m and a flying time
tF ≈ 1.2× 10−8 s from the source to the image plane. At the speed v, an electron’s Lorentz
factor γ̄(tF ) = 1/

√
1− v2/c2 is about 1.1 only, and so the electron’s time dilation is not
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significant for laboratory observers. Since the interference pattern does form on the image
plane, the electron wavepacket in [43] must have sufficiently high quantum coherence. This
means that its purity must still be of order 1 after flying for tF , and the short acceleration
stage at early times as well as the passages through the electron lenses should not have too
much impact on the electrons’ coherence.

The diameter of the virtual source of a FEG applied in ref. [43] is about 5 nm [63, 65], so
we set the initial width of the wavepacket in the transverse directions

(
⟨ẑ2

T⟩I
)1/2 = 5× 10−9

m (T = 2 or 3), which is well above λC/γ̄(t′0) ≈ 2.2 × 10−12 m and justifies our Gaussian-
wavepacket approximation [38]. At the same time we set ⟨p̂i, ẑi⟩I = 0 for simplicity. These
lead to a transverse spreading rate of the wavepacket vT = m̄−1(⟨p̂2

T⟩I
)1/2 ≈ 1.2× 104 m/s.

From (3.13) with (3.9) inserted, we find ⟨ẑT(tF ), ẑT(tF )⟩ ≈ (141 µm)2 when the wavepacket
is arriving at the image plane. This is consistent with the transverse coherence length of
electrons, 140 µm at the screen, given in [43].

Inserting these parameter values as well as those mentioned in section 3.2.2 to the
formula (3.53) and then (3.45), we find that the purity in the transverse directions for an
electron wavepacket around the image plane is about5

PT ≡ ℏ
2
√
uT(tF )

≈ 0.47. (3.56)

It turns out that the flying time tF here is quite close to the decoherence time T dc
T ≈ 1.13×

10−8 s estimated by (3.55). The above result suggests that quantum decoherence by vacuum
fluctuations of EM fields may be a major source of the blurring in the interference pattern
reported in ref. [43]. For a slightly larger initial width, we get a slightly better purity which
would still be compatible with the contrast of the interference pattern measured in ref. [43].

In the longitudinal direction, almost all the parameters are the same except that the
initial width of the wavepacket is now

(
⟨ẑ2

1⟩I
)1/2 = 1.7× 10−6 m, which is much greater than(

⟨ẑ2
T⟩I
)1/2 and λC/γ̄(t0) but much less than 75µm so that our Gaussian approximation and

the approximated formula (3.54) are still good. We get

P1 ≡ ℏ
2√u1

≈ 0.9995, (3.57)

and then the purity of the single electron wavepacket centered around the image plane of the
electron microscope in [43] is P = P1P2P3 ≈ 0.9995 × (0.47)2 ≈ 0.22.

If we have a larger time-tagging uncertainty (or a lower time resolution) for the history
of electrons in the experiment, corresponding to larger values for the regulators ϵ1 and ϵ0
(or a smaller value of energy uncertainty ∆E for the electrons tunneling out of the FEG),
then we will get a longer decoherence time T dc

i from (3.55), and the value of purity Pi will
be closer to 1 for the same flying proper time τF of single electrons.

5In the preliminary result in ref. [67], the F -part correlators are under-estimated by a factor of 4π, so that
the values of Pi in [67] are higher than what we obtain here.
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4 Accelerated wavepacket in a uniform electric field

Consider a uniform electric field with field tensor F̄ 01
[0] = −F̄ 10

[0] = E/c, which is constant in
spacetime. A charged particle moving with uniform acceleration in this uniform electric
field follows a classical worldline

z̄µ(τ) =
(
c2

a
sinh aτ

c
,
c2

a
cosh aτ

c
, 0, 0

)
(4.1)

with proper acceleration a = qE/m̄. This is a solution to the LAD equation (2.21) parametrized
by the proper time τ of the particle. Define the scaled acceleration α ≡ a/c (in the unit of
frequency), the corresponding 4-velocity of the particle reads

ūµ(τ) = ∂τ z̄
µ(τ) = (c coshατ, c sinhατ, 0, 0) = (γ̄c, γ̄v̄) = γ̄v̄µ (4.2)

such that ūµū
µ = −c2. In terms of the Minkowski time t = 1

cz
0(τ) = α−1 sinhατ , one has

z̄µ(t) =
(
ct, c

√
α−2 + t2, 0, 0

)
, (4.3)

γ̄(t) = coshατ(t) =
√
1 + sinh2 ατ(t) =

√
1 + (αt)2, (4.4)

v̄µ(t) = (c, c tanατ(t), 0, 0) =
(
c, c

αt

γ̄(t) , 0, 0
)
, (4.5)

which yields M̄11 = cosh2 ατ(t) = γ̄2(t) and M̄22 = M̄33 = 1 with other elements vanishing,
as defined in (2.6) (so the nonvanishing elements of the inverse matrix M ij are M̄11 =
1/ cosh2 ατ(t) and M̄22 = M̄33 = 1.) Then eq. (2.52) reads

m̄∂t

[
γ̄3∂tZΩ

1

]
= qcF [0]Ω

10
(
z̄(t)

)
+ sm̄γ̄∂2

t

[
γ̄3∂tZΩ

1

]
+O(Λ−1), (4.6)

m̄∂t

[
γ̄∂tZΩ

T

]
= qcF [0]Ω

T0
(
z̄
)
+ qc

αt

γ̄
F [0]Ω

T1
(
z̄
)

+sm̄
[
γ̄2∂3

t ZΩ
T + 3γ̄(∂tγ̄)∂2

t ZΩ
T

]
+O(Λ−1) (4.7)

with s defined in (3.2) and T = 2, 3 in the directions transverse to the acceleration and velocity
of the particle. Below we use ‘longitudinal’ and ‘transverse’ correlators for the two-point
correlators of zj and pj with respect to the direction of acceleration of the particle, which
should not be confused with the longitudinal and transverse degrees of freedom of EM fields Aµ.

4.1 Mode functions

4.1.1 Particle-motion deviation in the direction of acceleration

Assume s is sufficiently small. Applying the same iteration in obtaining (3.3) to (4.6), we have

m̄∂τ

[
γ̄2(τ)∂τZΩ

1 (τ)
]
= qcγ̄(τ) (1 + s∂τ )F

[0]Ω
10

(
z̄(τ)

)
+O(Λ−1), (4.8)

where τ = α−1 sinh−1 αt from (4.1) and (4.3), ∂τ = γ̄∂t, and γ̄(τ) = coshατ from (4.4).
Note that τ here, though looks like the proper time for the particle, is simply a convenient
parameter for solving the above differential equations. Our theory is formulated in Minkowski
coordinates with the time slices parametrized by Minkowski time t.
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The formal solution to eq. (4.8) with O(Λ−1) neglected for τ ≡ τ(t) > τ0 ≡ τ(t0) reads

m̄ZΩ
1 (τ) = CΩ

1 + C̃Ω
1 tanhατ + qc

∫ τ

τ0
dτ̃K∥ (τ, τ̃) γ̄(τ̃) (1 + s∂τ̃ )F

[0]Ω
10

(
z̄(τ̃)

)
, (4.9)

where CΩ
1 and C̃Ω

1 are constants to be determined by the initial condition at the moment
when the interaction is switched on, and the kernel

K∥(τ, τ ′) ≡ α−1 (tanhατ − tanhατ ′
)

(4.10)

is the solution to

∂τ

[
γ̄2(τ) ∂τK∥(τ, τ ′)

]
= 0 (4.11)

satisfying the condition K∥(τ ′, τ ′) = 0 and γ̄2(τ)∂τK∥(τ, τ ′) = 1. When ατ, ατ ′ ≪ 1,
K∥(τ, τ ′) ≈ τ − τ ′ = K(τ, τ ′) in (3.5) for the particle at rest.

Matching the initial conditions (2.44) and (2.45) for τ = τ0, we find

Z1
zj (τ) = m

m̄
δ1

j , Z1
pj
(τ) = η1j

m̄
K∥(τ, τ0), (4.12)

Z1
(λ)k(τ) = qc

m̄
Ek 1

(λ) 0f
∥
k(τ) (4.13)

with Ek 1
(λ) 0 = η1µEk

(λ)µ0 given in (3.8), and

f
∥
k(τ) =

∫ τ

τ0

dτ̃K∥(τ, τ̃)γ̄(τ̃)
[
1 + s ikν ˙̄zν(τ̃)

]
eikµz̄µ(τ̃)e−ωϵ/2. (4.14)

Here kµ ≡ (−ω/c,k) with ω ≡ c|k|, and so ikµz̄
µ(τ̃) = −iω

c z̄
0(τ̃) + ik1z̄

1(τ̃) = −iω
α sinhατ̃ +

ik1
c
α coshατ̃ and ikν ˙̄zν(τ̃) = −iω coshατ̃ + ik1c sinhατ̃ from (4.1).
Substituting (4.1)–(4.5) to (2.56), the canonical momentum of the uniformly accelerated

particle in the direction of acceleration reads

PΩ
1 (τ) = qA[0]Ω

1
(
z̄(τ)

)
+ m̄′ cosh2 ατ ∂τZ1

Ω(τ)−
3
2sm̄

[
cosh2 ατ ∂2

τZ1
Ω + α

(3
2 sinh 2ατ + tanhατ

)
∂τZ1

Ω

]
(4.15)

with O(Λ−1) neglected. Inserting the above results for Z1
Ω, we get

Pzj

1 (τ) = 0, P
pj

1 (τ) = η1jΦ∥(τ), (4.16)

P(λ)k
1 (τ) = qϵ1(λ)ke

ikµz̄µ(τ)e−ωϵ/2 + qcEk 1
(λ) 0 ×{

Φ∥(τ) cosh2 ατ ḟ
∥
k(τ)−

3
2s coshατ

[
1 + s ikν ˙̄zν(τ)

]
eikµz̄µ(τ)e−ωϵ/2

}
, (4.17)

where

Φ∥(τ) ≡
m̄′

m̄
− 3

2sα tanhατ
(
1 + sech2ατ

)
. (4.18)
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4.1.2 Particle-motion deviation transverse to acceleration

Eq. (4.7) can be written as

m̄∂2
τZΩ

T (τ) = qcFΩ
T (τ) + sm̄∂τ

[ (
∂2

τ − α2
)
ZΩ

T (τ)
]
+O(Λ−1), (4.19)

where
FΩ

T (τ) ≡ F [0]Ω
T0

(
z̄(τ)

)
coshατ + F [0]Ω

T1
(
z̄(τ)

)
sinhατ. (4.20)

While the third derivative of ZΩ
T in the above equation will be treated as a perturbation,

the first derivative of ZΩ
T may be not. In fact, sα2 = sa2/c2 > 1 Hz for a > 4.3 × 1020

m/s2, which is achievable in laboratories for electrons accelerated by intense laser fields
(e.g. [39, 40]). So here we treat the first derivative term in (4.19) as of leading order, and
insert m̄∂2

τZΩ
T = qcFΩ

T (τ)− sα2m̄∂τZΩ
T +O(sc) to the third derivative term s∂τ

(
m̄∂2

τZΩ
T

)
.

Then we obtain

m̄
[ (

1 + s2α2
)
∂2

τ + sα2∂τ

]
ZΩ

T = qc(1 + s∂τ )FΩ
T +O(Λ−1). (4.21)

The formal solutions to the above equation with O(Λ−1) neglected for τ > τ0 read

m̄ZΩ
T (τ) = CΩ

T + C̃Ω
T e

− sα2
ς

(τ−τ0) + qc

∫ τ

τ0

dτ̃K⊥(τ, τ̃) (1 + s∂τ̃ )FΩ
T (τ̃) (4.22)

with constants CΩ
T and C̃Ω

T , ς ≡ 1 + (sα)2, and the kernel

K⊥(τ, τ̃) ≡
1
sα2

(
1− e−

sα2
ς

(τ−τ̃)
)
, (4.23)

which is the solution to

ς∂2
τK⊥(τ, τ̃) + sα2∂τK⊥(τ, τ̃) = 0 (4.24)

satisfying K⊥(τ, τ) = 0 and
(
ς∂τ + sα2)K⊥(τ, τ̃) = 1.

Matching the initial conditions (2.44) and (2.45) for τ = τ0, we find

ZT
zj (τ) = m

m̄
δT

j , ZT
pj
(τ) = ηTj

m̄
ςK⊥(τ, τ0), (4.25)

ZT
(λ)k(τ) = qc

m̄

∑
B=0,1

Ek T
(λ) Bf

⊥
kB(τ) (4.26)

for τ > τ0, where

f⊥kB(τ) ≡
∫ τ

τ0

dτ̃K⊥(τ, τ̃)
(
1 + s∂τ̃

)1
2
[
eατ̃ + (−1)Be−ατ̃

]
eikµz̄µ(τ̃)e−ωϵ/2, (4.27)

E(0)k
T1 = E(3)k

T1 ≡ 0, and

E(1)k
T1 ≡ i

(
kTϵ

(1)k
1 − k1ϵ

(1)k
T

)
, E(2)k

T1 ≡ i
(
kTϵ

(2)k
1 − k1ϵ

(2)k
T

)
, (4.28)

such that

F [0](λ)k
T1 (t,x) = ∂TA

[0](λ)k
1 (t,x)− ∂1A

[0](λ)k
T (t,x) = E(λ)k

T1 e−iωt+ik·x. (4.29)
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One may say E(λ)k
T1 corresponds to magnetic-field-type fluctuations, while E(λ)k

T0 corresponds
to electric-field-type fluctuations from (3.7).

From (4.1)–(4.5) and (2.56), the canonical momentum of the uniformly accelerated
particle perpendicular to acceleration reads

PΩ
T (τ) = qA[0]Ω

T (z̄(τ)) + m̄′∂τZT
Ω(τ)−

3
2sm̄

(
∂2

τ + α tanhατ ∂τ

)
ZT

Ω . (4.30)

Inserting the above result for ZT
Ω(τ) for τ > τ0, we have

Pzj

T = 0, P
pj

T = ηTje−
sα2

ς
(τ−τ0)Φ⊥(τ), (4.31)

P(λ)k
T = qϵT(λ)ke

ikµz̄µ(τ)e−ωϵ/2 + qc
∑

B=0,1
Ek T

(λ) B ×

{
Φ⊥(τ)ḟ⊥kB(τ)−

3s
2ς
(
1 + s∂τ

)1
2
[
eατ + (−1)Be−ατ

]
eikµz̄µ(τ)e−ωϵ/2

}
(4.32)

with
Φ⊥(τ) ≡

m̄′

m̄
− 3

2sα tanhατ + 3
2
s2α2

ς
. (4.33)

Since sc = 2r0/3 with the classical electron radius r0 ≈ 2.8× 10−15 m much shorter than
the electron Compton wavelength λC ≈ 2.4× 10−12 m, even if the electric field is very close
to the Schwinger limit E = m̄2c3

qℏ , with which α = a
c = qE

m̄c = m̄c2

ℏ = 1
tC

(electron Compton
frequency), one will still have sα = sa/c ≈ 3.87 × 10−4 ≪ 1. Actually, the most powerful
lasers in the world to date can achieve an intensity of 1023 W/cm2 [39, 40], the electric fields
of which produce roughly a scaled acceleration α ∼ 10−3t−1

C at most. This means that sα
is always a small, dimensionless parameter in our effective theory for uniformly accelerated
charges, and so in the following we will neglect the O

(
(sα)2) terms and treat ς ≈ 1.

4.2 Unruh effect

The symmetric two-point correlation function of the uniformly accelerated particle’s posi-
tion deviation can be computed by inserting the mode functions obtained in section 4.1
to (3.12), (3.26), and (3.35). For example, inserting (4.13) into (3.14), we obtain

⟨ẑ1(t), ẑ1(t′)⟩F = ℏ
(2π)3ε0

×

Re
∫ ∞

0

ω2

c2
dω

2ωc

∫ 2π

0
dφ

∫ π

0
dθ sin θ qc

m̄
E(λ)j

k 0
qc

m̄
Ek j′∗

(λ) 0 f
∥
k(τ)f

∥∗
k (τ ′), (4.34)

where τ = α−1 sinh−1 αt, τ ′ ≡ τ(t′).
To find the result to the leading order of s, we need to calculate the integral

I j j′

BB′(τ̃ , τ̃ ′) ≡
∫
ωdωdφd cos θ E(λ)j

k B Ek j′∗
(λ) B′ e

−i ω
c [z̄0(τ̃)−z̄0(τ̃ ′)]+ik1[z̄1(τ̃)−z̄1(τ̃ ′)]−ωϵ (4.35)

with B,B′ = 0, 1. Following the same method in ref. [51], let

e−i ω
c

z̄0(τ̃)+ik1z̄1(τ̃) ≡
∫ ∞

−∞
dκe−iκτ̃φk(κ). (4.36)
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Then we get

I11
00 (τ̃ , τ̃ ′) = 2π

∫ ∞

0
ωdωe−ωϵ

∫ 1

−1
d cos θ ×

ω2

c2

(
1− cos2 θ

) ∫ ∞

−∞
dκ

∫ ∞

−∞
dκ′e−iκτ̃+iκ′τ̃ ′

φk(κ)φ∗
k(κ′). (4.37)

where we have substituted E(λ)1
k 0 Ek 1∗

(λ) 0 =
(

ω
c

)2
η11 − (k1)2 =

(
ω
c

)2 (1 − cos2 θ) from (3.8)
and (3.16). Inserting (4.1), writing

φk(κ) =
∫ ∞

−∞

dτ̌

2πe
iκτ̌e−i ω

c
z̄0(τ̌)+ik1z̄1(τ̌) (4.38)

which is simply the inverse Fourier transform of (4.36), and integrating cos θ and ω in
turn, we obtain

I11
00 (τ̃ , τ̃ ′) = 4c2

π

∫
dκdκ′e−iκτ̃+iκ′τ̃ ′

dτ̌dτ̌ ′eiκτ̌−iκ′τ̌ ′[
(z̄0(τ̌)− z̄0(τ̌ ′)− icϵ)2 − (z̄1(τ̌)− z̄1(τ̌ ′))2

]2
= 4c2

π

∫
dκ̄ dD e−iκ̄(τ̃−τ̃ ′)− i

2 D(τ̃+τ̃ ′) dŤ d∆̌ eiDŤ +iκ̄∆̌[(
2c
α sinhαŤ sinh α∆̌

2

)2
−
(

2c
α coshαŤ sinh α∆̌

2 − icϵ
)2]2 (4.39)

with Ť ≡ (τ̌ + τ̌ ′)/2, ∆̌ ≡ τ̌ − τ̌ ′, κ̄ ≡ (κ + κ′)/2, and D ≡ κ − κ′. The D-Integration
gives a Dirac delta function 2πδ(Ť − T̃ ) with T̃ ≡ (τ̃ + τ̃ ′)/2 (so τ0 < T̃ < τ). Then the
Ť integration yields

I11
00 (τ̃ , τ̃ ′) = 8c2

∫
dκ̄e−iκ̄(τ̃−τ̃ ′)d∆̌eiκ̄∆̌[

4c2

α2 sinh2 α∆̌
2 − icϵ

(
4c
α coshαT̃ sinh α∆̌

2 − icϵ
)]2 . (4.40)

The poles of the above integrand are located at the solutions to sinh α∆̌
2 = iϵα

2 e
±αT̃ in the

complex ∆̌-plane. Similar to the transition probability from time-dependent perturbation
theory in appendix A of ref. [58], if |αT̃ | is sufficiently large, the poles obtained from
sinh α∆̌

2 = iα
2 ϵe

+αT̃ and those from sinh α∆̌
2 = iα

2 ϵe
−αT̃ will split significantly, and one will

obtain a pole structure very different from [58, 68]

I11
00 (τ̃ , τ̃ ′) ≈ 8c2

∫
dκ̄e−iκ̄(τ̃−τ̃ ′)

∫
d∆̌ eiκ̄∆̌[

4c2

α2 sinh2 α
2 (∆̌− iϵ′)

]2 , (4.41)

which derives the Unruh effect, as will be shown later in (4.44).
The form of (4.41) suggests that one could simply replace the exponent of the integrand

of a mode function, say, f∥ in (4.14), from ikµz̄
µ(τ̃)−ωϵ/2 to ikµz̄

µ (τ̃ − iϵ/2). However, one
cannot obtain (4.41) exactly by doing this. To bridge (4.40) and (4.41), alternatively, one may
introduce an ad hoc assumption that ϵ ∼ ϵ′/ cosh[α(τ̃ + τ̃ ′)/2] in (4.40) with a small constant
ϵ′ to suppress the splitting of the poles we mentioned above. This requires ϵ in (4.40) to be a
function of τ̃ and τ̃ ′, and so the factor e−ωϵ(τ̃)/2 in mode function (4.14) or (4.27) must be a
part of the integrand. Thus, the factor e−ωϵ in (4.35) contributed by f∥k(τ)f

∥∗
k (τ ′) in (4.34)
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should be replaced by exp
{
− ω

2 ϵ
′[F (τ̃) + F ∗(τ̃ ′)

]}
with some function F . Unfortunately, we

failed to find any function F giving either 1
2
[
F (τ̃) + F ∗(τ̃ ′)

]
∼ 1/ cosh[α(τ̃ + τ̃ ′)/2], or even

1
2
[
F (τ̃) + F ∗(τ̃ ′)

]
× cosh[α(τ̃ + τ̃ ′)/2] ∼ O(1) in general [e.g., for F (τ̃) = 1/γ̄(τ̃) = 1/ coshατ̃

from (4.4), when 0 < τ̃ ≪ τ̃ ′ and ατ̃ ′ ≫ 1, one has 1
2
[
1/γ̄(τ̃) + 1/γ̄(τ̃ ′)

]
cosh α

2 (τ̃ + τ̃ ′) ≈
1
2(1/ coshατ̃) cosh

α
2 τ̃

′ ≫ 1.]
It has been demonstrated in ref. [38] that, to keep the single-particle interpretation

applicable and the charge density distribution nearly Gaussian for a long time, the minimal
width of a Klein-Gordon wavepacket at the moment τ(t) = τ0 is about λC/γ̄(τ0). Inspired
by this observation, we propose to replace the e−ωϵ/2 factor in the mode function (4.14)
by e−ωϵ′/[2γ̄(τ)], namely, we set

ϵ(t) = ϵ′

γ̄[τ(t)] (4.42)

with constant ϵ′ chosen as the electron Compton time tC in Minkowski coordinates such
that cϵ(t) = λC/γ̄(t) in (4.40) and the factor e−ωϵ in (4.35) becomes exp

{
− ω

2 ϵ
′[γ̄−1(τ) +

γ̄−1(τ ′)
]}

≈ e−ωϵ′/γ̄(τ). Since τ̃ ∈ [τ0, τ ] (and τ̃ ′ ∈ [τ ′0, τ ′]) in the mode function (4.14),
from (4.4), we have 1

2
[
1/γ̄(τ) + 1/γ̄(τ ′)] × cosh α

2 (τ̃ + τ̃ ′) ≤ 1 +O(ϵ1) for τ > |τ0|, and so

I11
00 (τ̃ , τ̃ ′) = 8c2

∫
dκ̄e−iκ̄(τ̃−τ̃ ′)d∆̌eiκ̄∆̌[

4c2

α2 sinh2 α∆̌
2 − icϵ′

(
4c
α ϑ sinh

α∆̌
2 − iϵ′c

γ̄2(τ)

)]2 , (4.43)

with ϑ = cosh(αT̃ )/ cosh(ατ) no greater than O(1) because τ0 < T̃ < τ . Then, for τ >
|τ0|, (4.43) can be approximated by (4.41). Summing over the contributions from the poles
at ∆̌ = i(ϵ′ + 2πn/α) with integer n in (4.41), we obtain

I11
00 (τ̃ , τ̃ ′) ≈ 8π

3c2

∫
dκe−iκ(τ̃−τ̃ ′)−κϵ′ κ(κ2 + α2)

1− e−2πκ/α
, (4.44)

where κ̄ has been renamed to κ, and ϵ′ = tC is assumed to be much smaller than 2π/α,
namely, α≪ 2π/tC . In the above integrand, one can find a Planck factor corresponding to a
bosonic bath at the Unruh temperature TU ≡ ℏa/(2πckB). Thus we say the behavior of the
correlator ⟨ẑ1(t), ẑ1(t′)⟩ of a charged particle uniformly accelerated in Minkowski vacuum is
analogous to the one moving in a thermal bath of photons at temperature TU proportional
to its proper acceleration a, which is the Unruh effect.

Associated with (4.42), we let

ϵ0(t0) = τ(t0 + ϵ′0)− τ(t0), ϵ1(t) = τ(t)− τ(t− ϵ′1) (4.45)

with constants ϵ′0 and ϵ′1 determined by specific experimental settings in the laboratory frame.
These are consistent with the regulators in section 3 for the single electrons at rest. For
αϵ′0, αϵ′1 ≪ 1, we have ϵ0 ≈ ϵ′0/γ̄[τ(t0)] and ϵ1 ≈ ϵ′1/γ̄[τ(t)] from (2.23). Also, ϵ1(t) ≫ ϵ(t)
for all t if ϵ′1 ≫ ϵ′ (= tC).

A few remarks are in order. First, by setting ϵ→ ϵ′/γ̄(τ) in mode function (4.14) rather
than ϵ′/γ̄(τ̃), we have assumed that the frequency cutoff in a particle correlator at some
moment τ depends on the particle motion at that moment only, but not on the history
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of its motion at τ̃ ∈ [τ0, τ) in the past. So the factor e−ωϵ can be moved out of the τ̃

integrals in (4.14) and (4.27).

Second, e−ωϵ = e−ωϵ′/γ̄(τ) corresponds to the UV cutoff γ̄(τ)/tC in frequency, or λC/γ̄(τ)
in wavelength, which implies that the vacuum fluctuations of wavelengths much shorter than
the electron Compton wavelength in the laboratory frame can have significant contribution
to the particle correlators when γ̄(τ) ≫ 1. Does this alert a breakdown of our effective
theory? No: a charged particle in uniform motion in Minkowski space should not trigger pair-
productions or be recoiled significantly by field fluctuations, no matter how close the particle’s
speed is to the speed of light relative to a laboratory observer. Although the UV cutoff for a
moving electron observed in the laboratory frame is blue-shifted from the one for an electron
at rest, this does not mean a breakdown of single-particle interpretation for the electron.

Third, as we mentioned, the choice (4.42) is inspired by the observation in ref. [38], which
is about the quasi-(1+1) dimensional wavepackets in the context of relativistic quantum
mechanics only. Accordingly, in the longitudinal direction (parallel to the acceleration), we
set the regulator cϵ∥(t) = cϵ′/γ̄(t) = λC/γ̄(t) reflecting length contraction of the wavepackets
observed in the laboratory frame. How about the regulators in the transverse directions?
A reasonable choice is cϵ⊥(t) = c[τ(t + ϵ′) − τ(t)] due to time dilation. It turns out that
for αϵ′ ≪ 1 (αtC = 1 is the Schwinger limit), one has cϵ⊥(t) ≈ cϵ′/γ̄(t) = cϵ∥(t). Thus it is
sufficient to take the same cϵ(t) = λC/γ̄(t) in all directions for single electrons.

Fourth, not every uniformly accelerated charge with the choice of regulator (4.42) can
be interpreted as experiencing the Unruh effect in (4.44), since ϑ in (4.43) can be larger
than O(1) when |T̃ | > |τ | for τ < |τ0| . If a photoelectron is ejected with γ̄(τ0) ≫ 1 initially
and then decelerated by a negative voltage such that γ̄(τ) ≪ γ̄(τ0) for a period, then in
this period its (4.43) cannot be approximated by (4.41) and so the electron may behave
differently from those with the Unruh effect in (4.44) [58]. In this paper, nevertheless, we
only consider the electrons of initial speed in the laboratory frame much less than the speed
of light. A full justification of our choice of the UV cutoff (4.42) and the Unruh effect is
left to further experiments.

Finally, the Unruh effect is often taken to be an equivalence of a uniformly accelerated
detector/atom in the Minkowski vacuum of a bosonic field and a stationary detector/atom
immersed in a bosonic thermal bath. We shall show that there is a fallacy. When one
calculates the F -part of the correlators of the canonical momentum of the particle, e.g.,
⟨p̂1(t), p̂1(t′)⟩, one will find that in the product of P1P1 the cross terms of A1 and Ż1 contain
integrals in the form

I2(τ̃ , τ̃ ′) ≡ 2πc
∫
ωdω

∫ 1

−1
d cos θ ϵ(λ)1

k Ek 1∗
(λ) 0 e

−i ω
c [z̄0(τ̃)−z̄0(τ̃ ′)]+ik1[z̄1(τ̃)−z̄1(τ̃ ′)]−ωϵ (4.46)

[see (4.15), (4.17), and (3.28).] Introducing (3.17), (4.38), and the same regulators in
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obtaining (4.44), for τ > |τ0|, one has

I2(τ̃ , τ̃ ′) = −2πi
∫
ω2dωe−ωϵ′/γ̄(τ)

∫ 1

−1
d cos θ

∫
dκ dκ′e−iκτ̃+iκ′τ̃ ′

φk(κ)φ∗
k(κ′)

= α3

4π

∫
dκ dκ′e−iκτ̃+iκ′τ̃ ′

∫
dŤ d∆̌ei(κ−κ′)Ť + i

2 (κ+κ′)∆̌ coshαŤ
sinh3 α

2 ∆̌ +O(ϵ′)

≈ −iπ coshαT̃
∫
dκ e−iκ(τ̃−τ̃ ′)−κϵ′ 4κ2 + α2

1 + e−2πκ/α
, (4.47)

where κ̄ = (κ+ κ′)/2 in the last line has been renamed to κ. The above integrand turns out
to have a Planck factor corresponding to a fermionic bath at the same Unruh temperature
TU ≡ ℏa/(2πckB).

4.3 Particle correlators

From (3.8) and (4.28), one can see that E(λ)1
k 0 EkT∗

(λ) 0 = −k1kT, E(λ)1
k 0 EkT∗

(λ) 1 = ω
c k

T, and
ϵ
(λ)1
k EkT∗

(λ) 1 = −ikT are all proportional to sinφ or cosφ, which will be averaged out after
the φ-integration in the mode sum (

∫
d3k) for a correlator is done. Moreover, ϵ(λ)1

k ϵT∗
(λ)k = 0

from (3.16), and E(λ)1
k 0 ϵ

T′∗
(λ)k = E(λ)T

k 0 ϵ
1∗
(λ)k = 0 from (3.17). Thus the cross correlators between

the longitudinal and transverse motional degrees of freedom of a single electron, such as
⟨ẑ1(t), ẑT(t′)⟩ and ⟨p̂1(t), p̂T(t′)⟩, are all vanishing.

4.3.1 Correlators of longitudinal deviations

Inserting (4.12) into (3.13), we have

⟨ẑ1(t), ẑ1(t′)⟩P = ⟨ẑ2
1⟩I +

⟨p2
1⟩I
m̄2 K∥

[
τ(t), τ(t0)

]
K∥
[
τ(t′), τ(t′0)

]
(4.48)

where ⟨ẑ2
1⟩I ≡ ⟨ẑ1(t′0 + ϵ′1), ẑ1(t′0)⟩ = m2

m̄2 ⟨z2
1⟩I, and we will require

⟨p2
1⟩I =

[
m̄

m̄′

]2
[

ℏ2

4⟨ẑ2
1⟩I

− ⟨p̂1(t′0 + ϵ′1), p̂1(t′0)⟩F

]
(4.49)

with ⟨p̂1(t′0 + ϵ′1), p̂1(t′0)⟩F ≈ −3ℏsm̄/(2πϵ′12) for an electron initially at rest [ϵ1(t0) = ϵ′1 ≈ ϵ′0,
cf. (3.34) and (3.50).] From (4.10), one can see that ⟨ẑ1(t), ẑ1(t′)⟩P with τ0 = 0 saturates
to a finite constant ⟨ẑ2

1⟩I +
⟨p2

1⟩I
m̄2α2 when ατ(t) = sinh−1 αt ≫ 1. This is consistent with

the observation in relativistic quantum mechanics of a charged particle moving in uniform
electric fields [38].
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For the F -part, inserting the s0-terms of f∥k(τ) in (4.14) with K∥ in (4.10) as well as I11
00

in (4.44) into (4.34), then the leading order of ⟨ẑ1(t), ẑ1(t′)⟩F reads

⟨ẑ1(t), ẑ1(t′)⟩{0}
F ≈ 3ℏs

8π2m̄
Re 8π3

∫ ∞

−∞
dκ

κ(κ2 + α2)
1− e−2πκ/α

∫ τ

τ0
dτ̃

∫ τ ′

τ ′
0

dτ̃ ′ ×[
ζ+(τ)eατ̃ + ζ−(τ)e−ατ̃

]
e−iκτ̃

[
ζ+(τ ′)eατ̃ ′ + ζ−(τ ′)e−ατ̃ ′]

eiκτ̃ ′

= ℏs
πm̄

Re
∫ ∞

−∞
dκ

κ(κ2 + α2)
1− e−2πκ/α

×[
ζ+(τ)

e(−iκ+α)τ − e(−iκ+α)τ0

−iκ+ α
+ ζ−(τ)

e(−iκ−α)τ − e(−iκ−α)τ0

−iκ− α

]
×[

ζ+(τ ′)
e(iκ+α)τ ′ − e(iκ+α)τ ′

0

iκ+ α
+ ζ−(τ ′)

e(iκ−α)τ ′ − e(iκ−α)τ ′
0

iκ− α

]
, (4.50)

where ζ±(τ) ≡ α−1(tanhατ ∓ 1). At late times, ζ+(τ) ≈ −2α−1e−2ατ goes to zero and
ζ−(τ) ≈ 2α−1 goes to a finite constant. Let τ − τ ′ = ϵ1 > 0 and τ ′0 − τ0 = ϵ0 > 0, then
performing the above integral on the complex κ-plane and summing up the contribution
from the poles (possibly at κ = ±iαn, n ∈ Z), we obtain

⟨ẑ1(t), ẑ1(t′)⟩{0}
F ≈ ℏsα2

4πm̄ ×{
g(ϵ1)

[
−ζ+ζ

′
+e

α(τ+τ ′) − ζ−ζ
′
−e

−α(τ+τ ′) + ζ+ζ
′
−h4(ϵ1)− ζ−ζ

′
+h2(ϵ1)

]
+g(ϵ0)

[
−ζ+ζ

′
+e

α(τ0+τ ′
0) − ζ−ζ

′
−e

−α(τ0+τ ′
0) + ζ−ζ

′
+h4(ϵ0)− ζ+ζ

′
−h2(ϵ0)

]
+g(τ − τ ′0)

[
ζ+ζ

′
+e

α(τ+τ ′
0) + ζ−ζ

′
−e

−α(τ+τ ′
0) − ζ+ζ

′
−h4(τ − τ ′0) + ζ−ζ

′
+h2(τ − τ ′0)

]
+g(τ ′ − τ0)

[
ζ+ζ

′
+e

α(τ ′+τ0) + ζ−ζ
′
−e

−α(τ ′+τ0) − ζ−ζ
′
+h4(τ ′ − τ0) + ζ+ζ

′
−h2(τ ′ − τ0)

]
− 2

(
ζ+ζ

′
− + ζ−ζ

′
+
) α (τ ′ − τ ′0

)
− ln (1− e−αϵ0) (1− e−αϵ1)(

1− e−α(τ−τ ′
0)
) (

1− e−α(τ ′−τ0)
)
 (4.51)

with ζ± ≡ ζ±(τ), ζ ′± ≡ ζ±(τ ′), hn(x) ≡ 3e−αx − n, and

g(x) ≡ e−αx

(1− e−αx)2 . (4.52)

When ατ ≫ 1,

⟨ẑ1(t), ẑ1(t′)⟩{0}
F → − ℏs

πm̄
g(ϵ0)e−α(τ0+τ ′

0), (4.53)

which is a negative and finite constant, contributed by the −g(ϵ0)ζ−ζ ′−e−α(τ0+τ ′
0) term in

the third line of (4.51).
The next-to-leading order in s of ⟨ẑ1(t), ẑ1(t′)⟩F turns out to be O(sϵ′) with ϵ′ = γ̄/(cΛ) =

tC compared with the leading order. Thus, according to the discussion below eq. (3.2), we
have ⟨ẑ1(t), ẑ1(t′)⟩F ≈ ⟨ẑ1(t), ẑ1(t′)⟩{0}

F with higher-order corrections negligible. As α → 0,
⟨ẑ1(t), ẑ1(t′)⟩F for t0 = 0 goes back to the result (3.23) for a charged particle at rest.
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Figure 1. (Left) Time evolution of ⟨ẑ1(t), ẑ1(t)⟩ (black solid curve), which is indistinguishable from
⟨ẑ1(t), ẑ1(t)⟩P [eq. (4.48)] here. The black dashed curve represents 103 × ⟨ẑ1(t), ẑ1(t)⟩F [eq. (4.51)].
The green lines represent their late-time values. (Middle) Time evolution of 1028 ×⟨p̂1(t), ẑ1(t)⟩ (black)
and 1031 × ⟨p̂1(t), ẑ1(t)⟩F (black dashed). (Right) Time evolution of 1057 × ⟨p̂1(t), p̂1(t)⟩ (black) and
1057 × ⟨p̂1(t), p̂1(t)⟩P (black dotted). The green curve represents the scaled (1057×) sum of (4.56)
and the late-time value of ⟨p̂1(t), p̂1(t)⟩P . Here the physical parameters are in the SI units, t0 = 0,
α = 10 s−1, ϵ0 ≈ ϵ′0 = 1.4 × 10−14 s, ϵ1 ≈ ϵ′1/γ̄(t) with ϵ′1 = ϵ′0, the initial values ⟨ẑ2

1⟩I = (1.7 µm)2,
⟨p̂1(t′0 + ϵ′1), p̂1(t′0)⟩ = ℏ2/

(
4⟨ẑ2

1⟩I
)
, and ⟨p̂1, ẑ1⟩I = 0.

With (4.16) and (4.17), calculations for ⟨p̂1(t), ẑ1(t′)⟩ and ⟨p̂1(t), p̂1(t′)⟩ are straightfor-
ward using similar techniques. From (4.16), one has Pzj

1 = 0, and P
pj

1 goes to a positive finite
constant at late times since Φ∥ → m̄′

m̄ − 3
2sα as ατ → ∞. Thus, the P -parts

⟨p̂1(t), ẑ1(t′)⟩P = ⟨p2
1⟩I
m̄

Φ∥
[
τ(t)

]
K∥
[
τ(t′), τ(t′0)

]
→ ⟨p2

1⟩I
m̄α

(
m̄′

m̄
− 3

2sα
)
, (4.54)

⟨p̂1(t), p̂1(t′)⟩P = ⟨p2
1⟩I Φ∥

[
τ(t)

]
Φ∥
[
τ(t′)

]
→ ⟨p2

1⟩I

(
m̄′

m̄
− 3

2sα
)2
, (4.55)

saturate to finite constants at late times (here t0 = 0), similar to the behavior of ⟨ẑ1(t), ẑ1(t′)⟩P .
Some numerical results of time evolution of the particle correlators are shown in figure 1,

based on their closed-form expressions. One can see that all the P -parts of the correlators as
well as ⟨ẑ1(t), ẑ1(t′)⟩F indeed saturate at late times. However, the behaviors of ⟨p̂1(t), ẑ1(t′)⟩F

and ⟨p̂1(t), p̂1(t′)⟩F are different from them.
In the middle plot of figure 1, ⟨p̂1(t), ẑ1(t′)⟩F seems to saturate to a negative constant

−ℏsαm̄′

πm̄ e−αϵ0/(1− e−αϵ0)2 when we choose τ ′0 = 0, ϵ′1 = ϵ′0, and αϵ0 ≪ 1. But actually, there
is a negative growing term −α[τ(t) − τ0] in ⟨p̂1(t), ẑ1(t′)⟩F at late times, though it is not
significant in the example with αϵ0 ≪ 1 here.

For the F -part of the momentum correlator, we find that the next-to-leading order
correction to ⟨p̂1(t), p̂1(t′)⟩F is O(sα) compared with the leading-order result ⟨p̂1(t), p̂1(t′)⟩(0)

F ,
and the momentum correlator for ατ ≫ 1 and τ ≫ ϵ1 is approximately

⟨p̂1(t), p̂1(t′)⟩F ≈ 3ℏm̄
8π sα2e2ατ(t)×{
Φ+

[
3− 2αϵ1 + 2g(ϵ1)− 4 ln(1− e−αϵ1)

]
− 2

3Φ
2
+g(ϵ1) +O(sα)

}
(4.56)

with ϵ1 = τ−τ ′ given in (4.45) and Φ+ ≡ limατ≫1[Φ∥(τ)−sα m̄′

m̄ ] = m̄′

m̄ (1−sα)− 3
2sα > 0. Here,

the Φ+ term is produced by the cross term of A1 and Ż1 in (4.15). Its coefficient is positive
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since −2αϵ1 becomes very small for ατ ≫ 1 even if α is large enough to make αϵ′1 ≫ 1.6 The
Φ+ term dominates over the Φ2

+ term, which is negative and derived from the Ż1Ż1 term.
Thus, at late times (αt ≫ 1), ⟨p̂1(t), p̂1(t′)⟩F grows like α2g

(
ϵ1(t)

)
e2ατ(t) ≈

(
2αt/ϵ1(t)

)2,
as shown in figure 1 (right). In section 4.4, we will see that such a growing ⟨p̂1(t), p̂1(t′)⟩
will continuously decrease the quantum coherence in the direction of acceleration for a
laboratory observer at late times, as ⟨ẑ1(t), ẑ1(t′)⟩ saturates to a constant and ⟨p̂1(t), ẑ1(t′)⟩
goes down relatively slowly.

The wavepacket in the direction of acceleration is spreading in phase space after it’s
creation. At late times, the spreading rate in the z1 direction of phase space decreases,
while the wavepacket keeps spreading as γ̄2(t)t2 in the p1 direction. This is in contrast to
the behavior of the wavepacket of a charged particle at rest, which spreads as t2 in the
z1 direction of phase space [see eq. (3.25)], while the width in the p1 direction goes to a
constant at late times [eq. (3.33)].

4.3.2 Correlators of transverse deviations

Assume ⟨ẑT, ẑT′⟩I = ⟨p̂T, p̂T′⟩I = 0 for T ̸= T′, and ⟨p̂T, ẑT′⟩I = 0 for all T and T′. In-
serting (4.25) to (3.13), one can see that the P -part of the transverse deviation correlator
⟨ẑT(t), ẑT′(t′)⟩P eventually saturates as K⊥(τ, τ0) in (4.23) goes to a constant at late times.
While this behavior looks similar to the one for ⟨ẑ1(t), ẑ1(t′)⟩P in the direction parallel to
acceleration, the time scale of ⟨ẑT(t), ẑT′(t′)⟩P is ς/(sα2) ≈ (sα)−1α−1, which is much longer
than its longitudinal counterpart’s timescale α−1 since sα ≪ 1 in our effective theory as
we mentioned below (4.33).

In calculating the F -parts of the transverse deviation correlator, the situation is more
complicated than the longitudinal ones. There are two different types of fluctuations associated
with the two different factors E(λ)T

k 0 and E(λ)T
k 1 in (4.26). From (4.28) and (3.8), it is

straightforward to see

E(λ)T
k 1 E

k T′∗
(λ) 1 = k2

1η
TT′

− kTkT′
, E(λ)T

k 0 E
k T′∗
(λ) 1 = −ω

c
k1η

TT′
,

E(λ)T
k 1 ϵ

T′∗
(λ)k = −ik1η

TT′
, (4.57)

in addition to (3.17). After some algebra similar to section 4.2, the integrals (4.35) with
j, j′ = T,T′ are found to be

ITT′

00 (τ̃ , τ̃ ′) = 8π
3c2 η

TT′
coshα(τ̃ + τ̃ ′)

∫
dκ e−iκ(τ̃−τ̃ ′) κ(κ2 + α2)

1− e−2πκ/α
, (4.58)

ITT′

01 (τ̃ , τ̃ ′) = − 8π
3c2 η

TT′
sinhα(τ̃ + τ̃ ′)

∫
dκ e−iκ(τ̃−τ̃ ′) κ(κ2 + α2)

1− e−2πκ/α
, (4.59)

ITT′
11 (τ̃ , τ̃ ′) = ITT′

00 (τ̃ , τ̃ ′) in value, and ITT′
10 (τ̃ , τ̃ ′) = IT′T∗

01 (τ̃ ′, τ̃). Inserting (4.27) into (3.14),
then summing over B = 0, 1 with the above formulas, the F -part of the transverse deviation

6This justifies the choice of ϵ1(t) in (4.45). If αϵ1 is a constant of the Minkowski time t, once α = a/c

gets so large that αϵ1 ≫ 3/2 (a ≫ 3.2 × 1022 m/s2 for ϵ1 = 1.4 × 10−14 s, which is achievable for electrons
accelerated by a terawatt laser), ⟨p̂1(t), p̂1(t′)⟩(0)

F will behave like −(αt)2 at late times and eventually make
⟨p̂1(t), p̂1(t′)⟩ negative. This will violate the uncertainty relation and ruin the Gaussian state.
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Figure 2. (Left) Time evolution of electron’s ⟨ẑT(t), ẑT(t)⟩ (black solid curve), T = 2, 3, which
is indistinguishable from ⟨ẑT(t), ẑT(t)⟩P in this plot. The black dashed curve represents 108 ×
⟨ẑT(t), ẑT(t)⟩F . (Middle) Time evolution of 1023 × ⟨p̂T(t), ẑT(t)⟩ (black) and 1031 × ⟨p̂T(t), ẑT(t)⟩F

(black dashed). (Right) Time evolution of 1052 × ⟨p̂T(t), p̂T(t)⟩ (black) and 1059 × ⟨p̂T(t), p̂T(t)⟩F

(black dashed). The green curves represent the approximated behaviors (4.61)–(4.67). Here the
parameter values are the same as those in figure 1. The initial values for t0 = 0 are ⟨ẑ2

T⟩I = (5 nm)2 ,
⟨p̂T(ϵ′0 + ϵ′1), p̂T(ϵ′0)⟩ = ℏ2/

(
4⟨ẑ2

T⟩I
)
, and ⟨p̂T, ẑT⟩I = 0.

correlator becomes

⟨ẑT(t), ẑT′(t′)⟩F = ℏsηTT′

πm̄s2α4Re
∫
dκ

κ(κ2 + α2)
1− e−2πκ/α

∫ τ

τ0

dτ̃

∫ τ ′

τ ′
0

dτ̃ ′ ×{[
e−iκτ̃ − e−sα2τe(−iκ+sα2)τ̃

][
e−iκτ̃ ′ − e−sα2τ ′

e(−iκ+sα2)τ̃ ′]+O(s2)
}
. (4.60)

One can see the Planck factor corresponding to a bosonic bath at the Unruh temperature
TU ≡ ℏa/(2πckB) in the κ integral. The above τ̃ and τ̃ ′ integrals can be done straightforwardly
to obtain an expression similar to (4.50). Then one can sum over the contributions by the poles
at κ = 0, κ = ±inα (n = 2, 3, 4, · · · ), and κ = ±isα2. They are combinations of elementary
functions, the polylogarithm functions, and the hypergeometric functions. As α → 0,
⟨ẑT(t), ẑT′(t′)⟩F with t0 = 0 goes back to the result (3.23) for the charged particle at rest.

At very late times (sα2(τ ′ − τ ′0) ≫ 1), the τ ′ − τ ′0 term contributed by the pole at κ = 0
dominates, as the other terms in ⟨ẑT(t), ẑT′(t′)⟩F settle to finite constant values. Then we
have ⟨ẑT(t), ẑT′(t′)⟩F ≈ ℏs

πm̄(sα)2 η
TT′

α[τ(t′) − τ(t′0)] + constant.
In figure 2 (left), however, the transverse deviation correlators for a single electron with

α = 10 s−1 and α(t− t0) ≤ 10 are still not at their very late times [sα2(τ − τ0) < 2× 10−22].
In that plot,

⟨ẑT(t), ẑT(t′)⟩ ≈ ⟨ẑT(t), ẑT(t′)⟩P ≈ ⟨ẑ2
T⟩I + ⟨p2

T⟩I

[
τ(t)− τ(t0)

m̄

]2
(4.61)

with ⟨ẑ2
T⟩I ≡ ⟨ẑT(t′0 + ϵ′1), ẑT(t′0)⟩ and

⟨p2
T⟩I =

[
m̄

m̄′

]2
[

ℏ2

4⟨ẑ2
T⟩I

− ⟨p̂T(t′0 + ϵ′1), p̂T(t′0)⟩F

]
, (4.62)

with ⟨p̂T(t′0 + ϵ′1), p̂T(t′0)⟩F ≈ −3ℏsm̄/(2πϵ′12), similar to its longitudinal counterpart (4.49).
The early-time F -part of the correlator in figure 2 (where αϵ0 ≪ 1) is about

⟨ẑT(t), ẑT′(t′)⟩F ≈ −ℏsηTT′

m̄π

[
τ(t)− τ(t0)

]2
ϵ20

, (4.63)
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which is roughly 10−8 times the P -part in amplitude, still a very small correction to (4.61).
The above behavior is very similar to (3.25) for a charged particle at rest at t− t0 ≫ ϵ′0, with
the Minkowski time there generalized to the proper time of the particle here.

In figure 2 (right), one can see that

⟨p̂T(t), p̂T(t′)⟩ ≈ ⟨p̂T(t), p̂T(t′)⟩P ≈ ⟨p2
T⟩I

(
m̄′

m̄

)2
, (4.64)

which is not distinguishable from the P -part ⟨p̂T(t), p̂T′(t′)⟩P there. The F -part of the
transverse momentum correlator in figure 2 (αϵ0 ≪ 1) is approximately

⟨p̂T(t), p̂T′(t′)⟩F ≈ ⟨p̂T(t), p̂T′(t′)⟩{0}
F ≈ −ℏsηTT′

m̄π
×{

3m̄′2α2[τ(t)− τ(t0)
]
+ m̄′2

ϵ20
+
(
m̄′2 − 3m̄′m̄+ 3

2m̄
2
) 1
ϵ21

}
, (4.65)

which is much smaller than ⟨p̂T(t), p̂T′(t′)⟩P . The [ϵ1(t)]−2 = γ̄2(t)/ϵ′12 term in (4.65) is
positive (m̄ ≈ m̄) and behaves like t2 in figure 2 (right). It dominates over the other
two (negative) terms for αt > O(1). A term with [ϵ1(t)]−4 in the leading order contribu-
tion ⟨p̂T(t), p̂T′(t′)⟩(0)

F is not significant yet in the plot, and will become important much
later as αt gets very large. The amplitude of the next-to-leading order contribution in s,
⟨p̂T(t), p̂T′(t′)⟩{1}

F ≈ 9ℏs3α2m̄/
[
2π(ϵ1γ̄)2], is about s2α2 ∼ 10−45 times the leading order

contribution (4.65) in the whole interval 0 < αt < 10 in figure 2 (right). As α → 0, (4.65)
reduces to (3.33).

Finally, in figure 2 (middle), one has

⟨p̂T(t), ẑT(t′)⟩ ≈ ⟨p̂T(t), ẑT(t′)⟩P ≈ ⟨p2
T⟩I
m̄

(
m̄′

m̄

) [
τ(t)− τ(t0)

]
, (4.66)

which is again not distinguishable from ⟨p̂T(t), ẑT(t′)⟩P in the plot. The F -part of the
correlator for αϵ0, αϵ1 ≪ 1 is approximately

⟨p̂T(t), ẑT′(t′)⟩F ≈ ⟨p̂T(t), ẑT′(t′)⟩{0}
F

≈ ℏs
π
ηTT′

{
−m̄

′

m̄

[
τ(t)− τ(t0)

]
ϵ20

+
(3
2 − m̄′

m̄

) 1
ϵ1

}
. (4.67)

The above negative ϵ−2
0 term dominates the F -part in the time domain of figure 2 (middle),

while its value is very small compared with the P -part. The positive ϵ−1
1 term in (4.67) is not

significant until γ̄(t) ∼ O
[
(τ − τ0)ϵ′1/ϵ20

]
, then it takes over so that ⟨p̂T(t), ẑT′(t′)⟩{0}

F will be
approximately growing linearly since ϵ−1

1 ≈ γ̄(t)/ϵ′1 is roughly proportional to t at late times.
The next-to-leading order contribution ⟨p̂T(t), ẑT′(t′)⟩{1}

F ≈ 3ℏs2/(4πϵ21) is about sαγ̄2(t)/τ(t)
times the value of (4.67) in the whole interval 0 < αt < 10 in figure 2 (middle).

4.4 Quantum coherence of particle state

In section 4.3 we have already obtained all the correlators needed to fully describe the reduced
state of the Gaussian wavepacket of the charged particle. The uncertainty relation of the
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Figure 3. (Left) Purities of the transverse (black solid curve) and longitudinal (black dashed)
deviations against the accelerating time ta of a Gaussian electron wavepacket accelerated in a constant
electric field of 5×105 V/m, or α ≈ 2.9×108 s−1. Here τ0 = 0, and the initial state is the same as those
in figures 2. The gray region with ta = 1.54× 10−9 s at the right edge represents the acceleration stage
of an electron (initially at rest) in an acceleration tube of 10 cm. (Right) Purities of the transverse
(black solid) and longitudinal (black dashed) deviations against the electric field E (V/m) in the
acceleration tube of fixed length 10 cm. The green solid (dashed) curves in both plots represent
the purities obtained from the transverse (longitudinal) deviation correlators in section 3.3 for a
wavepacket of the same initial dimensions describing inertial single electrons with only the coordinate
effects taken into account.

particle state is again in the form of (3.43), and the purity of the particle can be factorized
into Pi defined in (3.45) for the particle-motion deviation in each direction.

In [43], the electrons will be accelerated to the anode at a potential of 50 kV after they
first appear around the tip of the FEG. Suppose the acceleration tube is L = 10 cm long
for simplicity, and the electric field E in the acceleration tube is roughly uniform. Then we
have E ≈ 5× 105 V/m, which produces a scaled acceleration α = qE/(m̄c) ≈ 2.9× 108 s−1.
Assume the initial purity of the electron wavepacket is 1 and its initial speed is zero in the
laboratory frame, so t0 = τ0 = 0 for the worldline (4.48). From (4.1), an electron initially at
rest will spend ta = α−1 sinhατa =

√
(L/c)2 + 2L/(αc) ≈ 1.54× 10−9 s in this acceleration

tube since L = (c/α)(coshατa − cosh 0) with τa the electron’s proper time at the end of
the tube. With the other parameter values the same as those set in section 3.3 and the
quantum-state renormalization like (3.50), we obtain the evolution of purities Pi in figure 3
(left) as a function of accelerating time ta in the laboratory frame. At the moment of leaving
the tube, the electron will have P1 ≈ 0.9992 for the longitudinal deviation and PT ≈ 0.9697
for the transverse deviations T = 2, 3, leading to an overall purity P = P1P2P3 ≈ 0.9395.
As expected in section 3.3, the purity of electron wavepacket is not seriously decreased
during this acceleration stage.

Applying the correlators in section 3.3 for an electron wavepacket at rest with the flying
time tF replaced by the acceleration proper time τa and the regulator ϵ1 substituted by (4.45),
we find P1 ≈ 0.9994 > 0.9992, and PT ≈ 0.9697 slightly greater than the values of PT we
obtained above with the Unruh effect [the difference is O(10−8)]. This shows that in each
direction the purity of an accelerated electron wavepacket with the Unruh effect decays faster
than the one obtained with the Unruh effect removed artificially, and such a tendency is more
significant in the longitudinal direction as shown in figure 3 (left).
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The above scaled acceleration α is so large that ⟨ẑ2
1⟩I ≫ ⟨p̂2

1⟩I/(m̄α)2, while αϵ1 is
small so that g(ϵ1) ≈ (αϵ1)−2 ≫ 1. From (4.48), (4.49), (4.53)–(4.56), and other results
in section 4.3.1, we have

u1 ≈
[
⟨ẑ12⟩I −

ℏs
πm̄

g(ϵ0)
]
×
[

ℏ2

4⟨ẑ12⟩I
+ 3ℏsm̄

2πϵ′12 + 3ℏs
8π m̄α

2e2ατ(t)g(ϵ1)
(
2m̄

′

m̄
− 2m̄′2

3m̄2

)]
,

(4.68)
where the contribution by ⟨ẑ1(t), p̂1(t′)⟩ ⟨p̂1(t), ẑ1(t′)⟩ is O

[
⟨p̂1

2⟩I/(m̄α)2] compared with the
leading order, and thus negligible. Then the decoherence time for the longitudinal deviation
in the laboratory frame can be estimated as

γ̄(T dc
1 )eατ(T dc

1 ) ≈

√√√√ 3πℏϵ′12

2sm̄⟨ẑ2
1⟩I

(4.69)

for m̄′ ≈ m̄, such that P1(T dc
1 ) ≈ 1/2. Applying (4.1) and (4.4), and inserting the parameter

values in figure 3 (left), we get T dc
1 ≈ 2.1×10−8 s, which agrees with the result in the plot (the

intersection of the black dashed curve and the horizontal gray line of Pi = 1/2) quite well.
In the transverse directions, applying the late-time limits of the correlators from (4.61)

to (4.67), the decoherence time in the laboratory frame is estimated by

γ̄(T dc
T ) τ(T dc

T ) =

√
6πm̄ϵ′12

ℏs
⟨ẑ2

T⟩I (4.70)

under the same initial conditions in obtaining (3.55) for an electron at rest. Then we get
T dc

T ≈ 7.1 × 10−9 s in figure 3 (left).
In figure 3 (right), we show the purities of a uniformly accelerated electron against the

accelerating electric field E with the acceleration tube of fixed length 10 cm. Again one can
see that the purity with the Unruh effect (black) in each direction is always lower than the
one without the Unruh effect (green), although those in the transverse directions are not
distinguishable in the plot (solid curves). Thus we may say that the Unruh effect enhances
decoherence, as measured by a decrease of purity. This is more significant in the longitudinal
direction (dashed curves). All the curves go to zero as E → 0 because the acceleration time
increases as the proper acceleration decreases. For small E , the transverse purity right after
the acceleration stage is less than the longitudinal purity. Figure 3 (left) is in this regime. For
E greater than about 4.5× 106 V/m (γ(ta) > 9.8), however, the transverse purity overtakes
and keeps robust as E increases. Quantum coherence of the particle-motion deviation in
the longitudinal direction drops very rapidly as the accelerating electric field and thus the
proper acceleration of the electron wavepacket gets larger.

5 Summary

We have constructed a linear effective theory to describe a single relativistic particle moving in
the EM vacuum. We consider the quantum state of the deviation of the particle’s motion from
its classical trajectory (shortened to ‘particle-motion deviation’) as a Gaussian wavepacket,
while the vacuum state of the EM fields is also Gaussian. The Gaussianity of the quantum
state for the whole system persists by virtue of the linearity of the theory.
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We quantized the theory in the laboratory frame, and then wrote down the quantum
counterpart of the Lorentz-Abraham-Dirac equation for the particle mode functions including
the self fields and radiation reactions after mass renormalization. We obtained the analytic
solutions of the mode functions, with which we calculated the two-point correlators of the
particle-motion deviations and their canonical momenta. Then the reduced state of the
particle can be fully determined.

Divergences arise in the mode sums over infinite degrees of freedom of the fields when
calculating the two-point correlators of the particle. To deal with the divergences, our
regularization is done by introducing a UV cutoff 1/ϵ in the mode sum, and the uncertainties
of time tagging ϵ0 and ϵ1 for the initial and final moments in the history of the charged
particle in the coincidence limit. To exclude particle-antiparticle pair production, we set the
value of cϵ as the electron Compton wavelength λC for an electron at rest. We chose the values
of ϵ0 and ϵ1 for single charged particles according to the energy uncertainty of the electrons
produced by a field emission electron gun. With these physically meaningful and finite valued
regulators explicitly present in the correlators, we have avoided the absolute coincidence
limit and the associated divergences. Moreover, we have ϵ ≪ ϵ0, which is consistent with
the requirement we found in [58] to obtain the results relevant to the Unruh effect, and the
exact value of ϵ would be masked by ϵ0 and ϵ1 in our results.

We calculated the purity of the reduced state of the particle, which makes physical sense
only after quantum state renormalization. We found that the purity of a single electron in the
electron interference experiment described in ref. [43] could be close to 1/2 in the transverse
direction when it approaches the screen, while its purity is not seriously decreased during the
early acceleration stage of the flying electron. Our result suggests that vacuum fluctuations
may play a major role in blurring the interference pattern in ref. [43].

We addressed the Unruh effect on a uniformly accelerated charge. We found that, in
order to obtain the Planck factor and identify a regime satisfying the Fermi golden rule
in the Unruh effect, the effect of length contraction should be included in the UV cutoff,
namely, cϵ = λC/γ̄(t) with γ̄(t) ≥ 1 being the Lorentz factor of the particle’s classical
motion. Thus the cutoff for a particle in non-inertial motion is apparently time-dependent
in the laboratory frame. Furthermore, since the measurement time or energy uncertainty
for an electron is determined in the laboratory and is supposed to be a constant in the
laboratory time, the resolution ϵ1 in the proper time of an accelerated particle should also
be varying in the laboratory time as the electron’s speed changes. It turns out that such
an apparently time-dependent regulator is what keeps the momentum correlators positive
for large accelerations at late times, and thus this time-dependence is a necessity for the
consistency of our effective theory. However, these time-dependent regulators imply that if
a photoelectron is initially moving at t0 at a highly relativistic speed (γ̄(t0) ≫ 1) and then
decelerated by an applied negative voltage, then in the period with γ̄(t) ≪ γ̄(t0), the electron
may behave very differently from what the Unruh effect would predict.

We also found that some terms in the two-point correlators have a Planck factor corre-
sponding to a fermionic bath at the Unruh temperature, rather than the bosonic bath that
the other terms correspond to. Thus, one cannot trivially apply the Unruh effect to a system
by simply introducing a bosonic or a fermionic environment. Finally, we demonstrated that
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the purity of the particle-motion deviation in each direction with the consideration of the
Unruh effect decays faster than the results obtained with the Unruh effect removed artificially,
and this tendency is more significant in the direction of acceleration.

For future works, using our effective theory, we are currently working on quantum
corrections to the radiations by a charge in uniform acceleration [51], circular motion [45,
46, 69, 70], and oscillatory motion [71, 72]. To get more insight, we are comparing our
calculations with those using the worldline influence functional method [22]. For treating
quantum foundation issues, this wavepacket-field theory is very adapt for investigating
fundamental problems involving dephasing or decoherence such as in the study of the
equivalence principle for quantum systems [73]. It also has good potential to be applied to
quantum entanglement problems, e.g., for atoms, charges, flavors [74–76] in quantum fields,
and after some reformulation, for mass-gravitational field systems, in the hotly promoted
gravitational entanglement experiments [77–79].
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